1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the LEB properties tree (LPT) area. The LPT area 25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and 26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits 27 * between the log and the orphan area. 28 * 29 * The LPT area is like a miniature self-contained file system. It is required 30 * that it never runs out of space, is fast to access and update, and scales 31 * logarithmically. The LEB properties tree is implemented as a wandering tree 32 * much like the TNC, and the LPT area has its own garbage collection. 33 * 34 * The LPT has two slightly different forms called the "small model" and the 35 * "big model". The small model is used when the entire LEB properties table 36 * can be written into a single eraseblock. In that case, garbage collection 37 * consists of just writing the whole table, which therefore makes all other 38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are 39 * selected for garbage collection, which consists of marking the clean nodes in 40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in 41 * the case of the big model, a table of LEB numbers is saved so that the entire 42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first 43 * mounted. 44 */ 45 46 #include "ubifs.h" 47 #include <linux/crc16.h> 48 #include <linux/math64.h> 49 50 /** 51 * do_calc_lpt_geom - calculate sizes for the LPT area. 52 * @c: the UBIFS file-system description object 53 * 54 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the 55 * properties of the flash and whether LPT is "big" (c->big_lpt). 56 */ 57 static void do_calc_lpt_geom(struct ubifs_info *c) 58 { 59 int i, n, bits, per_leb_wastage, max_pnode_cnt; 60 long long sz, tot_wastage; 61 62 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; 63 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 64 65 c->lpt_hght = 1; 66 n = UBIFS_LPT_FANOUT; 67 while (n < max_pnode_cnt) { 68 c->lpt_hght += 1; 69 n <<= UBIFS_LPT_FANOUT_SHIFT; 70 } 71 72 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 73 74 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); 75 c->nnode_cnt = n; 76 for (i = 1; i < c->lpt_hght; i++) { 77 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 78 c->nnode_cnt += n; 79 } 80 81 c->space_bits = fls(c->leb_size) - 3; 82 c->lpt_lnum_bits = fls(c->lpt_lebs); 83 c->lpt_offs_bits = fls(c->leb_size - 1); 84 c->lpt_spc_bits = fls(c->leb_size); 85 86 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); 87 c->pcnt_bits = fls(n - 1); 88 89 c->lnum_bits = fls(c->max_leb_cnt - 1); 90 91 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 92 (c->big_lpt ? c->pcnt_bits : 0) + 93 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; 94 c->pnode_sz = (bits + 7) / 8; 95 96 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 97 (c->big_lpt ? c->pcnt_bits : 0) + 98 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; 99 c->nnode_sz = (bits + 7) / 8; 100 101 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 102 c->lpt_lebs * c->lpt_spc_bits * 2; 103 c->ltab_sz = (bits + 7) / 8; 104 105 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 106 c->lnum_bits * c->lsave_cnt; 107 c->lsave_sz = (bits + 7) / 8; 108 109 /* Calculate the minimum LPT size */ 110 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; 111 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; 112 c->lpt_sz += c->ltab_sz; 113 if (c->big_lpt) 114 c->lpt_sz += c->lsave_sz; 115 116 /* Add wastage */ 117 sz = c->lpt_sz; 118 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); 119 sz += per_leb_wastage; 120 tot_wastage = per_leb_wastage; 121 while (sz > c->leb_size) { 122 sz += per_leb_wastage; 123 sz -= c->leb_size; 124 tot_wastage += per_leb_wastage; 125 } 126 tot_wastage += ALIGN(sz, c->min_io_size) - sz; 127 c->lpt_sz += tot_wastage; 128 } 129 130 /** 131 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. 132 * @c: the UBIFS file-system description object 133 * 134 * This function returns %0 on success and a negative error code on failure. 135 */ 136 int ubifs_calc_lpt_geom(struct ubifs_info *c) 137 { 138 int lebs_needed; 139 long long sz; 140 141 do_calc_lpt_geom(c); 142 143 /* Verify that lpt_lebs is big enough */ 144 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ 145 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 146 if (lebs_needed > c->lpt_lebs) { 147 ubifs_err("too few LPT LEBs"); 148 return -EINVAL; 149 } 150 151 /* Verify that ltab fits in a single LEB (since ltab is a single node */ 152 if (c->ltab_sz > c->leb_size) { 153 ubifs_err("LPT ltab too big"); 154 return -EINVAL; 155 } 156 157 c->check_lpt_free = c->big_lpt; 158 return 0; 159 } 160 161 /** 162 * calc_dflt_lpt_geom - calculate default LPT geometry. 163 * @c: the UBIFS file-system description object 164 * @main_lebs: number of main area LEBs is passed and returned here 165 * @big_lpt: whether the LPT area is "big" is returned here 166 * 167 * The size of the LPT area depends on parameters that themselves are dependent 168 * on the size of the LPT area. This function, successively recalculates the LPT 169 * area geometry until the parameters and resultant geometry are consistent. 170 * 171 * This function returns %0 on success and a negative error code on failure. 172 */ 173 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, 174 int *big_lpt) 175 { 176 int i, lebs_needed; 177 long long sz; 178 179 /* Start by assuming the minimum number of LPT LEBs */ 180 c->lpt_lebs = UBIFS_MIN_LPT_LEBS; 181 c->main_lebs = *main_lebs - c->lpt_lebs; 182 if (c->main_lebs <= 0) 183 return -EINVAL; 184 185 /* And assume we will use the small LPT model */ 186 c->big_lpt = 0; 187 188 /* 189 * Calculate the geometry based on assumptions above and then see if it 190 * makes sense 191 */ 192 do_calc_lpt_geom(c); 193 194 /* Small LPT model must have lpt_sz < leb_size */ 195 if (c->lpt_sz > c->leb_size) { 196 /* Nope, so try again using big LPT model */ 197 c->big_lpt = 1; 198 do_calc_lpt_geom(c); 199 } 200 201 /* Now check there are enough LPT LEBs */ 202 for (i = 0; i < 64 ; i++) { 203 sz = c->lpt_sz * 4; /* Allow 4 times the size */ 204 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 205 if (lebs_needed > c->lpt_lebs) { 206 /* Not enough LPT LEBs so try again with more */ 207 c->lpt_lebs = lebs_needed; 208 c->main_lebs = *main_lebs - c->lpt_lebs; 209 if (c->main_lebs <= 0) 210 return -EINVAL; 211 do_calc_lpt_geom(c); 212 continue; 213 } 214 if (c->ltab_sz > c->leb_size) { 215 ubifs_err("LPT ltab too big"); 216 return -EINVAL; 217 } 218 *main_lebs = c->main_lebs; 219 *big_lpt = c->big_lpt; 220 return 0; 221 } 222 return -EINVAL; 223 } 224 225 /** 226 * pack_bits - pack bit fields end-to-end. 227 * @addr: address at which to pack (passed and next address returned) 228 * @pos: bit position at which to pack (passed and next position returned) 229 * @val: value to pack 230 * @nrbits: number of bits of value to pack (1-32) 231 */ 232 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) 233 { 234 uint8_t *p = *addr; 235 int b = *pos; 236 237 ubifs_assert(nrbits > 0); 238 ubifs_assert(nrbits <= 32); 239 ubifs_assert(*pos >= 0); 240 ubifs_assert(*pos < 8); 241 ubifs_assert((val >> nrbits) == 0 || nrbits == 32); 242 if (b) { 243 *p |= ((uint8_t)val) << b; 244 nrbits += b; 245 if (nrbits > 8) { 246 *++p = (uint8_t)(val >>= (8 - b)); 247 if (nrbits > 16) { 248 *++p = (uint8_t)(val >>= 8); 249 if (nrbits > 24) { 250 *++p = (uint8_t)(val >>= 8); 251 if (nrbits > 32) 252 *++p = (uint8_t)(val >>= 8); 253 } 254 } 255 } 256 } else { 257 *p = (uint8_t)val; 258 if (nrbits > 8) { 259 *++p = (uint8_t)(val >>= 8); 260 if (nrbits > 16) { 261 *++p = (uint8_t)(val >>= 8); 262 if (nrbits > 24) 263 *++p = (uint8_t)(val >>= 8); 264 } 265 } 266 } 267 b = nrbits & 7; 268 if (b == 0) 269 p++; 270 *addr = p; 271 *pos = b; 272 } 273 274 /** 275 * ubifs_unpack_bits - unpack bit fields. 276 * @addr: address at which to unpack (passed and next address returned) 277 * @pos: bit position at which to unpack (passed and next position returned) 278 * @nrbits: number of bits of value to unpack (1-32) 279 * 280 * This functions returns the value unpacked. 