xref: /openbmc/linux/fs/ubifs/lpt.c (revision da2ef666)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
50 
51 /**
52  * do_calc_lpt_geom - calculate sizes for the LPT area.
53  * @c: the UBIFS file-system description object
54  *
55  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56  * properties of the flash and whether LPT is "big" (c->big_lpt).
57  */
58 static void do_calc_lpt_geom(struct ubifs_info *c)
59 {
60 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 	long long sz, tot_wastage;
62 
63 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65 
66 	c->lpt_hght = 1;
67 	n = UBIFS_LPT_FANOUT;
68 	while (n < max_pnode_cnt) {
69 		c->lpt_hght += 1;
70 		n <<= UBIFS_LPT_FANOUT_SHIFT;
71 	}
72 
73 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74 
75 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 	c->nnode_cnt = n;
77 	for (i = 1; i < c->lpt_hght; i++) {
78 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 		c->nnode_cnt += n;
80 	}
81 
82 	c->space_bits = fls(c->leb_size) - 3;
83 	c->lpt_lnum_bits = fls(c->lpt_lebs);
84 	c->lpt_offs_bits = fls(c->leb_size - 1);
85 	c->lpt_spc_bits = fls(c->leb_size);
86 
87 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 	c->pcnt_bits = fls(n - 1);
89 
90 	c->lnum_bits = fls(c->max_leb_cnt - 1);
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 	c->pnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       (c->big_lpt ? c->pcnt_bits : 0) +
99 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 	c->nnode_sz = (bits + 7) / 8;
101 
102 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 	       c->lpt_lebs * c->lpt_spc_bits * 2;
104 	c->ltab_sz = (bits + 7) / 8;
105 
106 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 	       c->lnum_bits * c->lsave_cnt;
108 	c->lsave_sz = (bits + 7) / 8;
109 
110 	/* Calculate the minimum LPT size */
111 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 	c->lpt_sz += c->ltab_sz;
114 	if (c->big_lpt)
115 		c->lpt_sz += c->lsave_sz;
116 
117 	/* Add wastage */
118 	sz = c->lpt_sz;
119 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 	sz += per_leb_wastage;
121 	tot_wastage = per_leb_wastage;
122 	while (sz > c->leb_size) {
123 		sz += per_leb_wastage;
124 		sz -= c->leb_size;
125 		tot_wastage += per_leb_wastage;
126 	}
127 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 	c->lpt_sz += tot_wastage;
129 }
130 
131 /**
132  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133  * @c: the UBIFS file-system description object
134  *
135  * This function returns %0 on success and a negative error code on failure.
136  */
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
138 {
139 	int lebs_needed;
140 	long long sz;
141 
142 	do_calc_lpt_geom(c);
143 
144 	/* Verify that lpt_lebs is big enough */
145 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err(c, "too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err(c, "LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 	return 0;
160 }
161 
162 /**
163  * calc_dflt_lpt_geom - calculate default LPT geometry.
164  * @c: the UBIFS file-system description object
165  * @main_lebs: number of main area LEBs is passed and returned here
166  * @big_lpt: whether the LPT area is "big" is returned here
167  *
168  * The size of the LPT area depends on parameters that themselves are dependent
169  * on the size of the LPT area. This function, successively recalculates the LPT
170  * area geometry until the parameters and resultant geometry are consistent.
171  *
172  * This function returns %0 on success and a negative error code on failure.
173  */
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 			      int *big_lpt)
176 {
177 	int i, lebs_needed;
178 	long long sz;
179 
180 	/* Start by assuming the minimum number of LPT LEBs */
181 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 	c->main_lebs = *main_lebs - c->lpt_lebs;
183 	if (c->main_lebs <= 0)
184 		return -EINVAL;
185 
186 	/* And assume we will use the small LPT model */
187 	c->big_lpt = 0;
188 
189 	/*
190 	 * Calculate the geometry based on assumptions above and then see if it
191 	 * makes sense
192 	 */
193 	do_calc_lpt_geom(c);
194 
195 	/* Small LPT model must have lpt_sz < leb_size */
196 	if (c->lpt_sz > c->leb_size) {
197 		/* Nope, so try again using big LPT model */
198 		c->big_lpt = 1;
199 		do_calc_lpt_geom(c);
200 	}
201 
202 	/* Now check there are enough LPT LEBs */
203 	for (i = 0; i < 64 ; i++) {
204 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 		if (lebs_needed > c->lpt_lebs) {
207 			/* Not enough LPT LEBs so try again with more */
208 			c->lpt_lebs = lebs_needed;
209 			c->main_lebs = *main_lebs - c->lpt_lebs;
210 			if (c->main_lebs <= 0)
211 				return -EINVAL;
212 			do_calc_lpt_geom(c);
213 			continue;
214 		}
215 		if (c->ltab_sz > c->leb_size) {
216 			ubifs_err(c, "LPT ltab too big");
217 			return -EINVAL;
218 		}
219 		*main_lebs = c->main_lebs;
220 		*big_lpt = c->big_lpt;
221 		return 0;
222 	}
223 	return -EINVAL;
224 }
225 
226 /**
227  * pack_bits - pack bit fields end-to-end.
228  * @c: UBIFS file-system description object
229  * @addr: address at which to pack (passed and next address returned)
230  * @pos: bit position at which to pack (passed and next position returned)
231  * @val: value to pack
232  * @nrbits: number of bits of value to pack (1-32)
233  */
234 static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits)
235 {
236 	uint8_t *p = *addr;
237 	int b = *pos;
238 
239 	ubifs_assert(c, nrbits > 0);
240 	ubifs_assert(c, nrbits <= 32);
241 	ubifs_assert(c, *pos >= 0);
242 	ubifs_assert(c, *pos < 8);
243 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32);
244 	if (b) {
245 		*p |= ((uint8_t)val) << b;
246 		nrbits += b;
247 		if (nrbits > 8) {
248 			*++p = (uint8_t)(val >>= (8 - b));
249 			if (nrbits > 16) {
250 				*++p = (uint8_t)(val >>= 8);
251 				if (nrbits > 24) {
252 					*++p = (uint8_t)(val >>= 8);
253 					if (nrbits > 32)
254 						*++p = (uint8_t)(val >>= 8);
255 				}
256 			}
257 		}
258 	} else {
259 		*p = (uint8_t)val;
260 		if (nrbits > 8) {
261 			*++p = (uint8_t)(val >>= 8);
262 			if (nrbits > 16) {
263 				*++p = (uint8_t)(val >>= 8);
264 				if (nrbits > 24)
265 					*++p = (uint8_t)(val >>= 8);
266 			}
267 		}
268 	}
269 	b = nrbits & 7;
270 	if (b == 0)
271 		p++;
272 	*addr = p;
273 	*pos = b;
274 }
275 
276 /**
277  * ubifs_unpack_bits - unpack bit fields.
278  * @c: UBIFS file-system description object
279  * @addr: address at which to unpack (passed and next address returned)
280  * @pos: bit position at which to unpack (passed and next position returned)
281  * @nrbits: number of bits of value to unpack (1-32)
282  *
283  * This functions returns the value unpacked.
284  */
285 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits)
286 {
287 	const int k = 32 - nrbits;
288 	uint8_t *p = *addr;
289 	int b = *pos;
290 	uint32_t uninitialized_var(val);
291 	const int bytes = (nrbits + b + 7) >> 3;
292 
293 	ubifs_assert(c, nrbits > 0);
294 	ubifs_assert(c, nrbits <= 32);
295 	ubifs_assert(c, *pos >= 0);
296 	ubifs_assert(c, *pos < 8);
297 	if (b) {
298 		switch (bytes) {
299 		case 2:
300 			val = p[1];
301 			break;
302 		case 3:
303 			val = p[1] | ((uint32_t)p[2] << 8);
304 			break;
305 		case 4:
306 			val = p[1] | ((uint32_t)p[2] << 8) |
307 				     ((uint32_t)p[3] << 16);
308 			break;
309 		case 5:
310 			val = p[1] | ((uint32_t)p[2] << 8) |
311 				     ((uint32_t)p[3] << 16) |
312 				     ((uint32_t)p[4] << 24);
313 		}
314 		val <<= (8 - b);
315 		val |= *p >> b;
316 		nrbits += b;
317 	} else {
318 		switch (bytes) {
319 		case 1:
320 			val = p[0];
321 			break;
322 		case 2:
323 			val = p[0] | ((uint32_t)p[1] << 8);
324 			break;
325 		case 3:
326 			val = p[0] | ((uint32_t)p[1] << 8) |
327 				     ((uint32_t)p[2] << 16);
328 			break;
329 		case 4:
330 			val = p[0] | ((uint32_t)p[1] << 8) |
331 				     ((uint32_t)p[2] << 16) |
332 				     ((uint32_t)p[3] << 24);
333 			break;
334 		}
335 	}
336 	val <<= k;
337 	val >>= k;
338 	b = nrbits & 7;
339 	p += nrbits >> 3;
340 	*addr = p;
341 	*pos = b;
342 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32);
343 	return val;
344 }
345 
346 /**
347  * ubifs_pack_pnode - pack all the bit fields of a pnode.
