xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision 48c926cd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32 
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 
35 /**
36  * first_dirty_cnode - find first dirty cnode.
37  * @nnode: nnode at which to start
38  *
39  * This function returns the first dirty cnode or %NULL if there is not one.
40  */
41 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
42 {
43 	ubifs_assert(nnode);
44 	while (1) {
45 		int i, cont = 0;
46 
47 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
48 			struct ubifs_cnode *cnode;
49 
50 			cnode = nnode->nbranch[i].cnode;
51 			if (cnode &&
52 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
53 				if (cnode->level == 0)
54 					return cnode;
55 				nnode = (struct ubifs_nnode *)cnode;
56 				cont = 1;
57 				break;
58 			}
59 		}
60 		if (!cont)
61 			return (struct ubifs_cnode *)nnode;
62 	}
63 }
64 
65 /**
66  * next_dirty_cnode - find next dirty cnode.
67  * @cnode: cnode from which to begin searching
68  *
69  * This function returns the next dirty cnode or %NULL if there is not one.
70  */
71 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
72 {
73 	struct ubifs_nnode *nnode;
74 	int i;
75 
76 	ubifs_assert(cnode);
77 	nnode = cnode->parent;
78 	if (!nnode)
79 		return NULL;
80 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
81 		cnode = nnode->nbranch[i].cnode;
82 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
83 			if (cnode->level == 0)
84 				return cnode; /* cnode is a pnode */
85 			/* cnode is a nnode */
86 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
87 		}
88 	}
89 	return (struct ubifs_cnode *)nnode;
90 }
91 
92 /**
93  * get_cnodes_to_commit - create list of dirty cnodes to commit.
94  * @c: UBIFS file-system description object
95  *
96  * This function returns the number of cnodes to commit.
97  */
98 static int get_cnodes_to_commit(struct ubifs_info *c)
99 {
100 	struct ubifs_cnode *cnode, *cnext;
101 	int cnt = 0;
102 
103 	if (!c->nroot)
104 		return 0;
105 
106 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
107 		return 0;
108 
109 	c->lpt_cnext = first_dirty_cnode(c->nroot);
110 	cnode = c->lpt_cnext;
111 	if (!cnode)
112 		return 0;
113 	cnt += 1;
114 	while (1) {
115 		ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
116 		__set_bit(COW_CNODE, &cnode->flags);
117 		cnext = next_dirty_cnode(cnode);
118 		if (!cnext) {
119 			cnode->cnext = c->lpt_cnext;
120 			break;
121 		}
122 		cnode->cnext = cnext;
123 		cnode = cnext;
124 		cnt += 1;
125 	}
126 	dbg_cmt("committing %d cnodes", cnt);
127 	dbg_lp("committing %d cnodes", cnt);
128 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
129 	return cnt;
130 }
131 
132 /**
133  * upd_ltab - update LPT LEB properties.
134  * @c: UBIFS file-system description object
135  * @lnum: LEB number
136  * @free: amount of free space
137  * @dirty: amount of dirty space to add
138  */
139 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
140 {
141 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
142 	       lnum, c->ltab[lnum - c->lpt_first].free,
143 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
144 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
145 	c->ltab[lnum - c->lpt_first].free = free;
146 	c->ltab[lnum - c->lpt_first].dirty += dirty;
147 }
148 
149 /**
150  * alloc_lpt_leb - allocate an LPT LEB that is empty.
151  * @c: UBIFS file-system description object
152  * @lnum: LEB number is passed and returned here
153  *
154  * This function finds the next empty LEB in the ltab starting from @lnum. If a
155  * an empty LEB is found it is returned in @lnum and the function returns %0.
156  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
157  * never to run out of space.
158  */
159 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
160 {
161 	int i, n;
162 
163 	n = *lnum - c->lpt_first + 1;
164 	for (i = n; i < c->lpt_lebs; i++) {
165 		if (c->ltab[i].tgc || c->ltab[i].cmt)
166 			continue;
167 		if (c->ltab[i].free == c->leb_size) {
168 			c->ltab[i].cmt = 1;
169 			*lnum = i + c->lpt_first;
170 			return 0;
171 		}
172 	}
173 
174 	for (i = 0; i < n; i++) {
175 		if (c->ltab[i].tgc || c->ltab[i].cmt)
176 			continue;
177 		if (c->ltab[i].free == c->leb_size) {
178 			c->ltab[i].cmt = 1;
179 			*lnum = i + c->lpt_first;
180 			return 0;
181 		}
182 	}
183 	return -ENOSPC;
184 }
185 
186 /**
187  * layout_cnodes - layout cnodes for commit.
188  * @c: UBIFS file-system description object
189  *
190  * This function returns %0 on success and a negative error code on failure.
191  */
192 static int layout_cnodes(struct ubifs_info *c)
193 {
194 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
195 	struct ubifs_cnode *cnode;
196 
197 	err = dbg_chk_lpt_sz(c, 0, 0);
198 	if (err)
199 		return err;
200 	cnode = c->lpt_cnext;
201 	if (!cnode)
202 		return 0;
203 	lnum = c->nhead_lnum;
204 	offs = c->nhead_offs;
205 	/* Try to place lsave and ltab nicely */
206 	done_lsave = !c->big_lpt;
207 	done_ltab = 0;
208 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
209 		done_lsave = 1;
210 		c->lsave_lnum = lnum;
211 		c->lsave_offs = offs;
212 		offs += c->lsave_sz;
213 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
214 	}
215 
216 	if (offs + c->ltab_sz <= c->leb_size) {
217 		done_ltab = 1;
218 		c->ltab_lnum = lnum;
219 		c->ltab_offs = offs;
220 		offs += c->ltab_sz;
221 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
222 	}
223 
224 	do {
225 		if (cnode->level) {
226 			len = c->nnode_sz;
227 			c->dirty_nn_cnt -= 1;
228 		} else {
229 			len = c->pnode_sz;
230 			c->dirty_pn_cnt -= 1;
231 		}
232 		while (offs + len > c->leb_size) {
233 			alen = ALIGN(offs, c->min_io_size);
234 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
235 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
236 			err = alloc_lpt_leb(c, &lnum);
237 			if (err)
238 				goto no_space;
239 			offs = 0;
240 			ubifs_assert(lnum >= c->lpt_first &&
241 				     lnum <= c->lpt_last);
242 			/* Try to place lsave and ltab nicely */
243 			if (!done_lsave) {
244 				done_lsave = 1;
245 				c->lsave_lnum = lnum;
246 				c->lsave_offs = offs;
247 				offs += c->lsave_sz;
248 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
249 				continue;
250 			}
251 			if (!done_ltab) {
252 				done_ltab = 1;
253 				c->ltab_lnum = lnum;
254 				c->ltab_offs = offs;
255 				offs += c->ltab_sz;
256 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
257 				continue;
258 			}
259 			break;
260 		}
261 		if (cnode->parent) {
262 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
263 			cnode->parent->nbranch[cnode->iip].offs = offs;
264 		} else {
265 			c->lpt_lnum = lnum;
266 			c->lpt_offs = offs;
267 		}
268 		offs += len;
269 		dbg_chk_lpt_sz(c, 1, len);
270 		cnode = cnode->cnext;
271 	} while (cnode && cnode != c->lpt_cnext);
272 
273 	/* Make sure to place LPT's save table */
274 	if (!done_lsave) {
275 		if (offs + c->lsave_sz > c->leb_size) {
276 			alen = ALIGN(offs, c->min_io_size);
277 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
278 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
279 			err = alloc_lpt_leb(c, &lnum);
280 			if (err)
281 				goto no_space;
282 			offs = 0;
283 			ubifs_assert(lnum >= c->lpt_first &&
284 				     lnum <= c->lpt_last);
285 		}
286 		done_lsave = 1;
287 		c->lsave_lnum = lnum;
288 		c->lsave_offs = offs;
289 		offs += c->lsave_sz;
290 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
291 	}
292 
293 	/* Make sure to place LPT's own lprops table */
294 	if (!done_ltab) {
295 		if (offs + c->ltab_sz > c->leb_size) {
296 			alen = ALIGN(offs, c->min_io_size);
297 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
298 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
299 			err = alloc_lpt_leb(c, &lnum);
300 			if (err)
301 				goto no_space;
302 			offs = 0;
303 			ubifs_assert(lnum >= c->lpt_first &&
304 				     lnum <= c->lpt_last);
305 		}
306 		c->ltab_lnum = lnum;
307 		c->ltab_offs = offs;
308 		offs += c->ltab_sz;
309 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
310 	}
311 
312 	alen = ALIGN(offs, c->min_io_size);
313 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
314 	dbg_chk_lpt_sz(c, 4, alen - offs);
315 	err = dbg_chk_lpt_sz(c, 3, alen);
316 	if (err)
317 		return err;
318 	return 0;
319 
320 no_space:
321 	ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
322 		  lnum, offs, len, done_ltab, done_lsave);
323 	ubifs_dump_lpt_info(c);
324 	ubifs_dump_lpt_lebs(c);
325 	dump_stack();
326 	return err;
327 }
328 
329 /**
330  * realloc_lpt_leb - allocate an LPT LEB that is empty.