281 */ 282 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) 283 { 284 const int k = 32 - nrbits; 285 uint8_t *p = *addr; 286 int b = *pos; 287 uint32_t uninitialized_var(val); 288 const int bytes = (nrbits + b + 7) >> 3; 289 290 ubifs_assert(nrbits > 0); 291 ubifs_assert(nrbits <= 32); 292 ubifs_assert(*pos >= 0); 293 ubifs_assert(*pos < 8); 294 if (b) { 295 switch (bytes) { 296 case 2: 297 val = p[1]; 298 break; 299 case 3: 300 val = p[1] | ((uint32_t)p[2] << 8); 301 break; 302 case 4: 303 val = p[1] | ((uint32_t)p[2] << 8) | 304 ((uint32_t)p[3] << 16); 305 break; 306 case 5: 307 val = p[1] | ((uint32_t)p[2] << 8) | 308 ((uint32_t)p[3] << 16) | 309 ((uint32_t)p[4] << 24); 310 } 311 val <<= (8 - b); 312 val |= *p >> b; 313 nrbits += b; 314 } else { 315 switch (bytes) { 316 case 1: 317 val = p[0]; 318 break; 319 case 2: 320 val = p[0] | ((uint32_t)p[1] << 8); 321 break; 322 case 3: 323 val = p[0] | ((uint32_t)p[1] << 8) | 324 ((uint32_t)p[2] << 16); 325 break; 326 case 4: 327 val = p[0] | ((uint32_t)p[1] << 8) | 328 ((uint32_t)p[2] << 16) | 329 ((uint32_t)p[3] << 24); 330 break; 331 } 332 } 333 val <<= k; 334 val >>= k; 335 b = nrbits & 7; 336 p += nrbits >> 3; 337 *addr = p; 338 *pos = b; 339 ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32); 340 return val; 341 } 342 343 /** 344 * ubifs_pack_pnode - pack all the bit fields of a pnode. 345 * @c: UBIFS file-system description object 346 * @buf: buffer into which to pack 347 * @pnode: pnode to pack 348 */ 349 void ubifs_pack_pnode(struct ubifs_info *c, void *buf, 350 struct ubifs_pnode *pnode) 351 { 352 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 353 int i, pos = 0; 354 uint16_t crc; 355 356 pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); 357 if (c->big_lpt) 358 pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); 359 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 360 pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, 361 c->space_bits); 362 pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, 363 c->space_bits); 364 if (pnode->lprops[i].flags & LPROPS_INDEX) 365 pack_bits(&addr, &pos, 1, 1); 366 else 367 pack_bits(&addr, &pos, 0, 1); 368 } 369 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 370 c->pnode_sz - UBIFS_LPT_CRC_BYTES); 371 addr = buf; 372 pos = 0; 373 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 374 } 375 376 /** 377 * ubifs_pack_nnode - pack all the bit fields of a nnode. 378 * @c: UBIFS file-system description object 379 * @buf: buffer into which to pack 380 * @nnode: nnode to pack 381 */ 382 void ubifs_pack_nnode(struct ubifs_info *c, void *buf, 383 struct ubifs_nnode *nnode) 384 { 385 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 386 int i, pos = 0; 387 uint16_t crc; 388 389 pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); 390 if (c->big_lpt) 391 pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); 392 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 393 int lnum = nnode->nbranch[i].lnum; 394 395 if (lnum == 0) 396 lnum = c->lpt_last + 1; 397 pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); 398 pack_bits(&addr, &pos, nnode->nbranch[i].offs, 399 c->lpt_offs_bits); 400 } 401 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 402 c->nnode_sz - UBIFS_LPT_CRC_BYTES); 403 addr = buf; 404 pos = 0; 405 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 406 } 407 408 /** 409 * ubifs_pack_ltab - pack the LPT's own lprops table. 410 * @c: UBIFS file-system description object 411 * @buf: buffer into which to pack 412 * @ltab: LPT's own lprops table to pack 413 */ 414 void ubifs_pack_ltab(struct ubifs_info *c, void *buf, 415 struct ubifs_lpt_lprops *ltab) 416 { 417 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 418 int i, pos = 0; 419 uint16_t crc; 420 421 pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); 422 for (i = 0; i < c->lpt_lebs; i++) { 423 pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); 424 pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); 425 } 426 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 427 c->ltab_sz - UBIFS_LPT_CRC_BYTES); 428 addr = buf; 429 pos = 0; 430 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 431 } 432 433 /** 434 * ubifs_pack_lsave - pack the LPT's save table. 435 * @c: UBIFS file-system description object 436 * @buf: buffer into which to pack 437 * @lsave: LPT's save table to pack 438 */ 439 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) 440 { 441 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 442 int i, pos = 0; 443 uint16_t crc; 444 445 pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); 446 for (i = 0; i < c->lsave_cnt; i++) 447 pack_bits(&addr, &pos, lsave[i], c->lnum_bits); 448 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 449 c->lsave_sz - UBIFS_LPT_CRC_BYTES); 450 addr = buf; 451 pos = 0; 452 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); 453 } 454 455 /** 456 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. 457 * @c: UBIFS file-system description object 458 * @lnum: LEB number to which to add dirty space 459 * @dirty: amount of dirty space to add 460 */ 461 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) 462 { 463 if (!dirty || !lnum) 464 return; 465 dbg_lp("LEB %d add %d to %d", 466 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); 467 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 468 c->ltab[lnum - c->lpt_first].dirty += dirty; 469 } 470 471 /** 472 * set_ltab - set LPT LEB properties. 473 * @c: UBIFS file-system description object 474 * @lnum: LEB number 475 * @free: amount of free space 476 * @dirty: amount of dirty space 477 */ 478 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) 479 { 480 dbg_lp("LEB %d free %d dirty %d to %d %d", 481 lnum, c->ltab[lnum - c->lpt_first].free, 482 c->ltab[lnum - c->lpt_first].dirty, free, dirty); 483 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); 484 c->ltab[lnum - c->lpt_first].free = free; 485 c->ltab[lnum - c->lpt_first].dirty = dirty; 486 } 487 488 /** 489 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. 490 * @c: UBIFS file-system description object 491 * @nnode: nnode for which to add dirt 492 */ 493 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) 494 { 495 struct ubifs_nnode *np = nnode->parent; 496 497 if (np) 498 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, 499 c->nnode_sz); 500 else { 501 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); 502 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { 503 c->lpt_drty_flgs |= LTAB_DIRTY; 504 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); 505 } 506 } 507 } 508 509 /** 510 * add_pnode_dirt - add dirty space to LPT LEB properties. 511 * @c: UBIFS file-system description object 512 * @pnode: pnode for which to add dirt 513 */ 514 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) 515 { 516 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, 517 c->pnode_sz); 518 } 519 520 /** 521 * calc_nnode_num - calculate nnode number. 522 * @row: the row in the tree (root is zero) 523 * @col: the column in the row (leftmost is zero) 524 * 525 * The nnode number is a number that uniquely identifies a nnode and can be used 526 * easily to traverse the tree from the root to that nnode. 527 * 528 * This function calculates and returns the nnode number for the nnode at @row 529 * and @col. 530 */ 531 static int calc_nnode_num(int row, int col) 532 { 533 int num, bits; 534 535 num = 1; 536 while (row--) { 537 bits = (col & (UBIFS_LPT_FANOUT - 1)); 538 col >>= UBIFS_LPT_FANOUT_SHIFT; 539 num <<= UBIFS_LPT_FANOUT_SHIFT; 540 num |= bits; 541 } 542 return num; 543 } 544 545 /** 546 * calc_nnode_num_from_parent - calculate nnode number. 547 * @c: UBIFS file-system description object 548 * @parent: parent nnode 549 * @iip: index in parent 550 * 551 * The nnode number is a number that uniquely identifies a nnode and can be used 552 * easily to traverse the tree from the root to that nnode. 553 * 554 * This function calculates and returns the nnode number based on the parent's 555 * nnode number and the index in parent. 