xref: /openbmc/linux/fs/ubifs/lpt_commit.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32 
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 
35 /**
36  * first_dirty_cnode - find first dirty cnode.
37  * @c: UBIFS file-system description object
38  * @nnode: nnode at which to start
39  *
40  * This function returns the first dirty cnode or %NULL if there is not one.
41  */
42 static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode)
43 {
44 	ubifs_assert(c, nnode);
45 	while (1) {
46 		int i, cont = 0;
47 
48 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 			struct ubifs_cnode *cnode;
50 
51 			cnode = nnode->nbranch[i].cnode;
52 			if (cnode &&
53 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
54 				if (cnode->level == 0)
55 					return cnode;
56 				nnode = (struct ubifs_nnode *)cnode;
57 				cont = 1;
58 				break;
59 			}
60 		}
61 		if (!cont)
62 			return (struct ubifs_cnode *)nnode;
63 	}
64 }
65 
66 /**
67  * next_dirty_cnode - find next dirty cnode.
68  * @c: UBIFS file-system description object
69  * @cnode: cnode from which to begin searching
70  *
71  * This function returns the next dirty cnode or %NULL if there is not one.
72  */
73 static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode)
74 {
75 	struct ubifs_nnode *nnode;
76 	int i;
77 
78 	ubifs_assert(c, cnode);
79 	nnode = cnode->parent;
80 	if (!nnode)
81 		return NULL;
82 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
83 		cnode = nnode->nbranch[i].cnode;
84 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
85 			if (cnode->level == 0)
86 				return cnode; /* cnode is a pnode */
87 			/* cnode is a nnode */
88 			return first_dirty_cnode(c, (struct ubifs_nnode *)cnode);
89 		}
90 	}
91 	return (struct ubifs_cnode *)nnode;
92 }
93 
94 /**
95  * get_cnodes_to_commit - create list of dirty cnodes to commit.
96  * @c: UBIFS file-system description object
97  *
98  * This function returns the number of cnodes to commit.
99  */
100 static int get_cnodes_to_commit(struct ubifs_info *c)
101 {
102 	struct ubifs_cnode *cnode, *cnext;
103 	int cnt = 0;
104 
105 	if (!c->nroot)
106 		return 0;
107 
108 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
109 		return 0;
110 
111 	c->lpt_cnext = first_dirty_cnode(c, c->nroot);
112 	cnode = c->lpt_cnext;
113 	if (!cnode)
114 		return 0;
115 	cnt += 1;
116 	while (1) {
117 		ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags));
118 		__set_bit(COW_CNODE, &cnode->flags);
119 		cnext = next_dirty_cnode(c, cnode);
120 		if (!cnext) {
121 			cnode->cnext = c->lpt_cnext;
122 			break;
123 		}
124 		cnode->cnext = cnext;
125 		cnode = cnext;
126 		cnt += 1;
127 	}
128 	dbg_cmt("committing %d cnodes", cnt);
129 	dbg_lp("committing %d cnodes", cnt);
130 	ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
131 	return cnt;
132 }
133 
134 /**
135  * upd_ltab - update LPT LEB properties.
136  * @c: UBIFS file-system description object
137  * @lnum: LEB number
138  * @free: amount of free space
139  * @dirty: amount of dirty space to add
140  */
141 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
142 {
143 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
144 	       lnum, c->ltab[lnum - c->lpt_first].free,
145 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
146 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
147 	c->ltab[lnum - c->lpt_first].free = free;
148 	c->ltab[lnum - c->lpt_first].dirty += dirty;
149 }
150 
151 /**
152  * alloc_lpt_leb - allocate an LPT LEB that is empty.
153  * @c: UBIFS file-system description object
154  * @lnum: LEB number is passed and returned here
155  *
156  * This function finds the next empty LEB in the ltab starting from @lnum. If a
157  * an empty LEB is found it is returned in @lnum and the function returns %0.
158  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
159  * never to run out of space.
160  */
161 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
162 {
163 	int i, n;
164 
165 	n = *lnum - c->lpt_first + 1;
166 	for (i = n; i < c->lpt_lebs; i++) {
167 		if (c->ltab[i].tgc || c->ltab[i].cmt)
168 			continue;
169 		if (c->ltab[i].free == c->leb_size) {
170 			c->ltab[i].cmt = 1;
171 			*lnum = i + c->lpt_first;
172 			return 0;
173 		}
174 	}
175 
176 	for (i = 0; i < n; i++) {
177 		if (c->ltab[i].tgc || c->ltab[i].cmt)
178 			continue;
179 		if (c->ltab[i].free == c->leb_size) {
180 			c->ltab[i].cmt = 1;
181 			*lnum = i + c->lpt_first;
182 			return 0;
183 		}
184 	}
185 	return -ENOSPC;
186 }
187 
188 /**
189  * layout_cnodes - layout cnodes for commit.
190  * @c: UBIFS file-system description object
191  *
192  * This function returns %0 on success and a negative error code on failure.
193  */
194 static int layout_cnodes(struct ubifs_info *c)
195 {
196 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
197 	struct ubifs_cnode *cnode;
198 
199 	err = dbg_chk_lpt_sz(c, 0, 0);
200 	if (err)
201 		return err;
202 	cnode = c->lpt_cnext;
203 	if (!cnode)
204 		return 0;
205 	lnum = c->nhead_lnum;
206 	offs = c->nhead_offs;
207 	/* Try to place lsave and ltab nicely */
208 	done_lsave = !c->big_lpt;
209 	done_ltab = 0;
210 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
211 		done_lsave = 1;
212 		c->lsave_lnum = lnum;
213 		c->lsave_offs = offs;
214 		offs += c->lsave_sz;
215 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
216 	}
217 
218 	if (offs + c->ltab_sz <= c->leb_size) {
219 		done_ltab = 1;
220 		c->ltab_lnum = lnum;
221 		c->ltab_offs = offs;
222 		offs += c->ltab_sz;
223 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
224 	}
225 
226 	do {
227 		if (cnode->level) {
228 			len = c->nnode_sz;
229 			c->dirty_nn_cnt -= 1;
230 		} else {
231 			len = c->pnode_sz;
232 			c->dirty_pn_cnt -= 1;
233 		}
234 		while (offs + len > c->leb_size) {
235 			alen = ALIGN(offs, c->min_io_size);
236 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
237 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
238 			err = alloc_lpt_leb(c, &lnum);
239 			if (err)
240 				goto no_space;
241 			offs = 0;
242 			ubifs_assert(c, lnum >= c->lpt_first &&
243 				     lnum <= c->lpt_last);
244 			/* Try to place lsave and ltab nicely */
245 			if (!done_lsave) {
246 				done_lsave = 1;
247 				c->lsave_lnum = lnum;
248 				c->lsave_offs = offs;
249 				offs += c->lsave_sz;
250 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
251 				continue;
252 			}
253 			if (!done_ltab) {
254 				done_ltab = 1;
255 				c->ltab_lnum = lnum;
256 				c->ltab_offs = offs;
257 				offs += c->ltab_sz;
258 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
259 				continue;
260 			}
261 			break;
262 		}
263 		if (cnode->parent) {
264 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
265 			cnode->parent->nbranch[cnode->iip].offs = offs;
266 		} else {
267 			c->lpt_lnum = lnum;
268 			c->lpt_offs = offs;
269 		}
270 		offs += len;
271 		dbg_chk_lpt_sz(c, 1, len);
272 		cnode = cnode->cnext;
273 	} while (cnode && cnode != c->lpt_cnext);
274 
275 	/* Make sure to place LPT's save table */
276 	if (!done_lsave) {
277 		if (offs + c->lsave_sz > c->leb_size) {
278 			alen = ALIGN(offs, c->min_io_size);
279 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
280 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
281 			err = alloc_lpt_leb(c, &lnum);
282 			if (err)
283 				goto no_space;
284 			offs = 0;
285 			ubifs_assert(c, lnum >= c->lpt_first &&
286 				     lnum <= c->lpt_last);
287 		}
288 		done_lsave = 1;
289 		c->lsave_lnum = lnum;
290 		c->lsave_offs = offs;
291 		offs += c->lsave_sz;
292 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
293 	}
294 
295 	/* Make sure to place LPT's own lprops table */
296 	if (!done_ltab) {
297 		if (offs + c->ltab_sz > c->leb_size) {
298 			alen = ALIGN(offs, c->min_io_size);
299 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
300 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
301 			err = alloc_lpt_leb(c, &lnum);
302 			if (err)
303 				goto no_space;
304 			offs = 0;
305 			ubifs_assert(c, lnum >= c->lpt_first &&
306 				     lnum <= c->lpt_last);
307 		}
308 		c->ltab_lnum = lnum;
309 		c->ltab_offs = offs;
310 		offs += c->ltab_sz;
311 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
312 	}
313 
314 	alen = ALIGN(offs, c->min_io_size);
315 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 	dbg_chk_lpt_sz(c, 4, alen - offs);
317 	err = dbg_chk_lpt_sz(c, 3, alen);
318 	if (err)
319 		return err;
320 	return 0;
321 
322 no_space:
323 	ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324 		  lnum, offs, len, done_ltab, done_lsave);
325 	ubifs_dump_lpt_info(c);
326 	ubifs_dump_lpt_lebs(c);
327 	dump_stack();
328 	return err;
329 }
330 
331 /**
332  * realloc_lpt_leb - allocate an LPT LEB that is empty.