331  * @c: UBIFS file-system description object
332  * @lnum: LEB number is passed and returned here
333  *
334  * This function duplicates exactly the results of the function alloc_lpt_leb.
335  * It is used during end commit to reallocate the same LEB numbers that were
336  * allocated by alloc_lpt_leb during start commit.
337  *
338  * This function finds the next LEB that was allocated by the alloc_lpt_leb
339  * function starting from @lnum. If a LEB is found it is returned in @lnum and
340  * the function returns %0. Otherwise the function returns -ENOSPC.
341  * Note however, that LPT is designed never to run out of space.
342  */
343 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
344 {
345 	int i, n;
346 
347 	n = *lnum - c->lpt_first + 1;
348 	for (i = n; i < c->lpt_lebs; i++)
349 		if (c->ltab[i].cmt) {
350 			c->ltab[i].cmt = 0;
351 			*lnum = i + c->lpt_first;
352 			return 0;
353 		}
354 
355 	for (i = 0; i < n; i++)
356 		if (c->ltab[i].cmt) {
357 			c->ltab[i].cmt = 0;
358 			*lnum = i + c->lpt_first;
359 			return 0;
360 		}
361 	return -ENOSPC;
362 }
363 
364 /**
365  * write_cnodes - write cnodes for commit.
366  * @c: UBIFS file-system description object
367  *
368  * This function returns %0 on success and a negative error code on failure.
369  */
370 static int write_cnodes(struct ubifs_info *c)
371 {
372 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
373 	struct ubifs_cnode *cnode;
374 	void *buf = c->lpt_buf;
375 
376 	cnode = c->lpt_cnext;
377 	if (!cnode)
378 		return 0;
379 	lnum = c->nhead_lnum;
380 	offs = c->nhead_offs;
381 	from = offs;
382 	/* Ensure empty LEB is unmapped */
383 	if (offs == 0) {
384 		err = ubifs_leb_unmap(c, lnum);
385 		if (err)
386 			return err;
387 	}
388 	/* Try to place lsave and ltab nicely */
389 	done_lsave = !c->big_lpt;
390 	done_ltab = 0;
391 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
392 		done_lsave = 1;
393 		ubifs_pack_lsave(c, buf + offs, c->lsave);
394 		offs += c->lsave_sz;
395 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
396 	}
397 
398 	if (offs + c->ltab_sz <= c->leb_size) {
399 		done_ltab = 1;
400 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
401 		offs += c->ltab_sz;
402 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
403 	}
404 
405 	/* Loop for each cnode */
406 	do {
407 		if (cnode->level)
408 			len = c->nnode_sz;
409 		else
410 			len = c->pnode_sz;
411 		while (offs + len > c->leb_size) {
412 			wlen = offs - from;
413 			if (wlen) {
414 				alen = ALIGN(wlen, c->min_io_size);
415 				memset(buf + offs, 0xff, alen - wlen);
416 				err = ubifs_leb_write(c, lnum, buf + from, from,
417 						       alen);
418 				if (err)
419 					return err;
420 			}
421 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
422 			err = realloc_lpt_leb(c, &lnum);
423 			if (err)
424 				goto no_space;
425 			offs = from = 0;
426 			ubifs_assert(lnum >= c->lpt_first &&
427 				     lnum <= c->lpt_last);
428 			err = ubifs_leb_unmap(c, lnum);
429 			if (err)
430 				return err;
431 			/* Try to place lsave and ltab nicely */
432 			if (!done_lsave) {
433 				done_lsave = 1;
434 				ubifs_pack_lsave(c, buf + offs, c->lsave);
435 				offs += c->lsave_sz;
436 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
437 				continue;
438 			}
439 			if (!done_ltab) {
440 				done_ltab = 1;
441 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
442 				offs += c->ltab_sz;
443 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
444 				continue;
445 			}
446 			break;
447 		}
448 		if (cnode->level)
449 			ubifs_pack_nnode(c, buf + offs,
450 					 (struct ubifs_nnode *)cnode);
451 		else
452 			ubifs_pack_pnode(c, buf + offs,
453 					 (struct ubifs_pnode *)cnode);
454 		/*
455 		 * The reason for the barriers is the same as in case of TNC.
456 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
457 		 * 'dirty_cow_pnode()' are the functions for which this is
458 		 * important.
459 		 */
460 		clear_bit(DIRTY_CNODE, &cnode->flags);
461 		smp_mb__before_atomic();
462 		clear_bit(COW_CNODE, &cnode->flags);
463 		smp_mb__after_atomic();
464 		offs += len;
465 		dbg_chk_lpt_sz(c, 1, len);
466 		cnode = cnode->cnext;
467 	} while (cnode && cnode != c->lpt_cnext);
468 
469 	/* Make sure to place LPT's save table */
470 	if (!done_lsave) {
471 		if (offs + c->lsave_sz > c->leb_size) {
472 			wlen = offs - from;
473 			alen = ALIGN(wlen, c->min_io_size);
474 			memset(buf + offs, 0xff, alen - wlen);
475 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
476 			if (err)
477 				return err;
478 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
479 			err = realloc_lpt_leb(c, &lnum);
480 			if (err)
481 				goto no_space;
482 			offs = from = 0;
483 			ubifs_assert(lnum >= c->lpt_first &&
484 				     lnum <= c->lpt_last);
485 			err = ubifs_leb_unmap(c, lnum);
486 			if (err)
487 				return err;
488 		}
489 		done_lsave = 1;
490 		ubifs_pack_lsave(c, buf + offs, c->lsave);
491 		offs += c->lsave_sz;
492 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
493 	}
494 
495 	/* Make sure to place LPT's own lprops table */
496 	if (!done_ltab) {
497 		if (offs + c->ltab_sz > c->leb_size) {
498 			wlen = offs - from;
499 			alen = ALIGN(wlen, c->min_io_size);
500 			memset(buf + offs, 0xff, alen - wlen);
501 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
502 			if (err)
503 				return err;
504 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
505 			err = realloc_lpt_leb(c, &lnum);
506 			if (err)
507 				goto no_space;
508 			offs = from = 0;
509 			ubifs_assert(lnum >= c->lpt_first &&
510 				     lnum <= c->lpt_last);
511 			err = ubifs_leb_unmap(c, lnum);
512 			if (err)
513 				return err;
514 		}
515 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
516 		offs += c->ltab_sz;
517 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
518 	}
519 
520 	/* Write remaining data in buffer */
521 	wlen = offs - from;
522 	alen = ALIGN(wlen, c->min_io_size);
523 	memset(buf + offs, 0xff, alen - wlen);
524 	err = ubifs_leb_write(c, lnum, buf + from, from, alen);
525 	if (err)
526 		return err;
527 
528 	dbg_chk_lpt_sz(c, 4, alen - wlen);
529 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
530 	if (err)
531 		return err;
532 
533 	c->nhead_lnum = lnum;
534 	c->nhead_offs = ALIGN(offs, c->min_io_size);
535 
536 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
537 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
538 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
539 	if (c->big_lpt)
540 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
541 
542 	return 0;
543 
544 no_space:
545 	ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
546 		  lnum, offs, len, done_ltab, done_lsave);
547 	ubifs_dump_lpt_info(c);
548 	ubifs_dump_lpt_lebs(c);
549 	dump_stack();
550 	return err;
551 }
552 
553 /**
554  * next_pnode_to_dirty - find next pnode to dirty.
