xref: /openbmc/linux/fs/ubifs/lpt.c (revision b6dcefde)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 
50 /**
51  * do_calc_lpt_geom - calculate sizes for the LPT area.
52  * @c: the UBIFS file-system description object
53  *
54  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
55  * properties of the flash and whether LPT is "big" (c->big_lpt).
56  */
57 static void do_calc_lpt_geom(struct ubifs_info *c)
58 {
59 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
60 	long long sz, tot_wastage;
61 
62 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
63 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
64 
65 	c->lpt_hght = 1;
66 	n = UBIFS_LPT_FANOUT;
67 	while (n < max_pnode_cnt) {
68 		c->lpt_hght += 1;
69 		n <<= UBIFS_LPT_FANOUT_SHIFT;
70 	}
71 
72 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
73 
74 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
75 	c->nnode_cnt = n;
76 	for (i = 1; i < c->lpt_hght; i++) {
77 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
78 		c->nnode_cnt += n;
79 	}
80 
81 	c->space_bits = fls(c->leb_size) - 3;
82 	c->lpt_lnum_bits = fls(c->lpt_lebs);
83 	c->lpt_offs_bits = fls(c->leb_size - 1);
84 	c->lpt_spc_bits = fls(c->leb_size);
85 
86 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
87 	c->pcnt_bits = fls(n - 1);
88 
89 	c->lnum_bits = fls(c->max_leb_cnt - 1);
90 
91 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
92 	       (c->big_lpt ? c->pcnt_bits : 0) +
93 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
94 	c->pnode_sz = (bits + 7) / 8;
95 
96 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
97 	       (c->big_lpt ? c->pcnt_bits : 0) +
98 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
99 	c->nnode_sz = (bits + 7) / 8;
100 
101 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
102 	       c->lpt_lebs * c->lpt_spc_bits * 2;
103 	c->ltab_sz = (bits + 7) / 8;
104 
105 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
106 	       c->lnum_bits * c->lsave_cnt;
107 	c->lsave_sz = (bits + 7) / 8;
108 
109 	/* Calculate the minimum LPT size */
110 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
111 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
112 	c->lpt_sz += c->ltab_sz;
113 	if (c->big_lpt)
114 		c->lpt_sz += c->lsave_sz;
115 
116 	/* Add wastage */
117 	sz = c->lpt_sz;
118 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
119 	sz += per_leb_wastage;
120 	tot_wastage = per_leb_wastage;
121 	while (sz > c->leb_size) {
122 		sz += per_leb_wastage;
123 		sz -= c->leb_size;
124 		tot_wastage += per_leb_wastage;
125 	}
126 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
127 	c->lpt_sz += tot_wastage;
128 }
129 
130 /**
131  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
132  * @c: the UBIFS file-system description object
133  *
134  * This function returns %0 on success and a negative error code on failure.
135  */
136 int ubifs_calc_lpt_geom(struct ubifs_info *c)
137 {
138 	int lebs_needed;
139 	long long sz;
140 
141 	do_calc_lpt_geom(c);
142 
143 	/* Verify that lpt_lebs is big enough */
144 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
145 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
146 	if (lebs_needed > c->lpt_lebs) {
147 		ubifs_err("too few LPT LEBs");
148 		return -EINVAL;
149 	}
150 
151 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
152 	if (c->ltab_sz > c->leb_size) {
153 		ubifs_err("LPT ltab too big");
154 		return -EINVAL;
155 	}
156 
157 	c->check_lpt_free = c->big_lpt;
158 	return 0;
159 }
160 
161 /**
162  * calc_dflt_lpt_geom - calculate default LPT geometry.
163  * @c: the UBIFS file-system description object
164  * @main_lebs: number of main area LEBs is passed and returned here
165  * @big_lpt: whether the LPT area is "big" is returned here
166  *
167  * The size of the LPT area depends on parameters that themselves are dependent
168  * on the size of the LPT area. This function, successively recalculates the LPT
169  * area geometry until the parameters and resultant geometry are consistent.
170  *
171  * This function returns %0 on success and a negative error code on failure.
172  */
173 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
174 			      int *big_lpt)
175 {
176 	int i, lebs_needed;
177 	long long sz;
178 
179 	/* Start by assuming the minimum number of LPT LEBs */
180 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
181 	c->main_lebs = *main_lebs - c->lpt_lebs;
182 	if (c->main_lebs <= 0)
183 		return -EINVAL;
184 
185 	/* And assume we will use the small LPT model */
186 	c->big_lpt = 0;
187 
188 	/*
189 	 * Calculate the geometry based on assumptions above and then see if it
190 	 * makes sense
191 	 */
192 	do_calc_lpt_geom(c);
193 
194 	/* Small LPT model must have lpt_sz < leb_size */
195 	if (c->lpt_sz > c->leb_size) {
196 		/* Nope, so try again using big LPT model */
197 		c->big_lpt = 1;
198 		do_calc_lpt_geom(c);
199 	}
200 
201 	/* Now check there are enough LPT LEBs */
202 	for (i = 0; i < 64 ; i++) {
203 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
204 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
205 		if (lebs_needed > c->lpt_lebs) {
206 			/* Not enough LPT LEBs so try again with more */
207 			c->lpt_lebs = lebs_needed;
208 			c->main_lebs = *main_lebs - c->lpt_lebs;
209 			if (c->main_lebs <= 0)
210 				return -EINVAL;
211 			do_calc_lpt_geom(c);
212 			continue;
213 		}
214 		if (c->ltab_sz > c->leb_size) {
215 			ubifs_err("LPT ltab too big");
216 			return -EINVAL;
217 		}
218 		*main_lebs = c->main_lebs;
219 		*big_lpt = c->big_lpt;
220 		return 0;
221 	}
222 	return -EINVAL;
223 }
224 
225 /**
226  * pack_bits - pack bit fields end-to-end.