348  * @c: UBIFS file-system description object
349  * @buf: buffer into which to pack
350  * @pnode: pnode to pack
351  */
352 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
353 		      struct ubifs_pnode *pnode)
354 {
355 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
356 	int i, pos = 0;
357 	uint16_t crc;
358 
359 	pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
360 	if (c->big_lpt)
361 		pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits);
362 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
363 		pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3,
364 			  c->space_bits);
365 		pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3,
366 			  c->space_bits);
367 		if (pnode->lprops[i].flags & LPROPS_INDEX)
368 			pack_bits(c, &addr, &pos, 1, 1);
369 		else
370 			pack_bits(c, &addr, &pos, 0, 1);
371 	}
372 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
373 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
374 	addr = buf;
375 	pos = 0;
376 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
377 }
378 
379 /**
380  * ubifs_pack_nnode - pack all the bit fields of a nnode.
381  * @c: UBIFS file-system description object
382  * @buf: buffer into which to pack
383  * @nnode: nnode to pack
384  */
385 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
386 		      struct ubifs_nnode *nnode)
387 {
388 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
389 	int i, pos = 0;
390 	uint16_t crc;
391 
392 	pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
393 	if (c->big_lpt)
394 		pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits);
395 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
396 		int lnum = nnode->nbranch[i].lnum;
397 
398 		if (lnum == 0)
399 			lnum = c->lpt_last + 1;
400 		pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
401 		pack_bits(c, &addr, &pos, nnode->nbranch[i].offs,
402 			  c->lpt_offs_bits);
403 	}
404 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
405 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
406 	addr = buf;
407 	pos = 0;
408 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
409 }
410 
411 /**
412  * ubifs_pack_ltab - pack the LPT's own lprops table.
413  * @c: UBIFS file-system description object
414  * @buf: buffer into which to pack
415  * @ltab: LPT's own lprops table to pack
416  */
417 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
418 		     struct ubifs_lpt_lprops *ltab)
419 {
420 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
421 	int i, pos = 0;
422 	uint16_t crc;
423 
424 	pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
425 	for (i = 0; i < c->lpt_lebs; i++) {
426 		pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits);
427 		pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
428 	}
429 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
430 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
431 	addr = buf;
432 	pos = 0;
433 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
434 }
435 
436 /**
437  * ubifs_pack_lsave - pack the LPT's save table.
438  * @c: UBIFS file-system description object
439  * @buf: buffer into which to pack
440  * @lsave: LPT's save table to pack
441  */
442 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
443 {
444 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
445 	int i, pos = 0;
446 	uint16_t crc;
447 
448 	pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
449 	for (i = 0; i < c->lsave_cnt; i++)
450 		pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits);
451 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
452 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
453 	addr = buf;
454 	pos = 0;
455 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
456 }
457 
458 /**
459  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
460  * @c: UBIFS file-system description object
461  * @lnum: LEB number to which to add dirty space
462  * @dirty: amount of dirty space to add
463  */
464 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
465 {
466 	if (!dirty || !lnum)
467 		return;
468 	dbg_lp("LEB %d add %d to %d",
469 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
470 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
471 	c->ltab[lnum - c->lpt_first].dirty += dirty;
472 }
473 
474 /**
475  * set_ltab - set LPT LEB properties.
476  * @c: UBIFS file-system description object
477  * @lnum: LEB number
478  * @free: amount of free space
479  * @dirty: amount of dirty space
480  */
481 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
482 {
483 	dbg_lp("LEB %d free %d dirty %d to %d %d",
484 	       lnum, c->ltab[lnum - c->lpt_first].free,
485 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
486 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
487 	c->ltab[lnum - c->lpt_first].free = free;
488 	c->ltab[lnum - c->lpt_first].dirty = dirty;
489 }
490 
491 /**
492  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
493  * @c: UBIFS file-system description object
494  * @nnode: nnode for which to add dirt
495  */
496 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
497 {
498 	struct ubifs_nnode *np = nnode->parent;
499 
500 	if (np)
501 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
502 				   c->nnode_sz);
503 	else {
504 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
505 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
506 			c->lpt_drty_flgs |= LTAB_DIRTY;
507 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
508 		}
509 	}
510 }
511 
512 /**
513  * add_pnode_dirt - add dirty space to LPT LEB properties.
514  * @c: UBIFS file-system description object
515  * @pnode: pnode for which to add dirt
516  */
517 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
518 {
519 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
520 			   c->pnode_sz);
521 }
522 
523 /**
524  * calc_nnode_num - calculate nnode number.
525  * @row: the row in the tree (root is zero)
526  * @col: the column in the row (leftmost is zero)
527  *
528  * The nnode number is a number that uniquely identifies a nnode and can be used
529  * easily to traverse the tree from the root to that nnode.
530  *
531  * This function calculates and returns the nnode number for the nnode at @row
532  * and @col.
533  */
534 static int calc_nnode_num(int row, int col)
535 {
536 	int num, bits;
537 
538 	num = 1;
539 	while (row--) {
540 		bits = (col & (UBIFS_LPT_FANOUT - 1));
541 		col >>= UBIFS_LPT_FANOUT_SHIFT;
542 		num <<= UBIFS_LPT_FANOUT_SHIFT;
543 		num |= bits;
544 	}
545 	return num;
546 }
547 
548 /**
549  * calc_nnode_num_from_parent - calculate nnode number.
550  * @c: UBIFS file-system description object
551  * @parent: parent nnode
552  * @iip: index in parent
553  *
554  * The nnode number is a number that uniquely identifies a nnode and can be used
555  * easily to traverse the tree from the root to that nnode.
556  *
557  * This function calculates and returns the nnode number based on the parent's
558  * nnode number and the index in parent.
559  */
560 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
561 				      struct ubifs_nnode *parent, int iip)
562 {
563 	int num, shft;
564 
565 	if (!parent)
566 		return 1;
567 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
568 	num = parent->num ^ (1 << shft);
569 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
570 	return num;
571 }
572 
573 /**
574  * calc_pnode_num_from_parent - calculate pnode number.
575  * @c: UBIFS file-system description object
576  * @parent: parent nnode
577  * @iip: index in parent
578  *
579  * The pnode number is a number that uniquely identifies a pnode and can be used
580  * easily to traverse the tree from the root to that pnode.
581  *
582  * This function calculates and returns the pnode number based on the parent's
583  * nnode number and the index in parent.
584  */
585 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
586 				      struct ubifs_nnode *parent, int iip)
587 {
588 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
589 
590 	for (i = 0; i < n; i++) {
591 		num <<= UBIFS_LPT_FANOUT_SHIFT;
592 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
593 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
594 	}
595 	num <<= UBIFS_LPT_FANOUT_SHIFT;
596 	num |= iip;
597 	return num;
598 }
599 
600 /**
601  * ubifs_create_dflt_lpt - create default LPT.
602  * @c: UBIFS file-system description object
603  * @main_lebs: number of main area LEBs is passed and returned here
604  * @lpt_first: LEB number of first LPT LEB
605  * @lpt_lebs: number of LEBs for LPT is passed and returned here
606  * @big_lpt: use big LPT model is passed and returned here
607  *
608  * This function returns %0 on success and a negative error code on failure.