555  * @c: UBIFS file-system description object
556  * @pnode: pnode
557  *
558  * This function returns the next pnode to dirty or %NULL if there are no more
559  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
560  * skipped.
561  */
562 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
563 					       struct ubifs_pnode *pnode)
564 {
565 	struct ubifs_nnode *nnode;
566 	int iip;
567 
568 	/* Try to go right */
569 	nnode = pnode->parent;
570 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
571 		if (nnode->nbranch[iip].lnum)
572 			return ubifs_get_pnode(c, nnode, iip);
573 	}
574 
575 	/* Go up while can't go right */
576 	do {
577 		iip = nnode->iip + 1;
578 		nnode = nnode->parent;
579 		if (!nnode)
580 			return NULL;
581 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
582 			if (nnode->nbranch[iip].lnum)
583 				break;
584 		}
585 	} while (iip >= UBIFS_LPT_FANOUT);
586 
587 	/* Go right */
588 	nnode = ubifs_get_nnode(c, nnode, iip);
589 	if (IS_ERR(nnode))
590 		return (void *)nnode;
591 
592 	/* Go down to level 1 */
593 	while (nnode->level > 1) {
594 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
595 			if (nnode->nbranch[iip].lnum)
596 				break;
597 		}
598 		if (iip >= UBIFS_LPT_FANOUT) {
599 			/*
600 			 * Should not happen, but we need to keep going
601 			 * if it does.
602 			 */
603 			iip = 0;
604 		}
605 		nnode = ubifs_get_nnode(c, nnode, iip);
606 		if (IS_ERR(nnode))
607 			return (void *)nnode;
608 	}
609 
610 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
611 		if (nnode->nbranch[iip].lnum)
612 			break;
613 	if (iip >= UBIFS_LPT_FANOUT)
614 		/* Should not happen, but we need to keep going if it does */
615 		iip = 0;
616 	return ubifs_get_pnode(c, nnode, iip);
617 }
618 
619 /**
620  * pnode_lookup - lookup a pnode in the LPT.
621  * @c: UBIFS file-system description object
622  * @i: pnode number (0 to main_lebs - 1)
623  *
624  * This function returns a pointer to the pnode on success or a negative
625  * error code on failure.
626  */
627 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
628 {
629 	int err, h, iip, shft;
630 	struct ubifs_nnode *nnode;
631 
632 	if (!c->nroot) {
633 		err = ubifs_read_nnode(c, NULL, 0);
634 		if (err)
635 			return ERR_PTR(err);
636 	}
637 	i <<= UBIFS_LPT_FANOUT_SHIFT;
638 	nnode = c->nroot;
639 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
640 	for (h = 1; h < c->lpt_hght; h++) {
641 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
642 		shft -= UBIFS_LPT_FANOUT_SHIFT;
643 		nnode = ubifs_get_nnode(c, nnode, iip);
644 		if (IS_ERR(nnode))
645 			return ERR_CAST(nnode);
646 	}
647 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
648 	return ubifs_get_pnode(c, nnode, iip);
649 }
650 
651 /**
652  * add_pnode_dirt - add dirty space to LPT LEB properties.
653  * @c: UBIFS file-system description object
654  * @pnode: pnode for which to add dirt
655  */
656 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
657 {
658 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
659 			   c->pnode_sz);
660 }
661 
662 /**
663  * do_make_pnode_dirty - mark a pnode dirty.
664  * @c: UBIFS file-system description object
665  * @pnode: pnode to mark dirty
666  */
667 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
668 {
669 	/* Assumes cnext list is empty i.e. not called during commit */
670 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
671 		struct ubifs_nnode *nnode;
672 
673 		c->dirty_pn_cnt += 1;
674 		add_pnode_dirt(c, pnode);
675 		/* Mark parent and ancestors dirty too */
676 		nnode = pnode->parent;
677 		while (nnode) {
678 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
679 				c->dirty_nn_cnt += 1;
680 				ubifs_add_nnode_dirt(c, nnode);
681 				nnode = nnode->parent;
682 			} else
683 				break;
684 		}
685 	}
686 }
687 
688 /**
689  * make_tree_dirty - mark the entire LEB properties tree dirty.
690  * @c: UBIFS file-system description object
691  *
692  * This function is used by the "small" LPT model to cause the entire LEB
693  * properties tree to be written.  The "small" LPT model does not use LPT
694  * garbage collection because it is more efficient to write the entire tree
695  * (because it is small).
696  *
697  * This function returns %0 on success and a negative error code on failure.
698  */
699 static int make_tree_dirty(struct ubifs_info *c)
700 {
701 	struct ubifs_pnode *pnode;
702 
703 	pnode = pnode_lookup(c, 0);
704 	if (IS_ERR(pnode))
705 		return PTR_ERR(pnode);
706 
707 	while (pnode) {
708 		do_make_pnode_dirty(c, pnode);
709 		pnode = next_pnode_to_dirty(c, pnode);
710 		if (IS_ERR(pnode))
711 			return PTR_ERR(pnode);
712 	}
713 	return 0;
714 }
715 
716 /**
717  * need_write_all - determine if the LPT area is running out of free space.
718  * @c: UBIFS file-system description object
719  *
720  * This function returns %1 if the LPT area is running out of free space and %0
721  * if it is not.
722  */
723 static int need_write_all(struct ubifs_info *c)
724 {
725 	long long free = 0;
726 	int i;
727 
728 	for (i = 0; i < c->lpt_lebs; i++) {
729 		if (i + c->lpt_first == c->nhead_lnum)
730 			free += c->leb_size - c->nhead_offs;
731 		else if (c->ltab[i].free == c->leb_size)
732 			free += c->leb_size;
733 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
734 			free += c->leb_size;
735 	}
736 	/* Less than twice the size left */
737 	if (free <= c->lpt_sz * 2)
738 		return 1;
739 	return 0;
740 }
741 
742 /**
743  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
744  * @c: UBIFS file-system description object
745  *
746  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
747  * free space and so may be reused as soon as the next commit is completed.
748  * This function is called during start commit to mark LPT LEBs for trivial GC.
749  */
750 static void lpt_tgc_start(struct ubifs_info *c)
751 {
752 	int i;
753 
754 	for (i = 0; i < c->lpt_lebs; i++) {
755 		if (i + c->lpt_first == c->nhead_lnum)
756 			continue;
757 		if (c->ltab[i].dirty > 0 &&
758 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
759 			c->ltab[i].tgc = 1;
760 			c->ltab[i].free = c->leb_size;
761 			c->ltab[i].dirty = 0;
762 			dbg_lp("LEB %d", i + c->lpt_first);
763 		}
764 	}
765 }
766 
767 /**
768  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
769  * @c: UBIFS file-system description object
770  *
771  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
772  * free space and so may be reused as soon as the next commit is completed.
773  * This function is called after the commit is completed (master node has been
774  * written) and un-maps LPT LEBs that were marked for trivial GC.
