xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision 95e9fd10)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32 
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 
35 /**
36  * first_dirty_cnode - find first dirty cnode.
37  * @c: UBIFS file-system description object
38  * @nnode: nnode at which to start
39  *
40  * This function returns the first dirty cnode or %NULL if there is not one.
41  */
42 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
43 {
44 	ubifs_assert(nnode);
45 	while (1) {
46 		int i, cont = 0;
47 
48 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 			struct ubifs_cnode *cnode;
50 
51 			cnode = nnode->nbranch[i].cnode;
52 			if (cnode &&
53 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
54 				if (cnode->level == 0)
55 					return cnode;
56 				nnode = (struct ubifs_nnode *)cnode;
57 				cont = 1;
58 				break;
59 			}
60 		}
61 		if (!cont)
62 			return (struct ubifs_cnode *)nnode;
63 	}
64 }
65 
66 /**
67  * next_dirty_cnode - find next dirty cnode.
68  * @cnode: cnode from which to begin searching
69  *
70  * This function returns the next dirty cnode or %NULL if there is not one.
71  */
72 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
73 {
74 	struct ubifs_nnode *nnode;
75 	int i;
76 
77 	ubifs_assert(cnode);
78 	nnode = cnode->parent;
79 	if (!nnode)
80 		return NULL;
81 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
82 		cnode = nnode->nbranch[i].cnode;
83 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
84 			if (cnode->level == 0)
85 				return cnode; /* cnode is a pnode */
86 			/* cnode is a nnode */
87 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
88 		}
89 	}
90 	return (struct ubifs_cnode *)nnode;
91 }
92 
93 /**
94  * get_cnodes_to_commit - create list of dirty cnodes to commit.
95  * @c: UBIFS file-system description object
96  *
97  * This function returns the number of cnodes to commit.
98  */
99 static int get_cnodes_to_commit(struct ubifs_info *c)
100 {
101 	struct ubifs_cnode *cnode, *cnext;
102 	int cnt = 0;
103 
104 	if (!c->nroot)
105 		return 0;
106 
107 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
108 		return 0;
109 
110 	c->lpt_cnext = first_dirty_cnode(c->nroot);
111 	cnode = c->lpt_cnext;
112 	if (!cnode)
113 		return 0;
114 	cnt += 1;
115 	while (1) {
116 		ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
117 		__set_bit(COW_CNODE, &cnode->flags);
118 		cnext = next_dirty_cnode(cnode);
119 		if (!cnext) {
120 			cnode->cnext = c->lpt_cnext;
121 			break;
122 		}
123 		cnode->cnext = cnext;
124 		cnode = cnext;
125 		cnt += 1;
126 	}
127 	dbg_cmt("committing %d cnodes", cnt);
128 	dbg_lp("committing %d cnodes", cnt);
129 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
130 	return cnt;
131 }
132 
133 /**
134  * upd_ltab - update LPT LEB properties.
135  * @c: UBIFS file-system description object
136  * @lnum: LEB number
137  * @free: amount of free space
138  * @dirty: amount of dirty space to add
139  */
140 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
141 {
142 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
143 	       lnum, c->ltab[lnum - c->lpt_first].free,
144 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
145 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
146 	c->ltab[lnum - c->lpt_first].free = free;
147 	c->ltab[lnum - c->lpt_first].dirty += dirty;
148 }
149 
150 /**
151  * alloc_lpt_leb - allocate an LPT LEB that is empty.
152  * @c: UBIFS file-system description object
153  * @lnum: LEB number is passed and returned here
154  *
155  * This function finds the next empty LEB in the ltab starting from @lnum. If a
156  * an empty LEB is found it is returned in @lnum and the function returns %0.
157  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
158  * never to run out of space.
159  */
160 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
161 {
162 	int i, n;
163 
164 	n = *lnum - c->lpt_first + 1;
165 	for (i = n; i < c->lpt_lebs; i++) {
166 		if (c->ltab[i].tgc || c->ltab[i].cmt)
167 			continue;
168 		if (c->ltab[i].free == c->leb_size) {
169 			c->ltab[i].cmt = 1;
170 			*lnum = i + c->lpt_first;
171 			return 0;
172 		}
173 	}
174 
175 	for (i = 0; i < n; i++) {
176 		if (c->ltab[i].tgc || c->ltab[i].cmt)
177 			continue;
178 		if (c->ltab[i].free == c->leb_size) {
179 			c->ltab[i].cmt = 1;
180 			*lnum = i + c->lpt_first;
181 			return 0;
182 		}
183 	}
184 	return -ENOSPC;
185 }
186 
187 /**
188  * layout_cnodes - layout cnodes for commit.
189  * @c: UBIFS file-system description object
190  *
191  * This function returns %0 on success and a negative error code on failure.
192  */
193 static int layout_cnodes(struct ubifs_info *c)
194 {
195 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
196 	struct ubifs_cnode *cnode;
197 
198 	err = dbg_chk_lpt_sz(c, 0, 0);
199 	if (err)
200 		return err;
201 	cnode = c->lpt_cnext;
202 	if (!cnode)
203 		return 0;
204 	lnum = c->nhead_lnum;
205 	offs = c->nhead_offs;
206 	/* Try to place lsave and ltab nicely */
207 	done_lsave = !c->big_lpt;
208 	done_ltab = 0;
209 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
210 		done_lsave = 1;
211 		c->lsave_lnum = lnum;
212 		c->lsave_offs = offs;
213 		offs += c->lsave_sz;
214 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
215 	}
216 
217 	if (offs + c->ltab_sz <= c->leb_size) {
218 		done_ltab = 1;
219 		c->ltab_lnum = lnum;
220 		c->ltab_offs = offs;
221 		offs += c->ltab_sz;
222 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
223 	}
224 
225 	do {
226 		if (cnode->level) {
227 			len = c->nnode_sz;
228 			c->dirty_nn_cnt -= 1;
229 		} else {
230 			len = c->pnode_sz;
231 			c->dirty_pn_cnt -= 1;
232 		}
233 		while (offs + len > c->leb_size) {
234 			alen = ALIGN(offs, c->min_io_size);
235 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
236 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
237 			err = alloc_lpt_leb(c, &lnum);
238 			if (err)
239 				goto no_space;
240 			offs = 0;
241 			ubifs_assert(lnum >= c->lpt_first &&
242 				     lnum <= c->lpt_last);
243 			/* Try to place lsave and ltab nicely */
244 			if (!done_lsave) {
245 				done_lsave = 1;
246 				c->lsave_lnum = lnum;
247 				c->lsave_offs = offs;
248 				offs += c->lsave_sz;
249 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
250 				continue;
251 			}
252 			if (!done_ltab) {
253 				done_ltab = 1;
254 				c->ltab_lnum = lnum;
255 				c->ltab_offs = offs;
256 				offs += c->ltab_sz;
257 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
258 				continue;
259 			}
260 			break;
261 		}
262 		if (cnode->parent) {
263 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
264 			cnode->parent->nbranch[cnode->iip].offs = offs;
265 		} else {
266 			c->lpt_lnum = lnum;
267 			c->lpt_offs = offs;
268 		}
269 		offs += len;
270 		dbg_chk_lpt_sz(c, 1, len);
271 		cnode = cnode->cnext;
272 	} while (cnode && cnode != c->lpt_cnext);
273 
274 	/* Make sure to place LPT's save table */
275 	if (!done_lsave) {
276 		if (offs + c->lsave_sz > c->leb_size) {
277 			alen = ALIGN(offs, c->min_io_size);
278 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
279 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
280 			err = alloc_lpt_leb(c, &lnum);
281 			if (err)
282 				goto no_space;
283 			offs = 0;
284 			ubifs_assert(lnum >= c->lpt_first &&
285 				     lnum <= c->lpt_last);
286 		}
287 		done_lsave = 1;
288 		c->lsave_lnum = lnum;
289 		c->lsave_offs = offs;
290 		offs += c->lsave_sz;
291 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
292 	}
293 
294 	/* Make sure to place LPT's own lprops table */
295 	if (!done_ltab) {
296 		if (offs + c->ltab_sz > c->leb_size) {
297 			alen = ALIGN(offs, c->min_io_size);
298 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
299 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
300 			err = alloc_lpt_leb(c, &lnum);
301 			if (err)
302 				goto no_space;
303 			offs = 0;
304 			ubifs_assert(lnum >= c->lpt_first &&
305 				     lnum <= c->lpt_last);
306 		}
307 		done_ltab = 1;
308 		c->ltab_lnum = lnum;
309 		c->ltab_offs = offs;
310 		offs += c->ltab_sz;
311 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
312 	}
313 
314 	alen = ALIGN(offs, c->min_io_size);
315 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 	dbg_chk_lpt_sz(c, 4, alen - offs);
317 	err = dbg_chk_lpt_sz(c, 3, alen);
318 	if (err)
319 		return err;
320 	return 0;
321 
322 no_space:
323 	ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
324 		  "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
325 	ubifs_dump_lpt_info(c);
326 	ubifs_dump_lpt_lebs(c);
327 	dump_stack();
328 	return err;
329 }
330 
331 /**
332  * realloc_lpt_leb - allocate an LPT LEB that is empty.