609  */
610 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
611 			  int *lpt_lebs, int *big_lpt)
612 {
613 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
614 	int blnum, boffs, bsz, bcnt;
615 	struct ubifs_pnode *pnode = NULL;
616 	struct ubifs_nnode *nnode = NULL;
617 	void *buf = NULL, *p;
618 	struct ubifs_lpt_lprops *ltab = NULL;
619 	int *lsave = NULL;
620 
621 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
622 	if (err)
623 		return err;
624 	*lpt_lebs = c->lpt_lebs;
625 
626 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
627 	c->lpt_first = lpt_first;
628 	/* Needed by 'set_ltab()' */
629 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
630 	/* Needed by 'ubifs_pack_lsave()' */
631 	c->main_first = c->leb_cnt - *main_lebs;
632 
633 	lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
634 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
635 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
636 	buf = vmalloc(c->leb_size);
637 	ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
638 				  c->lpt_lebs));
639 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
640 		err = -ENOMEM;
641 		goto out;
642 	}
643 
644 	ubifs_assert(c, !c->ltab);
645 	c->ltab = ltab; /* Needed by set_ltab */
646 
647 	/* Initialize LPT's own lprops */
648 	for (i = 0; i < c->lpt_lebs; i++) {
649 		ltab[i].free = c->leb_size;
650 		ltab[i].dirty = 0;
651 		ltab[i].tgc = 0;
652 		ltab[i].cmt = 0;
653 	}
654 
655 	lnum = lpt_first;
656 	p = buf;
657 	/* Number of leaf nodes (pnodes) */
658 	cnt = c->pnode_cnt;
659 
660 	/*
661 	 * The first pnode contains the LEB properties for the LEBs that contain
662 	 * the root inode node and the root index node of the index tree.
663 	 */
664 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
665 	iopos = ALIGN(node_sz, c->min_io_size);
666 	pnode->lprops[0].free = c->leb_size - iopos;
667 	pnode->lprops[0].dirty = iopos - node_sz;
668 	pnode->lprops[0].flags = LPROPS_INDEX;
669 
670 	node_sz = UBIFS_INO_NODE_SZ;
671 	iopos = ALIGN(node_sz, c->min_io_size);
672 	pnode->lprops[1].free = c->leb_size - iopos;
673 	pnode->lprops[1].dirty = iopos - node_sz;
674 
675 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
676 		pnode->lprops[i].free = c->leb_size;
677 
678 	/* Add first pnode */
679 	ubifs_pack_pnode(c, p, pnode);
680 	p += c->pnode_sz;
681 	len = c->pnode_sz;
682 	pnode->num += 1;
683 
684 	/* Reset pnode values for remaining pnodes */
685 	pnode->lprops[0].free = c->leb_size;
686 	pnode->lprops[0].dirty = 0;
687 	pnode->lprops[0].flags = 0;
688 
689 	pnode->lprops[1].free = c->leb_size;
690 	pnode->lprops[1].dirty = 0;
691 
692 	/*
693 	 * To calculate the internal node branches, we keep information about
694 	 * the level below.
695 	 */
696 	blnum = lnum; /* LEB number of level below */
697 	boffs = 0; /* Offset of level below */
698 	bcnt = cnt; /* Number of nodes in level below */
699 	bsz = c->pnode_sz; /* Size of nodes in level below */
700 
701 	/* Add all remaining pnodes */
702 	for (i = 1; i < cnt; i++) {
703 		if (len + c->pnode_sz > c->leb_size) {
704 			alen = ALIGN(len, c->min_io_size);
705 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
706 			memset(p, 0xff, alen - len);
707 			err = ubifs_leb_change(c, lnum++, buf, alen);
708 			if (err)
709 				goto out;
710 			p = buf;
711 			len = 0;
712 		}
713 		ubifs_pack_pnode(c, p, pnode);
714 		p += c->pnode_sz;
715 		len += c->pnode_sz;
716 		/*
717 		 * pnodes are simply numbered left to right starting at zero,
718 		 * which means the pnode number can be used easily to traverse
719 		 * down the tree to the corresponding pnode.
720 		 */
721 		pnode->num += 1;
722 	}
723 
724 	row = 0;
725 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
726 		row += 1;
727 	/* Add all nnodes, one level at a time */
728 	while (1) {
729 		/* Number of internal nodes (nnodes) at next level */
730 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
731 		for (i = 0; i < cnt; i++) {
732 			if (len + c->nnode_sz > c->leb_size) {
733 				alen = ALIGN(len, c->min_io_size);
734 				set_ltab(c, lnum, c->leb_size - alen,
735 					    alen - len);
736 				memset(p, 0xff, alen - len);
737 				err = ubifs_leb_change(c, lnum++, buf, alen);
738 				if (err)
739 					goto out;
740 				p = buf;
741 				len = 0;
742 			}
743 			/* Only 1 nnode at this level, so it is the root */
744 			if (cnt == 1) {
745 				c->lpt_lnum = lnum;
746 				c->lpt_offs = len;
747 			}
748 			/* Set branches to the level below */
749 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
750 				if (bcnt) {
751 					if (boffs + bsz > c->leb_size) {
752 						blnum += 1;
753 						boffs = 0;
754 					}
755 					nnode->nbranch[j].lnum = blnum;
756 					nnode->nbranch[j].offs = boffs;
757 					boffs += bsz;
758 					bcnt--;
759 				} else {
760 					nnode->nbranch[j].lnum = 0;
761 					nnode->nbranch[j].offs = 0;
762 				}
763 			}
764 			nnode->num = calc_nnode_num(row, i);
765 			ubifs_pack_nnode(c, p, nnode);
766 			p += c->nnode_sz;
767 			len += c->nnode_sz;
768 		}
769 		/* Only 1 nnode at this level, so it is the root */
770 		if (cnt == 1)
771 			break;
772 		/* Update the information about the level below */
773 		bcnt = cnt;
774 		bsz = c->nnode_sz;
775 		row -= 1;
776 	}
777 
778 	if (*big_lpt) {
779 		/* Need to add LPT's save table */
780 		if (len + c->lsave_sz > c->leb_size) {
781 			alen = ALIGN(len, c->min_io_size);
782 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
783 			memset(p, 0xff, alen - len);
784 			err = ubifs_leb_change(c, lnum++, buf, alen);
785 			if (err)
786 				goto out;
787 			p = buf;
788 			len = 0;
789 		}
790 
791 		c->lsave_lnum = lnum;
792 		c->lsave_offs = len;
793 
794 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
795 			lsave[i] = c->main_first + i;
796 		for (; i < c->lsave_cnt; i++)
797 			lsave[i] = c->main_first;
798 
799 		ubifs_pack_lsave(c, p, lsave);
800 		p += c->lsave_sz;
801 		len += c->lsave_sz;
802 	}
803 
804 	/* Need to add LPT's own LEB properties table */
805 	if (len + c->ltab_sz > c->leb_size) {
806 		alen = ALIGN(len, c->min_io_size);
807 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
808 		memset(p, 0xff, alen - len);
809 		err = ubifs_leb_change(c, lnum++, buf, alen);
810 		if (err)
811 			goto out;
812 		p = buf;
813 		len = 0;
814 	}
815 
816 	c->ltab_lnum = lnum;
817 	c->ltab_offs = len;
818 
819 	/* Update ltab before packing it */
820 	len += c->ltab_sz;
821 	alen = ALIGN(len, c->min_io_size);
822 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
823 
824 	ubifs_pack_ltab(c, p, ltab);
825 	p += c->ltab_sz;
826 
827 	/* Write remaining buffer */
828 	memset(p, 0xff, alen - len);
829 	err = ubifs_leb_change(c, lnum, buf, alen);
830 	if (err)
831 		goto out;
832 
833 	c->nhead_lnum = lnum;
834 	c->nhead_offs = ALIGN(len, c->min_io_size);
835 
836 	dbg_lp("space_bits %d", c->space_bits);
837 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
838 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
839 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
840 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
841 	dbg_lp("lnum_bits %d", c->lnum_bits);
842 	dbg_lp("pnode_sz %d", c->pnode_sz);
843 	dbg_lp("nnode_sz %d", c->nnode_sz);
844 	dbg_lp("ltab_sz %d", c->ltab_sz);
845 	dbg_lp("lsave_sz %d", c->lsave_sz);
846 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
847 	dbg_lp("lpt_hght %d", c->lpt_hght);
848 	dbg_lp("big_lpt %d", c->big_lpt);
849 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
850 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
851 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
852 	if (c->big_lpt)
853 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
854 out:
855 	c->ltab = NULL;
856 	kfree(lsave);
857 	vfree(ltab);
858 	vfree(buf);
859 	kfree(nnode);
860 	kfree(pnode);
861 	return err;
862 }
863 
864 /**
865  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
866  * @c: UBIFS file-system description object
867  * @pnode: pnode
868  *
869  * When a pnode is loaded into memory, the LEB properties it contains are added,
870  * by this function, to the LEB category lists and heaps.
871  */
872 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
873 {
874 	int i;
875 
876 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
877 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
878 		int lnum = pnode->lprops[i].lnum;
879 
880 		if (!lnum)
881 			return;
882 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
883 	}
884 }
885 
886 /**
887  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
888  * @c: UBIFS file-system description object
889  * @old_pnode: pnode copied
890  * @new_pnode: pnode copy
891  *
892  * During commit it is sometimes necessary to copy a pnode
893  * (see dirty_cow_pnode).  When that happens, references in
894  * category lists and heaps must be replaced.  This function does that.