775  */
776 static int lpt_tgc_end(struct ubifs_info *c)
777 {
778 	int i, err;
779 
780 	for (i = 0; i < c->lpt_lebs; i++)
781 		if (c->ltab[i].tgc) {
782 			err = ubifs_leb_unmap(c, i + c->lpt_first);
783 			if (err)
784 				return err;
785 			c->ltab[i].tgc = 0;
786 			dbg_lp("LEB %d", i + c->lpt_first);
787 		}
788 	return 0;
789 }
790 
791 /**
792  * populate_lsave - fill the lsave array with important LEB numbers.
793  * @c: the UBIFS file-system description object
794  *
795  * This function is only called for the "big" model. It records a small number
796  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
797  * most important to least important): empty, freeable, freeable index, dirty
798  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
799  * their pnodes into memory.  That will stop us from having to scan the LPT
800  * straight away. For the "small" model we assume that scanning the LPT is no
801  * big deal.
802  */
803 static void populate_lsave(struct ubifs_info *c)
804 {
805 	struct ubifs_lprops *lprops;
806 	struct ubifs_lpt_heap *heap;
807 	int i, cnt = 0;
808 
809 	ubifs_assert(c->big_lpt);
810 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
811 		c->lpt_drty_flgs |= LSAVE_DIRTY;
812 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
813 	}
814 
815 	if (dbg_populate_lsave(c))
816 		return;
817 
818 	list_for_each_entry(lprops, &c->empty_list, list) {
819 		c->lsave[cnt++] = lprops->lnum;
820 		if (cnt >= c->lsave_cnt)
821 			return;
822 	}
823 	list_for_each_entry(lprops, &c->freeable_list, list) {
824 		c->lsave[cnt++] = lprops->lnum;
825 		if (cnt >= c->lsave_cnt)
826 			return;
827 	}
828 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
829 		c->lsave[cnt++] = lprops->lnum;
830 		if (cnt >= c->lsave_cnt)
831 			return;
832 	}
833 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
834 	for (i = 0; i < heap->cnt; i++) {
835 		c->lsave[cnt++] = heap->arr[i]->lnum;
836 		if (cnt >= c->lsave_cnt)
837 			return;
838 	}
839 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
840 	for (i = 0; i < heap->cnt; i++) {
841 		c->lsave[cnt++] = heap->arr[i]->lnum;
842 		if (cnt >= c->lsave_cnt)
843 			return;
844 	}
845 	heap = &c->lpt_heap[LPROPS_FREE - 1];
846 	for (i = 0; i < heap->cnt; i++) {
847 		c->lsave[cnt++] = heap->arr[i]->lnum;
848 		if (cnt >= c->lsave_cnt)
849 			return;
850 	}
851 	/* Fill it up completely */
852 	while (cnt < c->lsave_cnt)
853 		c->lsave[cnt++] = c->main_first;
854 }
855 
856 /**
857  * nnode_lookup - lookup a nnode in the LPT.
858  * @c: UBIFS file-system description object
859  * @i: nnode number
860  *
861  * This function returns a pointer to the nnode on success or a negative
862  * error code on failure.
863  */
864 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
865 {
866 	int err, iip;
867 	struct ubifs_nnode *nnode;
868 
869 	if (!c->nroot) {
870 		err = ubifs_read_nnode(c, NULL, 0);
871 		if (err)
872 			return ERR_PTR(err);
873 	}
874 	nnode = c->nroot;
875 	while (1) {
876 		iip = i & (UBIFS_LPT_FANOUT - 1);
877 		i >>= UBIFS_LPT_FANOUT_SHIFT;
878 		if (!i)
879 			break;
880 		nnode = ubifs_get_nnode(c, nnode, iip);
881 		if (IS_ERR(nnode))
882 			return nnode;
883 	}
884 	return nnode;
885 }
886 
887 /**
888  * make_nnode_dirty - find a nnode and, if found, make it dirty.
889  * @c: UBIFS file-system description object
890  * @node_num: nnode number of nnode to make dirty
891  * @lnum: LEB number where nnode was written
892  * @offs: offset where nnode was written
893  *
894  * This function is used by LPT garbage collection.  LPT garbage collection is
895  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
896  * simply involves marking all the nodes in the LEB being garbage-collected as
897  * dirty.  The dirty nodes are written next commit, after which the LEB is free
898  * to be reused.
899  *
900  * This function returns %0 on success and a negative error code on failure.
901  */
902 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
903 			    int offs)
904 {
905 	struct ubifs_nnode *nnode;
906 
907 	nnode = nnode_lookup(c, node_num);
908 	if (IS_ERR(nnode))
909 		return PTR_ERR(nnode);
910 	if (nnode->parent) {
911 		struct ubifs_nbranch *branch;
912 
913 		branch = &nnode->parent->nbranch[nnode->iip];
914 		if (branch->lnum != lnum || branch->offs != offs)
915 			return 0; /* nnode is obsolete */
916 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
917 			return 0; /* nnode is obsolete */
918 	/* Assumes cnext list is empty i.e. not called during commit */
919 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
920 		c->dirty_nn_cnt += 1;
921 		ubifs_add_nnode_dirt(c, nnode);
922 		/* Mark parent and ancestors dirty too */
923 		nnode = nnode->parent;
924 		while (nnode) {
925 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
926 				c->dirty_nn_cnt += 1;
927 				ubifs_add_nnode_dirt(c, nnode);
928 				nnode = nnode->parent;
929 			} else
930 				break;
931 		}
932 	}
933 	return 0;
934 }
935 
936 /**
937  * make_pnode_dirty - find a pnode and, if found, make it dirty.
938  * @c: UBIFS file-system description object
939  * @node_num: pnode number of pnode to make dirty
940  * @lnum: LEB number where pnode was written
941  * @offs: offset where pnode was written
942  *
943  * This function is used by LPT garbage collection.  LPT garbage collection is
944  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
945  * simply involves marking all the nodes in the LEB being garbage-collected as
946  * dirty.  The dirty nodes are written next commit, after which the LEB is free
947  * to be reused.
948  *
949  * This function returns %0 on success and a negative error code on failure.
950  */
951 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
952 			    int offs)
953 {
954 	struct ubifs_pnode *pnode;
955 	struct ubifs_nbranch *branch;
956 
957 	pnode = pnode_lookup(c, node_num);
958 	if (IS_ERR(pnode))
959 		return PTR_ERR(pnode);
960 	branch = &pnode->parent->nbranch[pnode->iip];
961 	if (branch->lnum != lnum || branch->offs != offs)
962 		return 0;
963 	do_make_pnode_dirty(c, pnode);
964 	return 0;
965 }
966 
967 /**
968  * make_ltab_dirty - make ltab node dirty.
969  * @c: UBIFS file-system description object
970  * @lnum: LEB number where ltab was written
971  * @offs: offset where ltab was written
972  *
973  * This function is used by LPT garbage collection.  LPT garbage collection is
974  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
975  * simply involves marking all the nodes in the LEB being garbage-collected as
976  * dirty.  The dirty nodes are written next commit, after which the LEB is free
977  * to be reused.
978  *
979  * This function returns %0 on success and a negative error code on failure.
980  */
981 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
982 {
983 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
984 		return 0; /* This ltab node is obsolete */
985 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
986 		c->lpt_drty_flgs |= LTAB_DIRTY;
987 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
988 	}
989 	return 0;
990 }
991 
992 /**
993  * make_lsave_dirty - make lsave node dirty.
994  * @c: UBIFS file-system description object
995  * @lnum: LEB number where lsave was written
996  * @offs: offset where lsave was written
997  *
998  * This function is used by LPT garbage collection.  LPT garbage collection is
999  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1000  * simply involves marking all the nodes in the LEB being garbage-collected as
1001  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1002  * to be reused.
1003  *
1004  * This function returns %0 on success and a negative error code on failure.