333  * @c: UBIFS file-system description object
334  * @lnum: LEB number is passed and returned here
335  *
336  * This function duplicates exactly the results of the function alloc_lpt_leb.
337  * It is used during end commit to reallocate the same LEB numbers that were
338  * allocated by alloc_lpt_leb during start commit.
339  *
340  * This function finds the next LEB that was allocated by the alloc_lpt_leb
341  * function starting from @lnum. If a LEB is found it is returned in @lnum and
342  * the function returns %0. Otherwise the function returns -ENOSPC.
343  * Note however, that LPT is designed never to run out of space.
344  */
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346 {
347 	int i, n;
348 
349 	n = *lnum - c->lpt_first + 1;
350 	for (i = n; i < c->lpt_lebs; i++)
351 		if (c->ltab[i].cmt) {
352 			c->ltab[i].cmt = 0;
353 			*lnum = i + c->lpt_first;
354 			return 0;
355 		}
356 
357 	for (i = 0; i < n; i++)
358 		if (c->ltab[i].cmt) {
359 			c->ltab[i].cmt = 0;
360 			*lnum = i + c->lpt_first;
361 			return 0;
362 		}
363 	return -ENOSPC;
364 }
365 
366 /**
367  * write_cnodes - write cnodes for commit.
368  * @c: UBIFS file-system description object
369  *
370  * This function returns %0 on success and a negative error code on failure.
371  */
372 static int write_cnodes(struct ubifs_info *c)
373 {
374 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 	struct ubifs_cnode *cnode;
376 	void *buf = c->lpt_buf;
377 
378 	cnode = c->lpt_cnext;
379 	if (!cnode)
380 		return 0;
381 	lnum = c->nhead_lnum;
382 	offs = c->nhead_offs;
383 	from = offs;
384 	/* Ensure empty LEB is unmapped */
385 	if (offs == 0) {
386 		err = ubifs_leb_unmap(c, lnum);
387 		if (err)
388 			return err;
389 	}
390 	/* Try to place lsave and ltab nicely */
391 	done_lsave = !c->big_lpt;
392 	done_ltab = 0;
393 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 		done_lsave = 1;
395 		ubifs_pack_lsave(c, buf + offs, c->lsave);
396 		offs += c->lsave_sz;
397 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
398 	}
399 
400 	if (offs + c->ltab_sz <= c->leb_size) {
401 		done_ltab = 1;
402 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 		offs += c->ltab_sz;
404 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
405 	}
406 
407 	/* Loop for each cnode */
408 	do {
409 		if (cnode->level)
410 			len = c->nnode_sz;
411 		else
412 			len = c->pnode_sz;
413 		while (offs + len > c->leb_size) {
414 			wlen = offs - from;
415 			if (wlen) {
416 				alen = ALIGN(wlen, c->min_io_size);
417 				memset(buf + offs, 0xff, alen - wlen);
418 				err = ubifs_leb_write(c, lnum, buf + from, from,
419 						       alen);
420 				if (err)
421 					return err;
422 			}
423 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 			err = realloc_lpt_leb(c, &lnum);
425 			if (err)
426 				goto no_space;
427 			offs = from = 0;
428 			ubifs_assert(c, lnum >= c->lpt_first &&
429 				     lnum <= c->lpt_last);
430 			err = ubifs_leb_unmap(c, lnum);
431 			if (err)
432 				return err;
433 			/* Try to place lsave and ltab nicely */
434 			if (!done_lsave) {
435 				done_lsave = 1;
436 				ubifs_pack_lsave(c, buf + offs, c->lsave);
437 				offs += c->lsave_sz;
438 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
439 				continue;
440 			}
441 			if (!done_ltab) {
442 				done_ltab = 1;
443 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 				offs += c->ltab_sz;
445 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
446 				continue;
447 			}
448 			break;
449 		}
450 		if (cnode->level)
451 			ubifs_pack_nnode(c, buf + offs,
452 					 (struct ubifs_nnode *)cnode);
453 		else
454 			ubifs_pack_pnode(c, buf + offs,
455 					 (struct ubifs_pnode *)cnode);
456 		/*
457 		 * The reason for the barriers is the same as in case of TNC.
458 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 		 * 'dirty_cow_pnode()' are the functions for which this is
460 		 * important.
461 		 */
462 		clear_bit(DIRTY_CNODE, &cnode->flags);
463 		smp_mb__before_atomic();
464 		clear_bit(COW_CNODE, &cnode->flags);
465 		smp_mb__after_atomic();
466 		offs += len;
467 		dbg_chk_lpt_sz(c, 1, len);
468 		cnode = cnode->cnext;
469 	} while (cnode && cnode != c->lpt_cnext);
470 
471 	/* Make sure to place LPT's save table */
472 	if (!done_lsave) {
473 		if (offs + c->lsave_sz > c->leb_size) {
474 			wlen = offs - from;
475 			alen = ALIGN(wlen, c->min_io_size);
476 			memset(buf + offs, 0xff, alen - wlen);
477 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
478 			if (err)
479 				return err;
480 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 			err = realloc_lpt_leb(c, &lnum);
482 			if (err)
483 				goto no_space;
484 			offs = from = 0;
485 			ubifs_assert(c, lnum >= c->lpt_first &&
486 				     lnum <= c->lpt_last);
487 			err = ubifs_leb_unmap(c, lnum);
488 			if (err)
489 				return err;
490 		}
491 		done_lsave = 1;
492 		ubifs_pack_lsave(c, buf + offs, c->lsave);
493 		offs += c->lsave_sz;
494 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 	}
496 
497 	/* Make sure to place LPT's own lprops table */
498 	if (!done_ltab) {
499 		if (offs + c->ltab_sz > c->leb_size) {
500 			wlen = offs - from;
501 			alen = ALIGN(wlen, c->min_io_size);
502 			memset(buf + offs, 0xff, alen - wlen);
503 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
504 			if (err)
505 				return err;
506 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 			err = realloc_lpt_leb(c, &lnum);
508 			if (err)
509 				goto no_space;
510 			offs = from = 0;
511 			ubifs_assert(c, lnum >= c->lpt_first &&
512 				     lnum <= c->lpt_last);
513 			err = ubifs_leb_unmap(c, lnum);
514 			if (err)
515 				return err;
516 		}
517 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 		offs += c->ltab_sz;
519 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 	}
521 
522 	/* Write remaining data in buffer */
523 	wlen = offs - from;
524 	alen = ALIGN(wlen, c->min_io_size);
525 	memset(buf + offs, 0xff, alen - wlen);
526 	err = ubifs_leb_write(c, lnum, buf + from, from, alen);
527 	if (err)
528 		return err;
529 
530 	dbg_chk_lpt_sz(c, 4, alen - wlen);
531 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 	if (err)
533 		return err;
534 
535 	c->nhead_lnum = lnum;
536 	c->nhead_offs = ALIGN(offs, c->min_io_size);
537 
538 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 	if (c->big_lpt)
542 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543 
544 	return 0;
545 
546 no_space:
547 	ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
548 		  lnum, offs, len, done_ltab, done_lsave);
549 	ubifs_dump_lpt_info(c);
550 	ubifs_dump_lpt_lebs(c);
551 	dump_stack();
552 	return err;
553 }
554 
555 /**
556  * next_pnode_to_dirty - find next pnode to dirty.