895  */
896 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
897 			 struct ubifs_pnode *new_pnode)
898 {
899 	int i;
900 
901 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
902 		if (!new_pnode->lprops[i].lnum)
903 			return;
904 		ubifs_replace_cat(c, &old_pnode->lprops[i],
905 				  &new_pnode->lprops[i]);
906 	}
907 }
908 
909 /**
910  * check_lpt_crc - check LPT node crc is correct.
911  * @c: UBIFS file-system description object
912  * @buf: buffer containing node
913  * @len: length of node
914  *
915  * This function returns %0 on success and a negative error code on failure.
916  */
917 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
918 {
919 	int pos = 0;
920 	uint8_t *addr = buf;
921 	uint16_t crc, calc_crc;
922 
923 	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
924 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
925 			 len - UBIFS_LPT_CRC_BYTES);
926 	if (crc != calc_crc) {
927 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
928 			  crc, calc_crc);
929 		dump_stack();
930 		return -EINVAL;
931 	}
932 	return 0;
933 }
934 
935 /**
936  * check_lpt_type - check LPT node type is correct.
937  * @c: UBIFS file-system description object
938  * @addr: address of type bit field is passed and returned updated here
939  * @pos: position of type bit field is passed and returned updated here
940  * @type: expected type
941  *
942  * This function returns %0 on success and a negative error code on failure.
943  */
944 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
945 			  int *pos, int type)
946 {
947 	int node_type;
948 
949 	node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS);
950 	if (node_type != type) {
951 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
952 			  node_type, type);
953 		dump_stack();
954 		return -EINVAL;
955 	}
956 	return 0;
957 }
958 
959 /**
960  * unpack_pnode - unpack a pnode.
961  * @c: UBIFS file-system description object
962  * @buf: buffer containing packed pnode to unpack
963  * @pnode: pnode structure to fill
964  *
965  * This function returns %0 on success and a negative error code on failure.
966  */
967 static int unpack_pnode(const struct ubifs_info *c, void *buf,
968 			struct ubifs_pnode *pnode)
969 {
970 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
971 	int i, pos = 0, err;
972 
973 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
974 	if (err)
975 		return err;
976 	if (c->big_lpt)
977 		pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
978 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
979 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
980 
981 		lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
982 		lprops->free <<= 3;
983 		lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
984 		lprops->dirty <<= 3;
985 
986 		if (ubifs_unpack_bits(c, &addr, &pos, 1))
987 			lprops->flags = LPROPS_INDEX;
988 		else
989 			lprops->flags = 0;
990 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
991 	}
992 	err = check_lpt_crc(c, buf, c->pnode_sz);
993 	return err;
994 }
995 
996 /**
997  * ubifs_unpack_nnode - unpack a nnode.
998  * @c: UBIFS file-system description object
999  * @buf: buffer containing packed nnode to unpack
1000  * @nnode: nnode structure to fill
1001  *
1002  * This function returns %0 on success and a negative error code on failure.
1003  */
1004 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1005 		       struct ubifs_nnode *nnode)
1006 {
1007 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1008 	int i, pos = 0, err;
1009 
1010 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1011 	if (err)
1012 		return err;
1013 	if (c->big_lpt)
1014 		nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1015 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1016 		int lnum;
1017 
1018 		lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) +
1019 		       c->lpt_first;
1020 		if (lnum == c->lpt_last + 1)
1021 			lnum = 0;
1022 		nnode->nbranch[i].lnum = lnum;
1023 		nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos,
1024 						     c->lpt_offs_bits);
1025 	}
1026 	err = check_lpt_crc(c, buf, c->nnode_sz);
1027 	return err;
1028 }
1029 
1030 /**
1031  * unpack_ltab - unpack the LPT's own lprops table.
1032  * @c: UBIFS file-system description object
1033  * @buf: buffer from which to unpack
1034  *
1035  * This function returns %0 on success and a negative error code on failure.
1036  */
1037 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1038 {
1039 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1040 	int i, pos = 0, err;
1041 
1042 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1043 	if (err)
1044 		return err;
1045 	for (i = 0; i < c->lpt_lebs; i++) {
1046 		int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1047 		int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1048 
1049 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1050 		    dirty > c->leb_size || free + dirty > c->leb_size)
1051 			return -EINVAL;
1052 
1053 		c->ltab[i].free = free;
1054 		c->ltab[i].dirty = dirty;
1055 		c->ltab[i].tgc = 0;
1056 		c->ltab[i].cmt = 0;
1057 	}
1058 	err = check_lpt_crc(c, buf, c->ltab_sz);
1059 	return err;
1060 }
1061 
1062 /**
1063  * unpack_lsave - unpack the LPT's save table.
1064  * @c: UBIFS file-system description object
1065  * @buf: buffer from which to unpack
1066  *
1067  * This function returns %0 on success and a negative error code on failure.
1068  */
1069 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1070 {
1071 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1072 	int i, pos = 0, err;
1073 
1074 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1075 	if (err)
1076 		return err;
1077 	for (i = 0; i < c->lsave_cnt; i++) {
1078 		int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits);
1079 
1080 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1081 			return -EINVAL;
1082 		c->lsave[i] = lnum;
1083 	}
1084 	err = check_lpt_crc(c, buf, c->lsave_sz);
1085 	return err;
1086 }
1087 
1088 /**
1089  * validate_nnode - validate a nnode.
1090  * @c: UBIFS file-system description object
1091  * @nnode: nnode to validate
1092  * @parent: parent nnode (or NULL for the root nnode)
1093  * @iip: index in parent
1094  *
1095  * This function returns %0 on success and a negative error code on failure.
1096  */
1097 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1098 			  struct ubifs_nnode *parent, int iip)
1099 {
1100 	int i, lvl, max_offs;
1101 
1102 	if (c->big_lpt) {
1103 		int num = calc_nnode_num_from_parent(c, parent, iip);
1104 
1105 		if (nnode->num != num)
1106 			return -EINVAL;
1107 	}
1108 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1109 	if (lvl < 1)
1110 		return -EINVAL;
1111 	if (lvl == 1)
1112 		max_offs = c->leb_size - c->pnode_sz;
1113 	else
1114 		max_offs = c->leb_size - c->nnode_sz;
1115 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1116 		int lnum = nnode->nbranch[i].lnum;
1117 		int offs = nnode->nbranch[i].offs;
1118 
1119 		if (lnum == 0) {
1120 			if (offs != 0)
1121 				return -EINVAL;
1122 			continue;
1123 		}
1124 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1125 			return -EINVAL;
1126 		if (offs < 0 || offs > max_offs)
1127 			return -EINVAL;
1128 	}
1129 	return 0;
1130 }
1131 
1132 /**
1133  * validate_pnode - validate a pnode.
1134  * @c: UBIFS file-system description object
1135  * @pnode: pnode to validate
1136  * @parent: parent nnode
1137  * @iip: index in parent
1138  *
1139  * This function returns %0 on success and a negative error code on failure.
1140  */
1141 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1142 			  struct ubifs_nnode *parent, int iip)
1143 {
1144 	int i;
1145 
1146 	if (c->big_lpt) {
1147 		int num = calc_pnode_num_from_parent(c, parent, iip);
1148 
1149 		if (pnode->num != num)
1150 			return -EINVAL;
1151 	}
1152 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1153 		int free = pnode->lprops[i].free;
1154 		int dirty = pnode->lprops[i].dirty;
1155 
1156 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1157 		    (free & 7))
1158 			return -EINVAL;
1159 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1160 			return -EINVAL;
1161 		if (dirty + free > c->leb_size)
1162 			return -EINVAL;
1163 	}
1164 	return 0;
1165 }
1166 
1167 /**
1168  * set_pnode_lnum - set LEB numbers on a pnode.
1169  * @c: UBIFS file-system description object
1170  * @pnode: pnode to update
1171  *
1172  * This function calculates the LEB numbers for the LEB properties it contains
1173  * based on the pnode number.
1174  */
1175 static void set_pnode_lnum(const struct ubifs_info *c,
1176 			   struct ubifs_pnode *pnode)
1177 {
1178 	int i, lnum;
1179 
1180 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1181 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1182 		if (lnum >= c->leb_cnt)
1183 			return;
1184 		pnode->lprops[i].lnum = lnum++;
1185 	}
1186 }
1187 
1188 /**
1189  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1190  * @c: UBIFS file-system description object
1191  * @parent: parent nnode (or NULL for the root)
1192  * @iip: index in parent
1193  *
1194  * This function returns %0 on success and a negative error code on failure.