1005  */
1006 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1007 {
1008 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1009 		return 0; /* This lsave node is obsolete */
1010 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1011 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1012 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1013 	}
1014 	return 0;
1015 }
1016 
1017 /**
1018  * make_node_dirty - make node dirty.
1019  * @c: UBIFS file-system description object
1020  * @node_type: LPT node type
1021  * @node_num: node number
1022  * @lnum: LEB number where node was written
1023  * @offs: offset where node was written
1024  *
1025  * This function is used by LPT garbage collection.  LPT garbage collection is
1026  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1027  * simply involves marking all the nodes in the LEB being garbage-collected as
1028  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1029  * to be reused.
1030  *
1031  * This function returns %0 on success and a negative error code on failure.
1032  */
1033 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1034 			   int lnum, int offs)
1035 {
1036 	switch (node_type) {
1037 	case UBIFS_LPT_NNODE:
1038 		return make_nnode_dirty(c, node_num, lnum, offs);
1039 	case UBIFS_LPT_PNODE:
1040 		return make_pnode_dirty(c, node_num, lnum, offs);
1041 	case UBIFS_LPT_LTAB:
1042 		return make_ltab_dirty(c, lnum, offs);
1043 	case UBIFS_LPT_LSAVE:
1044 		return make_lsave_dirty(c, lnum, offs);
1045 	}
1046 	return -EINVAL;
1047 }
1048 
1049 /**
1050  * get_lpt_node_len - return the length of a node based on its type.
1051  * @c: UBIFS file-system description object
1052  * @node_type: LPT node type
1053  */
1054 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1055 {
1056 	switch (node_type) {
1057 	case UBIFS_LPT_NNODE:
1058 		return c->nnode_sz;
1059 	case UBIFS_LPT_PNODE:
1060 		return c->pnode_sz;
1061 	case UBIFS_LPT_LTAB:
1062 		return c->ltab_sz;
1063 	case UBIFS_LPT_LSAVE:
1064 		return c->lsave_sz;
1065 	}
1066 	return 0;
1067 }
1068 
1069 /**
1070  * get_pad_len - return the length of padding in a buffer.
1071  * @c: UBIFS file-system description object
1072  * @buf: buffer
1073  * @len: length of buffer
1074  */
1075 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1076 {
1077 	int offs, pad_len;
1078 
1079 	if (c->min_io_size == 1)
1080 		return 0;
1081 	offs = c->leb_size - len;
1082 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1083 	return pad_len;
1084 }
1085 
1086 /**
1087  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1088  * @c: UBIFS file-system description object
1089  * @buf: buffer
1090  * @node_num: node number is returned here
1091  */
1092 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1093 			     int *node_num)
1094 {
1095 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1096 	int pos = 0, node_type;
1097 
1098 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1099 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1100 	return node_type;
1101 }
1102 
1103 /**
1104  * is_a_node - determine if a buffer contains a node.
1105  * @c: UBIFS file-system description object
1106  * @buf: buffer
1107  * @len: length of buffer
1108  *
1109  * This function returns %1 if the buffer contains a node or %0 if it does not.
1110  */
1111 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1112 {
1113 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1114 	int pos = 0, node_type, node_len;
1115 	uint16_t crc, calc_crc;
1116 
1117 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1118 		return 0;
1119 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1120 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1121 		return 0;
1122 	node_len = get_lpt_node_len(c, node_type);
1123 	if (!node_len || node_len > len)
1124 		return 0;
1125 	pos = 0;
1126 	addr = buf;
1127 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1128 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1129 			 node_len - UBIFS_LPT_CRC_BYTES);
1130 	if (crc != calc_crc)
1131 		return 0;
1132 	return 1;
1133 }
1134 
1135 /**
1136  * lpt_gc_lnum - garbage collect a LPT LEB.
1137  * @c: UBIFS file-system description object
1138  * @lnum: LEB number to garbage collect
1139  *
1140  * LPT garbage collection is used only for the "big" LPT model
1141  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1142  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1143  * next commit, after which the LEB is free to be reused.
1144  *
1145  * This function returns %0 on success and a negative error code on failure.
1146  */
1147 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1148 {
1149 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1150 	void *buf = c->lpt_buf;
1151 
1152 	dbg_lp("LEB %d", lnum);
1153 
1154 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1155 	if (err)
1156 		return err;
1157 
1158 	while (1) {
1159 		if (!is_a_node(c, buf, len)) {
1160 			int pad_len;
1161 
1162 			pad_len = get_pad_len(c, buf, len);
1163 			if (pad_len) {
1164 				buf += pad_len;
1165 				len -= pad_len;
1166 				continue;
1167 			}
1168 			return 0;
1169 		}
1170 		node_type = get_lpt_node_type(c, buf, &node_num);
1171 		node_len = get_lpt_node_len(c, node_type);
1172 		offs = c->leb_size - len;
1173 		ubifs_assert(node_len != 0);
1174 		mutex_lock(&c->lp_mutex);
1175 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1176 		mutex_unlock(&c->lp_mutex);
1177 		if (err)
1178 			return err;
1179 		buf += node_len;
1180 		len -= node_len;
1181 	}
1182 	return 0;
1183 }
1184 
1185 /**
1186  * lpt_gc - LPT garbage collection.
1187  * @c: UBIFS file-system description object
1188  *
1189  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1190  * Returns %0 on success and a negative error code on failure.
1191  */
1192 static int lpt_gc(struct ubifs_info *c)
1193 {
1194 	int i, lnum = -1, dirty = 0;
1195 
1196 	mutex_lock(&c->lp_mutex);
1197 	for (i = 0; i < c->lpt_lebs; i++) {
1198 		ubifs_assert(!c->ltab[i].tgc);
1199 		if (i + c->lpt_first == c->nhead_lnum ||
1200 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1201 			continue;
1202 		if (c->ltab[i].dirty > dirty) {
1203 			dirty = c->ltab[i].dirty;
1204 			lnum = i + c->lpt_first;
1205 		}
1206 	}
1207 	mutex_unlock(&c->lp_mutex);
1208 	if (lnum == -1)
1209 		return -ENOSPC;
1210 	return lpt_gc_lnum(c, lnum);
1211 }
1212 
1213 /**
1214  * ubifs_lpt_start_commit - UBIFS commit starts.
1215  * @c: the UBIFS file-system description object
1216  *
1217  * This function has to be called when UBIFS starts the commit operation.
1218  * This function "freezes" all currently dirty LEB properties and does not
1219  * change them anymore. Further changes are saved and tracked separately
1220  * because they are not part of this commit. This function returns zero in case
1221  * of success and a negative error code in case of failure.
1222  */
1223 int ubifs_lpt_start_commit(struct ubifs_info *c)
1224 {
1225 	int err, cnt;
1226 
1227 	dbg_lp("");
1228 
1229 	mutex_lock(&c->lp_mutex);
1230 	err = dbg_chk_lpt_free_spc(c);
1231 	if (err)
1232 		goto out;
1233 	err = dbg_check_ltab(c);
1234 	if (err)
1235 		goto out;
1236 
1237 	if (c->check_lpt_free) {
1238 		/*
1239 		 * We ensure there is enough free space in
1240 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1241 		 * information is lost when we unmount, so we also need
1242 		 * to check free space once after mounting also.