556 */ 557 static int calc_nnode_num_from_parent(const struct ubifs_info *c, 558 struct ubifs_nnode *parent, int iip) 559 { 560 int num, shft; 561 562 if (!parent) 563 return 1; 564 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; 565 num = parent->num ^ (1 << shft); 566 num |= (UBIFS_LPT_FANOUT + iip) << shft; 567 return num; 568 } 569 570 /** 571 * calc_pnode_num_from_parent - calculate pnode number. 572 * @c: UBIFS file-system description object 573 * @parent: parent nnode 574 * @iip: index in parent 575 * 576 * The pnode number is a number that uniquely identifies a pnode and can be used 577 * easily to traverse the tree from the root to that pnode. 578 * 579 * This function calculates and returns the pnode number based on the parent's 580 * nnode number and the index in parent. 581 */ 582 static int calc_pnode_num_from_parent(const struct ubifs_info *c, 583 struct ubifs_nnode *parent, int iip) 584 { 585 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; 586 587 for (i = 0; i < n; i++) { 588 num <<= UBIFS_LPT_FANOUT_SHIFT; 589 num |= pnum & (UBIFS_LPT_FANOUT - 1); 590 pnum >>= UBIFS_LPT_FANOUT_SHIFT; 591 } 592 num <<= UBIFS_LPT_FANOUT_SHIFT; 593 num |= iip; 594 return num; 595 } 596 597 /** 598 * ubifs_create_dflt_lpt - create default LPT. 599 * @c: UBIFS file-system description object 600 * @main_lebs: number of main area LEBs is passed and returned here 601 * @lpt_first: LEB number of first LPT LEB 602 * @lpt_lebs: number of LEBs for LPT is passed and returned here 603 * @big_lpt: use big LPT model is passed and returned here 604 * 605 * This function returns %0 on success and a negative error code on failure. 606 */ 607 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, 608 int *lpt_lebs, int *big_lpt) 609 { 610 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; 611 int blnum, boffs, bsz, bcnt; 612 struct ubifs_pnode *pnode = NULL; 613 struct ubifs_nnode *nnode = NULL; 614 void *buf = NULL, *p; 615 struct ubifs_lpt_lprops *ltab = NULL; 616 int *lsave = NULL; 617 618 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); 619 if (err) 620 return err; 621 *lpt_lebs = c->lpt_lebs; 622 623 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ 624 c->lpt_first = lpt_first; 625 /* Needed by 'set_ltab()' */ 626 c->lpt_last = lpt_first + c->lpt_lebs - 1; 627 /* Needed by 'ubifs_pack_lsave()' */ 628 c->main_first = c->leb_cnt - *main_lebs; 629 630 lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); 631 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); 632 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); 633 buf = vmalloc(c->leb_size); 634 ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 635 if (!pnode || !nnode || !buf || !ltab || !lsave) { 636 err = -ENOMEM; 637 goto out; 638 } 639 640 ubifs_assert(!c->ltab); 641 c->ltab = ltab; /* Needed by set_ltab */ 642 643 /* Initialize LPT's own lprops */ 644 for (i = 0; i < c->lpt_lebs; i++) { 645 ltab[i].free = c->leb_size; 646 ltab[i].dirty = 0; 647 ltab[i].tgc = 0; 648 ltab[i].cmt = 0; 649 } 650 651 lnum = lpt_first; 652 p = buf; 653 /* Number of leaf nodes (pnodes) */ 654 cnt = c->pnode_cnt; 655 656 /* 657 * The first pnode contains the LEB properties for the LEBs that contain 658 * the root inode node and the root index node of the index tree. 659 */ 660 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); 661 iopos = ALIGN(node_sz, c->min_io_size); 662 pnode->lprops[0].free = c->leb_size - iopos; 663 pnode->lprops[0].dirty = iopos - node_sz; 664 pnode->lprops[0].flags = LPROPS_INDEX; 665 666 node_sz = UBIFS_INO_NODE_SZ; 667 iopos = ALIGN(node_sz, c->min_io_size); 668 pnode->lprops[1].free = c->leb_size - iopos; 669 pnode->lprops[1].dirty = iopos - node_sz; 670 671 for (i = 2; i < UBIFS_LPT_FANOUT; i++) 672 pnode->lprops[i].free = c->leb_size; 673 674 /* Add first pnode */ 675 ubifs_pack_pnode(c, p, pnode); 676 p += c->pnode_sz; 677 len = c->pnode_sz; 678 pnode->num += 1; 679 680 /* Reset pnode values for remaining pnodes */ 681 pnode->lprops[0].free = c->leb_size; 682 pnode->lprops[0].dirty = 0; 683 pnode->lprops[0].flags = 0; 684 685 pnode->lprops[1].free = c->leb_size; 686 pnode->lprops[1].dirty = 0; 687 688 /* 689 * To calculate the internal node branches, we keep information about 690 * the level below. 691 */ 692 blnum = lnum; /* LEB number of level below */ 693 boffs = 0; /* Offset of level below */ 694 bcnt = cnt; /* Number of nodes in level below */ 695 bsz = c->pnode_sz; /* Size of nodes in level below */ 696 697 /* Add all remaining pnodes */ 698 for (i = 1; i < cnt; i++) { 699 if (len + c->pnode_sz > c->leb_size) { 700 alen = ALIGN(len, c->min_io_size); 701 set_ltab(c, lnum, c->leb_size - alen, alen - len); 702 memset(p, 0xff, alen - len); 703 err = ubi_leb_change(c->ubi, lnum++, buf, alen, 704 UBI_SHORTTERM); 705 if (err) 706 goto out; 707 p = buf; 708 len = 0; 709 } 710 ubifs_pack_pnode(c, p, pnode); 711 p += c->pnode_sz; 712 len += c->pnode_sz; 713 /* 714 * pnodes are simply numbered left to right starting at zero, 715 * which means the pnode number can be used easily to traverse 716 * down the tree to the corresponding pnode. 717 */ 718 pnode->num += 1; 719 } 720 721 row = 0; 722 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) 723 row += 1; 724 /* Add all nnodes, one level at a time */ 725 while (1) { 726 /* Number of internal nodes (nnodes) at next level */ 727 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); 728 for (i = 0; i < cnt; i++) { 729 if (len + c->nnode_sz > c->leb_size) { 730 alen = ALIGN(len, c->min_io_size); 731 set_ltab(c, lnum, c->leb_size - alen, 732 alen - len); 733 memset(p, 0xff, alen - len); 734 err = ubi_leb_change(c->ubi, lnum++, buf, alen, 735 UBI_SHORTTERM); 736 if (err) 737 goto out; 738 p = buf; 739 len = 0; 740 } 741 /* Only 1 nnode at this level, so it is the root */ 742 if (cnt == 1) { 743 c->lpt_lnum = lnum; 744 c->lpt_offs = len; 745 } 746 /* Set branches to the level below */ 747 for (j = 0; j < UBIFS_LPT_FANOUT; j++) { 748 if (bcnt) { 749 if (boffs + bsz > c->leb_size) { 750 blnum += 1; 751 boffs = 0; 752 } 753 nnode->nbranch[j].lnum = blnum; 754 nnode->nbranch[j].offs = boffs; 755 boffs += bsz; 756 bcnt--; 757 } else { 758 nnode->nbranch[j].lnum = 0; 759 nnode->nbranch[j].offs = 0; 760 } 761 } 762 nnode->num = calc_nnode_num(row, i); 763 ubifs_pack_nnode(c, p, nnode); 764 p += c->nnode_sz; 765 len += c->nnode_sz; 766 } 767 /* Only 1 nnode at this level, so it is the root */ 768 if (cnt == 1) 769 break; 770 /* Update the information about the level below */ 771 bcnt = cnt; 772 bsz = c->nnode_sz; 773 row -= 1; 774 } 775 776 if (*big_lpt) { 777 /* Need to add LPT's save table */ 778 if (len + c->lsave_sz > c->leb_size) { 779 alen = ALIGN(len, c->min_io_size); 780 set_ltab(c, lnum, c->leb_size - alen, alen - len); 781 memset(p, 0xff, alen - len); 782 err = ubi_leb_change(c->ubi, lnum++, buf, alen, 783 UBI_SHORTTERM); 784 if (err) 785 goto out; 786 p = buf; 787 len = 0; 788 } 789 790 c->lsave_lnum = lnum; 791 c->lsave_offs = len; 792 793 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) 794 lsave[i] = c->main_first + i; 795 for (; i < c->lsave_cnt; i++) 796 lsave[i] = c->main_first; 797 798 ubifs_pack_lsave(c, p, lsave); 799 p += c->lsave_sz; 800 len += c->lsave_sz; 801 } 802 803 /* Need to add LPT's own LEB properties table */ 804 if (len + c->ltab_sz > c->leb_size) { 805 alen = ALIGN(len, c->min_io_size); 806 set_ltab(c, lnum, c->leb_size - alen, alen - len); 807 memset(p, 0xff, alen - len); 808 err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM); 809 if (err) 810 goto out; 811 p = buf; 812 len = 0; 813 } 814 815 c->ltab_lnum = lnum; 816 c->ltab_offs = len; 817 818 /* Update ltab before packing it */ 819 len += c->ltab_sz; 820 alen = ALIGN(len, c->min_io_size); 821 set_ltab(c, lnum, c->leb_size - alen, alen - len); 822 823 ubifs_pack_ltab(c, p, ltab); 824 p += c->ltab_sz; 825 826 /* Write remaining buffer */ 827 memset(p, 0xff, alen - len); 828 err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM); 829 if (err) 830 goto out; 831 832 c->nhead_lnum = lnum; 833 c->nhead_offs = ALIGN(len, c->min_io_size); 834 835 dbg_lp("space_bits %d", c->space_bits); 836 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 837 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 838 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 839 dbg_lp("pcnt_bits %d", c->pcnt_bits); 840 dbg_lp("lnum_bits %d", c->lnum_bits); 841 dbg_lp("pnode_sz %d", c->pnode_sz); 842 dbg_lp("nnode_sz %d", c->nnode_sz); 843 dbg_lp("ltab_sz %d", c->ltab_sz); 844 dbg_lp("lsave_sz %d", c->lsave_sz); 845 dbg_lp("lsave_cnt %d", c->lsave_cnt); 846 dbg_lp("lpt_hght %d", c->lpt_hght); 847 dbg_lp("big_lpt %d", c->big_lpt); 848 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 849 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 850 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 851 if (c->big_lpt) 852 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 853 out: 854 c->ltab = NULL; 855 kfree(lsave); 856 vfree(ltab); 857 vfree(buf); 858 kfree(nnode); 859 kfree(pnode); 860 return err; 861 } 862 863 /** 864 * update_cats - add LEB properties of a pnode to LEB category lists and heaps. 