557  * @c: UBIFS file-system description object
558  * @pnode: pnode
559  *
560  * This function returns the next pnode to dirty or %NULL if there are no more
561  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
562  * skipped.
563  */
564 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
565 					       struct ubifs_pnode *pnode)
566 {
567 	struct ubifs_nnode *nnode;
568 	int iip;
569 
570 	/* Try to go right */
571 	nnode = pnode->parent;
572 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
573 		if (nnode->nbranch[iip].lnum)
574 			return ubifs_get_pnode(c, nnode, iip);
575 	}
576 
577 	/* Go up while can't go right */
578 	do {
579 		iip = nnode->iip + 1;
580 		nnode = nnode->parent;
581 		if (!nnode)
582 			return NULL;
583 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
584 			if (nnode->nbranch[iip].lnum)
585 				break;
586 		}
587 	} while (iip >= UBIFS_LPT_FANOUT);
588 
589 	/* Go right */
590 	nnode = ubifs_get_nnode(c, nnode, iip);
591 	if (IS_ERR(nnode))
592 		return (void *)nnode;
593 
594 	/* Go down to level 1 */
595 	while (nnode->level > 1) {
596 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
597 			if (nnode->nbranch[iip].lnum)
598 				break;
599 		}
600 		if (iip >= UBIFS_LPT_FANOUT) {
601 			/*
602 			 * Should not happen, but we need to keep going
603 			 * if it does.
604 			 */
605 			iip = 0;
606 		}
607 		nnode = ubifs_get_nnode(c, nnode, iip);
608 		if (IS_ERR(nnode))
609 			return (void *)nnode;
610 	}
611 
612 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
613 		if (nnode->nbranch[iip].lnum)
614 			break;
615 	if (iip >= UBIFS_LPT_FANOUT)
616 		/* Should not happen, but we need to keep going if it does */
617 		iip = 0;
618 	return ubifs_get_pnode(c, nnode, iip);
619 }
620 
621 /**
622  * add_pnode_dirt - add dirty space to LPT LEB properties.
623  * @c: UBIFS file-system description object
624  * @pnode: pnode for which to add dirt
625  */
626 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
627 {
628 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
629 			   c->pnode_sz);
630 }
631 
632 /**
633  * do_make_pnode_dirty - mark a pnode dirty.
634  * @c: UBIFS file-system description object
635  * @pnode: pnode to mark dirty
636  */
637 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
638 {
639 	/* Assumes cnext list is empty i.e. not called during commit */
640 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
641 		struct ubifs_nnode *nnode;
642 
643 		c->dirty_pn_cnt += 1;
644 		add_pnode_dirt(c, pnode);
645 		/* Mark parent and ancestors dirty too */
646 		nnode = pnode->parent;
647 		while (nnode) {
648 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
649 				c->dirty_nn_cnt += 1;
650 				ubifs_add_nnode_dirt(c, nnode);
651 				nnode = nnode->parent;
652 			} else
653 				break;
654 		}
655 	}
656 }
657 
658 /**
659  * make_tree_dirty - mark the entire LEB properties tree dirty.
660  * @c: UBIFS file-system description object
661  *
662  * This function is used by the "small" LPT model to cause the entire LEB
663  * properties tree to be written.  The "small" LPT model does not use LPT
664  * garbage collection because it is more efficient to write the entire tree
665  * (because it is small).
666  *
667  * This function returns %0 on success and a negative error code on failure.
668  */
669 static int make_tree_dirty(struct ubifs_info *c)
670 {
671 	struct ubifs_pnode *pnode;
672 
673 	pnode = ubifs_pnode_lookup(c, 0);
674 	if (IS_ERR(pnode))
675 		return PTR_ERR(pnode);
676 
677 	while (pnode) {
678 		do_make_pnode_dirty(c, pnode);
679 		pnode = next_pnode_to_dirty(c, pnode);
680 		if (IS_ERR(pnode))
681 			return PTR_ERR(pnode);
682 	}
683 	return 0;
684 }
685 
686 /**
687  * need_write_all - determine if the LPT area is running out of free space.
688  * @c: UBIFS file-system description object
689  *
690  * This function returns %1 if the LPT area is running out of free space and %0
691  * if it is not.
692  */
693 static int need_write_all(struct ubifs_info *c)
694 {
695 	long long free = 0;
696 	int i;
697 
698 	for (i = 0; i < c->lpt_lebs; i++) {
699 		if (i + c->lpt_first == c->nhead_lnum)
700 			free += c->leb_size - c->nhead_offs;
701 		else if (c->ltab[i].free == c->leb_size)
702 			free += c->leb_size;
703 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
704 			free += c->leb_size;
705 	}
706 	/* Less than twice the size left */
707 	if (free <= c->lpt_sz * 2)
708 		return 1;
709 	return 0;
710 }
711 
712 /**
713  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
714  * @c: UBIFS file-system description object
715  *
716  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
717  * free space and so may be reused as soon as the next commit is completed.
718  * This function is called during start commit to mark LPT LEBs for trivial GC.
719  */
720 static void lpt_tgc_start(struct ubifs_info *c)
721 {
722 	int i;
723 
724 	for (i = 0; i < c->lpt_lebs; i++) {
725 		if (i + c->lpt_first == c->nhead_lnum)
726 			continue;
727 		if (c->ltab[i].dirty > 0 &&
728 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
729 			c->ltab[i].tgc = 1;
730 			c->ltab[i].free = c->leb_size;
731 			c->ltab[i].dirty = 0;
732 			dbg_lp("LEB %d", i + c->lpt_first);
733 		}
734 	}
735 }
736 
737 /**
738  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
739  * @c: UBIFS file-system description object
740  *
741  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
742  * free space and so may be reused as soon as the next commit is completed.
743  * This function is called after the commit is completed (master node has been
744  * written) and un-maps LPT LEBs that were marked for trivial GC.
745  */
746 static int lpt_tgc_end(struct ubifs_info *c)
747 {
748 	int i, err;
749 
750 	for (i = 0; i < c->lpt_lebs; i++)
751 		if (c->ltab[i].tgc) {
752 			err = ubifs_leb_unmap(c, i + c->lpt_first);
753 			if (err)
754 				return err;
755 			c->ltab[i].tgc = 0;
756 			dbg_lp("LEB %d", i + c->lpt_first);
757 		}
758 	return 0;
759 }
760 
761 /**
762  * populate_lsave - fill the lsave array with important LEB numbers.
763  * @c: the UBIFS file-system description object
764  *
765  * This function is only called for the "big" model. It records a small number
766  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
767  * most important to least important): empty, freeable, freeable index, dirty
768  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
769  * their pnodes into memory.  That will stop us from having to scan the LPT
770  * straight away. For the "small" model we assume that scanning the LPT is no
771  * big deal.