1243 		 */
1244 		c->check_lpt_free = 0;
1245 		while (need_write_all(c)) {
1246 			mutex_unlock(&c->lp_mutex);
1247 			err = lpt_gc(c);
1248 			if (err)
1249 				return err;
1250 			mutex_lock(&c->lp_mutex);
1251 		}
1252 	}
1253 
1254 	lpt_tgc_start(c);
1255 
1256 	if (!c->dirty_pn_cnt) {
1257 		dbg_cmt("no cnodes to commit");
1258 		err = 0;
1259 		goto out;
1260 	}
1261 
1262 	if (!c->big_lpt && need_write_all(c)) {
1263 		/* If needed, write everything */
1264 		err = make_tree_dirty(c);
1265 		if (err)
1266 			goto out;
1267 		lpt_tgc_start(c);
1268 	}
1269 
1270 	if (c->big_lpt)
1271 		populate_lsave(c);
1272 
1273 	cnt = get_cnodes_to_commit(c);
1274 	ubifs_assert(cnt != 0);
1275 
1276 	err = layout_cnodes(c);
1277 	if (err)
1278 		goto out;
1279 
1280 	/* Copy the LPT's own lprops for end commit to write */
1281 	memcpy(c->ltab_cmt, c->ltab,
1282 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1283 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1284 
1285 out:
1286 	mutex_unlock(&c->lp_mutex);
1287 	return err;
1288 }
1289 
1290 /**
1291  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1292  * @c: UBIFS file-system description object
1293  */
1294 static void free_obsolete_cnodes(struct ubifs_info *c)
1295 {
1296 	struct ubifs_cnode *cnode, *cnext;
1297 
1298 	cnext = c->lpt_cnext;
1299 	if (!cnext)
1300 		return;
1301 	do {
1302 		cnode = cnext;
1303 		cnext = cnode->cnext;
1304 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1305 			kfree(cnode);
1306 		else
1307 			cnode->cnext = NULL;
1308 	} while (cnext != c->lpt_cnext);
1309 	c->lpt_cnext = NULL;
1310 }
1311 
1312 /**
1313  * ubifs_lpt_end_commit - finish the commit operation.
1314  * @c: the UBIFS file-system description object
1315  *
1316  * This function has to be called when the commit operation finishes. It
1317  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1318  * the media. Returns zero in case of success and a negative error code in case
1319  * of failure.
1320  */
1321 int ubifs_lpt_end_commit(struct ubifs_info *c)
1322 {
1323 	int err;
1324 
1325 	dbg_lp("");
1326 
1327 	if (!c->lpt_cnext)
1328 		return 0;
1329 
1330 	err = write_cnodes(c);
1331 	if (err)
1332 		return err;
1333 
1334 	mutex_lock(&c->lp_mutex);
1335 	free_obsolete_cnodes(c);
1336 	mutex_unlock(&c->lp_mutex);
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1343  * @c: UBIFS file-system description object
1344  *
1345  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1346  * commit for the "big" LPT model.
1347  */
1348 int ubifs_lpt_post_commit(struct ubifs_info *c)
1349 {
1350 	int err;
1351 
1352 	mutex_lock(&c->lp_mutex);
1353 	err = lpt_tgc_end(c);
1354 	if (err)
1355 		goto out;
1356 	if (c->big_lpt)
1357 		while (need_write_all(c)) {
1358 			mutex_unlock(&c->lp_mutex);
1359 			err = lpt_gc(c);
1360 			if (err)
1361 				return err;
1362 			mutex_lock(&c->lp_mutex);
1363 		}
1364 out:
1365 	mutex_unlock(&c->lp_mutex);
1366 	return err;
1367 }
1368 
1369 /**
1370  * first_nnode - find the first nnode in memory.
1371  * @c: UBIFS file-system description object
1372  * @hght: height of tree where nnode found is returned here
1373  *
1374  * This function returns a pointer to the nnode found or %NULL if no nnode is
1375  * found. This function is a helper to 'ubifs_lpt_free()'.
1376  */
1377 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1378 {
1379 	struct ubifs_nnode *nnode;
1380 	int h, i, found;
1381 
1382 	nnode = c->nroot;
1383 	*hght = 0;
1384 	if (!nnode)
1385 		return NULL;
1386 	for (h = 1; h < c->lpt_hght; h++) {
1387 		found = 0;
1388 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1389 			if (nnode->nbranch[i].nnode) {
1390 				found = 1;
1391 				nnode = nnode->nbranch[i].nnode;
1392 				*hght = h;
1393 				break;
1394 			}
1395 		}
1396 		if (!found)
1397 			break;
1398 	}
1399 	return nnode;
1400 }
1401 
1402 /**
1403  * next_nnode - find the next nnode in memory.
1404  * @c: UBIFS file-system description object
1405  * @nnode: nnode from which to start.
1406  * @hght: height of tree where nnode is, is passed and returned here
1407  *
1408  * This function returns a pointer to the nnode found or %NULL if no nnode is
1409  * found. This function is a helper to 'ubifs_lpt_free()'.
1410  */
1411 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1412 				      struct ubifs_nnode *nnode, int *hght)
1413 {
1414 	struct ubifs_nnode *parent;
1415 	int iip, h, i, found;
1416 
1417 	parent = nnode->parent;
1418 	if (!parent)
1419 		return NULL;
1420 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1421 		*hght -= 1;
1422 		return parent;
1423 	}
1424 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1425 		nnode = parent->nbranch[iip].nnode;
1426 		if (nnode)
1427 			break;
1428 	}
1429 	if (!nnode) {
1430 		*hght -= 1;
1431 		return parent;
1432 	}
1433 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1434 		found = 0;
1435 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1436 			if (nnode->nbranch[i].nnode) {
1437 				found = 1;
1438 				nnode = nnode->nbranch[i].nnode;
1439 				*hght = h;
1440 				break;
1441 			}
1442 		}
1443 		if (!found)
1444 			break;
1445 	}
1446 	return nnode;
1447 }
1448 
1449 /**
1450  * ubifs_lpt_free - free resources owned by the LPT.
1451  * @c: UBIFS file-system description object
1452  * @wr_only: free only resources used for writing
1453  */
1454 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1455 {
1456 	struct ubifs_nnode *nnode;
1457 	int i, hght;
1458 
1459 	/* Free write-only things first */
1460 
1461 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1462 
1463 	vfree(c->ltab_cmt);
1464 	c->ltab_cmt = NULL;
1465 	vfree(c->lpt_buf);
1466 	c->lpt_buf = NULL;
1467 	kfree(c->lsave);
1468 	c->lsave = NULL;
1469 
1470 	if (wr_only)
1471 		return;
1472 
1473 	/* Now free the rest */
1474 
1475 	nnode = first_nnode(c, &hght);
1476 	while (nnode) {
1477 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1478 			kfree(nnode->nbranch[i].nnode);
1479 		nnode = next_nnode(c, nnode, &hght);
1480 	}
1481 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1482 		kfree(c->lpt_heap[i].arr);
1483 	kfree(c->dirty_idx.arr);
1484 	kfree(c->nroot);
1485 	vfree(c->ltab);
1486 	kfree(c->lpt_nod_buf);
1487 }
1488 
1489 /*
1490  * Everything below is related to debugging.