865 * @c: UBIFS file-system description object 866 * @pnode: pnode 867 * 868 * When a pnode is loaded into memory, the LEB properties it contains are added, 869 * by this function, to the LEB category lists and heaps. 870 */ 871 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) 872 { 873 int i; 874 875 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 876 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; 877 int lnum = pnode->lprops[i].lnum; 878 879 if (!lnum) 880 return; 881 ubifs_add_to_cat(c, &pnode->lprops[i], cat); 882 } 883 } 884 885 /** 886 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. 887 * @c: UBIFS file-system description object 888 * @old_pnode: pnode copied 889 * @new_pnode: pnode copy 890 * 891 * During commit it is sometimes necessary to copy a pnode 892 * (see dirty_cow_pnode). When that happens, references in 893 * category lists and heaps must be replaced. This function does that. 894 */ 895 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, 896 struct ubifs_pnode *new_pnode) 897 { 898 int i; 899 900 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 901 if (!new_pnode->lprops[i].lnum) 902 return; 903 ubifs_replace_cat(c, &old_pnode->lprops[i], 904 &new_pnode->lprops[i]); 905 } 906 } 907 908 /** 909 * check_lpt_crc - check LPT node crc is correct. 910 * @c: UBIFS file-system description object 911 * @buf: buffer containing node 912 * @len: length of node 913 * 914 * This function returns %0 on success and a negative error code on failure. 915 */ 916 static int check_lpt_crc(void *buf, int len) 917 { 918 int pos = 0; 919 uint8_t *addr = buf; 920 uint16_t crc, calc_crc; 921 922 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); 923 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 924 len - UBIFS_LPT_CRC_BYTES); 925 if (crc != calc_crc) { 926 ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc, 927 calc_crc); 928 dbg_dump_stack(); 929 return -EINVAL; 930 } 931 return 0; 932 } 933 934 /** 935 * check_lpt_type - check LPT node type is correct. 936 * @c: UBIFS file-system description object 937 * @addr: address of type bit field is passed and returned updated here 938 * @pos: position of type bit field is passed and returned updated here 939 * @type: expected type 940 * 941 * This function returns %0 on success and a negative error code on failure. 942 */ 943 static int check_lpt_type(uint8_t **addr, int *pos, int type) 944 { 945 int node_type; 946 947 node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); 948 if (node_type != type) { 949 ubifs_err("invalid type (%d) in LPT node type %d", node_type, 950 type); 951 dbg_dump_stack(); 952 return -EINVAL; 953 } 954 return 0; 955 } 956 957 /** 958 * unpack_pnode - unpack a pnode. 959 * @c: UBIFS file-system description object 960 * @buf: buffer containing packed pnode to unpack 961 * @pnode: pnode structure to fill 962 * 963 * This function returns %0 on success and a negative error code on failure. 964 */ 965 static int unpack_pnode(const struct ubifs_info *c, void *buf, 966 struct ubifs_pnode *pnode) 967 { 968 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 969 int i, pos = 0, err; 970 971 err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE); 972 if (err) 973 return err; 974 if (c->big_lpt) 975 pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 976 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 977 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 978 979 lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits); 980 lprops->free <<= 3; 981 lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits); 982 lprops->dirty <<= 3; 983 984 if (ubifs_unpack_bits(&addr, &pos, 1)) 985 lprops->flags = LPROPS_INDEX; 986 else 987 lprops->flags = 0; 988 lprops->flags |= ubifs_categorize_lprops(c, lprops); 989 } 990 err = check_lpt_crc(buf, c->pnode_sz); 991 return err; 992 } 993 994 /** 995 * ubifs_unpack_nnode - unpack a nnode. 996 * @c: UBIFS file-system description object 997 * @buf: buffer containing packed nnode to unpack 998 * @nnode: nnode structure to fill 999 * 1000 * This function returns %0 on success and a negative error code on failure. 1001 */ 1002 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, 1003 struct ubifs_nnode *nnode) 1004 { 1005 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1006 int i, pos = 0, err; 1007 1008 err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE); 1009 if (err) 1010 return err; 1011 if (c->big_lpt) 1012 nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); 1013 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1014 int lnum; 1015 1016 lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) + 1017 c->lpt_first; 1018 if (lnum == c->lpt_last + 1) 1019 lnum = 0; 1020 nnode->nbranch[i].lnum = lnum; 1021 nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos, 1022 c->lpt_offs_bits); 1023 } 1024 err = check_lpt_crc(buf, c->nnode_sz); 1025 return err; 1026 } 1027 1028 /** 1029 * unpack_ltab - unpack the LPT's own lprops table. 1030 * @c: UBIFS file-system description object 1031 * @buf: buffer from which to unpack 1032 * 1033 * This function returns %0 on success and a negative error code on failure. 1034 */ 1035 static int unpack_ltab(const struct ubifs_info *c, void *buf) 1036 { 1037 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1038 int i, pos = 0, err; 1039 1040 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB); 1041 if (err) 1042 return err; 1043 for (i = 0; i < c->lpt_lebs; i++) { 1044 int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); 1045 int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); 1046 1047 if (free < 0 || free > c->leb_size || dirty < 0 || 1048 dirty > c->leb_size || free + dirty > c->leb_size) 1049 return -EINVAL; 1050 1051 c->ltab[i].free = free; 1052 c->ltab[i].dirty = dirty; 1053 c->ltab[i].tgc = 0; 1054 c->ltab[i].cmt = 0; 1055 } 1056 err = check_lpt_crc(buf, c->ltab_sz); 1057 return err; 1058 } 1059 1060 /** 1061 * unpack_lsave - unpack the LPT's save table. 1062 * @c: UBIFS file-system description object 1063 * @buf: buffer from which to unpack 1064 * 1065 * This function returns %0 on success and a negative error code on failure. 1066 */ 1067 static int unpack_lsave(const struct ubifs_info *c, void *buf) 1068 { 1069 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1070 int i, pos = 0, err; 1071 1072 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE); 1073 if (err) 1074 return err; 1075 for (i = 0; i < c->lsave_cnt; i++) { 1076 int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); 1077 1078 if (lnum < c->main_first || lnum >= c->leb_cnt) 1079 return -EINVAL; 1080 c->lsave[i] = lnum; 1081 } 1082 err = check_lpt_crc(buf, c->lsave_sz); 1083 return err; 1084 } 1085 1086 /** 1087 * validate_nnode - validate a nnode. 1088 * @c: UBIFS file-system description object 1089 * @nnode: nnode to validate 1090 * @parent: parent nnode (or NULL for the root nnode) 1091 * @iip: index in parent 1092 * 1093 * This function returns %0 on success and a negative error code on failure. 