1195  */
1196 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1197 {
1198 	struct ubifs_nbranch *branch = NULL;
1199 	struct ubifs_nnode *nnode = NULL;
1200 	void *buf = c->lpt_nod_buf;
1201 	int err, lnum, offs;
1202 
1203 	if (parent) {
1204 		branch = &parent->nbranch[iip];
1205 		lnum = branch->lnum;
1206 		offs = branch->offs;
1207 	} else {
1208 		lnum = c->lpt_lnum;
1209 		offs = c->lpt_offs;
1210 	}
1211 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1212 	if (!nnode) {
1213 		err = -ENOMEM;
1214 		goto out;
1215 	}
1216 	if (lnum == 0) {
1217 		/*
1218 		 * This nnode was not written which just means that the LEB
1219 		 * properties in the subtree below it describe empty LEBs. We
1220 		 * make the nnode as though we had read it, which in fact means
1221 		 * doing almost nothing.
1222 		 */
1223 		if (c->big_lpt)
1224 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1225 	} else {
1226 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1227 		if (err)
1228 			goto out;
1229 		err = ubifs_unpack_nnode(c, buf, nnode);
1230 		if (err)
1231 			goto out;
1232 	}
1233 	err = validate_nnode(c, nnode, parent, iip);
1234 	if (err)
1235 		goto out;
1236 	if (!c->big_lpt)
1237 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1238 	if (parent) {
1239 		branch->nnode = nnode;
1240 		nnode->level = parent->level - 1;
1241 	} else {
1242 		c->nroot = nnode;
1243 		nnode->level = c->lpt_hght;
1244 	}
1245 	nnode->parent = parent;
1246 	nnode->iip = iip;
1247 	return 0;
1248 
1249 out:
1250 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1251 	dump_stack();
1252 	kfree(nnode);
1253 	return err;
1254 }
1255 
1256 /**
1257  * read_pnode - read a pnode from flash and link it to the tree in memory.
1258  * @c: UBIFS file-system description object
1259  * @parent: parent nnode
1260  * @iip: index in parent
1261  *
1262  * This function returns %0 on success and a negative error code on failure.
1263  */
1264 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1265 {
1266 	struct ubifs_nbranch *branch;
1267 	struct ubifs_pnode *pnode = NULL;
1268 	void *buf = c->lpt_nod_buf;
1269 	int err, lnum, offs;
1270 
1271 	branch = &parent->nbranch[iip];
1272 	lnum = branch->lnum;
1273 	offs = branch->offs;
1274 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1275 	if (!pnode)
1276 		return -ENOMEM;
1277 
1278 	if (lnum == 0) {
1279 		/*
1280 		 * This pnode was not written which just means that the LEB
1281 		 * properties in it describe empty LEBs. We make the pnode as
1282 		 * though we had read it.
1283 		 */
1284 		int i;
1285 
1286 		if (c->big_lpt)
1287 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1288 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1289 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1290 
1291 			lprops->free = c->leb_size;
1292 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1293 		}
1294 	} else {
1295 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1296 		if (err)
1297 			goto out;
1298 		err = unpack_pnode(c, buf, pnode);
1299 		if (err)
1300 			goto out;
1301 	}
1302 	err = validate_pnode(c, pnode, parent, iip);
1303 	if (err)
1304 		goto out;
1305 	if (!c->big_lpt)
1306 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1307 	branch->pnode = pnode;
1308 	pnode->parent = parent;
1309 	pnode->iip = iip;
1310 	set_pnode_lnum(c, pnode);
1311 	c->pnodes_have += 1;
1312 	return 0;
1313 
1314 out:
1315 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1316 	ubifs_dump_pnode(c, pnode, parent, iip);
1317 	dump_stack();
1318 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1319 	kfree(pnode);
1320 	return err;
1321 }
1322 
1323 /**
1324  * read_ltab - read LPT's own lprops table.
1325  * @c: UBIFS file-system description object
1326  *
1327  * This function returns %0 on success and a negative error code on failure.
1328  */
1329 static int read_ltab(struct ubifs_info *c)
1330 {
1331 	int err;
1332 	void *buf;
1333 
1334 	buf = vmalloc(c->ltab_sz);
1335 	if (!buf)
1336 		return -ENOMEM;
1337 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1338 	if (err)
1339 		goto out;
1340 	err = unpack_ltab(c, buf);
1341 out:
1342 	vfree(buf);
1343 	return err;
1344 }
1345 
1346 /**
1347  * read_lsave - read LPT's save table.
1348  * @c: UBIFS file-system description object
1349  *
1350  * This function returns %0 on success and a negative error code on failure.
1351  */
1352 static int read_lsave(struct ubifs_info *c)
1353 {
1354 	int err, i;
1355 	void *buf;
1356 
1357 	buf = vmalloc(c->lsave_sz);
1358 	if (!buf)
1359 		return -ENOMEM;
1360 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1361 			     c->lsave_sz, 1);
1362 	if (err)
1363 		goto out;
1364 	err = unpack_lsave(c, buf);
1365 	if (err)
1366 		goto out;
1367 	for (i = 0; i < c->lsave_cnt; i++) {
1368 		int lnum = c->lsave[i];
1369 		struct ubifs_lprops *lprops;
1370 
1371 		/*
1372 		 * Due to automatic resizing, the values in the lsave table
1373 		 * could be beyond the volume size - just ignore them.
1374 		 */
1375 		if (lnum >= c->leb_cnt)
1376 			continue;
1377 		lprops = ubifs_lpt_lookup(c, lnum);
1378 		if (IS_ERR(lprops)) {
1379 			err = PTR_ERR(lprops);
1380 			goto out;
1381 		}
1382 	}
1383 out:
1384 	vfree(buf);
1385 	return err;
1386 }
1387 
1388 /**
1389  * ubifs_get_nnode - get a nnode.
1390  * @c: UBIFS file-system description object
1391  * @parent: parent nnode (or NULL for the root)
1392  * @iip: index in parent
1393  *
1394  * This function returns a pointer to the nnode on success or a negative error
1395  * code on failure.
1396  */
1397 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1398 				    struct ubifs_nnode *parent, int iip)
1399 {
1400 	struct ubifs_nbranch *branch;
1401 	struct ubifs_nnode *nnode;
1402 	int err;
1403 
1404 	branch = &parent->nbranch[iip];
1405 	nnode = branch->nnode;
1406 	if (nnode)
1407 		return nnode;
1408 	err = ubifs_read_nnode(c, parent, iip);
1409 	if (err)
1410 		return ERR_PTR(err);
1411 	return branch->nnode;
1412 }
1413 
1414 /**
1415  * ubifs_get_pnode - get a pnode.
1416  * @c: UBIFS file-system description object
1417  * @parent: parent nnode
1418  * @iip: index in parent
1419  *
1420  * This function returns a pointer to the pnode on success or a negative error
1421  * code on failure.
1422  */
1423 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1424 				    struct ubifs_nnode *parent, int iip)
1425 {
1426 	struct ubifs_nbranch *branch;
1427 	struct ubifs_pnode *pnode;
1428 	int err;
1429 
1430 	branch = &parent->nbranch[iip];
1431 	pnode = branch->pnode;
1432 	if (pnode)
1433 		return pnode;
1434 	err = read_pnode(c, parent, iip);
1435 	if (err)
1436 		return ERR_PTR(err);
1437 	update_cats(c, branch->pnode);
1438 	return branch->pnode;
1439 }
1440 
1441 /**
1442  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1443  * @c: UBIFS file-system description object
1444  * @lnum: LEB number to lookup
1445  *
1446  * This function returns a pointer to the LEB properties on success or a
1447  * negative error code on failure.
1448  */
1449 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1450 {
1451 	int err, i, h, iip, shft;
1452 	struct ubifs_nnode *nnode;
1453 	struct ubifs_pnode *pnode;
1454 
1455 	if (!c->nroot) {
1456 		err = ubifs_read_nnode(c, NULL, 0);
1457 		if (err)
1458 			return ERR_PTR(err);
1459 	}
1460 	nnode = c->nroot;
1461 	i = lnum - c->main_first;
1462 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1463 	for (h = 1; h < c->lpt_hght; h++) {
1464 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1465 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1466 		nnode = ubifs_get_nnode(c, nnode, iip);
1467 		if (IS_ERR(nnode))
1468 			return ERR_CAST(nnode);
1469 	}
1470 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1471 	pnode = ubifs_get_pnode(c, nnode, iip);
1472 	if (IS_ERR(pnode))
1473 		return ERR_CAST(pnode);
1474 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1475 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1476 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1477 	       pnode->lprops[iip].flags);
1478 	return &pnode->lprops[iip];
1479 }
1480 
1481 /**
1482  * dirty_cow_nnode - ensure a nnode is not being committed.