1491  */
1492 
1493 /**
1494  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1495  * @buf: buffer
1496  * @len: buffer length
1497  */
1498 static int dbg_is_all_ff(uint8_t *buf, int len)
1499 {
1500 	int i;
1501 
1502 	for (i = 0; i < len; i++)
1503 		if (buf[i] != 0xff)
1504 			return 0;
1505 	return 1;
1506 }
1507 
1508 /**
1509  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1510  * @c: the UBIFS file-system description object
1511  * @lnum: LEB number where nnode was written
1512  * @offs: offset where nnode was written
1513  */
1514 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1515 {
1516 	struct ubifs_nnode *nnode;
1517 	int hght;
1518 
1519 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1520 	nnode = first_nnode(c, &hght);
1521 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1522 		struct ubifs_nbranch *branch;
1523 
1524 		cond_resched();
1525 		if (nnode->parent) {
1526 			branch = &nnode->parent->nbranch[nnode->iip];
1527 			if (branch->lnum != lnum || branch->offs != offs)
1528 				continue;
1529 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1530 				return 1;
1531 			return 0;
1532 		} else {
1533 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1534 				continue;
1535 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1536 				return 1;
1537 			return 0;
1538 		}
1539 	}
1540 	return 1;
1541 }
1542 
1543 /**
1544  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1545  * @c: the UBIFS file-system description object
1546  * @lnum: LEB number where pnode was written
1547  * @offs: offset where pnode was written
1548  */
1549 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1550 {
1551 	int i, cnt;
1552 
1553 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1554 	for (i = 0; i < cnt; i++) {
1555 		struct ubifs_pnode *pnode;
1556 		struct ubifs_nbranch *branch;
1557 
1558 		cond_resched();
1559 		pnode = pnode_lookup(c, i);
1560 		if (IS_ERR(pnode))
1561 			return PTR_ERR(pnode);
1562 		branch = &pnode->parent->nbranch[pnode->iip];
1563 		if (branch->lnum != lnum || branch->offs != offs)
1564 			continue;
1565 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1566 			return 1;
1567 		return 0;
1568 	}
1569 	return 1;
1570 }
1571 
1572 /**
1573  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1574  * @c: the UBIFS file-system description object
1575  * @lnum: LEB number where ltab node was written
1576  * @offs: offset where ltab node was written
1577  */
1578 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1579 {
1580 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1581 		return 1;
1582 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1583 }
1584 
1585 /**
1586  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1587  * @c: the UBIFS file-system description object
1588  * @lnum: LEB number where lsave node was written
1589  * @offs: offset where lsave node was written
1590  */
1591 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1592 {
1593 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1594 		return 1;
1595 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1596 }
1597 
1598 /**
1599  * dbg_is_node_dirty - determine if a node is dirty.
1600  * @c: the UBIFS file-system description object
1601  * @node_type: node type
1602  * @lnum: LEB number where node was written
1603  * @offs: offset where node was written
1604  */
1605 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1606 			     int offs)
1607 {
1608 	switch (node_type) {
1609 	case UBIFS_LPT_NNODE:
1610 		return dbg_is_nnode_dirty(c, lnum, offs);
1611 	case UBIFS_LPT_PNODE:
1612 		return dbg_is_pnode_dirty(c, lnum, offs);
1613 	case UBIFS_LPT_LTAB:
1614 		return dbg_is_ltab_dirty(c, lnum, offs);
1615 	case UBIFS_LPT_LSAVE:
1616 		return dbg_is_lsave_dirty(c, lnum, offs);
1617 	}
1618 	return 1;
1619 }
1620 
1621 /**
1622  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1623  * @c: the UBIFS file-system description object
1624  * @lnum: LEB number where node was written
1625  *
1626  * This function returns %0 on success and a negative error code on failure.
1627  */
1628 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1629 {
1630 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1631 	int ret;
1632 	void *buf, *p;
1633 
1634 	if (!dbg_is_chk_lprops(c))
1635 		return 0;
1636 
1637 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1638 	if (!buf) {
1639 		ubifs_err(c, "cannot allocate memory for ltab checking");
1640 		return 0;
1641 	}
1642 
1643 	dbg_lp("LEB %d", lnum);
1644 
1645 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1646 	if (err)
1647 		goto out;
1648 
1649 	while (1) {
1650 		if (!is_a_node(c, p, len)) {
1651 			int i, pad_len;
1652 
1653 			pad_len = get_pad_len(c, p, len);
1654 			if (pad_len) {
1655 				p += pad_len;
1656 				len -= pad_len;
1657 				dirty += pad_len;
1658 				continue;
1659 			}
1660 			if (!dbg_is_all_ff(p, len)) {
1661 				ubifs_err(c, "invalid empty space in LEB %d at %d",
1662 					  lnum, c->leb_size - len);
1663 				err = -EINVAL;
1664 			}
1665 			i = lnum - c->lpt_first;
1666 			if (len != c->ltab[i].free) {
1667 				ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1668 					  lnum, len, c->ltab[i].free);
1669 				err = -EINVAL;
1670 			}
1671 			if (dirty != c->ltab[i].dirty) {
1672 				ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1673 					  lnum, dirty, c->ltab[i].dirty);
1674 				err = -EINVAL;
1675 			}
1676 			goto out;
1677 		}
1678 		node_type = get_lpt_node_type(c, p, &node_num);
1679 		node_len = get_lpt_node_len(c, node_type);
1680 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1681 		if (ret == 1)
1682 			dirty += node_len;
1683 		p += node_len;
1684 		len -= node_len;
1685 	}
1686 
1687 	err = 0;
1688 out:
1689 	vfree(buf);
1690 	return err;
1691 }
1692 
1693 /**
1694  * dbg_check_ltab - check the free and dirty space in the ltab.
1695  * @c: the UBIFS file-system description object
1696  *
1697  * This function returns %0 on success and a negative error code on failure.
1698  */
1699 int dbg_check_ltab(struct ubifs_info *c)
1700 {
1701 	int lnum, err, i, cnt;
1702 
1703 	if (!dbg_is_chk_lprops(c))
1704 		return 0;
1705 
1706 	/* Bring the entire tree into memory */
1707 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1708 	for (i = 0; i < cnt; i++) {
1709 		struct ubifs_pnode *pnode;
1710 
1711 		pnode = pnode_lookup(c, i);
1712 		if (IS_ERR(pnode))
1713 			return PTR_ERR(pnode);
1714 		cond_resched();
1715 	}
1716 
1717 	/* Check nodes */
1718 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1719 	if (err)
1720 		return err;
1721 
1722 	/* Check each LEB */
1723 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1724 		err = dbg_check_ltab_lnum(c, lnum);
1725 		if (err) {
1726 			ubifs_err(c, "failed at LEB %d", lnum);
1727 			return err;
1728 		}
1729 	}
1730 
1731 	dbg_lp("succeeded");
1732 	return 0;
1733 }
1734 
1735 /**
1736  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1737  * @c: the UBIFS file-system description object
1738  *
1739  * This function returns %0 on success and a negative error code on failure.
1740  */
1741 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1742 {
1743 	long long free = 0;
1744 	int i;
1745 
1746 	if (!dbg_is_chk_lprops(c))
1747 		return 0;
1748 
1749 	for (i = 0; i < c->lpt_lebs; i++) {
1750 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1751 			continue;
1752 		if (i + c->lpt_first == c->nhead_lnum)
1753 			free += c->leb_size - c->nhead_offs;
1754 		else if (c->ltab[i].free == c->leb_size)
1755 			free += c->leb_size;
1756 	}
1757 	if (free < c->lpt_sz) {
1758 		ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1759 			  free, c->lpt_sz);
1760 		ubifs_dump_lpt_info(c);
1761 		ubifs_dump_lpt_lebs(c);
1762 		dump_stack();
1763 		return -EINVAL;
1764 	}
1765 	return 0;
1766 }
1767 
1768 /**
1769  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1770  * @c: the UBIFS file-system description object
1771  * @action: what to do
1772  * @len: length written
1773  *
1774  * This function returns %0 on success and a negative error code on failure.
1775  * The @action argument may be one of:
1776  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1777  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1778  *   o %2 - switched to a different LEB and wasted @len bytes;
1779  *   o %3 - check that we've written the right number of bytes.