1094 */ 1095 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode, 1096 struct ubifs_nnode *parent, int iip) 1097 { 1098 int i, lvl, max_offs; 1099 1100 if (c->big_lpt) { 1101 int num = calc_nnode_num_from_parent(c, parent, iip); 1102 1103 if (nnode->num != num) 1104 return -EINVAL; 1105 } 1106 lvl = parent ? parent->level - 1 : c->lpt_hght; 1107 if (lvl < 1) 1108 return -EINVAL; 1109 if (lvl == 1) 1110 max_offs = c->leb_size - c->pnode_sz; 1111 else 1112 max_offs = c->leb_size - c->nnode_sz; 1113 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1114 int lnum = nnode->nbranch[i].lnum; 1115 int offs = nnode->nbranch[i].offs; 1116 1117 if (lnum == 0) { 1118 if (offs != 0) 1119 return -EINVAL; 1120 continue; 1121 } 1122 if (lnum < c->lpt_first || lnum > c->lpt_last) 1123 return -EINVAL; 1124 if (offs < 0 || offs > max_offs) 1125 return -EINVAL; 1126 } 1127 return 0; 1128 } 1129 1130 /** 1131 * validate_pnode - validate a pnode. 1132 * @c: UBIFS file-system description object 1133 * @pnode: pnode to validate 1134 * @parent: parent nnode 1135 * @iip: index in parent 1136 * 1137 * This function returns %0 on success and a negative error code on failure. 1138 */ 1139 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode, 1140 struct ubifs_nnode *parent, int iip) 1141 { 1142 int i; 1143 1144 if (c->big_lpt) { 1145 int num = calc_pnode_num_from_parent(c, parent, iip); 1146 1147 if (pnode->num != num) 1148 return -EINVAL; 1149 } 1150 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1151 int free = pnode->lprops[i].free; 1152 int dirty = pnode->lprops[i].dirty; 1153 1154 if (free < 0 || free > c->leb_size || free % c->min_io_size || 1155 (free & 7)) 1156 return -EINVAL; 1157 if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) 1158 return -EINVAL; 1159 if (dirty + free > c->leb_size) 1160 return -EINVAL; 1161 } 1162 return 0; 1163 } 1164 1165 /** 1166 * set_pnode_lnum - set LEB numbers on a pnode. 1167 * @c: UBIFS file-system description object 1168 * @pnode: pnode to update 1169 * 1170 * This function calculates the LEB numbers for the LEB properties it contains 1171 * based on the pnode number. 1172 */ 1173 static void set_pnode_lnum(const struct ubifs_info *c, 1174 struct ubifs_pnode *pnode) 1175 { 1176 int i, lnum; 1177 1178 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; 1179 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1180 if (lnum >= c->leb_cnt) 1181 return; 1182 pnode->lprops[i].lnum = lnum++; 1183 } 1184 } 1185 1186 /** 1187 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. 1188 * @c: UBIFS file-system description object 1189 * @parent: parent nnode (or NULL for the root) 1190 * @iip: index in parent 1191 * 1192 * This function returns %0 on success and a negative error code on failure. 1193 */ 1194 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1195 { 1196 struct ubifs_nbranch *branch = NULL; 1197 struct ubifs_nnode *nnode = NULL; 1198 void *buf = c->lpt_nod_buf; 1199 int err, lnum, offs; 1200 1201 if (parent) { 1202 branch = &parent->nbranch[iip]; 1203 lnum = branch->lnum; 1204 offs = branch->offs; 1205 } else { 1206 lnum = c->lpt_lnum; 1207 offs = c->lpt_offs; 1208 } 1209 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); 1210 if (!nnode) { 1211 err = -ENOMEM; 1212 goto out; 1213 } 1214 if (lnum == 0) { 1215 /* 1216 * This nnode was not written which just means that the LEB 1217 * properties in the subtree below it describe empty LEBs. We 1218 * make the nnode as though we had read it, which in fact means 1219 * doing almost nothing. 1220 */ 1221 if (c->big_lpt) 1222 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1223 } else { 1224 err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz); 1225 if (err) 1226 goto out; 1227 err = ubifs_unpack_nnode(c, buf, nnode); 1228 if (err) 1229 goto out; 1230 } 1231 err = validate_nnode(c, nnode, parent, iip); 1232 if (err) 1233 goto out; 1234 if (!c->big_lpt) 1235 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1236 if (parent) { 1237 branch->nnode = nnode; 1238 nnode->level = parent->level - 1; 1239 } else { 1240 c->nroot = nnode; 1241 nnode->level = c->lpt_hght; 1242 } 1243 nnode->parent = parent; 1244 nnode->iip = iip; 1245 return 0; 1246 1247 out: 1248 ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs); 1249 kfree(nnode); 1250 return err; 1251 } 1252 1253 /** 1254 * read_pnode - read a pnode from flash and link it to the tree in memory. 1255 * @c: UBIFS file-system description object 1256 * @parent: parent nnode 1257 * @iip: index in parent 1258 * 1259 * This function returns %0 on success and a negative error code on failure. 1260 */ 1261 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1262 { 1263 struct ubifs_nbranch *branch; 1264 struct ubifs_pnode *pnode = NULL; 1265 void *buf = c->lpt_nod_buf; 1266 int err, lnum, offs; 1267 1268 branch = &parent->nbranch[iip]; 1269 lnum = branch->lnum; 1270 offs = branch->offs; 1271 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); 1272 if (!pnode) { 1273 err = -ENOMEM; 1274 goto out; 1275 } 1276 if (lnum == 0) { 1277 /* 1278 * This pnode was not written which just means that the LEB 1279 * properties in it describe empty LEBs. We make the pnode as 1280 * though we had read it. 1281 */ 1282 int i; 1283 1284 if (c->big_lpt) 1285 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1286 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1287 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1288 1289 lprops->free = c->leb_size; 1290 lprops->flags = ubifs_categorize_lprops(c, lprops); 1291 } 1292 } else { 1293 err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz); 1294 if (err) 1295 goto out; 1296 err = unpack_pnode(c, buf, pnode); 1297 if (err) 1298 goto out; 1299 } 1300 err = validate_pnode(c, pnode, parent, iip); 1301 if (err) 1302 goto out; 1303 if (!c->big_lpt) 1304 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1305 branch->pnode = pnode; 1306 pnode->parent = parent; 1307 pnode->iip = iip; 1308 set_pnode_lnum(c, pnode); 1309 c->pnodes_have += 1; 1310 return 0; 1311 1312 out: 1313 ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs); 1314 dbg_dump_pnode(c, pnode, parent, iip); 1315 dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); 1316 kfree(pnode); 1317 return err; 1318 } 1319 1320 /** 1321 * read_ltab - read LPT's own lprops table. 1322 * @c: UBIFS file-system description object 1323 * 1324 * This function returns %0 on success and a negative error code on failure. 1325 */ 1326 static int read_ltab(struct ubifs_info *c) 1327 { 1328 int err; 1329 void *buf; 1330 1331 buf = vmalloc(c->ltab_sz); 1332 if (!buf) 1333 return -ENOMEM; 1334 err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz); 1335 if (err) 1336 goto out; 1337 err = unpack_ltab(c, buf); 1338 out: 1339 vfree(buf); 1340 return err; 1341 } 1342 1343 /** 1344 * read_lsave - read LPT's save table. 1345 * @c: UBIFS file-system description object 1346 * 1347 * This function returns %0 on success and a negative error code on failure. 1348 */ 1349 static int read_lsave(struct ubifs_info *c) 1350 { 1351 int err, i; 1352 void *buf; 1353 1354 buf = vmalloc(c->lsave_sz); 1355 if (!buf) 1356 return -ENOMEM; 1357 err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz); 1358 if (err) 1359 goto out; 1360 err = unpack_lsave(c, buf); 1361 if (err) 1362 goto out; 1363 for (i = 0; i < c->lsave_cnt; i++) { 1364 int lnum = c->lsave[i]; 1365 1366 /* 1367 * Due to automatic resizing, the values in the lsave table 1368 * could be beyond the volume size - just ignore them. 1369 */ 1370 if (lnum >= c->leb_cnt) 1371 continue; 1372 ubifs_lpt_lookup(c, lnum); 1373 } 1374 out: 1375 vfree(buf); 1376 return err; 1377 } 1378 1379 /** 1380 * ubifs_get_nnode - get a nnode. 1381 * @c: UBIFS file-system description object 1382 * @parent: parent nnode (or NULL for the root) 1383 * @iip: index in parent 1384 * 1385 * This function returns a pointer to the nnode on success or a negative error 1386 * code on failure. 1387 */ 1388 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, 1389 struct ubifs_nnode *parent, int iip) 1390 { 1391 struct ubifs_nbranch *branch; 1392 struct ubifs_nnode *nnode; 1393 int err; 1394 1395 branch = &parent->nbranch[iip]; 1396 nnode = branch->nnode; 1397 if (nnode) 1398 return nnode; 1399 err = ubifs_read_nnode(c, parent, iip); 1400 if (err) 1401 return ERR_PTR(err); 1402 return branch->nnode; 1403 } 1404 1405 /** 1406 * ubifs_get_pnode - get a pnode. 