1483  * @c: UBIFS file-system description object
1484  * @nnode: nnode to check
1485  *
1486  * Returns dirtied nnode on success or negative error code on failure.
1487  */
1488 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1489 					   struct ubifs_nnode *nnode)
1490 {
1491 	struct ubifs_nnode *n;
1492 	int i;
1493 
1494 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1495 		/* nnode is not being committed */
1496 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1497 			c->dirty_nn_cnt += 1;
1498 			ubifs_add_nnode_dirt(c, nnode);
1499 		}
1500 		return nnode;
1501 	}
1502 
1503 	/* nnode is being committed, so copy it */
1504 	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1505 	if (unlikely(!n))
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	n->cnext = NULL;
1509 	__set_bit(DIRTY_CNODE, &n->flags);
1510 	__clear_bit(COW_CNODE, &n->flags);
1511 
1512 	/* The children now have new parent */
1513 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1514 		struct ubifs_nbranch *branch = &n->nbranch[i];
1515 
1516 		if (branch->cnode)
1517 			branch->cnode->parent = n;
1518 	}
1519 
1520 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags));
1521 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1522 
1523 	c->dirty_nn_cnt += 1;
1524 	ubifs_add_nnode_dirt(c, nnode);
1525 	if (nnode->parent)
1526 		nnode->parent->nbranch[n->iip].nnode = n;
1527 	else
1528 		c->nroot = n;
1529 	return n;
1530 }
1531 
1532 /**
1533  * dirty_cow_pnode - ensure a pnode is not being committed.
1534  * @c: UBIFS file-system description object
1535  * @pnode: pnode to check
1536  *
1537  * Returns dirtied pnode on success or negative error code on failure.
1538  */
1539 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1540 					   struct ubifs_pnode *pnode)
1541 {
1542 	struct ubifs_pnode *p;
1543 
1544 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1545 		/* pnode is not being committed */
1546 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1547 			c->dirty_pn_cnt += 1;
1548 			add_pnode_dirt(c, pnode);
1549 		}
1550 		return pnode;
1551 	}
1552 
1553 	/* pnode is being committed, so copy it */
1554 	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1555 	if (unlikely(!p))
1556 		return ERR_PTR(-ENOMEM);
1557 
1558 	p->cnext = NULL;
1559 	__set_bit(DIRTY_CNODE, &p->flags);
1560 	__clear_bit(COW_CNODE, &p->flags);
1561 	replace_cats(c, pnode, p);
1562 
1563 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags));
1564 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1565 
1566 	c->dirty_pn_cnt += 1;
1567 	add_pnode_dirt(c, pnode);
1568 	pnode->parent->nbranch[p->iip].pnode = p;
1569 	return p;
1570 }
1571 
1572 /**
1573  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1574  * @c: UBIFS file-system description object
1575  * @lnum: LEB number to lookup
1576  *
1577  * This function returns a pointer to the LEB properties on success or a
1578  * negative error code on failure.
1579  */
1580 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1581 {
1582 	int err, i, h, iip, shft;
1583 	struct ubifs_nnode *nnode;
1584 	struct ubifs_pnode *pnode;
1585 
1586 	if (!c->nroot) {
1587 		err = ubifs_read_nnode(c, NULL, 0);
1588 		if (err)
1589 			return ERR_PTR(err);
1590 	}
1591 	nnode = c->nroot;
1592 	nnode = dirty_cow_nnode(c, nnode);
1593 	if (IS_ERR(nnode))
1594 		return ERR_CAST(nnode);
1595 	i = lnum - c->main_first;
1596 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1597 	for (h = 1; h < c->lpt_hght; h++) {
1598 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1599 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1600 		nnode = ubifs_get_nnode(c, nnode, iip);
1601 		if (IS_ERR(nnode))
1602 			return ERR_CAST(nnode);
1603 		nnode = dirty_cow_nnode(c, nnode);
1604 		if (IS_ERR(nnode))
1605 			return ERR_CAST(nnode);
1606 	}
1607 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1608 	pnode = ubifs_get_pnode(c, nnode, iip);
1609 	if (IS_ERR(pnode))
1610 		return ERR_CAST(pnode);
1611 	pnode = dirty_cow_pnode(c, pnode);
1612 	if (IS_ERR(pnode))
1613 		return ERR_CAST(pnode);
1614 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1615 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1616 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1617 	       pnode->lprops[iip].flags);
1618 	ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags));
1619 	return &pnode->lprops[iip];
1620 }
1621 
1622 /**
1623  * lpt_init_rd - initialize the LPT for reading.
1624  * @c: UBIFS file-system description object
1625  *
1626  * This function returns %0 on success and a negative error code on failure.
1627  */
1628 static int lpt_init_rd(struct ubifs_info *c)
1629 {
1630 	int err, i;
1631 
1632 	c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1633 				     c->lpt_lebs));
1634 	if (!c->ltab)
1635 		return -ENOMEM;
1636 
1637 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1638 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1639 	if (!c->lpt_nod_buf)
1640 		return -ENOMEM;
1641 
1642 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1643 		c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1644 						   sizeof(void *),
1645 						   GFP_KERNEL);
1646 		if (!c->lpt_heap[i].arr)
1647 			return -ENOMEM;
1648 		c->lpt_heap[i].cnt = 0;
1649 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1650 	}
1651 
1652 	c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1653 					 GFP_KERNEL);
1654 	if (!c->dirty_idx.arr)
1655 		return -ENOMEM;
1656 	c->dirty_idx.cnt = 0;
1657 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1658 
1659 	err = read_ltab(c);
1660 	if (err)
1661 		return err;
1662 
1663 	dbg_lp("space_bits %d", c->space_bits);
1664 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1665 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1666 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1667 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1668 	dbg_lp("lnum_bits %d", c->lnum_bits);
1669 	dbg_lp("pnode_sz %d", c->pnode_sz);
1670 	dbg_lp("nnode_sz %d", c->nnode_sz);
1671 	dbg_lp("ltab_sz %d", c->ltab_sz);
1672 	dbg_lp("lsave_sz %d", c->lsave_sz);
1673 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1674 	dbg_lp("lpt_hght %d", c->lpt_hght);
1675 	dbg_lp("big_lpt %d", c->big_lpt);
1676 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1677 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1678 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1679 	if (c->big_lpt)
1680 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * lpt_init_wr - initialize the LPT for writing.
1687  * @c: UBIFS file-system description object
1688  *
1689  * 'lpt_init_rd()' must have been called already.
1690  *
1691  * This function returns %0 on success and a negative error code on failure.
1692  */
1693 static int lpt_init_wr(struct ubifs_info *c)
1694 {
1695 	int err, i;
1696 
1697 	c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1698 					 c->lpt_lebs));
1699 	if (!c->ltab_cmt)
1700 		return -ENOMEM;
1701 
1702 	c->lpt_buf = vmalloc(c->leb_size);
1703 	if (!c->lpt_buf)
1704 		return -ENOMEM;
1705 
1706 	if (c->big_lpt) {
1707 		c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1708 		if (!c->lsave)
1709 			return -ENOMEM;
1710 		err = read_lsave(c);
1711 		if (err)
1712 			return err;
1713 	}
1714 
1715 	for (i = 0; i < c->lpt_lebs; i++)
1716 		if (c->ltab[i].free == c->leb_size) {
1717 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1718 			if (err)
1719 				return err;
1720 		}
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * ubifs_lpt_init - initialize the LPT.
1727  * @c: UBIFS file-system description object
1728  * @rd: whether to initialize lpt for reading
1729  * @wr: whether to initialize lpt for writing
1730  *
1731  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1732  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1733  * true.
1734  *
1735  * This function returns %0 on success and a negative error code on failure.