772  */
773 static void populate_lsave(struct ubifs_info *c)
774 {
775 	struct ubifs_lprops *lprops;
776 	struct ubifs_lpt_heap *heap;
777 	int i, cnt = 0;
778 
779 	ubifs_assert(c, c->big_lpt);
780 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
781 		c->lpt_drty_flgs |= LSAVE_DIRTY;
782 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
783 	}
784 
785 	if (dbg_populate_lsave(c))
786 		return;
787 
788 	list_for_each_entry(lprops, &c->empty_list, list) {
789 		c->lsave[cnt++] = lprops->lnum;
790 		if (cnt >= c->lsave_cnt)
791 			return;
792 	}
793 	list_for_each_entry(lprops, &c->freeable_list, list) {
794 		c->lsave[cnt++] = lprops->lnum;
795 		if (cnt >= c->lsave_cnt)
796 			return;
797 	}
798 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
799 		c->lsave[cnt++] = lprops->lnum;
800 		if (cnt >= c->lsave_cnt)
801 			return;
802 	}
803 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
804 	for (i = 0; i < heap->cnt; i++) {
805 		c->lsave[cnt++] = heap->arr[i]->lnum;
806 		if (cnt >= c->lsave_cnt)
807 			return;
808 	}
809 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
810 	for (i = 0; i < heap->cnt; i++) {
811 		c->lsave[cnt++] = heap->arr[i]->lnum;
812 		if (cnt >= c->lsave_cnt)
813 			return;
814 	}
815 	heap = &c->lpt_heap[LPROPS_FREE - 1];
816 	for (i = 0; i < heap->cnt; i++) {
817 		c->lsave[cnt++] = heap->arr[i]->lnum;
818 		if (cnt >= c->lsave_cnt)
819 			return;
820 	}
821 	/* Fill it up completely */
822 	while (cnt < c->lsave_cnt)
823 		c->lsave[cnt++] = c->main_first;
824 }
825 
826 /**
827  * nnode_lookup - lookup a nnode in the LPT.
828  * @c: UBIFS file-system description object
829  * @i: nnode number
830  *
831  * This function returns a pointer to the nnode on success or a negative
832  * error code on failure.
833  */
834 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
835 {
836 	int err, iip;
837 	struct ubifs_nnode *nnode;
838 
839 	if (!c->nroot) {
840 		err = ubifs_read_nnode(c, NULL, 0);
841 		if (err)
842 			return ERR_PTR(err);
843 	}
844 	nnode = c->nroot;
845 	while (1) {
846 		iip = i & (UBIFS_LPT_FANOUT - 1);
847 		i >>= UBIFS_LPT_FANOUT_SHIFT;
848 		if (!i)
849 			break;
850 		nnode = ubifs_get_nnode(c, nnode, iip);
851 		if (IS_ERR(nnode))
852 			return nnode;
853 	}
854 	return nnode;
855 }
856 
857 /**
858  * make_nnode_dirty - find a nnode and, if found, make it dirty.
859  * @c: UBIFS file-system description object
860  * @node_num: nnode number of nnode to make dirty
861  * @lnum: LEB number where nnode was written
862  * @offs: offset where nnode was written
863  *
864  * This function is used by LPT garbage collection.  LPT garbage collection is
865  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
866  * simply involves marking all the nodes in the LEB being garbage-collected as
867  * dirty.  The dirty nodes are written next commit, after which the LEB is free
868  * to be reused.
869  *
870  * This function returns %0 on success and a negative error code on failure.
871  */
872 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
873 			    int offs)
874 {
875 	struct ubifs_nnode *nnode;
876 
877 	nnode = nnode_lookup(c, node_num);
878 	if (IS_ERR(nnode))
879 		return PTR_ERR(nnode);
880 	if (nnode->parent) {
881 		struct ubifs_nbranch *branch;
882 
883 		branch = &nnode->parent->nbranch[nnode->iip];
884 		if (branch->lnum != lnum || branch->offs != offs)
885 			return 0; /* nnode is obsolete */
886 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
887 			return 0; /* nnode is obsolete */
888 	/* Assumes cnext list is empty i.e. not called during commit */
889 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
890 		c->dirty_nn_cnt += 1;
891 		ubifs_add_nnode_dirt(c, nnode);
892 		/* Mark parent and ancestors dirty too */
893 		nnode = nnode->parent;
894 		while (nnode) {
895 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
896 				c->dirty_nn_cnt += 1;
897 				ubifs_add_nnode_dirt(c, nnode);
898 				nnode = nnode->parent;
899 			} else
900 				break;
901 		}
902 	}
903 	return 0;
904 }
905 
906 /**
907  * make_pnode_dirty - find a pnode and, if found, make it dirty.
908  * @c: UBIFS file-system description object
909  * @node_num: pnode number of pnode to make dirty
910  * @lnum: LEB number where pnode was written
911  * @offs: offset where pnode was written
912  *
913  * This function is used by LPT garbage collection.  LPT garbage collection is
914  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
915  * simply involves marking all the nodes in the LEB being garbage-collected as
916  * dirty.  The dirty nodes are written next commit, after which the LEB is free
917  * to be reused.
918  *
919  * This function returns %0 on success and a negative error code on failure.
920  */
921 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
922 			    int offs)
923 {
924 	struct ubifs_pnode *pnode;
925 	struct ubifs_nbranch *branch;
926 
927 	pnode = ubifs_pnode_lookup(c, node_num);
928 	if (IS_ERR(pnode))
929 		return PTR_ERR(pnode);
930 	branch = &pnode->parent->nbranch[pnode->iip];
931 	if (branch->lnum != lnum || branch->offs != offs)
932 		return 0;
933 	do_make_pnode_dirty(c, pnode);
934 	return 0;
935 }
936 
937 /**
938  * make_ltab_dirty - make ltab node dirty.
939  * @c: UBIFS file-system description object
940  * @lnum: LEB number where ltab was written
941  * @offs: offset where ltab was written
942  *
943  * This function is used by LPT garbage collection.  LPT garbage collection is
944  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
945  * simply involves marking all the nodes in the LEB being garbage-collected as
946  * dirty.  The dirty nodes are written next commit, after which the LEB is free
947  * to be reused.
948  *
949  * This function returns %0 on success and a negative error code on failure.
950  */
951 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
952 {
953 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
954 		return 0; /* This ltab node is obsolete */
955 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
956 		c->lpt_drty_flgs |= LTAB_DIRTY;
957 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
958 	}
959 	return 0;
960 }
961 
962 /**
963  * make_lsave_dirty - make lsave node dirty.
964  * @c: UBIFS file-system description object
965  * @lnum: LEB number where lsave was written
966  * @offs: offset where lsave was written
967  *
968  * This function is used by LPT garbage collection.  LPT garbage collection is
969  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
970  * simply involves marking all the nodes in the LEB being garbage-collected as
971  * dirty.  The dirty nodes are written next commit, after which the LEB is free
972  * to be reused.
973  *
974  * This function returns %0 on success and a negative error code on failure.
975  */
976 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
977 {
978 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
979 		return 0; /* This lsave node is obsolete */
980 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
981 		c->lpt_drty_flgs |= LSAVE_DIRTY;
982 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
983 	}
984 	return 0;
985 }
986 
987 /**
988  * make_node_dirty - make node dirty.
989  * @c: UBIFS file-system description object
990  * @node_type: LPT node type
991  * @node_num: node number
992  * @lnum: LEB number where node was written
993  * @offs: offset where node was written
994  *
995  * This function is used by LPT garbage collection.  LPT garbage collection is
996  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
997  * simply involves marking all the nodes in the LEB being garbage-collected as
998  * dirty.  The dirty nodes are written next commit, after which the LEB is free
999  * to be reused.