333  * @c: UBIFS file-system description object
334  * @lnum: LEB number is passed and returned here
335  *
336  * This function duplicates exactly the results of the function alloc_lpt_leb.
337  * It is used during end commit to reallocate the same LEB numbers that were
338  * allocated by alloc_lpt_leb during start commit.
339  *
340  * This function finds the next LEB that was allocated by the alloc_lpt_leb
341  * function starting from @lnum. If a LEB is found it is returned in @lnum and
342  * the function returns %0. Otherwise the function returns -ENOSPC.
343  * Note however, that LPT is designed never to run out of space.
344  */
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346 {
347 	int i, n;
348 
349 	n = *lnum - c->lpt_first + 1;
350 	for (i = n; i < c->lpt_lebs; i++)
351 		if (c->ltab[i].cmt) {
352 			c->ltab[i].cmt = 0;
353 			*lnum = i + c->lpt_first;
354 			return 0;
355 		}
356 
357 	for (i = 0; i < n; i++)
358 		if (c->ltab[i].cmt) {
359 			c->ltab[i].cmt = 0;
360 			*lnum = i + c->lpt_first;
361 			return 0;
362 		}
363 	return -ENOSPC;
364 }
365 
366 /**
367  * write_cnodes - write cnodes for commit.
368  * @c: UBIFS file-system description object
369  *
370  * This function returns %0 on success and a negative error code on failure.
371  */
372 static int write_cnodes(struct ubifs_info *c)
373 {
374 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 	struct ubifs_cnode *cnode;
376 	void *buf = c->lpt_buf;
377 
378 	cnode = c->lpt_cnext;
379 	if (!cnode)
380 		return 0;
381 	lnum = c->nhead_lnum;
382 	offs = c->nhead_offs;
383 	from = offs;
384 	/* Ensure empty LEB is unmapped */
385 	if (offs == 0) {
386 		err = ubifs_leb_unmap(c, lnum);
387 		if (err)
388 			return err;
389 	}
390 	/* Try to place lsave and ltab nicely */
391 	done_lsave = !c->big_lpt;
392 	done_ltab = 0;
393 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 		done_lsave = 1;
395 		ubifs_pack_lsave(c, buf + offs, c->lsave);
396 		offs += c->lsave_sz;
397 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
398 	}
399 
400 	if (offs + c->ltab_sz <= c->leb_size) {
401 		done_ltab = 1;
402 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 		offs += c->ltab_sz;
404 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
405 	}
406 
407 	/* Loop for each cnode */
408 	do {
409 		if (cnode->level)
410 			len = c->nnode_sz;
411 		else
412 			len = c->pnode_sz;
413 		while (offs + len > c->leb_size) {
414 			wlen = offs - from;
415 			if (wlen) {
416 				alen = ALIGN(wlen, c->min_io_size);
417 				memset(buf + offs, 0xff, alen - wlen);
418 				err = ubifs_leb_write(c, lnum, buf + from, from,
419 						       alen);
420 				if (err)
421 					return err;
422 			}
423 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 			err = realloc_lpt_leb(c, &lnum);
425 			if (err)
426 				goto no_space;
427 			offs = from = 0;
428 			ubifs_assert(lnum >= c->lpt_first &&
429 				     lnum <= c->lpt_last);
430 			err = ubifs_leb_unmap(c, lnum);
431 			if (err)
432 				return err;
433 			/* Try to place lsave and ltab nicely */
434 			if (!done_lsave) {
435 				done_lsave = 1;
436 				ubifs_pack_lsave(c, buf + offs, c->lsave);
437 				offs += c->lsave_sz;
438 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
439 				continue;
440 			}
441 			if (!done_ltab) {
442 				done_ltab = 1;
443 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 				offs += c->ltab_sz;
445 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
446 				continue;
447 			}
448 			break;
449 		}
450 		if (cnode->level)
451 			ubifs_pack_nnode(c, buf + offs,
452 					 (struct ubifs_nnode *)cnode);
453 		else
454 			ubifs_pack_pnode(c, buf + offs,
455 					 (struct ubifs_pnode *)cnode);
456 		/*
457 		 * The reason for the barriers is the same as in case of TNC.
458 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 		 * 'dirty_cow_pnode()' are the functions for which this is
460 		 * important.
461 		 */
462 		clear_bit(DIRTY_CNODE, &cnode->flags);
463 		smp_mb__before_clear_bit();
464 		clear_bit(COW_CNODE, &cnode->flags);
465 		smp_mb__after_clear_bit();
466 		offs += len;
467 		dbg_chk_lpt_sz(c, 1, len);
468 		cnode = cnode->cnext;
469 	} while (cnode && cnode != c->lpt_cnext);
470 
471 	/* Make sure to place LPT's save table */
472 	if (!done_lsave) {
473 		if (offs + c->lsave_sz > c->leb_size) {
474 			wlen = offs - from;
475 			alen = ALIGN(wlen, c->min_io_size);
476 			memset(buf + offs, 0xff, alen - wlen);
477 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
478 			if (err)
479 				return err;
480 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 			err = realloc_lpt_leb(c, &lnum);
482 			if (err)
483 				goto no_space;
484 			offs = from = 0;
485 			ubifs_assert(lnum >= c->lpt_first &&
486 				     lnum <= c->lpt_last);
487 			err = ubifs_leb_unmap(c, lnum);
488 			if (err)
489 				return err;
490 		}
491 		done_lsave = 1;
492 		ubifs_pack_lsave(c, buf + offs, c->lsave);
493 		offs += c->lsave_sz;
494 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 	}
496 
497 	/* Make sure to place LPT's own lprops table */
498 	if (!done_ltab) {
499 		if (offs + c->ltab_sz > c->leb_size) {
500 			wlen = offs - from;
501 			alen = ALIGN(wlen, c->min_io_size);
502 			memset(buf + offs, 0xff, alen - wlen);
503 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
504 			if (err)
505 				return err;
506 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 			err = realloc_lpt_leb(c, &lnum);
508 			if (err)
509 				goto no_space;
510 			offs = from = 0;
511 			ubifs_assert(lnum >= c->lpt_first &&
512 				     lnum <= c->lpt_last);
513 			err = ubifs_leb_unmap(c, lnum);
514 			if (err)
515 				return err;
516 		}
517 		done_ltab = 1;
518 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519 		offs += c->ltab_sz;
520 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
521 	}
522 
523 	/* Write remaining data in buffer */
524 	wlen = offs - from;
525 	alen = ALIGN(wlen, c->min_io_size);
526 	memset(buf + offs, 0xff, alen - wlen);
527 	err = ubifs_leb_write(c, lnum, buf + from, from, alen);
528 	if (err)
529 		return err;
530 
531 	dbg_chk_lpt_sz(c, 4, alen - wlen);
532 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
533 	if (err)
534 		return err;
535 
536 	c->nhead_lnum = lnum;
537 	c->nhead_offs = ALIGN(offs, c->min_io_size);
538 
539 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542 	if (c->big_lpt)
543 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
544 
545 	return 0;
546 
547 no_space:
548 	ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
549 		  "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
550 	ubifs_dump_lpt_info(c);
551 	ubifs_dump_lpt_lebs(c);
552 	dump_stack();
553 	return err;
554 }
555 
556 /**
557  * next_pnode_to_dirty - find next pnode to dirty.