1736  */
1737 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1738 {
1739 	int err;
1740 
1741 	if (rd) {
1742 		err = lpt_init_rd(c);
1743 		if (err)
1744 			goto out_err;
1745 	}
1746 
1747 	if (wr) {
1748 		err = lpt_init_wr(c);
1749 		if (err)
1750 			goto out_err;
1751 	}
1752 
1753 	return 0;
1754 
1755 out_err:
1756 	if (wr)
1757 		ubifs_lpt_free(c, 1);
1758 	if (rd)
1759 		ubifs_lpt_free(c, 0);
1760 	return err;
1761 }
1762 
1763 /**
1764  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1765  * @nnode: where to keep a nnode
1766  * @pnode: where to keep a pnode
1767  * @cnode: where to keep a cnode
1768  * @in_tree: is the node in the tree in memory
1769  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1770  * the tree
1771  * @ptr.pnode: ditto for pnode
1772  * @ptr.cnode: ditto for cnode
1773  */
1774 struct lpt_scan_node {
1775 	union {
1776 		struct ubifs_nnode nnode;
1777 		struct ubifs_pnode pnode;
1778 		struct ubifs_cnode cnode;
1779 	};
1780 	int in_tree;
1781 	union {
1782 		struct ubifs_nnode *nnode;
1783 		struct ubifs_pnode *pnode;
1784 		struct ubifs_cnode *cnode;
1785 	} ptr;
1786 };
1787 
1788 /**
1789  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1790  * @c: the UBIFS file-system description object
1791  * @path: where to put the nnode
1792  * @parent: parent of the nnode
1793  * @iip: index in parent of the nnode
1794  *
1795  * This function returns a pointer to the nnode on success or a negative error
1796  * code on failure.
1797  */
1798 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1799 					  struct lpt_scan_node *path,
1800 					  struct ubifs_nnode *parent, int iip)
1801 {
1802 	struct ubifs_nbranch *branch;
1803 	struct ubifs_nnode *nnode;
1804 	void *buf = c->lpt_nod_buf;
1805 	int err;
1806 
1807 	branch = &parent->nbranch[iip];
1808 	nnode = branch->nnode;
1809 	if (nnode) {
1810 		path->in_tree = 1;
1811 		path->ptr.nnode = nnode;
1812 		return nnode;
1813 	}
1814 	nnode = &path->nnode;
1815 	path->in_tree = 0;
1816 	path->ptr.nnode = nnode;
1817 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1818 	if (branch->lnum == 0) {
1819 		/*
1820 		 * This nnode was not written which just means that the LEB
1821 		 * properties in the subtree below it describe empty LEBs. We
1822 		 * make the nnode as though we had read it, which in fact means
1823 		 * doing almost nothing.
1824 		 */
1825 		if (c->big_lpt)
1826 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1827 	} else {
1828 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1829 				     c->nnode_sz, 1);
1830 		if (err)
1831 			return ERR_PTR(err);
1832 		err = ubifs_unpack_nnode(c, buf, nnode);
1833 		if (err)
1834 			return ERR_PTR(err);
1835 	}
1836 	err = validate_nnode(c, nnode, parent, iip);
1837 	if (err)
1838 		return ERR_PTR(err);
1839 	if (!c->big_lpt)
1840 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1841 	nnode->level = parent->level - 1;
1842 	nnode->parent = parent;
1843 	nnode->iip = iip;
1844 	return nnode;
1845 }
1846 
1847 /**
1848  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1849  * @c: the UBIFS file-system description object
1850  * @path: where to put the pnode
1851  * @parent: parent of the pnode
1852  * @iip: index in parent of the pnode
1853  *
1854  * This function returns a pointer to the pnode on success or a negative error
1855  * code on failure.
1856  */
1857 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1858 					  struct lpt_scan_node *path,
1859 					  struct ubifs_nnode *parent, int iip)
1860 {
1861 	struct ubifs_nbranch *branch;
1862 	struct ubifs_pnode *pnode;
1863 	void *buf = c->lpt_nod_buf;
1864 	int err;
1865 
1866 	branch = &parent->nbranch[iip];
1867 	pnode = branch->pnode;
1868 	if (pnode) {
1869 		path->in_tree = 1;
1870 		path->ptr.pnode = pnode;
1871 		return pnode;
1872 	}
1873 	pnode = &path->pnode;
1874 	path->in_tree = 0;
1875 	path->ptr.pnode = pnode;
1876 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1877 	if (branch->lnum == 0) {
1878 		/*
1879 		 * This pnode was not written which just means that the LEB
1880 		 * properties in it describe empty LEBs. We make the pnode as
1881 		 * though we had read it.
1882 		 */
1883 		int i;
1884 
1885 		if (c->big_lpt)
1886 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1887 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1888 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1889 
1890 			lprops->free = c->leb_size;
1891 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1892 		}
1893 	} else {
1894 		ubifs_assert(c, branch->lnum >= c->lpt_first &&
1895 			     branch->lnum <= c->lpt_last);
1896 		ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size);
1897 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1898 				     c->pnode_sz, 1);
1899 		if (err)
1900 			return ERR_PTR(err);
1901 		err = unpack_pnode(c, buf, pnode);
1902 		if (err)
1903 			return ERR_PTR(err);
1904 	}
1905 	err = validate_pnode(c, pnode, parent, iip);
1906 	if (err)
1907 		return ERR_PTR(err);
1908 	if (!c->big_lpt)
1909 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1910 	pnode->parent = parent;
1911 	pnode->iip = iip;
1912 	set_pnode_lnum(c, pnode);
1913 	return pnode;
1914 }
1915 
1916 /**
1917  * ubifs_lpt_scan_nolock - scan the LPT.
1918  * @c: the UBIFS file-system description object
1919  * @start_lnum: LEB number from which to start scanning
1920  * @end_lnum: LEB number at which to stop scanning
1921  * @scan_cb: callback function called for each lprops
1922  * @data: data to be passed to the callback function
1923  *
1924  * This function returns %0 on success and a negative error code on failure.
1925  */
1926 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1927 			  ubifs_lpt_scan_callback scan_cb, void *data)
1928 {
1929 	int err = 0, i, h, iip, shft;
1930 	struct ubifs_nnode *nnode;
1931 	struct ubifs_pnode *pnode;
1932 	struct lpt_scan_node *path;
1933 
1934 	if (start_lnum == -1) {
1935 		start_lnum = end_lnum + 1;
1936 		if (start_lnum >= c->leb_cnt)
1937 			start_lnum = c->main_first;
1938 	}
1939 
1940 	ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1941 	ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1942 
1943 	if (!c->nroot) {
1944 		err = ubifs_read_nnode(c, NULL, 0);
1945 		if (err)
1946 			return err;
1947 	}
1948 
1949 	path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
1950 			     GFP_NOFS);
1951 	if (!path)
1952 		return -ENOMEM;
1953 
1954 	path[0].ptr.nnode = c->nroot;
1955 	path[0].in_tree = 1;
1956 again:
1957 	/* Descend to the pnode containing start_lnum */
1958 	nnode = c->nroot;
1959 	i = start_lnum - c->main_first;
1960 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1961 	for (h = 1; h < c->lpt_hght; h++) {
1962 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1963 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1964 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1965 		if (IS_ERR(nnode)) {
1966 			err = PTR_ERR(nnode);
1967 			goto out;
1968 		}
1969 	}
1970 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1971 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1972 	if (IS_ERR(pnode)) {
1973 		err = PTR_ERR(pnode);
1974 		goto out;
1975 	}
1976 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1977 
1978 	/* Loop for each lprops */
1979 	while (1) {
1980 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1981 		int ret, lnum = lprops->lnum;
1982 
1983 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1984 		if (ret < 0) {
1985 			err = ret;
1986 			goto out;
1987 		}
1988 		if (ret & LPT_SCAN_ADD) {
1989 			/* Add all the nodes in path to the tree in memory */
1990 			for (h = 1; h < c->lpt_hght; h++) {
1991 				const size_t sz = sizeof(struct ubifs_nnode);
1992 				struct ubifs_nnode *parent;
1993 
1994 				if (path[h].in_tree)
1995 					continue;
1996 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1997 				if (!nnode) {
1998 					err = -ENOMEM;
1999 					goto out;
2000 				}
2001 				parent = nnode->parent;
2002 				parent->nbranch[nnode->iip].nnode = nnode;
2003 				path[h].ptr.nnode = nnode;
2004 				path[h].in_tree = 1;
2005 				path[h + 1].cnode.parent = nnode;
2006 			}
2007 			if (path[h].in_tree)
2008 				ubifs_ensure_cat(c, lprops);
2009 			else {
2010 				const size_t sz = sizeof(struct ubifs_pnode);
2011 				struct ubifs_nnode *parent;
2012 
2013 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2014 				if (!pnode) {
2015 					err = -ENOMEM;
2016 					goto out;
2017 				}
2018 				parent = pnode->parent;
2019 				parent->nbranch[pnode->iip].pnode = pnode;
2020 				path[h].ptr.pnode = pnode;
2021 				path[h].in_tree = 1;
2022 				update_cats(c, pnode);
2023 				c->pnodes_have += 1;
2024 			}
2025 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2026 						  c->nroot, 0, 0);
2027 			if (err)
2028 				goto out;
2029 			err = dbg_check_cats(c);
2030 			if (err)
2031 				goto out;
2032 		}
2033 		if (ret & LPT_SCAN_STOP) {
2034 			err = 0;
2035 			break;
2036 		}
2037 		/* Get the next lprops */
2038 		if (lnum == end_lnum) {
2039 			/*
2040 			 * We got to the end without finding what we were
2041 			 * looking for
2042 			 */
2043 			err = -ENOSPC;
2044 			goto out;
2045 		}
2046 		if (lnum + 1 >= c->leb_cnt) {
2047 			/* Wrap-around to the beginning */
2048 			start_lnum = c->main_first;
2049 			goto again;
2050 		}
2051 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2052 			/* Next lprops is in the same pnode */
2053 			iip += 1;
2054 			continue;
2055 		}
2056 		/* We need to get the next pnode. Go up until we can go right */
2057 		iip = pnode->iip;
2058 		while (1) {
2059 			h -= 1;
2060 			ubifs_assert(c, h >= 0);
2061 			nnode = path[h].ptr.nnode;
2062 			if (iip + 1 < UBIFS_LPT_FANOUT)
2063 				break;
2064 			iip = nnode->iip;
2065 		}
2066 		/* Go right */
2067 		iip += 1;
2068 		/* Descend to the pnode */
2069 		h += 1;
2070 		for (; h < c->lpt_hght; h++) {
2071 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2072 			if (IS_ERR(nnode)) {
2073 				err = PTR_ERR(nnode);
2074 				goto out;
2075 			}
2076 			iip = 0;
2077 		}
2078 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2079 		if (IS_ERR(pnode)) {
2080 			err = PTR_ERR(pnode);
2081 			goto out;
2082 		}
2083 		iip = 0;
2084 	}
2085 out:
2086 	kfree(path);
2087 	return err;
2088 }
2089 
2090 /**
2091  * dbg_chk_pnode - check a pnode.