1000  *
1001  * This function returns %0 on success and a negative error code on failure.
1002  */
1003 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1004 			   int lnum, int offs)
1005 {
1006 	switch (node_type) {
1007 	case UBIFS_LPT_NNODE:
1008 		return make_nnode_dirty(c, node_num, lnum, offs);
1009 	case UBIFS_LPT_PNODE:
1010 		return make_pnode_dirty(c, node_num, lnum, offs);
1011 	case UBIFS_LPT_LTAB:
1012 		return make_ltab_dirty(c, lnum, offs);
1013 	case UBIFS_LPT_LSAVE:
1014 		return make_lsave_dirty(c, lnum, offs);
1015 	}
1016 	return -EINVAL;
1017 }
1018 
1019 /**
1020  * get_lpt_node_len - return the length of a node based on its type.
1021  * @c: UBIFS file-system description object
1022  * @node_type: LPT node type
1023  */
1024 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1025 {
1026 	switch (node_type) {
1027 	case UBIFS_LPT_NNODE:
1028 		return c->nnode_sz;
1029 	case UBIFS_LPT_PNODE:
1030 		return c->pnode_sz;
1031 	case UBIFS_LPT_LTAB:
1032 		return c->ltab_sz;
1033 	case UBIFS_LPT_LSAVE:
1034 		return c->lsave_sz;
1035 	}
1036 	return 0;
1037 }
1038 
1039 /**
1040  * get_pad_len - return the length of padding in a buffer.
1041  * @c: UBIFS file-system description object
1042  * @buf: buffer
1043  * @len: length of buffer
1044  */
1045 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1046 {
1047 	int offs, pad_len;
1048 
1049 	if (c->min_io_size == 1)
1050 		return 0;
1051 	offs = c->leb_size - len;
1052 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1053 	return pad_len;
1054 }
1055 
1056 /**
1057  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1058  * @c: UBIFS file-system description object
1059  * @buf: buffer
1060  * @node_num: node number is returned here
1061  */
1062 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1063 			     int *node_num)
1064 {
1065 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1066 	int pos = 0, node_type;
1067 
1068 	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1069 	*node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1070 	return node_type;
1071 }
1072 
1073 /**
1074  * is_a_node - determine if a buffer contains a node.
1075  * @c: UBIFS file-system description object
1076  * @buf: buffer
1077  * @len: length of buffer
1078  *
1079  * This function returns %1 if the buffer contains a node or %0 if it does not.
1080  */
1081 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1082 {
1083 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1084 	int pos = 0, node_type, node_len;
1085 	uint16_t crc, calc_crc;
1086 
1087 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1088 		return 0;
1089 	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1090 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1091 		return 0;
1092 	node_len = get_lpt_node_len(c, node_type);
1093 	if (!node_len || node_len > len)
1094 		return 0;
1095 	pos = 0;
1096 	addr = buf;
1097 	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
1098 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1099 			 node_len - UBIFS_LPT_CRC_BYTES);
1100 	if (crc != calc_crc)
1101 		return 0;
1102 	return 1;
1103 }
1104 
1105 /**
1106  * lpt_gc_lnum - garbage collect a LPT LEB.
1107  * @c: UBIFS file-system description object
1108  * @lnum: LEB number to garbage collect
1109  *
1110  * LPT garbage collection is used only for the "big" LPT model
1111  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1112  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1113  * next commit, after which the LEB is free to be reused.
1114  *
1115  * This function returns %0 on success and a negative error code on failure.
1116  */
1117 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1118 {
1119 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1120 	void *buf = c->lpt_buf;
1121 
1122 	dbg_lp("LEB %d", lnum);
1123 
1124 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1125 	if (err)
1126 		return err;
1127 
1128 	while (1) {
1129 		if (!is_a_node(c, buf, len)) {
1130 			int pad_len;
1131 
1132 			pad_len = get_pad_len(c, buf, len);
1133 			if (pad_len) {
1134 				buf += pad_len;
1135 				len -= pad_len;
1136 				continue;
1137 			}
1138 			return 0;
1139 		}
1140 		node_type = get_lpt_node_type(c, buf, &node_num);
1141 		node_len = get_lpt_node_len(c, node_type);
1142 		offs = c->leb_size - len;
1143 		ubifs_assert(c, node_len != 0);
1144 		mutex_lock(&c->lp_mutex);
1145 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1146 		mutex_unlock(&c->lp_mutex);
1147 		if (err)
1148 			return err;
1149 		buf += node_len;
1150 		len -= node_len;
1151 	}
1152 	return 0;
1153 }
1154 
1155 /**
1156  * lpt_gc - LPT garbage collection.
1157  * @c: UBIFS file-system description object
1158  *
1159  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1160  * Returns %0 on success and a negative error code on failure.
1161  */
1162 static int lpt_gc(struct ubifs_info *c)
1163 {
1164 	int i, lnum = -1, dirty = 0;
1165 
1166 	mutex_lock(&c->lp_mutex);
1167 	for (i = 0; i < c->lpt_lebs; i++) {
1168 		ubifs_assert(c, !c->ltab[i].tgc);
1169 		if (i + c->lpt_first == c->nhead_lnum ||
1170 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1171 			continue;
1172 		if (c->ltab[i].dirty > dirty) {
1173 			dirty = c->ltab[i].dirty;
1174 			lnum = i + c->lpt_first;
1175 		}
1176 	}
1177 	mutex_unlock(&c->lp_mutex);
1178 	if (lnum == -1)
1179 		return -ENOSPC;
1180 	return lpt_gc_lnum(c, lnum);
1181 }
1182 
1183 /**
1184  * ubifs_lpt_start_commit - UBIFS commit starts.
1185  * @c: the UBIFS file-system description object
1186  *
1187  * This function has to be called when UBIFS starts the commit operation.
1188  * This function "freezes" all currently dirty LEB properties and does not
1189  * change them anymore. Further changes are saved and tracked separately
1190  * because they are not part of this commit. This function returns zero in case
1191  * of success and a negative error code in case of failure.
1192  */
1193 int ubifs_lpt_start_commit(struct ubifs_info *c)
1194 {
1195 	int err, cnt;
1196 
1197 	dbg_lp("");
1198 
1199 	mutex_lock(&c->lp_mutex);
1200 	err = dbg_chk_lpt_free_spc(c);
1201 	if (err)
1202 		goto out;
1203 	err = dbg_check_ltab(c);
1204 	if (err)
1205 		goto out;
1206 
1207 	if (c->check_lpt_free) {
1208 		/*
1209 		 * We ensure there is enough free space in
1210 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1211 		 * information is lost when we unmount, so we also need
1212 		 * to check free space once after mounting also.