558  * @c: UBIFS file-system description object
559  * @pnode: pnode
560  *
561  * This function returns the next pnode to dirty or %NULL if there are no more
562  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
563  * skipped.
564  */
565 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
566 					       struct ubifs_pnode *pnode)
567 {
568 	struct ubifs_nnode *nnode;
569 	int iip;
570 
571 	/* Try to go right */
572 	nnode = pnode->parent;
573 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
574 		if (nnode->nbranch[iip].lnum)
575 			return ubifs_get_pnode(c, nnode, iip);
576 	}
577 
578 	/* Go up while can't go right */
579 	do {
580 		iip = nnode->iip + 1;
581 		nnode = nnode->parent;
582 		if (!nnode)
583 			return NULL;
584 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
585 			if (nnode->nbranch[iip].lnum)
586 				break;
587 		}
588 	} while (iip >= UBIFS_LPT_FANOUT);
589 
590 	/* Go right */
591 	nnode = ubifs_get_nnode(c, nnode, iip);
592 	if (IS_ERR(nnode))
593 		return (void *)nnode;
594 
595 	/* Go down to level 1 */
596 	while (nnode->level > 1) {
597 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
598 			if (nnode->nbranch[iip].lnum)
599 				break;
600 		}
601 		if (iip >= UBIFS_LPT_FANOUT) {
602 			/*
603 			 * Should not happen, but we need to keep going
604 			 * if it does.
605 			 */
606 			iip = 0;
607 		}
608 		nnode = ubifs_get_nnode(c, nnode, iip);
609 		if (IS_ERR(nnode))
610 			return (void *)nnode;
611 	}
612 
613 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
614 		if (nnode->nbranch[iip].lnum)
615 			break;
616 	if (iip >= UBIFS_LPT_FANOUT)
617 		/* Should not happen, but we need to keep going if it does */
618 		iip = 0;
619 	return ubifs_get_pnode(c, nnode, iip);
620 }
621 
622 /**
623  * pnode_lookup - lookup a pnode in the LPT.
624  * @c: UBIFS file-system description object
625  * @i: pnode number (0 to main_lebs - 1)
626  *
627  * This function returns a pointer to the pnode on success or a negative
628  * error code on failure.
629  */
630 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
631 {
632 	int err, h, iip, shft;
633 	struct ubifs_nnode *nnode;
634 
635 	if (!c->nroot) {
636 		err = ubifs_read_nnode(c, NULL, 0);
637 		if (err)
638 			return ERR_PTR(err);
639 	}
640 	i <<= UBIFS_LPT_FANOUT_SHIFT;
641 	nnode = c->nroot;
642 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
643 	for (h = 1; h < c->lpt_hght; h++) {
644 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
645 		shft -= UBIFS_LPT_FANOUT_SHIFT;
646 		nnode = ubifs_get_nnode(c, nnode, iip);
647 		if (IS_ERR(nnode))
648 			return ERR_CAST(nnode);
649 	}
650 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
651 	return ubifs_get_pnode(c, nnode, iip);
652 }
653 
654 /**
655  * add_pnode_dirt - add dirty space to LPT LEB properties.
656  * @c: UBIFS file-system description object
657  * @pnode: pnode for which to add dirt
658  */
659 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
660 {
661 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
662 			   c->pnode_sz);
663 }
664 
665 /**
666  * do_make_pnode_dirty - mark a pnode dirty.
667  * @c: UBIFS file-system description object
668  * @pnode: pnode to mark dirty
669  */
670 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
671 {
672 	/* Assumes cnext list is empty i.e. not called during commit */
673 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
674 		struct ubifs_nnode *nnode;
675 
676 		c->dirty_pn_cnt += 1;
677 		add_pnode_dirt(c, pnode);
678 		/* Mark parent and ancestors dirty too */
679 		nnode = pnode->parent;
680 		while (nnode) {
681 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
682 				c->dirty_nn_cnt += 1;
683 				ubifs_add_nnode_dirt(c, nnode);
684 				nnode = nnode->parent;
685 			} else
686 				break;
687 		}
688 	}
689 }
690 
691 /**
692  * make_tree_dirty - mark the entire LEB properties tree dirty.
693  * @c: UBIFS file-system description object
694  *
695  * This function is used by the "small" LPT model to cause the entire LEB
696  * properties tree to be written.  The "small" LPT model does not use LPT
697  * garbage collection because it is more efficient to write the entire tree
698  * (because it is small).
699  *
700  * This function returns %0 on success and a negative error code on failure.
701  */
702 static int make_tree_dirty(struct ubifs_info *c)
703 {
704 	struct ubifs_pnode *pnode;
705 
706 	pnode = pnode_lookup(c, 0);
707 	if (IS_ERR(pnode))
708 		return PTR_ERR(pnode);
709 
710 	while (pnode) {
711 		do_make_pnode_dirty(c, pnode);
712 		pnode = next_pnode_to_dirty(c, pnode);
713 		if (IS_ERR(pnode))
714 			return PTR_ERR(pnode);
715 	}
716 	return 0;
717 }
718 
719 /**
720  * need_write_all - determine if the LPT area is running out of free space.
721  * @c: UBIFS file-system description object
722  *
723  * This function returns %1 if the LPT area is running out of free space and %0
724  * if it is not.
725  */
726 static int need_write_all(struct ubifs_info *c)
727 {
728 	long long free = 0;
729 	int i;
730 
731 	for (i = 0; i < c->lpt_lebs; i++) {
732 		if (i + c->lpt_first == c->nhead_lnum)
733 			free += c->leb_size - c->nhead_offs;
734 		else if (c->ltab[i].free == c->leb_size)
735 			free += c->leb_size;
736 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
737 			free += c->leb_size;
738 	}
739 	/* Less than twice the size left */
740 	if (free <= c->lpt_sz * 2)
741 		return 1;
742 	return 0;
743 }
744 
745 /**
746  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
747  * @c: UBIFS file-system description object
748  *
749  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
750  * free space and so may be reused as soon as the next commit is completed.
751  * This function is called during start commit to mark LPT LEBs for trivial GC.
752  */
753 static void lpt_tgc_start(struct ubifs_info *c)
754 {
755 	int i;
756 
757 	for (i = 0; i < c->lpt_lebs; i++) {
758 		if (i + c->lpt_first == c->nhead_lnum)
759 			continue;
760 		if (c->ltab[i].dirty > 0 &&
761 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
762 			c->ltab[i].tgc = 1;
763 			c->ltab[i].free = c->leb_size;
764 			c->ltab[i].dirty = 0;
765 			dbg_lp("LEB %d", i + c->lpt_first);
766 		}
767 	}
768 }
769 
770 /**
771  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
772  * @c: UBIFS file-system description object
773  *
774  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
775  * free space and so may be reused as soon as the next commit is completed.
776  * This function is called after the commit is completed (master node has been
777  * written) and un-maps LPT LEBs that were marked for trivial GC.