1407 * @c: UBIFS file-system description object 1408 * @parent: parent nnode 1409 * @iip: index in parent 1410 * 1411 * This function returns a pointer to the pnode on success or a negative error 1412 * code on failure. 1413 */ 1414 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, 1415 struct ubifs_nnode *parent, int iip) 1416 { 1417 struct ubifs_nbranch *branch; 1418 struct ubifs_pnode *pnode; 1419 int err; 1420 1421 branch = &parent->nbranch[iip]; 1422 pnode = branch->pnode; 1423 if (pnode) 1424 return pnode; 1425 err = read_pnode(c, parent, iip); 1426 if (err) 1427 return ERR_PTR(err); 1428 update_cats(c, branch->pnode); 1429 return branch->pnode; 1430 } 1431 1432 /** 1433 * ubifs_lpt_lookup - lookup LEB properties in the LPT. 1434 * @c: UBIFS file-system description object 1435 * @lnum: LEB number to lookup 1436 * 1437 * This function returns a pointer to the LEB properties on success or a 1438 * negative error code on failure. 1439 */ 1440 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) 1441 { 1442 int err, i, h, iip, shft; 1443 struct ubifs_nnode *nnode; 1444 struct ubifs_pnode *pnode; 1445 1446 if (!c->nroot) { 1447 err = ubifs_read_nnode(c, NULL, 0); 1448 if (err) 1449 return ERR_PTR(err); 1450 } 1451 nnode = c->nroot; 1452 i = lnum - c->main_first; 1453 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1454 for (h = 1; h < c->lpt_hght; h++) { 1455 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1456 shft -= UBIFS_LPT_FANOUT_SHIFT; 1457 nnode = ubifs_get_nnode(c, nnode, iip); 1458 if (IS_ERR(nnode)) 1459 return ERR_PTR(PTR_ERR(nnode)); 1460 } 1461 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1462 shft -= UBIFS_LPT_FANOUT_SHIFT; 1463 pnode = ubifs_get_pnode(c, nnode, iip); 1464 if (IS_ERR(pnode)) 1465 return ERR_PTR(PTR_ERR(pnode)); 1466 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1467 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1468 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1469 pnode->lprops[iip].flags); 1470 return &pnode->lprops[iip]; 1471 } 1472 1473 /** 1474 * dirty_cow_nnode - ensure a nnode is not being committed. 1475 * @c: UBIFS file-system description object 1476 * @nnode: nnode to check 1477 * 1478 * Returns dirtied nnode on success or negative error code on failure. 1479 */ 1480 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, 1481 struct ubifs_nnode *nnode) 1482 { 1483 struct ubifs_nnode *n; 1484 int i; 1485 1486 if (!test_bit(COW_CNODE, &nnode->flags)) { 1487 /* nnode is not being committed */ 1488 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 1489 c->dirty_nn_cnt += 1; 1490 ubifs_add_nnode_dirt(c, nnode); 1491 } 1492 return nnode; 1493 } 1494 1495 /* nnode is being committed, so copy it */ 1496 n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS); 1497 if (unlikely(!n)) 1498 return ERR_PTR(-ENOMEM); 1499 1500 memcpy(n, nnode, sizeof(struct ubifs_nnode)); 1501 n->cnext = NULL; 1502 __set_bit(DIRTY_CNODE, &n->flags); 1503 __clear_bit(COW_CNODE, &n->flags); 1504 1505 /* The children now have new parent */ 1506 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1507 struct ubifs_nbranch *branch = &n->nbranch[i]; 1508 1509 if (branch->cnode) 1510 branch->cnode->parent = n; 1511 } 1512 1513 ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags)); 1514 __set_bit(OBSOLETE_CNODE, &nnode->flags); 1515 1516 c->dirty_nn_cnt += 1; 1517 ubifs_add_nnode_dirt(c, nnode); 1518 if (nnode->parent) 1519 nnode->parent->nbranch[n->iip].nnode = n; 1520 else 1521 c->nroot = n; 1522 return n; 1523 } 1524 1525 /** 1526 * dirty_cow_pnode - ensure a pnode is not being committed. 1527 * @c: UBIFS file-system description object 1528 * @pnode: pnode to check 1529 * 1530 * Returns dirtied pnode on success or negative error code on failure. 1531 */ 1532 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, 1533 struct ubifs_pnode *pnode) 1534 { 1535 struct ubifs_pnode *p; 1536 1537 if (!test_bit(COW_CNODE, &pnode->flags)) { 1538 /* pnode is not being committed */ 1539 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { 1540 c->dirty_pn_cnt += 1; 1541 add_pnode_dirt(c, pnode); 1542 } 1543 return pnode; 1544 } 1545 1546 /* pnode is being committed, so copy it */ 1547 p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS); 1548 if (unlikely(!p)) 1549 return ERR_PTR(-ENOMEM); 1550 1551 memcpy(p, pnode, sizeof(struct ubifs_pnode)); 1552 p->cnext = NULL; 1553 __set_bit(DIRTY_CNODE, &p->flags); 1554 __clear_bit(COW_CNODE, &p->flags); 1555 replace_cats(c, pnode, p); 1556 1557 ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); 1558 __set_bit(OBSOLETE_CNODE, &pnode->flags); 1559 1560 c->dirty_pn_cnt += 1; 1561 add_pnode_dirt(c, pnode); 1562 pnode->parent->nbranch[p->iip].pnode = p; 1563 return p; 1564 } 1565 1566 /** 1567 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. 1568 * @c: UBIFS file-system description object 1569 * @lnum: LEB number to lookup 1570 * 1571 * This function returns a pointer to the LEB properties on success or a 1572 * negative error code on failure. 1573 */ 1574 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) 1575 { 1576 int err, i, h, iip, shft; 1577 struct ubifs_nnode *nnode; 1578 struct ubifs_pnode *pnode; 1579 1580 if (!c->nroot) { 1581 err = ubifs_read_nnode(c, NULL, 0); 1582 if (err) 1583 return ERR_PTR(err); 1584 } 1585 nnode = c->nroot; 1586 nnode = dirty_cow_nnode(c, nnode); 1587 if (IS_ERR(nnode)) 1588 return ERR_PTR(PTR_ERR(nnode)); 1589 i = lnum - c->main_first; 1590 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1591 for (h = 1; h < c->lpt_hght; h++) { 1592 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1593 shft -= UBIFS_LPT_FANOUT_SHIFT; 1594 nnode = ubifs_get_nnode(c, nnode, iip); 1595 if (IS_ERR(nnode)) 1596 return ERR_PTR(PTR_ERR(nnode)); 1597 nnode = dirty_cow_nnode(c, nnode); 1598 if (IS_ERR(nnode)) 1599 return ERR_PTR(PTR_ERR(nnode)); 1600 } 1601 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1602 shft -= UBIFS_LPT_FANOUT_SHIFT; 1603 pnode = ubifs_get_pnode(c, nnode, iip); 1604 if (IS_ERR(pnode)) 1605 return ERR_PTR(PTR_ERR(pnode)); 1606 pnode = dirty_cow_pnode(c, pnode); 1607 if (IS_ERR(pnode)) 1608 return ERR_PTR(PTR_ERR(pnode)); 1609 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1610 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1611 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1612 pnode->lprops[iip].flags); 1613 ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags)); 1614 return &pnode->lprops[iip]; 1615 } 1616 1617 /** 1618 * lpt_init_rd - initialize the LPT for reading. 1619 * @c: UBIFS file-system description object 1620 * 1621 * This function returns %0 on success and a negative error code on failure. 1622 */ 1623 static int lpt_init_rd(struct ubifs_info *c) 1624 { 1625 int err, i; 1626 1627 c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1628 if (!c->ltab) 1629 return -ENOMEM; 1630 1631 i = max_t(int, c->nnode_sz, c->pnode_sz); 1632 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); 1633 if (!c->lpt_nod_buf) 1634 return -ENOMEM; 1635 1636 for (i = 0; i < LPROPS_HEAP_CNT; i++) { 1637 c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, 1638 GFP_KERNEL); 1639 if (!c->lpt_heap[i].arr) 1640 return -ENOMEM; 1641 c->lpt_heap[i].cnt = 0; 1642 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; 1643 } 1644 1645 c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL); 1646 if (!c->dirty_idx.arr) 1647 return -ENOMEM; 1648 c->dirty_idx.cnt = 0; 1649 c->dirty_idx.max_cnt = LPT_HEAP_SZ; 1650 1651 err = read_ltab(c); 1652 if (err) 1653 return err; 1654 1655 dbg_lp("space_bits %d", c->space_bits); 1656 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 1657 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 1658 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 1659 dbg_lp("pcnt_bits %d", c->pcnt_bits); 1660 dbg_lp("lnum_bits %d", c->lnum_bits); 1661 dbg_lp("pnode_sz %d", c->pnode_sz); 1662 dbg_lp("nnode_sz %d", c->nnode_sz); 1663 dbg_lp("ltab_sz %d", c->ltab_sz); 1664 dbg_lp("lsave_sz %d", c->lsave_sz); 1665 dbg_lp("lsave_cnt %d", c->lsave_cnt); 1666 dbg_lp("lpt_hght %d", c->lpt_hght); 1667 dbg_lp("big_lpt %d", c->big_lpt); 1668 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 1669 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 1670 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 1671 if (c->big_lpt) 1672 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 1673 1674 return 0; 1675 } 1676 1677 /** 1678 * lpt_init_wr - initialize the LPT for writing. 