1213 		 */
1214 		c->check_lpt_free = 0;
1215 		while (need_write_all(c)) {
1216 			mutex_unlock(&c->lp_mutex);
1217 			err = lpt_gc(c);
1218 			if (err)
1219 				return err;
1220 			mutex_lock(&c->lp_mutex);
1221 		}
1222 	}
1223 
1224 	lpt_tgc_start(c);
1225 
1226 	if (!c->dirty_pn_cnt) {
1227 		dbg_cmt("no cnodes to commit");
1228 		err = 0;
1229 		goto out;
1230 	}
1231 
1232 	if (!c->big_lpt && need_write_all(c)) {
1233 		/* If needed, write everything */
1234 		err = make_tree_dirty(c);
1235 		if (err)
1236 			goto out;
1237 		lpt_tgc_start(c);
1238 	}
1239 
1240 	if (c->big_lpt)
1241 		populate_lsave(c);
1242 
1243 	cnt = get_cnodes_to_commit(c);
1244 	ubifs_assert(c, cnt != 0);
1245 
1246 	err = layout_cnodes(c);
1247 	if (err)
1248 		goto out;
1249 
1250 	err = ubifs_lpt_calc_hash(c, c->mst_node->hash_lpt);
1251 	if (err)
1252 		goto out;
1253 
1254 	/* Copy the LPT's own lprops for end commit to write */
1255 	memcpy(c->ltab_cmt, c->ltab,
1256 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1257 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1258 
1259 out:
1260 	mutex_unlock(&c->lp_mutex);
1261 	return err;
1262 }
1263 
1264 /**
1265  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1266  * @c: UBIFS file-system description object
1267  */
1268 static void free_obsolete_cnodes(struct ubifs_info *c)
1269 {
1270 	struct ubifs_cnode *cnode, *cnext;
1271 
1272 	cnext = c->lpt_cnext;
1273 	if (!cnext)
1274 		return;
1275 	do {
1276 		cnode = cnext;
1277 		cnext = cnode->cnext;
1278 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1279 			kfree(cnode);
1280 		else
1281 			cnode->cnext = NULL;
1282 	} while (cnext != c->lpt_cnext);
1283 	c->lpt_cnext = NULL;
1284 }
1285 
1286 /**
1287  * ubifs_lpt_end_commit - finish the commit operation.
1288  * @c: the UBIFS file-system description object
1289  *
1290  * This function has to be called when the commit operation finishes. It
1291  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1292  * the media. Returns zero in case of success and a negative error code in case
1293  * of failure.
1294  */
1295 int ubifs_lpt_end_commit(struct ubifs_info *c)
1296 {
1297 	int err;
1298 
1299 	dbg_lp("");
1300 
1301 	if (!c->lpt_cnext)
1302 		return 0;
1303 
1304 	err = write_cnodes(c);
1305 	if (err)
1306 		return err;
1307 
1308 	mutex_lock(&c->lp_mutex);
1309 	free_obsolete_cnodes(c);
1310 	mutex_unlock(&c->lp_mutex);
1311 
1312 	return 0;
1313 }
1314 
1315 /**
1316  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1317  * @c: UBIFS file-system description object
1318  *
1319  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1320  * commit for the "big" LPT model.
1321  */
1322 int ubifs_lpt_post_commit(struct ubifs_info *c)
1323 {
1324 	int err;
1325 
1326 	mutex_lock(&c->lp_mutex);
1327 	err = lpt_tgc_end(c);
1328 	if (err)
1329 		goto out;
1330 	if (c->big_lpt)
1331 		while (need_write_all(c)) {
1332 			mutex_unlock(&c->lp_mutex);
1333 			err = lpt_gc(c);
1334 			if (err)
1335 				return err;
1336 			mutex_lock(&c->lp_mutex);
1337 		}
1338 out:
1339 	mutex_unlock(&c->lp_mutex);
1340 	return err;
1341 }
1342 
1343 /**
1344  * first_nnode - find the first nnode in memory.
1345  * @c: UBIFS file-system description object
1346  * @hght: height of tree where nnode found is returned here
1347  *
1348  * This function returns a pointer to the nnode found or %NULL if no nnode is
1349  * found. This function is a helper to 'ubifs_lpt_free()'.
1350  */
1351 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1352 {
1353 	struct ubifs_nnode *nnode;
1354 	int h, i, found;
1355 
1356 	nnode = c->nroot;
1357 	*hght = 0;
1358 	if (!nnode)
1359 		return NULL;
1360 	for (h = 1; h < c->lpt_hght; h++) {
1361 		found = 0;
1362 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1363 			if (nnode->nbranch[i].nnode) {
1364 				found = 1;
1365 				nnode = nnode->nbranch[i].nnode;
1366 				*hght = h;
1367 				break;
1368 			}
1369 		}
1370 		if (!found)
1371 			break;
1372 	}
1373 	return nnode;
1374 }
1375 
1376 /**
1377  * next_nnode - find the next nnode in memory.
1378  * @c: UBIFS file-system description object
1379  * @nnode: nnode from which to start.
1380  * @hght: height of tree where nnode is, is passed and returned here
1381  *
1382  * This function returns a pointer to the nnode found or %NULL if no nnode is
1383  * found. This function is a helper to 'ubifs_lpt_free()'.
1384  */
1385 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1386 				      struct ubifs_nnode *nnode, int *hght)
1387 {
1388 	struct ubifs_nnode *parent;
1389 	int iip, h, i, found;
1390 
1391 	parent = nnode->parent;
1392 	if (!parent)
1393 		return NULL;
1394 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1395 		*hght -= 1;
1396 		return parent;
1397 	}
1398 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1399 		nnode = parent->nbranch[iip].nnode;
1400 		if (nnode)
1401 			break;
1402 	}
1403 	if (!nnode) {
1404 		*hght -= 1;
1405 		return parent;
1406 	}
1407 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1408 		found = 0;
1409 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1410 			if (nnode->nbranch[i].nnode) {
1411 				found = 1;
1412 				nnode = nnode->nbranch[i].nnode;
1413 				*hght = h;
1414 				break;
1415 			}
1416 		}
1417 		if (!found)
1418 			break;
1419 	}
1420 	return nnode;
1421 }
1422 
1423 /**
1424  * ubifs_lpt_free - free resources owned by the LPT.
1425  * @c: UBIFS file-system description object
1426  * @wr_only: free only resources used for writing
1427  */
1428 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1429 {
1430 	struct ubifs_nnode *nnode;
1431 	int i, hght;
1432 
1433 	/* Free write-only things first */
1434 
1435 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1436 
1437 	vfree(c->ltab_cmt);
1438 	c->ltab_cmt = NULL;
1439 	vfree(c->lpt_buf);
1440 	c->lpt_buf = NULL;
1441 	kfree(c->lsave);
1442 	c->lsave = NULL;
1443 
1444 	if (wr_only)
1445 		return;
1446 
1447 	/* Now free the rest */
1448 
1449 	nnode = first_nnode(c, &hght);
1450 	while (nnode) {
1451 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1452 			kfree(nnode->nbranch[i].nnode);
1453 		nnode = next_nnode(c, nnode, &hght);
1454 	}
1455 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1456 		kfree(c->lpt_heap[i].arr);
1457 	kfree(c->dirty_idx.arr);
1458 	kfree(c->nroot);
1459 	vfree(c->ltab);
1460 	kfree(c->lpt_nod_buf);
1461 }
1462 
1463 /*
1464  * Everything below is related to debugging.
1465  */
1466 
1467 /**
1468  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1469  * @buf: buffer
1470  * @len: buffer length
1471  */
1472 static int dbg_is_all_ff(uint8_t *buf, int len)
1473 {
1474 	int i;
1475 
1476 	for (i = 0; i < len; i++)
1477 		if (buf[i] != 0xff)
1478 			return 0;
1479 	return 1;
1480 }
1481 
1482 /**
1483  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1484  * @c: the UBIFS file-system description object
1485  * @lnum: LEB number where nnode was written
1486  * @offs: offset where nnode was written
1487  */
1488 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1489 {
1490 	struct ubifs_nnode *nnode;
1491 	int hght;
1492 
1493 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1494 	nnode = first_nnode(c, &hght);
1495 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1496 		struct ubifs_nbranch *branch;
1497 
1498 		cond_resched();
1499 		if (nnode->parent) {
1500 			branch = &nnode->parent->nbranch[nnode->iip];
1501 			if (branch->lnum != lnum || branch->offs != offs)
1502 				continue;
1503 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1504 				return 1;
1505 			return 0;
1506 		} else {
1507 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1508 				continue;
1509 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1510 				return 1;
1511 			return 0;
1512 		}
1513 	}
1514 	return 1;
1515 }
1516 
1517 /**
1518  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1519  * @c: the UBIFS file-system description object
1520  * @lnum: LEB number where pnode was written
1521  * @offs: offset where pnode was written
1522  */
1523 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1524 {
1525 	int i, cnt;
1526 
1527 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1528 	for (i = 0; i < cnt; i++) {
1529 		struct ubifs_pnode *pnode;
1530 		struct ubifs_nbranch *branch;
1531 
1532 		cond_resched();
1533 		pnode = ubifs_pnode_lookup(c, i);
1534 		if (IS_ERR(pnode))
1535 			return PTR_ERR(pnode);
1536 		branch = &pnode->parent->nbranch[pnode->iip];
1537 		if (branch->lnum != lnum || branch->offs != offs)
1538 			continue;
1539 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1540 			return 1;
1541 		return 0;
1542 	}
1543 	return 1;
1544 }
1545 
1546 /**
1547  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1548  * @c: the UBIFS file-system description object
1549  * @lnum: LEB number where ltab node was written
1550  * @offs: offset where ltab node was written
1551  */
1552 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1553 {
1554 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1555 		return 1;
1556 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1557 }
1558 
1559 /**
1560  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1561  * @c: the UBIFS file-system description object
1562  * @lnum: LEB number where lsave node was written
1563  * @offs: offset where lsave node was written
1564  */
1565 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1566 {
1567 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1568 		return 1;
1569 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1570 }
1571 
1572 /**
1573  * dbg_is_node_dirty - determine if a node is dirty.