778  */
779 static int lpt_tgc_end(struct ubifs_info *c)
780 {
781 	int i, err;
782 
783 	for (i = 0; i < c->lpt_lebs; i++)
784 		if (c->ltab[i].tgc) {
785 			err = ubifs_leb_unmap(c, i + c->lpt_first);
786 			if (err)
787 				return err;
788 			c->ltab[i].tgc = 0;
789 			dbg_lp("LEB %d", i + c->lpt_first);
790 		}
791 	return 0;
792 }
793 
794 /**
795  * populate_lsave - fill the lsave array with important LEB numbers.
796  * @c: the UBIFS file-system description object
797  *
798  * This function is only called for the "big" model. It records a small number
799  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
800  * most important to least important): empty, freeable, freeable index, dirty
801  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
802  * their pnodes into memory.  That will stop us from having to scan the LPT
803  * straight away. For the "small" model we assume that scanning the LPT is no
804  * big deal.
805  */
806 static void populate_lsave(struct ubifs_info *c)
807 {
808 	struct ubifs_lprops *lprops;
809 	struct ubifs_lpt_heap *heap;
810 	int i, cnt = 0;
811 
812 	ubifs_assert(c->big_lpt);
813 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
814 		c->lpt_drty_flgs |= LSAVE_DIRTY;
815 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
816 	}
817 
818 	if (dbg_populate_lsave(c))
819 		return;
820 
821 	list_for_each_entry(lprops, &c->empty_list, list) {
822 		c->lsave[cnt++] = lprops->lnum;
823 		if (cnt >= c->lsave_cnt)
824 			return;
825 	}
826 	list_for_each_entry(lprops, &c->freeable_list, list) {
827 		c->lsave[cnt++] = lprops->lnum;
828 		if (cnt >= c->lsave_cnt)
829 			return;
830 	}
831 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
832 		c->lsave[cnt++] = lprops->lnum;
833 		if (cnt >= c->lsave_cnt)
834 			return;
835 	}
836 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
837 	for (i = 0; i < heap->cnt; i++) {
838 		c->lsave[cnt++] = heap->arr[i]->lnum;
839 		if (cnt >= c->lsave_cnt)
840 			return;
841 	}
842 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
843 	for (i = 0; i < heap->cnt; i++) {
844 		c->lsave[cnt++] = heap->arr[i]->lnum;
845 		if (cnt >= c->lsave_cnt)
846 			return;
847 	}
848 	heap = &c->lpt_heap[LPROPS_FREE - 1];
849 	for (i = 0; i < heap->cnt; i++) {
850 		c->lsave[cnt++] = heap->arr[i]->lnum;
851 		if (cnt >= c->lsave_cnt)
852 			return;
853 	}
854 	/* Fill it up completely */
855 	while (cnt < c->lsave_cnt)
856 		c->lsave[cnt++] = c->main_first;
857 }
858 
859 /**
860  * nnode_lookup - lookup a nnode in the LPT.
861  * @c: UBIFS file-system description object
862  * @i: nnode number
863  *
864  * This function returns a pointer to the nnode on success or a negative
865  * error code on failure.
866  */
867 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
868 {
869 	int err, iip;
870 	struct ubifs_nnode *nnode;
871 
872 	if (!c->nroot) {
873 		err = ubifs_read_nnode(c, NULL, 0);
874 		if (err)
875 			return ERR_PTR(err);
876 	}
877 	nnode = c->nroot;
878 	while (1) {
879 		iip = i & (UBIFS_LPT_FANOUT - 1);
880 		i >>= UBIFS_LPT_FANOUT_SHIFT;
881 		if (!i)
882 			break;
883 		nnode = ubifs_get_nnode(c, nnode, iip);
884 		if (IS_ERR(nnode))
885 			return nnode;
886 	}
887 	return nnode;
888 }
889 
890 /**
891  * make_nnode_dirty - find a nnode and, if found, make it dirty.
892  * @c: UBIFS file-system description object
893  * @node_num: nnode number of nnode to make dirty
894  * @lnum: LEB number where nnode was written
895  * @offs: offset where nnode was written
896  *
897  * This function is used by LPT garbage collection.  LPT garbage collection is
898  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
899  * simply involves marking all the nodes in the LEB being garbage-collected as
900  * dirty.  The dirty nodes are written next commit, after which the LEB is free
901  * to be reused.
902  *
903  * This function returns %0 on success and a negative error code on failure.
904  */
905 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
906 			    int offs)
907 {
908 	struct ubifs_nnode *nnode;
909 
910 	nnode = nnode_lookup(c, node_num);
911 	if (IS_ERR(nnode))
912 		return PTR_ERR(nnode);
913 	if (nnode->parent) {
914 		struct ubifs_nbranch *branch;
915 
916 		branch = &nnode->parent->nbranch[nnode->iip];
917 		if (branch->lnum != lnum || branch->offs != offs)
918 			return 0; /* nnode is obsolete */
919 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
920 			return 0; /* nnode is obsolete */
921 	/* Assumes cnext list is empty i.e. not called during commit */
922 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923 		c->dirty_nn_cnt += 1;
924 		ubifs_add_nnode_dirt(c, nnode);
925 		/* Mark parent and ancestors dirty too */
926 		nnode = nnode->parent;
927 		while (nnode) {
928 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
929 				c->dirty_nn_cnt += 1;
930 				ubifs_add_nnode_dirt(c, nnode);
931 				nnode = nnode->parent;
932 			} else
933 				break;
934 		}
935 	}
936 	return 0;
937 }
938 
939 /**
940  * make_pnode_dirty - find a pnode and, if found, make it dirty.
941  * @c: UBIFS file-system description object
942  * @node_num: pnode number of pnode to make dirty
943  * @lnum: LEB number where pnode was written
944  * @offs: offset where pnode was written
945  *
946  * This function is used by LPT garbage collection.  LPT garbage collection is
947  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
948  * simply involves marking all the nodes in the LEB being garbage-collected as
949  * dirty.  The dirty nodes are written next commit, after which the LEB is free
950  * to be reused.
951  *
952  * This function returns %0 on success and a negative error code on failure.
953  */
954 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
955 			    int offs)
956 {
957 	struct ubifs_pnode *pnode;
958 	struct ubifs_nbranch *branch;
959 
960 	pnode = pnode_lookup(c, node_num);
961 	if (IS_ERR(pnode))
962 		return PTR_ERR(pnode);
963 	branch = &pnode->parent->nbranch[pnode->iip];
964 	if (branch->lnum != lnum || branch->offs != offs)
965 		return 0;
966 	do_make_pnode_dirty(c, pnode);
967 	return 0;
968 }
969 
970 /**
971  * make_ltab_dirty - make ltab node dirty.
972  * @c: UBIFS file-system description object
973  * @lnum: LEB number where ltab was written
974  * @offs: offset where ltab was written
975  *
976  * This function is used by LPT garbage collection.  LPT garbage collection is
977  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
978  * simply involves marking all the nodes in the LEB being garbage-collected as
979  * dirty.  The dirty nodes are written next commit, after which the LEB is free
980  * to be reused.
981  *
982  * This function returns %0 on success and a negative error code on failure.
983  */
984 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
985 {
986 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
987 		return 0; /* This ltab node is obsolete */
988 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
989 		c->lpt_drty_flgs |= LTAB_DIRTY;
990 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
991 	}
992 	return 0;
993 }
994 
995 /**
996  * make_lsave_dirty - make lsave node dirty.
997  * @c: UBIFS file-system description object
998  * @lnum: LEB number where lsave was written
999  * @offs: offset where lsave was written
1000  *
1001  * This function is used by LPT garbage collection.  LPT garbage collection is
1002  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1003  * simply involves marking all the nodes in the LEB being garbage-collected as
1004  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1005  * to be reused.
1006  *
1007  * This function returns %0 on success and a negative error code on failure.