227  * @addr: address at which to pack (passed and next address returned)
228  * @pos: bit position at which to pack (passed and next position returned)
229  * @val: value to pack
230  * @nrbits: number of bits of value to pack (1-32)
231  */
232 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
233 {
234 	uint8_t *p = *addr;
235 	int b = *pos;
236 
237 	ubifs_assert(nrbits > 0);
238 	ubifs_assert(nrbits <= 32);
239 	ubifs_assert(*pos >= 0);
240 	ubifs_assert(*pos < 8);
241 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
242 	if (b) {
243 		*p |= ((uint8_t)val) << b;
244 		nrbits += b;
245 		if (nrbits > 8) {
246 			*++p = (uint8_t)(val >>= (8 - b));
247 			if (nrbits > 16) {
248 				*++p = (uint8_t)(val >>= 8);
249 				if (nrbits > 24) {
250 					*++p = (uint8_t)(val >>= 8);
251 					if (nrbits > 32)
252 						*++p = (uint8_t)(val >>= 8);
253 				}
254 			}
255 		}
256 	} else {
257 		*p = (uint8_t)val;
258 		if (nrbits > 8) {
259 			*++p = (uint8_t)(val >>= 8);
260 			if (nrbits > 16) {
261 				*++p = (uint8_t)(val >>= 8);
262 				if (nrbits > 24)
263 					*++p = (uint8_t)(val >>= 8);
264 			}
265 		}
266 	}
267 	b = nrbits & 7;
268 	if (b == 0)
269 		p++;
270 	*addr = p;
271 	*pos = b;
272 }
273 
274 /**
275  * ubifs_unpack_bits - unpack bit fields.
276  * @addr: address at which to unpack (passed and next address returned)
277  * @pos: bit position at which to unpack (passed and next position returned)
278  * @nrbits: number of bits of value to unpack (1-32)
279  *
280  * This functions returns the value unpacked.
281  */
282 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
283 {
284 	const int k = 32 - nrbits;
285 	uint8_t *p = *addr;
286 	int b = *pos;
287 	uint32_t uninitialized_var(val);
288 	const int bytes = (nrbits + b + 7) >> 3;
289 
290 	ubifs_assert(nrbits > 0);
291 	ubifs_assert(nrbits <= 32);
292 	ubifs_assert(*pos >= 0);
293 	ubifs_assert(*pos < 8);
294 	if (b) {
295 		switch (bytes) {
296 		case 2:
297 			val = p[1];
298 			break;
299 		case 3:
300 			val = p[1] | ((uint32_t)p[2] << 8);
301 			break;
302 		case 4:
303 			val = p[1] | ((uint32_t)p[2] << 8) |
304 				     ((uint32_t)p[3] << 16);
305 			break;
306 		case 5:
307 			val = p[1] | ((uint32_t)p[2] << 8) |
308 				     ((uint32_t)p[3] << 16) |
309 				     ((uint32_t)p[4] << 24);
310 		}
311 		val <<= (8 - b);
312 		val |= *p >> b;
313 		nrbits += b;
314 	} else {
315 		switch (bytes) {
316 		case 1:
317 			val = p[0];
318 			break;
319 		case 2:
320 			val = p[0] | ((uint32_t)p[1] << 8);
321 			break;
322 		case 3:
323 			val = p[0] | ((uint32_t)p[1] << 8) |
324 				     ((uint32_t)p[2] << 16);
325 			break;
326 		case 4:
327 			val = p[0] | ((uint32_t)p[1] << 8) |
328 				     ((uint32_t)p[2] << 16) |
329 				     ((uint32_t)p[3] << 24);
330 			break;
331 		}
332 	}
333 	val <<= k;
334 	val >>= k;
335 	b = nrbits & 7;
336 	p += nrbits >> 3;
337 	*addr = p;
338 	*pos = b;
339 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
340 	return val;
341 }
342 
343 /**
344  * ubifs_pack_pnode - pack all the bit fields of a pnode.