1574  * @c: the UBIFS file-system description object
1575  * @node_type: node type
1576  * @lnum: LEB number where node was written
1577  * @offs: offset where node was written
1578  */
1579 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1580 			     int offs)
1581 {
1582 	switch (node_type) {
1583 	case UBIFS_LPT_NNODE:
1584 		return dbg_is_nnode_dirty(c, lnum, offs);
1585 	case UBIFS_LPT_PNODE:
1586 		return dbg_is_pnode_dirty(c, lnum, offs);
1587 	case UBIFS_LPT_LTAB:
1588 		return dbg_is_ltab_dirty(c, lnum, offs);
1589 	case UBIFS_LPT_LSAVE:
1590 		return dbg_is_lsave_dirty(c, lnum, offs);
1591 	}
1592 	return 1;
1593 }
1594 
1595 /**
1596  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1597  * @c: the UBIFS file-system description object
1598  * @lnum: LEB number where node was written
1599  *
1600  * This function returns %0 on success and a negative error code on failure.
1601  */
1602 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1603 {
1604 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1605 	int ret;
1606 	void *buf, *p;
1607 
1608 	if (!dbg_is_chk_lprops(c))
1609 		return 0;
1610 
1611 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1612 	if (!buf) {
1613 		ubifs_err(c, "cannot allocate memory for ltab checking");
1614 		return 0;
1615 	}
1616 
1617 	dbg_lp("LEB %d", lnum);
1618 
1619 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1620 	if (err)
1621 		goto out;
1622 
1623 	while (1) {
1624 		if (!is_a_node(c, p, len)) {
1625 			int i, pad_len;
1626 
1627 			pad_len = get_pad_len(c, p, len);
1628 			if (pad_len) {
1629 				p += pad_len;
1630 				len -= pad_len;
1631 				dirty += pad_len;
1632 				continue;
1633 			}
1634 			if (!dbg_is_all_ff(p, len)) {
1635 				ubifs_err(c, "invalid empty space in LEB %d at %d",
1636 					  lnum, c->leb_size - len);
1637 				err = -EINVAL;
1638 			}
1639 			i = lnum - c->lpt_first;
1640 			if (len != c->ltab[i].free) {
1641 				ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1642 					  lnum, len, c->ltab[i].free);
1643 				err = -EINVAL;
1644 			}
1645 			if (dirty != c->ltab[i].dirty) {
1646 				ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1647 					  lnum, dirty, c->ltab[i].dirty);
1648 				err = -EINVAL;
1649 			}
1650 			goto out;
1651 		}
1652 		node_type = get_lpt_node_type(c, p, &node_num);
1653 		node_len = get_lpt_node_len(c, node_type);
1654 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1655 		if (ret == 1)
1656 			dirty += node_len;
1657 		p += node_len;
1658 		len -= node_len;
1659 	}
1660 
1661 	err = 0;
1662 out:
1663 	vfree(buf);
1664 	return err;
1665 }
1666 
1667 /**
1668  * dbg_check_ltab - check the free and dirty space in the ltab.
1669  * @c: the UBIFS file-system description object
1670  *
1671  * This function returns %0 on success and a negative error code on failure.
1672  */
1673 int dbg_check_ltab(struct ubifs_info *c)
1674 {
1675 	int lnum, err, i, cnt;
1676 
1677 	if (!dbg_is_chk_lprops(c))
1678 		return 0;
1679 
1680 	/* Bring the entire tree into memory */
1681 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1682 	for (i = 0; i < cnt; i++) {
1683 		struct ubifs_pnode *pnode;
1684 
1685 		pnode = ubifs_pnode_lookup(c, i);
1686 		if (IS_ERR(pnode))
1687 			return PTR_ERR(pnode);
1688 		cond_resched();
1689 	}
1690 
1691 	/* Check nodes */
1692 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1693 	if (err)
1694 		return err;
1695 
1696 	/* Check each LEB */
1697 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1698 		err = dbg_check_ltab_lnum(c, lnum);
1699 		if (err) {
1700 			ubifs_err(c, "failed at LEB %d", lnum);
1701 			return err;
1702 		}
1703 	}
1704 
1705 	dbg_lp("succeeded");
1706 	return 0;
1707 }
1708 
1709 /**
1710  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1711  * @c: the UBIFS file-system description object
1712  *
1713  * This function returns %0 on success and a negative error code on failure.
1714  */
1715 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1716 {
1717 	long long free = 0;
1718 	int i;
1719 
1720 	if (!dbg_is_chk_lprops(c))
1721 		return 0;
1722 
1723 	for (i = 0; i < c->lpt_lebs; i++) {
1724 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1725 			continue;
1726 		if (i + c->lpt_first == c->nhead_lnum)
1727 			free += c->leb_size - c->nhead_offs;
1728 		else if (c->ltab[i].free == c->leb_size)
1729 			free += c->leb_size;
1730 	}
1731 	if (free < c->lpt_sz) {
1732 		ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1733 			  free, c->lpt_sz);
1734 		ubifs_dump_lpt_info(c);
1735 		ubifs_dump_lpt_lebs(c);
1736 		dump_stack();
1737 		return -EINVAL;
1738 	}
1739 	return 0;
1740 }
1741 
1742 /**
1743  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1744  * @c: the UBIFS file-system description object
1745  * @action: what to do
1746  * @len: length written
1747  *
1748  * This function returns %0 on success and a negative error code on failure.
1749  * The @action argument may be one of:
1750  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1751  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1752  *   o %2 - switched to a different LEB and wasted @len bytes;
1753  *   o %3 - check that we've written the right number of bytes.