1008  */
1009 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1010 {
1011 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1012 		return 0; /* This lsave node is obsolete */
1013 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1014 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1015 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1016 	}
1017 	return 0;
1018 }
1019 
1020 /**
1021  * make_node_dirty - make node dirty.
1022  * @c: UBIFS file-system description object
1023  * @node_type: LPT node type
1024  * @node_num: node number
1025  * @lnum: LEB number where node was written
1026  * @offs: offset where node was written
1027  *
1028  * This function is used by LPT garbage collection.  LPT garbage collection is
1029  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1030  * simply involves marking all the nodes in the LEB being garbage-collected as
1031  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1032  * to be reused.
1033  *
1034  * This function returns %0 on success and a negative error code on failure.
1035  */
1036 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1037 			   int lnum, int offs)
1038 {
1039 	switch (node_type) {
1040 	case UBIFS_LPT_NNODE:
1041 		return make_nnode_dirty(c, node_num, lnum, offs);
1042 	case UBIFS_LPT_PNODE:
1043 		return make_pnode_dirty(c, node_num, lnum, offs);
1044 	case UBIFS_LPT_LTAB:
1045 		return make_ltab_dirty(c, lnum, offs);
1046 	case UBIFS_LPT_LSAVE:
1047 		return make_lsave_dirty(c, lnum, offs);
1048 	}
1049 	return -EINVAL;
1050 }
1051 
1052 /**
1053  * get_lpt_node_len - return the length of a node based on its type.
1054  * @c: UBIFS file-system description object
1055  * @node_type: LPT node type
1056  */
1057 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1058 {
1059 	switch (node_type) {
1060 	case UBIFS_LPT_NNODE:
1061 		return c->nnode_sz;
1062 	case UBIFS_LPT_PNODE:
1063 		return c->pnode_sz;
1064 	case UBIFS_LPT_LTAB:
1065 		return c->ltab_sz;
1066 	case UBIFS_LPT_LSAVE:
1067 		return c->lsave_sz;
1068 	}
1069 	return 0;
1070 }
1071 
1072 /**
1073  * get_pad_len - return the length of padding in a buffer.
1074  * @c: UBIFS file-system description object
1075  * @buf: buffer
1076  * @len: length of buffer
1077  */
1078 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1079 {
1080 	int offs, pad_len;
1081 
1082 	if (c->min_io_size == 1)
1083 		return 0;
1084 	offs = c->leb_size - len;
1085 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1086 	return pad_len;
1087 }
1088 
1089 /**
1090  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1091  * @c: UBIFS file-system description object
1092  * @buf: buffer
1093  * @node_num: node number is returned here
1094  */
1095 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1096 			     int *node_num)
1097 {
1098 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1099 	int pos = 0, node_type;
1100 
1101 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1102 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1103 	return node_type;
1104 }
1105 
1106 /**
1107  * is_a_node - determine if a buffer contains a node.
1108  * @c: UBIFS file-system description object
1109  * @buf: buffer
1110  * @len: length of buffer
1111  *
1112  * This function returns %1 if the buffer contains a node or %0 if it does not.
1113  */
1114 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1115 {
1116 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1117 	int pos = 0, node_type, node_len;
1118 	uint16_t crc, calc_crc;
1119 
1120 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1121 		return 0;
1122 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1123 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1124 		return 0;
1125 	node_len = get_lpt_node_len(c, node_type);
1126 	if (!node_len || node_len > len)
1127 		return 0;
1128 	pos = 0;
1129 	addr = buf;
1130 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1131 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1132 			 node_len - UBIFS_LPT_CRC_BYTES);
1133 	if (crc != calc_crc)
1134 		return 0;
1135 	return 1;
1136 }
1137 
1138 /**
1139  * lpt_gc_lnum - garbage collect a LPT LEB.
1140  * @c: UBIFS file-system description object
1141  * @lnum: LEB number to garbage collect
1142  *
1143  * LPT garbage collection is used only for the "big" LPT model
1144  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1145  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1146  * next commit, after which the LEB is free to be reused.
1147  *
1148  * This function returns %0 on success and a negative error code on failure.
1149  */
1150 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1151 {
1152 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1153 	void *buf = c->lpt_buf;
1154 
1155 	dbg_lp("LEB %d", lnum);
1156 
1157 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1158 	if (err)
1159 		return err;
1160 
1161 	while (1) {
1162 		if (!is_a_node(c, buf, len)) {
1163 			int pad_len;
1164 
1165 			pad_len = get_pad_len(c, buf, len);
1166 			if (pad_len) {
1167 				buf += pad_len;
1168 				len -= pad_len;
1169 				continue;
1170 			}
1171 			return 0;
1172 		}
1173 		node_type = get_lpt_node_type(c, buf, &node_num);
1174 		node_len = get_lpt_node_len(c, node_type);
1175 		offs = c->leb_size - len;
1176 		ubifs_assert(node_len != 0);
1177 		mutex_lock(&c->lp_mutex);
1178 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1179 		mutex_unlock(&c->lp_mutex);
1180 		if (err)
1181 			return err;
1182 		buf += node_len;
1183 		len -= node_len;
1184 	}
1185 	return 0;
1186 }
1187 
1188 /**
1189  * lpt_gc - LPT garbage collection.
1190  * @c: UBIFS file-system description object
1191  *
1192  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1193  * Returns %0 on success and a negative error code on failure.
1194  */
1195 static int lpt_gc(struct ubifs_info *c)
1196 {
1197 	int i, lnum = -1, dirty = 0;
1198 
1199 	mutex_lock(&c->lp_mutex);
1200 	for (i = 0; i < c->lpt_lebs; i++) {
1201 		ubifs_assert(!c->ltab[i].tgc);
1202 		if (i + c->lpt_first == c->nhead_lnum ||
1203 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1204 			continue;
1205 		if (c->ltab[i].dirty > dirty) {
1206 			dirty = c->ltab[i].dirty;
1207 			lnum = i + c->lpt_first;
1208 		}
1209 	}
1210 	mutex_unlock(&c->lp_mutex);
1211 	if (lnum == -1)
1212 		return -ENOSPC;
1213 	return lpt_gc_lnum(c, lnum);
1214 }
1215 
1216 /**
1217  * ubifs_lpt_start_commit - UBIFS commit starts.
1218  * @c: the UBIFS file-system description object
1219  *
1220  * This function has to be called when UBIFS starts the commit operation.
1221  * This function "freezes" all currently dirty LEB properties and does not
1222  * change them anymore. Further changes are saved and tracked separately
1223  * because they are not part of this commit. This function returns zero in case
1224  * of success and a negative error code in case of failure.
1225  */
1226 int ubifs_lpt_start_commit(struct ubifs_info *c)
1227 {
1228 	int err, cnt;
1229 
1230 	dbg_lp("");
1231 
1232 	mutex_lock(&c->lp_mutex);
1233 	err = dbg_chk_lpt_free_spc(c);
1234 	if (err)
1235 		goto out;
1236 	err = dbg_check_ltab(c);
1237 	if (err)
1238 		goto out;
1239 
1240 	if (c->check_lpt_free) {
1241 		/*
1242 		 * We ensure there is enough free space in
1243 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1244 		 * information is lost when we unmount, so we also need
1245 		 * to check free space once after mounting also.