1679 * @c: UBIFS file-system description object 1680 * 1681 * 'lpt_init_rd()' must have been called already. 1682 * 1683 * This function returns %0 on success and a negative error code on failure. 1684 */ 1685 static int lpt_init_wr(struct ubifs_info *c) 1686 { 1687 int err, i; 1688 1689 c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); 1690 if (!c->ltab_cmt) 1691 return -ENOMEM; 1692 1693 c->lpt_buf = vmalloc(c->leb_size); 1694 if (!c->lpt_buf) 1695 return -ENOMEM; 1696 1697 if (c->big_lpt) { 1698 c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); 1699 if (!c->lsave) 1700 return -ENOMEM; 1701 err = read_lsave(c); 1702 if (err) 1703 return err; 1704 } 1705 1706 for (i = 0; i < c->lpt_lebs; i++) 1707 if (c->ltab[i].free == c->leb_size) { 1708 err = ubifs_leb_unmap(c, i + c->lpt_first); 1709 if (err) 1710 return err; 1711 } 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ubifs_lpt_init - initialize the LPT. 1718 * @c: UBIFS file-system description object 1719 * @rd: whether to initialize lpt for reading 1720 * @wr: whether to initialize lpt for writing 1721 * 1722 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true 1723 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is 1724 * true. 1725 * 1726 * This function returns %0 on success and a negative error code on failure. 1727 */ 1728 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) 1729 { 1730 int err; 1731 1732 if (rd) { 1733 err = lpt_init_rd(c); 1734 if (err) 1735 return err; 1736 } 1737 1738 if (wr) { 1739 err = lpt_init_wr(c); 1740 if (err) 1741 return err; 1742 } 1743 1744 return 0; 1745 } 1746 1747 /** 1748 * struct lpt_scan_node - somewhere to put nodes while we scan LPT. 1749 * @nnode: where to keep a nnode 1750 * @pnode: where to keep a pnode 1751 * @cnode: where to keep a cnode 1752 * @in_tree: is the node in the tree in memory 1753 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in 1754 * the tree 1755 * @ptr.pnode: ditto for pnode 1756 * @ptr.cnode: ditto for cnode 1757 */ 1758 struct lpt_scan_node { 1759 union { 1760 struct ubifs_nnode nnode; 1761 struct ubifs_pnode pnode; 1762 struct ubifs_cnode cnode; 1763 }; 1764 int in_tree; 1765 union { 1766 struct ubifs_nnode *nnode; 1767 struct ubifs_pnode *pnode; 1768 struct ubifs_cnode *cnode; 1769 } ptr; 1770 }; 1771 1772 /** 1773 * scan_get_nnode - for the scan, get a nnode from either the tree or flash. 1774 * @c: the UBIFS file-system description object 1775 * @path: where to put the nnode 1776 * @parent: parent of the nnode 1777 * @iip: index in parent of the nnode 1778 * 1779 * This function returns a pointer to the nnode on success or a negative error 1780 * code on failure. 1781 */ 1782 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, 1783 struct lpt_scan_node *path, 1784 struct ubifs_nnode *parent, int iip) 1785 { 1786 struct ubifs_nbranch *branch; 1787 struct ubifs_nnode *nnode; 1788 void *buf = c->lpt_nod_buf; 1789 int err; 1790 1791 branch = &parent->nbranch[iip]; 1792 nnode = branch->nnode; 1793 if (nnode) { 1794 path->in_tree = 1; 1795 path->ptr.nnode = nnode; 1796 return nnode; 1797 } 1798 nnode = &path->nnode; 1799 path->in_tree = 0; 1800 path->ptr.nnode = nnode; 1801 memset(nnode, 0, sizeof(struct ubifs_nnode)); 1802 if (branch->lnum == 0) { 1803 /* 1804 * This nnode was not written which just means that the LEB 1805 * properties in the subtree below it describe empty LEBs. We 1806 * make the nnode as though we had read it, which in fact means 1807 * doing almost nothing. 1808 */ 1809 if (c->big_lpt) 1810 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1811 } else { 1812 err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, 1813 c->nnode_sz); 1814 if (err) 1815 return ERR_PTR(err); 1816 err = ubifs_unpack_nnode(c, buf, nnode); 1817 if (err) 1818 return ERR_PTR(err); 1819 } 1820 err = validate_nnode(c, nnode, parent, iip); 1821 if (err) 1822 return ERR_PTR(err); 1823 if (!c->big_lpt) 1824 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1825 nnode->level = parent->level - 1; 1826 nnode->parent = parent; 1827 nnode->iip = iip; 1828 return nnode; 1829 } 1830 1831 /** 1832 * scan_get_pnode - for the scan, get a pnode from either the tree or flash. 1833 * @c: the UBIFS file-system description object 1834 * @path: where to put the pnode 1835 * @parent: parent of the pnode 1836 * @iip: index in parent of the pnode 1837 * 1838 * This function returns a pointer to the pnode on success or a negative error 1839 * code on failure. 1840 */ 1841 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, 1842 struct lpt_scan_node *path, 1843 struct ubifs_nnode *parent, int iip) 1844 { 1845 struct ubifs_nbranch *branch; 1846 struct ubifs_pnode *pnode; 1847 void *buf = c->lpt_nod_buf; 1848 int err; 1849 1850 branch = &parent->nbranch[iip]; 1851 pnode = branch->pnode; 1852 if (pnode) { 1853 path->in_tree = 1; 1854 path->ptr.pnode = pnode; 1855 return pnode; 1856 } 1857 pnode = &path->pnode; 1858 path->in_tree = 0; 1859 path->ptr.pnode = pnode; 1860 memset(pnode, 0, sizeof(struct ubifs_pnode)); 1861 if (branch->lnum == 0) { 1862 /* 1863 * This pnode was not written which just means that the LEB 1864 * properties in it describe empty LEBs. We make the pnode as 1865 * though we had read it. 1866 */ 1867 int i; 1868 1869 if (c->big_lpt) 1870 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1871 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1872 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1873 1874 lprops->free = c->leb_size; 1875 lprops->flags = ubifs_categorize_lprops(c, lprops); 1876 } 1877 } else { 1878 ubifs_assert(branch->lnum >= c->lpt_first && 1879 branch->lnum <= c->lpt_last); 1880 ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); 1881 err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, 1882 c->pnode_sz); 1883 if (err) 1884 return ERR_PTR(err); 1885 err = unpack_pnode(c, buf, pnode); 1886 if (err) 1887 return ERR_PTR(err); 1888 } 1889 err = validate_pnode(c, pnode, parent, iip); 1890 if (err) 1891 return ERR_PTR(err); 1892 if (!c->big_lpt) 1893 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1894 pnode->parent = parent; 1895 pnode->iip = iip; 1896 set_pnode_lnum(c, pnode); 1897 return pnode; 1898 } 1899 1900 /** 1901 * ubifs_lpt_scan_nolock - scan the LPT. 1902 * @c: the UBIFS file-system description object 1903 * @start_lnum: LEB number from which to start scanning 1904 * @end_lnum: LEB number at which to stop scanning 1905 * @scan_cb: callback function called for each lprops 1906 * @data: data to be passed to the callback function 1907 * 1908 * This function returns %0 on success and a negative error code on failure. 