1780  *   o %4 - wasted @len bytes;
1781  */
1782 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1783 {
1784 	struct ubifs_debug_info *d = c->dbg;
1785 	long long chk_lpt_sz, lpt_sz;
1786 	int err = 0;
1787 
1788 	if (!dbg_is_chk_lprops(c))
1789 		return 0;
1790 
1791 	switch (action) {
1792 	case 0:
1793 		d->chk_lpt_sz = 0;
1794 		d->chk_lpt_sz2 = 0;
1795 		d->chk_lpt_lebs = 0;
1796 		d->chk_lpt_wastage = 0;
1797 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1798 			ubifs_err(c, "dirty pnodes %d exceed max %d",
1799 				  c->dirty_pn_cnt, c->pnode_cnt);
1800 			err = -EINVAL;
1801 		}
1802 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1803 			ubifs_err(c, "dirty nnodes %d exceed max %d",
1804 				  c->dirty_nn_cnt, c->nnode_cnt);
1805 			err = -EINVAL;
1806 		}
1807 		return err;
1808 	case 1:
1809 		d->chk_lpt_sz += len;
1810 		return 0;
1811 	case 2:
1812 		d->chk_lpt_sz += len;
1813 		d->chk_lpt_wastage += len;
1814 		d->chk_lpt_lebs += 1;
1815 		return 0;
1816 	case 3:
1817 		chk_lpt_sz = c->leb_size;
1818 		chk_lpt_sz *= d->chk_lpt_lebs;
1819 		chk_lpt_sz += len - c->nhead_offs;
1820 		if (d->chk_lpt_sz != chk_lpt_sz) {
1821 			ubifs_err(c, "LPT wrote %lld but space used was %lld",
1822 				  d->chk_lpt_sz, chk_lpt_sz);
1823 			err = -EINVAL;
1824 		}
1825 		if (d->chk_lpt_sz > c->lpt_sz) {
1826 			ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1827 				  d->chk_lpt_sz, c->lpt_sz);
1828 			err = -EINVAL;
1829 		}
1830 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1831 			ubifs_err(c, "LPT layout size %lld but wrote %lld",
1832 				  d->chk_lpt_sz, d->chk_lpt_sz2);
1833 			err = -EINVAL;
1834 		}
1835 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1836 			ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1837 				  d->new_nhead_offs, len);
1838 			err = -EINVAL;
1839 		}
1840 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1841 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1842 		lpt_sz += c->ltab_sz;
1843 		if (c->big_lpt)
1844 			lpt_sz += c->lsave_sz;
1845 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1846 			ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1847 				  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1848 			err = -EINVAL;
1849 		}
1850 		if (err) {
1851 			ubifs_dump_lpt_info(c);
1852 			ubifs_dump_lpt_lebs(c);
1853 			dump_stack();
1854 		}
1855 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1856 		d->chk_lpt_sz = 0;
1857 		d->chk_lpt_wastage = 0;
1858 		d->chk_lpt_lebs = 0;
1859 		d->new_nhead_offs = len;
1860 		return err;
1861 	case 4:
1862 		d->chk_lpt_sz += len;
1863 		d->chk_lpt_wastage += len;
1864 		return 0;
1865 	default:
1866 		return -EINVAL;
1867 	}
1868 }
1869 
1870 /**
1871  * dump_lpt_leb - dump an LPT LEB.
1872  * @c: UBIFS file-system description object
1873  * @lnum: LEB number to dump
1874  *
1875  * This function dumps an LEB from LPT area. Nodes in this area are very
1876  * different to nodes in the main area (e.g., they do not have common headers,
1877  * they do not have 8-byte alignments, etc), so we have a separate function to
1878  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1879  */
1880 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1881 {
1882 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1883 	void *buf, *p;
1884 
1885 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1886 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1887 	if (!buf) {
1888 		ubifs_err(c, "cannot allocate memory to dump LPT");
1889 		return;
1890 	}
1891 
1892 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1893 	if (err)
1894 		goto out;
1895 
1896 	while (1) {
1897 		offs = c->leb_size - len;
1898 		if (!is_a_node(c, p, len)) {
1899 			int pad_len;
1900 
1901 			pad_len = get_pad_len(c, p, len);
1902 			if (pad_len) {
1903 				pr_err("LEB %d:%d, pad %d bytes\n",
1904 				       lnum, offs, pad_len);
1905 				p += pad_len;
1906 				len -= pad_len;
1907 				continue;
1908 			}
1909 			if (len)
1910 				pr_err("LEB %d:%d, free %d bytes\n",
1911 				       lnum, offs, len);
1912 			break;
1913 		}
1914 
1915 		node_type = get_lpt_node_type(c, p, &node_num);
1916 		switch (node_type) {
1917 		case UBIFS_LPT_PNODE:
1918 		{
1919 			node_len = c->pnode_sz;
1920 			if (c->big_lpt)
1921 				pr_err("LEB %d:%d, pnode num %d\n",
1922 				       lnum, offs, node_num);
1923 			else
1924 				pr_err("LEB %d:%d, pnode\n", lnum, offs);
1925 			break;
1926 		}
1927 		case UBIFS_LPT_NNODE:
1928 		{
1929 			int i;
1930 			struct ubifs_nnode nnode;
1931 
1932 			node_len = c->nnode_sz;
1933 			if (c->big_lpt)
1934 				pr_err("LEB %d:%d, nnode num %d, ",
1935 				       lnum, offs, node_num);
1936 			else
1937 				pr_err("LEB %d:%d, nnode, ",
1938 				       lnum, offs);
1939 			err = ubifs_unpack_nnode(c, p, &nnode);
1940 			if (err) {
1941 				pr_err("failed to unpack_node, error %d\n",
1942 				       err);
1943 				break;
1944 			}
1945 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1946 				pr_cont("%d:%d", nnode.nbranch[i].lnum,
1947 				       nnode.nbranch[i].offs);
1948 				if (i != UBIFS_LPT_FANOUT - 1)
1949 					pr_cont(", ");
1950 			}
1951 			pr_cont("\n");
1952 			break;
1953 		}
1954 		case UBIFS_LPT_LTAB:
1955 			node_len = c->ltab_sz;
1956 			pr_err("LEB %d:%d, ltab\n", lnum, offs);
1957 			break;
1958 		case UBIFS_LPT_LSAVE:
1959 			node_len = c->lsave_sz;
1960 			pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1961 			break;
1962 		default:
1963 			ubifs_err(c, "LPT node type %d not recognized", node_type);
1964 			goto out;
1965 		}
1966 
1967 		p += node_len;
1968 		len -= node_len;
1969 	}
1970 
1971 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1972 out:
1973 	vfree(buf);
1974 	return;
1975 }
1976 
1977 /**
1978  * ubifs_dump_lpt_lebs - dump LPT lebs.
1979  * @c: UBIFS file-system description object
1980  *
1981  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1982  * locked.
1983  */
1984 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1985 {
1986 	int i;
1987 
1988 	pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1989 	for (i = 0; i < c->lpt_lebs; i++)
1990 		dump_lpt_leb(c, i + c->lpt_first);
1991 	pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1992 }
1993 
1994 /**
1995  * dbg_populate_lsave - debugging version of 'populate_lsave()'
1996  * @c: UBIFS file-system description object
1997  *
1998  * This is a debugging version for 'populate_lsave()' which populates lsave
1999  * with random LEBs instead of useful LEBs, which is good for test coverage.
2000  * Returns zero if lsave has not been populated (this debugging feature is
2001  * disabled) an non-zero if lsave has been populated.
2002  */
2003 static int dbg_populate_lsave(struct ubifs_info *c)
2004 {
2005 	struct ubifs_lprops *lprops;
2006 	struct ubifs_lpt_heap *heap;
2007 	int i;
2008 
2009 	if (!dbg_is_chk_gen(c))
2010 		return 0;
2011 	if (prandom_u32() & 3)
2012 		return 0;
2013 
2014 	for (i = 0; i < c->lsave_cnt; i++)
2015 		c->lsave[i] = c->main_first;
2016 
2017 	list_for_each_entry(lprops, &c->empty_list, list)
2018 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2019 	list_for_each_entry(lprops, &c->freeable_list, list)
2020 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021 	list_for_each_entry(lprops, &c->frdi_idx_list, list)
2022 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023 
2024 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2025 	for (i = 0; i < heap->cnt; i++)
2026 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2027 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2028 	for (i = 0; i < heap->cnt; i++)
2029 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2030 	heap = &c->lpt_heap[LPROPS_FREE - 1];
2031 	for (i = 0; i < heap->cnt; i++)
2032 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2033 
2034 	return 1;
2035 }
2036