1754  *   o %4 - wasted @len bytes;
1755  */
1756 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1757 {
1758 	struct ubifs_debug_info *d = c->dbg;
1759 	long long chk_lpt_sz, lpt_sz;
1760 	int err = 0;
1761 
1762 	if (!dbg_is_chk_lprops(c))
1763 		return 0;
1764 
1765 	switch (action) {
1766 	case 0:
1767 		d->chk_lpt_sz = 0;
1768 		d->chk_lpt_sz2 = 0;
1769 		d->chk_lpt_lebs = 0;
1770 		d->chk_lpt_wastage = 0;
1771 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1772 			ubifs_err(c, "dirty pnodes %d exceed max %d",
1773 				  c->dirty_pn_cnt, c->pnode_cnt);
1774 			err = -EINVAL;
1775 		}
1776 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1777 			ubifs_err(c, "dirty nnodes %d exceed max %d",
1778 				  c->dirty_nn_cnt, c->nnode_cnt);
1779 			err = -EINVAL;
1780 		}
1781 		return err;
1782 	case 1:
1783 		d->chk_lpt_sz += len;
1784 		return 0;
1785 	case 2:
1786 		d->chk_lpt_sz += len;
1787 		d->chk_lpt_wastage += len;
1788 		d->chk_lpt_lebs += 1;
1789 		return 0;
1790 	case 3:
1791 		chk_lpt_sz = c->leb_size;
1792 		chk_lpt_sz *= d->chk_lpt_lebs;
1793 		chk_lpt_sz += len - c->nhead_offs;
1794 		if (d->chk_lpt_sz != chk_lpt_sz) {
1795 			ubifs_err(c, "LPT wrote %lld but space used was %lld",
1796 				  d->chk_lpt_sz, chk_lpt_sz);
1797 			err = -EINVAL;
1798 		}
1799 		if (d->chk_lpt_sz > c->lpt_sz) {
1800 			ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1801 				  d->chk_lpt_sz, c->lpt_sz);
1802 			err = -EINVAL;
1803 		}
1804 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1805 			ubifs_err(c, "LPT layout size %lld but wrote %lld",
1806 				  d->chk_lpt_sz, d->chk_lpt_sz2);
1807 			err = -EINVAL;
1808 		}
1809 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1810 			ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1811 				  d->new_nhead_offs, len);
1812 			err = -EINVAL;
1813 		}
1814 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1815 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1816 		lpt_sz += c->ltab_sz;
1817 		if (c->big_lpt)
1818 			lpt_sz += c->lsave_sz;
1819 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1820 			ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1821 				  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1822 			err = -EINVAL;
1823 		}
1824 		if (err) {
1825 			ubifs_dump_lpt_info(c);
1826 			ubifs_dump_lpt_lebs(c);
1827 			dump_stack();
1828 		}
1829 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1830 		d->chk_lpt_sz = 0;
1831 		d->chk_lpt_wastage = 0;
1832 		d->chk_lpt_lebs = 0;
1833 		d->new_nhead_offs = len;
1834 		return err;
1835 	case 4:
1836 		d->chk_lpt_sz += len;
1837 		d->chk_lpt_wastage += len;
1838 		return 0;
1839 	default:
1840 		return -EINVAL;
1841 	}
1842 }
1843 
1844 /**
1845  * dump_lpt_leb - dump an LPT LEB.
1846  * @c: UBIFS file-system description object
1847  * @lnum: LEB number to dump
1848  *
1849  * This function dumps an LEB from LPT area. Nodes in this area are very
1850  * different to nodes in the main area (e.g., they do not have common headers,
1851  * they do not have 8-byte alignments, etc), so we have a separate function to
1852  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1853  */
1854 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1855 {
1856 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1857 	void *buf, *p;
1858 
1859 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1860 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1861 	if (!buf) {
1862 		ubifs_err(c, "cannot allocate memory to dump LPT");
1863 		return;
1864 	}
1865 
1866 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1867 	if (err)
1868 		goto out;
1869 
1870 	while (1) {
1871 		offs = c->leb_size - len;
1872 		if (!is_a_node(c, p, len)) {
1873 			int pad_len;
1874 
1875 			pad_len = get_pad_len(c, p, len);
1876 			if (pad_len) {
1877 				pr_err("LEB %d:%d, pad %d bytes\n",
1878 				       lnum, offs, pad_len);
1879 				p += pad_len;
1880 				len -= pad_len;
1881 				continue;
1882 			}
1883 			if (len)
1884 				pr_err("LEB %d:%d, free %d bytes\n",
1885 				       lnum, offs, len);
1886 			break;
1887 		}
1888 
1889 		node_type = get_lpt_node_type(c, p, &node_num);
1890 		switch (node_type) {
1891 		case UBIFS_LPT_PNODE:
1892 		{
1893 			node_len = c->pnode_sz;
1894 			if (c->big_lpt)
1895 				pr_err("LEB %d:%d, pnode num %d\n",
1896 				       lnum, offs, node_num);
1897 			else
1898 				pr_err("LEB %d:%d, pnode\n", lnum, offs);
1899 			break;
1900 		}
1901 		case UBIFS_LPT_NNODE:
1902 		{
1903 			int i;
1904 			struct ubifs_nnode nnode;
1905 
1906 			node_len = c->nnode_sz;
1907 			if (c->big_lpt)
1908 				pr_err("LEB %d:%d, nnode num %d, ",
1909 				       lnum, offs, node_num);
1910 			else
1911 				pr_err("LEB %d:%d, nnode, ",
1912 				       lnum, offs);
1913 			err = ubifs_unpack_nnode(c, p, &nnode);
1914 			if (err) {
1915 				pr_err("failed to unpack_node, error %d\n",
1916 				       err);
1917 				break;
1918 			}
1919 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1920 				pr_cont("%d:%d", nnode.nbranch[i].lnum,
1921 				       nnode.nbranch[i].offs);
1922 				if (i != UBIFS_LPT_FANOUT - 1)
1923 					pr_cont(", ");
1924 			}
1925 			pr_cont("\n");
1926 			break;
1927 		}
1928 		case UBIFS_LPT_LTAB:
1929 			node_len = c->ltab_sz;
1930 			pr_err("LEB %d:%d, ltab\n", lnum, offs);
1931 			break;
1932 		case UBIFS_LPT_LSAVE:
1933 			node_len = c->lsave_sz;
1934 			pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1935 			break;
1936 		default:
1937 			ubifs_err(c, "LPT node type %d not recognized", node_type);
1938 			goto out;
1939 		}
1940 
1941 		p += node_len;
1942 		len -= node_len;
1943 	}
1944 
1945 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1946 out:
1947 	vfree(buf);
1948 	return;
1949 }
1950 
1951 /**
1952  * ubifs_dump_lpt_lebs - dump LPT lebs.
1953  * @c: UBIFS file-system description object
1954  *
1955  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1956  * locked.
1957  */
1958 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1959 {
1960 	int i;
1961 
1962 	pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1963 	for (i = 0; i < c->lpt_lebs; i++)
1964 		dump_lpt_leb(c, i + c->lpt_first);
1965 	pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1966 }
1967 
1968 /**
1969  * dbg_populate_lsave - debugging version of 'populate_lsave()'
1970  * @c: UBIFS file-system description object
1971  *
1972  * This is a debugging version for 'populate_lsave()' which populates lsave
1973  * with random LEBs instead of useful LEBs, which is good for test coverage.
1974  * Returns zero if lsave has not been populated (this debugging feature is
1975  * disabled) an non-zero if lsave has been populated.
1976  */
1977 static int dbg_populate_lsave(struct ubifs_info *c)
1978 {
1979 	struct ubifs_lprops *lprops;
1980 	struct ubifs_lpt_heap *heap;
1981 	int i;
1982 
1983 	if (!dbg_is_chk_gen(c))
1984 		return 0;
1985 	if (prandom_u32() & 3)
1986 		return 0;
1987 
1988 	for (i = 0; i < c->lsave_cnt; i++)
1989 		c->lsave[i] = c->main_first;
1990 
1991 	list_for_each_entry(lprops, &c->empty_list, list)
1992 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1993 	list_for_each_entry(lprops, &c->freeable_list, list)
1994 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1995 	list_for_each_entry(lprops, &c->frdi_idx_list, list)
1996 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
1997 
1998 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
1999 	for (i = 0; i < heap->cnt; i++)
2000 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2001 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2002 	for (i = 0; i < heap->cnt; i++)
2003 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2004 	heap = &c->lpt_heap[LPROPS_FREE - 1];
2005 	for (i = 0; i < heap->cnt; i++)
2006 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2007 
2008 	return 1;
2009 }
2010