1246 		 */
1247 		c->check_lpt_free = 0;
1248 		while (need_write_all(c)) {
1249 			mutex_unlock(&c->lp_mutex);
1250 			err = lpt_gc(c);
1251 			if (err)
1252 				return err;
1253 			mutex_lock(&c->lp_mutex);
1254 		}
1255 	}
1256 
1257 	lpt_tgc_start(c);
1258 
1259 	if (!c->dirty_pn_cnt) {
1260 		dbg_cmt("no cnodes to commit");
1261 		err = 0;
1262 		goto out;
1263 	}
1264 
1265 	if (!c->big_lpt && need_write_all(c)) {
1266 		/* If needed, write everything */
1267 		err = make_tree_dirty(c);
1268 		if (err)
1269 			goto out;
1270 		lpt_tgc_start(c);
1271 	}
1272 
1273 	if (c->big_lpt)
1274 		populate_lsave(c);
1275 
1276 	cnt = get_cnodes_to_commit(c);
1277 	ubifs_assert(cnt != 0);
1278 
1279 	err = layout_cnodes(c);
1280 	if (err)
1281 		goto out;
1282 
1283 	/* Copy the LPT's own lprops for end commit to write */
1284 	memcpy(c->ltab_cmt, c->ltab,
1285 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1286 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1287 
1288 out:
1289 	mutex_unlock(&c->lp_mutex);
1290 	return err;
1291 }
1292 
1293 /**
1294  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1295  * @c: UBIFS file-system description object
1296  */
1297 static void free_obsolete_cnodes(struct ubifs_info *c)
1298 {
1299 	struct ubifs_cnode *cnode, *cnext;
1300 
1301 	cnext = c->lpt_cnext;
1302 	if (!cnext)
1303 		return;
1304 	do {
1305 		cnode = cnext;
1306 		cnext = cnode->cnext;
1307 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1308 			kfree(cnode);
1309 		else
1310 			cnode->cnext = NULL;
1311 	} while (cnext != c->lpt_cnext);
1312 	c->lpt_cnext = NULL;
1313 }
1314 
1315 /**
1316  * ubifs_lpt_end_commit - finish the commit operation.
1317  * @c: the UBIFS file-system description object
1318  *
1319  * This function has to be called when the commit operation finishes. It
1320  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1321  * the media. Returns zero in case of success and a negative error code in case
1322  * of failure.
1323  */
1324 int ubifs_lpt_end_commit(struct ubifs_info *c)
1325 {
1326 	int err;
1327 
1328 	dbg_lp("");
1329 
1330 	if (!c->lpt_cnext)
1331 		return 0;
1332 
1333 	err = write_cnodes(c);
1334 	if (err)
1335 		return err;
1336 
1337 	mutex_lock(&c->lp_mutex);
1338 	free_obsolete_cnodes(c);
1339 	mutex_unlock(&c->lp_mutex);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1346  * @c: UBIFS file-system description object
1347  *
1348  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1349  * commit for the "big" LPT model.
1350  */
1351 int ubifs_lpt_post_commit(struct ubifs_info *c)
1352 {
1353 	int err;
1354 
1355 	mutex_lock(&c->lp_mutex);
1356 	err = lpt_tgc_end(c);
1357 	if (err)
1358 		goto out;
1359 	if (c->big_lpt)
1360 		while (need_write_all(c)) {
1361 			mutex_unlock(&c->lp_mutex);
1362 			err = lpt_gc(c);
1363 			if (err)
1364 				return err;
1365 			mutex_lock(&c->lp_mutex);
1366 		}
1367 out:
1368 	mutex_unlock(&c->lp_mutex);
1369 	return err;
1370 }
1371 
1372 /**
1373  * first_nnode - find the first nnode in memory.
1374  * @c: UBIFS file-system description object
1375  * @hght: height of tree where nnode found is returned here
1376  *
1377  * This function returns a pointer to the nnode found or %NULL if no nnode is
1378  * found. This function is a helper to 'ubifs_lpt_free()'.
1379  */
1380 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1381 {
1382 	struct ubifs_nnode *nnode;
1383 	int h, i, found;
1384 
1385 	nnode = c->nroot;
1386 	*hght = 0;
1387 	if (!nnode)
1388 		return NULL;
1389 	for (h = 1; h < c->lpt_hght; h++) {
1390 		found = 0;
1391 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1392 			if (nnode->nbranch[i].nnode) {
1393 				found = 1;
1394 				nnode = nnode->nbranch[i].nnode;
1395 				*hght = h;
1396 				break;
1397 			}
1398 		}
1399 		if (!found)
1400 			break;
1401 	}
1402 	return nnode;
1403 }
1404 
1405 /**
1406  * next_nnode - find the next nnode in memory.
1407  * @c: UBIFS file-system description object
1408  * @nnode: nnode from which to start.
1409  * @hght: height of tree where nnode is, is passed and returned here
1410  *
1411  * This function returns a pointer to the nnode found or %NULL if no nnode is
1412  * found. This function is a helper to 'ubifs_lpt_free()'.
1413  */
1414 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1415 				      struct ubifs_nnode *nnode, int *hght)
1416 {
1417 	struct ubifs_nnode *parent;
1418 	int iip, h, i, found;
1419 
1420 	parent = nnode->parent;
1421 	if (!parent)
1422 		return NULL;
1423 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1424 		*hght -= 1;
1425 		return parent;
1426 	}
1427 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1428 		nnode = parent->nbranch[iip].nnode;
1429 		if (nnode)
1430 			break;
1431 	}
1432 	if (!nnode) {
1433 		*hght -= 1;
1434 		return parent;
1435 	}
1436 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1437 		found = 0;
1438 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1439 			if (nnode->nbranch[i].nnode) {
1440 				found = 1;
1441 				nnode = nnode->nbranch[i].nnode;
1442 				*hght = h;
1443 				break;
1444 			}
1445 		}
1446 		if (!found)
1447 			break;
1448 	}
1449 	return nnode;
1450 }
1451 
1452 /**
1453  * ubifs_lpt_free - free resources owned by the LPT.
1454  * @c: UBIFS file-system description object
1455  * @wr_only: free only resources used for writing
1456  */
1457 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1458 {
1459 	struct ubifs_nnode *nnode;
1460 	int i, hght;
1461 
1462 	/* Free write-only things first */
1463 
1464 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1465 
1466 	vfree(c->ltab_cmt);
1467 	c->ltab_cmt = NULL;
1468 	vfree(c->lpt_buf);
1469 	c->lpt_buf = NULL;
1470 	kfree(c->lsave);
1471 	c->lsave = NULL;
1472 
1473 	if (wr_only)
1474 		return;
1475 
1476 	/* Now free the rest */
1477 
1478 	nnode = first_nnode(c, &hght);
1479 	while (nnode) {
1480 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1481 			kfree(nnode->nbranch[i].nnode);
1482 		nnode = next_nnode(c, nnode, &hght);
1483 	}
1484 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1485 		kfree(c->lpt_heap[i].arr);
1486 	kfree(c->dirty_idx.arr);
1487 	kfree(c->nroot);
1488 	vfree(c->ltab);
1489 	kfree(c->lpt_nod_buf);
1490 }
1491 
1492 /*
1493  * Everything below is related to debugging.