2092  * @c: the UBIFS file-system description object
2093  * @pnode: pnode to check
2094  * @col: pnode column
2095  *
2096  * This function returns %0 on success and a negative error code on failure.
2097  */
2098 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2099 			 int col)
2100 {
2101 	int i;
2102 
2103 	if (pnode->num != col) {
2104 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2105 			  pnode->num, col, pnode->parent->num, pnode->iip);
2106 		return -EINVAL;
2107 	}
2108 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2109 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2110 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2111 			   c->main_first;
2112 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2113 		struct ubifs_lpt_heap *heap;
2114 		struct list_head *list = NULL;
2115 
2116 		if (lnum >= c->leb_cnt)
2117 			continue;
2118 		if (lprops->lnum != lnum) {
2119 			ubifs_err(c, "bad LEB number %d expected %d",
2120 				  lprops->lnum, lnum);
2121 			return -EINVAL;
2122 		}
2123 		if (lprops->flags & LPROPS_TAKEN) {
2124 			if (cat != LPROPS_UNCAT) {
2125 				ubifs_err(c, "LEB %d taken but not uncat %d",
2126 					  lprops->lnum, cat);
2127 				return -EINVAL;
2128 			}
2129 			continue;
2130 		}
2131 		if (lprops->flags & LPROPS_INDEX) {
2132 			switch (cat) {
2133 			case LPROPS_UNCAT:
2134 			case LPROPS_DIRTY_IDX:
2135 			case LPROPS_FRDI_IDX:
2136 				break;
2137 			default:
2138 				ubifs_err(c, "LEB %d index but cat %d",
2139 					  lprops->lnum, cat);
2140 				return -EINVAL;
2141 			}
2142 		} else {
2143 			switch (cat) {
2144 			case LPROPS_UNCAT:
2145 			case LPROPS_DIRTY:
2146 			case LPROPS_FREE:
2147 			case LPROPS_EMPTY:
2148 			case LPROPS_FREEABLE:
2149 				break;
2150 			default:
2151 				ubifs_err(c, "LEB %d not index but cat %d",
2152 					  lprops->lnum, cat);
2153 				return -EINVAL;
2154 			}
2155 		}
2156 		switch (cat) {
2157 		case LPROPS_UNCAT:
2158 			list = &c->uncat_list;
2159 			break;
2160 		case LPROPS_EMPTY:
2161 			list = &c->empty_list;
2162 			break;
2163 		case LPROPS_FREEABLE:
2164 			list = &c->freeable_list;
2165 			break;
2166 		case LPROPS_FRDI_IDX:
2167 			list = &c->frdi_idx_list;
2168 			break;
2169 		}
2170 		found = 0;
2171 		switch (cat) {
2172 		case LPROPS_DIRTY:
2173 		case LPROPS_DIRTY_IDX:
2174 		case LPROPS_FREE:
2175 			heap = &c->lpt_heap[cat - 1];
2176 			if (lprops->hpos < heap->cnt &&
2177 			    heap->arr[lprops->hpos] == lprops)
2178 				found = 1;
2179 			break;
2180 		case LPROPS_UNCAT:
2181 		case LPROPS_EMPTY:
2182 		case LPROPS_FREEABLE:
2183 		case LPROPS_FRDI_IDX:
2184 			list_for_each_entry(lp, list, list)
2185 				if (lprops == lp) {
2186 					found = 1;
2187 					break;
2188 				}
2189 			break;
2190 		}
2191 		if (!found) {
2192 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2193 				  lprops->lnum, cat);
2194 			return -EINVAL;
2195 		}
2196 		switch (cat) {
2197 		case LPROPS_EMPTY:
2198 			if (lprops->free != c->leb_size) {
2199 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2200 					  lprops->lnum, cat, lprops->free,
2201 					  lprops->dirty);
2202 				return -EINVAL;
2203 			}
2204 			break;
2205 		case LPROPS_FREEABLE:
2206 		case LPROPS_FRDI_IDX:
2207 			if (lprops->free + lprops->dirty != c->leb_size) {
2208 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2209 					  lprops->lnum, cat, lprops->free,
2210 					  lprops->dirty);
2211 				return -EINVAL;
2212 			}
2213 			break;
2214 		}
2215 	}
2216 	return 0;
2217 }
2218 
2219 /**
2220  * dbg_check_lpt_nodes - check nnodes and pnodes.
2221  * @c: the UBIFS file-system description object
2222  * @cnode: next cnode (nnode or pnode) to check
2223  * @row: row of cnode (root is zero)
2224  * @col: column of cnode (leftmost is zero)
2225  *
2226  * This function returns %0 on success and a negative error code on failure.
2227  */
2228 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2229 			int row, int col)
2230 {
2231 	struct ubifs_nnode *nnode, *nn;
2232 	struct ubifs_cnode *cn;
2233 	int num, iip = 0, err;
2234 
2235 	if (!dbg_is_chk_lprops(c))
2236 		return 0;
2237 
2238 	while (cnode) {
2239 		ubifs_assert(c, row >= 0);
2240 		nnode = cnode->parent;
2241 		if (cnode->level) {
2242 			/* cnode is a nnode */
2243 			num = calc_nnode_num(row, col);
2244 			if (cnode->num != num) {
2245 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2246 					  cnode->num, num,
2247 					  (nnode ? nnode->num : 0), cnode->iip);
2248 				return -EINVAL;
2249 			}
2250 			nn = (struct ubifs_nnode *)cnode;
2251 			while (iip < UBIFS_LPT_FANOUT) {
2252 				cn = nn->nbranch[iip].cnode;
2253 				if (cn) {
2254 					/* Go down */
2255 					row += 1;
2256 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2257 					col += iip;
2258 					iip = 0;
2259 					cnode = cn;
2260 					break;
2261 				}
2262 				/* Go right */
2263 				iip += 1;
2264 			}
2265 			if (iip < UBIFS_LPT_FANOUT)
2266 				continue;
2267 		} else {
2268 			struct ubifs_pnode *pnode;
2269 
2270 			/* cnode is a pnode */
2271 			pnode = (struct ubifs_pnode *)cnode;
2272 			err = dbg_chk_pnode(c, pnode, col);
2273 			if (err)
2274 				return err;
2275 		}
2276 		/* Go up and to the right */
2277 		row -= 1;
2278 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2279 		iip = cnode->iip + 1;
2280 		cnode = (struct ubifs_cnode *)nnode;
2281 	}
2282 	return 0;
2283 }
2284