1909 */ 1910 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, 1911 ubifs_lpt_scan_callback scan_cb, void *data) 1912 { 1913 int err = 0, i, h, iip, shft; 1914 struct ubifs_nnode *nnode; 1915 struct ubifs_pnode *pnode; 1916 struct lpt_scan_node *path; 1917 1918 if (start_lnum == -1) { 1919 start_lnum = end_lnum + 1; 1920 if (start_lnum >= c->leb_cnt) 1921 start_lnum = c->main_first; 1922 } 1923 1924 ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); 1925 ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); 1926 1927 if (!c->nroot) { 1928 err = ubifs_read_nnode(c, NULL, 0); 1929 if (err) 1930 return err; 1931 } 1932 1933 path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), 1934 GFP_NOFS); 1935 if (!path) 1936 return -ENOMEM; 1937 1938 path[0].ptr.nnode = c->nroot; 1939 path[0].in_tree = 1; 1940 again: 1941 /* Descend to the pnode containing start_lnum */ 1942 nnode = c->nroot; 1943 i = start_lnum - c->main_first; 1944 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1945 for (h = 1; h < c->lpt_hght; h++) { 1946 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1947 shft -= UBIFS_LPT_FANOUT_SHIFT; 1948 nnode = scan_get_nnode(c, path + h, nnode, iip); 1949 if (IS_ERR(nnode)) { 1950 err = PTR_ERR(nnode); 1951 goto out; 1952 } 1953 } 1954 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1955 shft -= UBIFS_LPT_FANOUT_SHIFT; 1956 pnode = scan_get_pnode(c, path + h, nnode, iip); 1957 if (IS_ERR(pnode)) { 1958 err = PTR_ERR(pnode); 1959 goto out; 1960 } 1961 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1962 1963 /* Loop for each lprops */ 1964 while (1) { 1965 struct ubifs_lprops *lprops = &pnode->lprops[iip]; 1966 int ret, lnum = lprops->lnum; 1967 1968 ret = scan_cb(c, lprops, path[h].in_tree, data); 1969 if (ret < 0) { 1970 err = ret; 1971 goto out; 1972 } 1973 if (ret & LPT_SCAN_ADD) { 1974 /* Add all the nodes in path to the tree in memory */ 1975 for (h = 1; h < c->lpt_hght; h++) { 1976 const size_t sz = sizeof(struct ubifs_nnode); 1977 struct ubifs_nnode *parent; 1978 1979 if (path[h].in_tree) 1980 continue; 1981 nnode = kmalloc(sz, GFP_NOFS); 1982 if (!nnode) { 1983 err = -ENOMEM; 1984 goto out; 1985 } 1986 memcpy(nnode, &path[h].nnode, sz); 1987 parent = nnode->parent; 1988 parent->nbranch[nnode->iip].nnode = nnode; 1989 path[h].ptr.nnode = nnode; 1990 path[h].in_tree = 1; 1991 path[h + 1].cnode.parent = nnode; 1992 } 1993 if (path[h].in_tree) 1994 ubifs_ensure_cat(c, lprops); 1995 else { 1996 const size_t sz = sizeof(struct ubifs_pnode); 1997 struct ubifs_nnode *parent; 1998 1999 pnode = kmalloc(sz, GFP_NOFS); 2000 if (!pnode) { 2001 err = -ENOMEM; 2002 goto out; 2003 } 2004 memcpy(pnode, &path[h].pnode, sz); 2005 parent = pnode->parent; 2006 parent->nbranch[pnode->iip].pnode = pnode; 2007 path[h].ptr.pnode = pnode; 2008 path[h].in_tree = 1; 2009 update_cats(c, pnode); 2010 c->pnodes_have += 1; 2011 } 2012 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) 2013 c->nroot, 0, 0); 2014 if (err) 2015 goto out; 2016 err = dbg_check_cats(c); 2017 if (err) 2018 goto out; 2019 } 2020 if (ret & LPT_SCAN_STOP) { 2021 err = 0; 2022 break; 2023 } 2024 /* Get the next lprops */ 2025 if (lnum == end_lnum) { 2026 /* 2027 * We got to the end without finding what we were 2028 * looking for 2029 */ 2030 err = -ENOSPC; 2031 goto out; 2032 } 2033 if (lnum + 1 >= c->leb_cnt) { 2034 /* Wrap-around to the beginning */ 2035 start_lnum = c->main_first; 2036 goto again; 2037 } 2038 if (iip + 1 < UBIFS_LPT_FANOUT) { 2039 /* Next lprops is in the same pnode */ 2040 iip += 1; 2041 continue; 2042 } 2043 /* We need to get the next pnode. Go up until we can go right */ 2044 iip = pnode->iip; 2045 while (1) { 2046 h -= 1; 2047 ubifs_assert(h >= 0); 2048 nnode = path[h].ptr.nnode; 2049 if (iip + 1 < UBIFS_LPT_FANOUT) 2050 break; 2051 iip = nnode->iip; 2052 } 2053 /* Go right */ 2054 iip += 1; 2055 /* Descend to the pnode */ 2056 h += 1; 2057 for (; h < c->lpt_hght; h++) { 2058 nnode = scan_get_nnode(c, path + h, nnode, iip); 2059 if (IS_ERR(nnode)) { 2060 err = PTR_ERR(nnode); 2061 goto out; 2062 } 2063 iip = 0; 2064 } 2065 pnode = scan_get_pnode(c, path + h, nnode, iip); 2066 if (IS_ERR(pnode)) { 2067 err = PTR_ERR(pnode); 2068 goto out; 2069 } 2070 iip = 0; 2071 } 2072 out: 2073 kfree(path); 2074 return err; 2075 } 2076 2077 #ifdef CONFIG_UBIFS_FS_DEBUG 2078 2079 /** 2080 * dbg_chk_pnode - check a pnode. 2081 * @c: the UBIFS file-system description object 2082 * @pnode: pnode to check 2083 * @col: pnode column 2084 * 2085 * This function returns %0 on success and a negative error code on failure. 2086 */ 2087 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 2088 int col) 2089 { 2090 int i; 2091 2092 if (pnode->num != col) { 2093 dbg_err("pnode num %d expected %d parent num %d iip %d", 2094 pnode->num, col, pnode->parent->num, pnode->iip); 2095 return -EINVAL; 2096 } 2097 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 2098 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; 2099 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + 2100 c->main_first; 2101 int found, cat = lprops->flags & LPROPS_CAT_MASK; 2102 struct ubifs_lpt_heap *heap; 2103 struct list_head *list = NULL; 2104 2105 if (lnum >= c->leb_cnt) 2106 continue; 2107 if (lprops->lnum != lnum) { 2108 dbg_err("bad LEB number %d expected %d", 2109 lprops->lnum, lnum); 2110 return -EINVAL; 2111 } 2112 if (lprops->flags & LPROPS_TAKEN) { 2113 if (cat != LPROPS_UNCAT) { 2114 dbg_err("LEB %d taken but not uncat %d", 2115 lprops->lnum, cat); 2116 return -EINVAL; 2117 } 2118 continue; 2119 } 2120 if (lprops->flags & LPROPS_INDEX) { 2121 switch (cat) { 2122 case LPROPS_UNCAT: 2123 case LPROPS_DIRTY_IDX: 2124 case LPROPS_FRDI_IDX: 2125 break; 2126 default: 2127 dbg_err("LEB %d index but cat %d", 2128 lprops->lnum, cat); 2129 return -EINVAL; 2130 } 2131 } else { 2132 switch (cat) { 2133 case LPROPS_UNCAT: 2134 case LPROPS_DIRTY: 2135 case LPROPS_FREE: 2136 case LPROPS_EMPTY: 2137 case LPROPS_FREEABLE: 2138 break; 2139 default: 2140 dbg_err("LEB %d not index but cat %d", 2141 lprops->lnum, cat); 2142 return -EINVAL; 2143 } 2144 } 2145 switch (cat) { 2146 case LPROPS_UNCAT: 2147 list = &c->uncat_list; 2148 break; 2149 case LPROPS_EMPTY: 2150 list = &c->empty_list; 2151 break; 2152 case LPROPS_FREEABLE: 2153 list = &c->freeable_list; 2154 break; 2155 case LPROPS_FRDI_IDX: 2156 list = &c->frdi_idx_list; 2157 break; 2158 } 2159 found = 0; 2160 switch (cat) { 2161 case LPROPS_DIRTY: 2162 case LPROPS_DIRTY_IDX: 2163 case LPROPS_FREE: 2164 heap = &c->lpt_heap[cat - 1]; 2165 if (lprops->hpos < heap->cnt && 2166 heap->arr[lprops->hpos] == lprops) 2167 found = 1; 2168 break; 2169 case LPROPS_UNCAT: 2170 case LPROPS_EMPTY: 2171 case LPROPS_FREEABLE: 2172 case LPROPS_FRDI_IDX: 2173 list_for_each_entry(lp, list, list) 2174 if (lprops == lp) { 2175 found = 1; 2176 break; 2177 } 2178 break; 2179 } 2180 if (!found) { 2181 dbg_err("LEB %d cat %d not found in cat heap/list", 2182 lprops->lnum, cat); 2183 return -EINVAL; 2184 } 2185 switch (cat) { 2186 case LPROPS_EMPTY: 2187 if (lprops->free != c->leb_size) { 2188 dbg_err("LEB %d cat %d free %d dirty %d", 2189 lprops->lnum, cat, lprops->free, 2190 lprops->dirty); 2191 return -EINVAL; 2192 } 2193 case LPROPS_FREEABLE: 2194 case LPROPS_FRDI_IDX: 2195 if (lprops->free + lprops->dirty != c->leb_size) { 2196 dbg_err("LEB %d cat %d free %d dirty %d", 2197 lprops->lnum, cat, lprops->free, 2198 lprops->dirty); 2199 return -EINVAL; 2200 } 2201 } 2202 } 2203 return 0; 2204 } 2205 2206 /** 2207 * dbg_check_lpt_nodes - check nnodes and pnodes. 2208 * @c: the UBIFS file-system description object 2209 * @cnode: next cnode (nnode or pnode) to check 2210 * @row: row of cnode (root is zero) 2211 * @col: column of cnode (leftmost is zero) 2212 * 2213 * This function returns %0 on success and a negative error code on failure. 2214 */ 2215 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, 2216 int row, int col) 2217 { 2218 struct ubifs_nnode *nnode, *nn; 2219 struct ubifs_cnode *cn; 2220 int num, iip = 0, err; 2221 2222 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) 2223 return 0; 2224 2225 while (cnode) { 2226 ubifs_assert(row >= 0); 2227 nnode = cnode->parent; 2228 if (cnode->level) { 2229 /* cnode is a nnode */ 2230 num = calc_nnode_num(row, col); 2231 if (cnode->num != num) { 2232 dbg_err("nnode num %d expected %d " 2233 "parent num %d iip %d", cnode->num, num, 2234 (nnode ? nnode->num : 0), cnode->iip); 2235 return -EINVAL; 2236 } 2237 nn = (struct ubifs_nnode *)cnode; 2238 while (iip < UBIFS_LPT_FANOUT) { 2239 cn = nn->nbranch[iip].cnode; 2240 if (cn) { 2241 /* Go down */ 2242 row += 1; 2243 col <<= UBIFS_LPT_FANOUT_SHIFT; 2244 col += iip; 2245 iip = 0; 2246 cnode = cn; 2247 break; 2248 } 2249 /* Go right */ 2250 iip += 1; 2251 } 2252 if (iip < UBIFS_LPT_FANOUT) 2253 continue; 2254 } else { 2255 struct ubifs_pnode *pnode; 2256 2257 /* cnode is a pnode */ 2258 pnode = (struct ubifs_pnode *)cnode; 2259 err = dbg_chk_pnode(c, pnode, col); 2260 if (err) 2261 return err; 2262 } 2263 /* Go up and to the right */ 2264 row -= 1; 2265 col >>= UBIFS_LPT_FANOUT_SHIFT; 2266 iip = cnode->iip + 1; 2267 cnode = (struct ubifs_cnode *)nnode; 2268 } 2269 return 0; 2270 } 2271 2272 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2273