1494  */
1495 
1496 /**
1497  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1498  * @buf: buffer
1499  * @len: buffer length
1500  */
1501 static int dbg_is_all_ff(uint8_t *buf, int len)
1502 {
1503 	int i;
1504 
1505 	for (i = 0; i < len; i++)
1506 		if (buf[i] != 0xff)
1507 			return 0;
1508 	return 1;
1509 }
1510 
1511 /**
1512  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1513  * @c: the UBIFS file-system description object
1514  * @lnum: LEB number where nnode was written
1515  * @offs: offset where nnode was written
1516  */
1517 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1518 {
1519 	struct ubifs_nnode *nnode;
1520 	int hght;
1521 
1522 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1523 	nnode = first_nnode(c, &hght);
1524 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1525 		struct ubifs_nbranch *branch;
1526 
1527 		cond_resched();
1528 		if (nnode->parent) {
1529 			branch = &nnode->parent->nbranch[nnode->iip];
1530 			if (branch->lnum != lnum || branch->offs != offs)
1531 				continue;
1532 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1533 				return 1;
1534 			return 0;
1535 		} else {
1536 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1537 				continue;
1538 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1539 				return 1;
1540 			return 0;
1541 		}
1542 	}
1543 	return 1;
1544 }
1545 
1546 /**
1547  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1548  * @c: the UBIFS file-system description object
1549  * @lnum: LEB number where pnode was written
1550  * @offs: offset where pnode was written
1551  */
1552 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1553 {
1554 	int i, cnt;
1555 
1556 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1557 	for (i = 0; i < cnt; i++) {
1558 		struct ubifs_pnode *pnode;
1559 		struct ubifs_nbranch *branch;
1560 
1561 		cond_resched();
1562 		pnode = pnode_lookup(c, i);
1563 		if (IS_ERR(pnode))
1564 			return PTR_ERR(pnode);
1565 		branch = &pnode->parent->nbranch[pnode->iip];
1566 		if (branch->lnum != lnum || branch->offs != offs)
1567 			continue;
1568 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1569 			return 1;
1570 		return 0;
1571 	}
1572 	return 1;
1573 }
1574 
1575 /**
1576  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1577  * @c: the UBIFS file-system description object
1578  * @lnum: LEB number where ltab node was written
1579  * @offs: offset where ltab node was written
1580  */
1581 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1582 {
1583 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1584 		return 1;
1585 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1586 }
1587 
1588 /**
1589  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1590  * @c: the UBIFS file-system description object
1591  * @lnum: LEB number where lsave node was written
1592  * @offs: offset where lsave node was written
1593  */
1594 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1595 {
1596 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1597 		return 1;
1598 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1599 }
1600 
1601 /**
1602  * dbg_is_node_dirty - determine if a node is dirty.
1603  * @c: the UBIFS file-system description object
1604  * @node_type: node type
1605  * @lnum: LEB number where node was written
1606  * @offs: offset where node was written
1607  */
1608 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1609 			     int offs)
1610 {
1611 	switch (node_type) {
1612 	case UBIFS_LPT_NNODE:
1613 		return dbg_is_nnode_dirty(c, lnum, offs);
1614 	case UBIFS_LPT_PNODE:
1615 		return dbg_is_pnode_dirty(c, lnum, offs);
1616 	case UBIFS_LPT_LTAB:
1617 		return dbg_is_ltab_dirty(c, lnum, offs);
1618 	case UBIFS_LPT_LSAVE:
1619 		return dbg_is_lsave_dirty(c, lnum, offs);
1620 	}
1621 	return 1;
1622 }
1623 
1624 /**
1625  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1626  * @c: the UBIFS file-system description object
1627  * @lnum: LEB number where node was written
1628  * @offs: offset where node was written
1629  *
1630  * This function returns %0 on success and a negative error code on failure.
1631  */
1632 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1633 {
1634 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1635 	int ret;
1636 	void *buf, *p;
1637 
1638 	if (!dbg_is_chk_lprops(c))
1639 		return 0;
1640 
1641 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1642 	if (!buf) {
1643 		ubifs_err("cannot allocate memory for ltab checking");
1644 		return 0;
1645 	}
1646 
1647 	dbg_lp("LEB %d", lnum);
1648 
1649 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1650 	if (err)
1651 		goto out;
1652 
1653 	while (1) {
1654 		if (!is_a_node(c, p, len)) {
1655 			int i, pad_len;
1656 
1657 			pad_len = get_pad_len(c, p, len);
1658 			if (pad_len) {
1659 				p += pad_len;
1660 				len -= pad_len;
1661 				dirty += pad_len;
1662 				continue;
1663 			}
1664 			if (!dbg_is_all_ff(p, len)) {
1665 				dbg_msg("invalid empty space in LEB %d at %d",
1666 					lnum, c->leb_size - len);
1667 				err = -EINVAL;
1668 			}
1669 			i = lnum - c->lpt_first;
1670 			if (len != c->ltab[i].free) {
1671 				dbg_msg("invalid free space in LEB %d "
1672 					"(free %d, expected %d)",
1673 					lnum, len, c->ltab[i].free);
1674 				err = -EINVAL;
1675 			}
1676 			if (dirty != c->ltab[i].dirty) {
1677 				dbg_msg("invalid dirty space in LEB %d "
1678 					"(dirty %d, expected %d)",
1679 					lnum, dirty, c->ltab[i].dirty);
1680 				err = -EINVAL;
1681 			}
1682 			goto out;
1683 		}
1684 		node_type = get_lpt_node_type(c, p, &node_num);
1685 		node_len = get_lpt_node_len(c, node_type);
1686 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1687 		if (ret == 1)
1688 			dirty += node_len;
1689 		p += node_len;
1690 		len -= node_len;
1691 	}
1692 
1693 	err = 0;
1694 out:
1695 	vfree(buf);
1696 	return err;
1697 }
1698 
1699 /**
1700  * dbg_check_ltab - check the free and dirty space in the ltab.
1701  * @c: the UBIFS file-system description object
1702  *
1703  * This function returns %0 on success and a negative error code on failure.
1704  */
1705 int dbg_check_ltab(struct ubifs_info *c)
1706 {
1707 	int lnum, err, i, cnt;
1708 
1709 	if (!dbg_is_chk_lprops(c))
1710 		return 0;
1711 
1712 	/* Bring the entire tree into memory */
1713 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1714 	for (i = 0; i < cnt; i++) {
1715 		struct ubifs_pnode *pnode;
1716 
1717 		pnode = pnode_lookup(c, i);
1718 		if (IS_ERR(pnode))
1719 			return PTR_ERR(pnode);
1720 		cond_resched();
1721 	}
1722 
1723 	/* Check nodes */
1724 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1725 	if (err)
1726 		return err;
1727 
1728 	/* Check each LEB */
1729 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1730 		err = dbg_check_ltab_lnum(c, lnum);
1731 		if (err) {
1732 			ubifs_err("failed at LEB %d", lnum);
1733 			return err;
1734 		}
1735 	}
1736 
1737 	dbg_lp("succeeded");
1738 	return 0;
1739 }
1740 
1741 /**
1742  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1743  * @c: the UBIFS file-system description object
1744  *
1745  * This function returns %0 on success and a negative error code on failure.
1746  */
1747 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1748 {
1749 	long long free = 0;
1750 	int i;
1751 
1752 	if (!dbg_is_chk_lprops(c))
1753 		return 0;
1754 
1755 	for (i = 0; i < c->lpt_lebs; i++) {
1756 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1757 			continue;
1758 		if (i + c->lpt_first == c->nhead_lnum)
1759 			free += c->leb_size - c->nhead_offs;
1760 		else if (c->ltab[i].free == c->leb_size)
1761 			free += c->leb_size;
1762 	}
1763 	if (free < c->lpt_sz) {
1764 		ubifs_err("LPT space error: free %lld lpt_sz %lld",
1765 			  free, c->lpt_sz);
1766 		ubifs_dump_lpt_info(c);
1767 		ubifs_dump_lpt_lebs(c);
1768 		dump_stack();
1769 		return -EINVAL;
1770 	}
1771 	return 0;
1772 }
1773 
1774 /**
1775  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1776  * @c: the UBIFS file-system description object
1777  * @action: what to do
1778  * @len: length written
1779  *
1780  * This function returns %0 on success and a negative error code on failure.
1781  * The @action argument may be one of:
1782  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1783  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1784  *   o %2 - switched to a different LEB and wasted @len bytes;
1785  *   o %3 - check that we've written the right number of bytes.
1786  *   o %4 - wasted @len bytes;
1787  */
1788 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1789 {
1790 	struct ubifs_debug_info *d = c->dbg;
1791 	long long chk_lpt_sz, lpt_sz;
1792 	int err = 0;
1793 
1794 	if (!dbg_is_chk_lprops(c))
1795 		return 0;
1796 
1797 	switch (action) {
1798 	case 0:
1799 		d->chk_lpt_sz = 0;
1800 		d->chk_lpt_sz2 = 0;
1801 		d->chk_lpt_lebs = 0;
1802 		d->chk_lpt_wastage = 0;
1803 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1804 			ubifs_err("dirty pnodes %d exceed max %d",
1805 				  c->dirty_pn_cnt, c->pnode_cnt);
1806 			err = -EINVAL;
1807 		}
1808 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1809 			ubifs_err("dirty nnodes %d exceed max %d",
1810 				  c->dirty_nn_cnt, c->nnode_cnt);
1811 			err = -EINVAL;
1812 		}
1813 		return err;
1814 	case 1:
1815 		d->chk_lpt_sz += len;
1816 		return 0;
1817 	case 2:
1818 		d->chk_lpt_sz += len;
1819 		d->chk_lpt_wastage += len;
1820 		d->chk_lpt_lebs += 1;
1821 		return 0;
1822 	case 3:
1823 		chk_lpt_sz = c->leb_size;
1824 		chk_lpt_sz *= d->chk_lpt_lebs;
1825 		chk_lpt_sz += len - c->nhead_offs;
1826 		if (d->chk_lpt_sz != chk_lpt_sz) {
1827 			ubifs_err("LPT wrote %lld but space used was %lld",
1828 				  d->chk_lpt_sz, chk_lpt_sz);
1829 			err = -EINVAL;
1830 		}
1831 		if (d->chk_lpt_sz > c->lpt_sz) {
1832 			ubifs_err("LPT wrote %lld but lpt_sz is %lld",
1833 				  d->chk_lpt_sz, c->lpt_sz);
1834 			err = -EINVAL;
1835 		}
1836 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1837 			ubifs_err("LPT layout size %lld but wrote %lld",
1838 				  d->chk_lpt_sz, d->chk_lpt_sz2);
1839 			err = -EINVAL;
1840 		}
1841 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1842 			ubifs_err("LPT new nhead offs: expected %d was %d",
1843 				  d->new_nhead_offs, len);
1844 			err = -EINVAL;
1845 		}
1846 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1847 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1848 		lpt_sz += c->ltab_sz;
1849 		if (c->big_lpt)
1850 			lpt_sz += c->lsave_sz;
1851 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1852 			ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1853 				  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1854 			err = -EINVAL;
1855 		}
1856 		if (err) {
1857 			ubifs_dump_lpt_info(c);
1858 			ubifs_dump_lpt_lebs(c);
1859 			dump_stack();
1860 		}
1861 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1862 		d->chk_lpt_sz = 0;
1863 		d->chk_lpt_wastage = 0;
1864 		d->chk_lpt_lebs = 0;
1865 		d->new_nhead_offs = len;
1866 		return err;
1867 	case 4:
1868 		d->chk_lpt_sz += len;
1869 		d->chk_lpt_wastage += len;
1870 		return 0;
1871 	default:
1872 		return -EINVAL;
1873 	}
1874 }
1875 
1876 /**
1877  * ubifs_dump_lpt_leb - dump an LPT LEB.
1878  * @c: UBIFS file-system description object
1879  * @lnum: LEB number to dump
1880  *
1881  * This function dumps an LEB from LPT area. Nodes in this area are very
1882  * different to nodes in the main area (e.g., they do not have common headers,
1883  * they do not have 8-byte alignments, etc), so we have a separate function to
1884  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1885  */
1886 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1887 {
1888 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1889 	void *buf, *p;
1890 
1891 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1892 	       current->pid, lnum);
1893 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1894 	if (!buf) {
1895 		ubifs_err("cannot allocate memory to dump LPT");
1896 		return;
1897 	}
1898 
1899 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1900 	if (err)
1901 		goto out;
1902 
1903 	while (1) {
1904 		offs = c->leb_size - len;
1905 		if (!is_a_node(c, p, len)) {
1906 			int pad_len;
1907 
1908 			pad_len = get_pad_len(c, p, len);
1909 			if (pad_len) {
1910 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1911 				       lnum, offs, pad_len);
1912 				p += pad_len;
1913 				len -= pad_len;
1914 				continue;
1915 			}
1916 			if (len)
1917 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1918 				       lnum, offs, len);
1919 			break;
1920 		}
1921 
1922 		node_type = get_lpt_node_type(c, p, &node_num);
1923 		switch (node_type) {
1924 		case UBIFS_LPT_PNODE:
1925 		{
1926 			node_len = c->pnode_sz;
1927 			if (c->big_lpt)
1928 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1929 				       lnum, offs, node_num);
1930 			else
1931 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1932 				       lnum, offs);
1933 			break;
1934 		}
1935 		case UBIFS_LPT_NNODE:
1936 		{
1937 			int i;
1938 			struct ubifs_nnode nnode;
1939 
1940 			node_len = c->nnode_sz;
1941 			if (c->big_lpt)
1942 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1943 				       lnum, offs, node_num);
1944 			else
1945 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1946 				       lnum, offs);
1947 			err = ubifs_unpack_nnode(c, p, &nnode);
1948 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1949 				printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1950 				       nnode.nbranch[i].offs);
1951 				if (i != UBIFS_LPT_FANOUT - 1)
1952 					printk(KERN_CONT ", ");
1953 			}
1954 			printk(KERN_CONT "\n");
1955 			break;
1956 		}
1957 		case UBIFS_LPT_LTAB:
1958 			node_len = c->ltab_sz;
1959 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1960 			       lnum, offs);
1961 			break;
1962 		case UBIFS_LPT_LSAVE:
1963 			node_len = c->lsave_sz;
1964 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1965 			break;
1966 		default:
1967 			ubifs_err("LPT node type %d not recognized", node_type);
1968 			goto out;
1969 		}
1970 
1971 		p += node_len;
1972 		len -= node_len;
1973 	}
1974 
1975 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1976 	       current->pid, lnum);
1977 out:
1978 	vfree(buf);
1979 	return;
1980 }
1981 
1982 /**
1983  * ubifs_dump_lpt_lebs - dump LPT lebs.
1984  * @c: UBIFS file-system description object
1985  *
1986  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1987  * locked.
1988  */
1989 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1990 {
1991 	int i;
1992 
1993 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1994 	       current->pid);
1995 	for (i = 0; i < c->lpt_lebs; i++)
1996 		dump_lpt_leb(c, i + c->lpt_first);
1997 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1998 	       current->pid);
1999 }
2000 
2001 /**
2002  * dbg_populate_lsave - debugging version of 'populate_lsave()'
2003  * @c: UBIFS file-system description object
2004  *
2005  * This is a debugging version for 'populate_lsave()' which populates lsave
2006  * with random LEBs instead of useful LEBs, which is good for test coverage.
2007  * Returns zero if lsave has not been populated (this debugging feature is
2008  * disabled) an non-zero if lsave has been populated.
2009  */
2010 static int dbg_populate_lsave(struct ubifs_info *c)
2011 {
2012 	struct ubifs_lprops *lprops;
2013 	struct ubifs_lpt_heap *heap;
2014 	int i;
2015 
2016 	if (!dbg_is_chk_gen(c))
2017 		return 0;
2018 	if (random32() & 3)
2019 		return 0;
2020 
2021 	for (i = 0; i < c->lsave_cnt; i++)
2022 		c->lsave[i] = c->main_first;
2023 
2024 	list_for_each_entry(lprops, &c->empty_list, list)
2025 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2026 	list_for_each_entry(lprops, &c->freeable_list, list)
2027 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2028 	list_for_each_entry(lprops, &c->frdi_idx_list, list)
2029 		c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2030 
2031 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2032 	for (i = 0; i < heap->cnt; i++)
2033 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2034 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2035 	for (i = 0; i < heap->cnt; i++)
2036 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2037 	heap = &c->lpt_heap[LPROPS_FREE - 1];
2038 	for (i = 0; i < heap->cnt; i++)
2039 		c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2040 
2041 	return 1;
2042 }
2043