345  * @c: UBIFS file-system description object
346  * @buf: buffer into which to pack
347  * @pnode: pnode to pack
348  */
349 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
350 		      struct ubifs_pnode *pnode)
351 {
352 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
353 	int i, pos = 0;
354 	uint16_t crc;
355 
356 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
357 	if (c->big_lpt)
358 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
359 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
360 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
361 			  c->space_bits);
362 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
363 			  c->space_bits);
364 		if (pnode->lprops[i].flags & LPROPS_INDEX)
365 			pack_bits(&addr, &pos, 1, 1);
366 		else
367 			pack_bits(&addr, &pos, 0, 1);
368 	}
369 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
370 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
371 	addr = buf;
372 	pos = 0;
373 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
374 }
375 
376 /**
377  * ubifs_pack_nnode - pack all the bit fields of a nnode.
378  * @c: UBIFS file-system description object
379  * @buf: buffer into which to pack
380  * @nnode: nnode to pack
381  */
382 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
383 		      struct ubifs_nnode *nnode)
384 {
385 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
386 	int i, pos = 0;
387 	uint16_t crc;
388 
389 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
390 	if (c->big_lpt)
391 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
392 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
393 		int lnum = nnode->nbranch[i].lnum;
394 
395 		if (lnum == 0)
396 			lnum = c->lpt_last + 1;
397 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
398 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
399 			  c->lpt_offs_bits);
400 	}
401 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
402 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
403 	addr = buf;
404 	pos = 0;
405 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
406 }
407 
408 /**
409  * ubifs_pack_ltab - pack the LPT's own lprops table.
410  * @c: UBIFS file-system description object
411  * @buf: buffer into which to pack
412  * @ltab: LPT's own lprops table to pack
413  */
414 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
415 		     struct ubifs_lpt_lprops *ltab)
416 {
417 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
418 	int i, pos = 0;
419 	uint16_t crc;
420 
421 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
422 	for (i = 0; i < c->lpt_lebs; i++) {
423 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
424 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
425 	}
426 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
427 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
428 	addr = buf;
429 	pos = 0;
430 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
431 }
432 
433 /**
434  * ubifs_pack_lsave - pack the LPT's save table.
435  * @c: UBIFS file-system description object
436  * @buf: buffer into which to pack
437  * @lsave: LPT's save table to pack
438  */
439 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
440 {
441 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
442 	int i, pos = 0;
443 	uint16_t crc;
444 
445 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
446 	for (i = 0; i < c->lsave_cnt; i++)
447 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
448 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
449 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
450 	addr = buf;
451 	pos = 0;
452 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
453 }
454 
455 /**
456  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
457  * @c: UBIFS file-system description object
458  * @lnum: LEB number to which to add dirty space
459  * @dirty: amount of dirty space to add
460  */
461 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
462 {
463 	if (!dirty || !lnum)
464 		return;
465 	dbg_lp("LEB %d add %d to %d",
466 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
467 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
468 	c->ltab[lnum - c->lpt_first].dirty += dirty;
469 }
470 
471 /**
472  * set_ltab - set LPT LEB properties.
473  * @c: UBIFS file-system description object
474  * @lnum: LEB number
475  * @free: amount of free space
476  * @dirty: amount of dirty space
477  */
478 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
479 {
480 	dbg_lp("LEB %d free %d dirty %d to %d %d",
481 	       lnum, c->ltab[lnum - c->lpt_first].free,
482 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
483 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
484 	c->ltab[lnum - c->lpt_first].free = free;
485 	c->ltab[lnum - c->lpt_first].dirty = dirty;
486 }
487 
488 /**
489  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
490  * @c: UBIFS file-system description object
491  * @nnode: nnode for which to add dirt
492  */
493 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
494 {
495 	struct ubifs_nnode *np = nnode->parent;
496 
497 	if (np)
498 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
499 				   c->nnode_sz);
500 	else {
501 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
502 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
503 			c->lpt_drty_flgs |= LTAB_DIRTY;
504 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
505 		}
506 	}
507 }
508 
509 /**
510  * add_pnode_dirt - add dirty space to LPT LEB properties.
511  * @c: UBIFS file-system description object
512  * @pnode: pnode for which to add dirt
513  */
514 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
515 {
516 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
517 			   c->pnode_sz);
518 }
519 
520 /**
521  * calc_nnode_num - calculate nnode number.
522  * @row: the row in the tree (root is zero)
523  * @col: the column in the row (leftmost is zero)
524  *
525  * The nnode number is a number that uniquely identifies a nnode and can be used
526  * easily to traverse the tree from the root to that nnode.
527  *
528  * This function calculates and returns the nnode number for the nnode at @row
529  * and @col.
530  */
531 static int calc_nnode_num(int row, int col)
532 {
533 	int num, bits;
534 
535 	num = 1;
536 	while (row--) {
537 		bits = (col & (UBIFS_LPT_FANOUT - 1));
538 		col >>= UBIFS_LPT_FANOUT_SHIFT;
539 		num <<= UBIFS_LPT_FANOUT_SHIFT;
540 		num |= bits;
541 	}
542 	return num;
543 }
544 
545 /**
546  * calc_nnode_num_from_parent - calculate nnode number.
547  * @c: UBIFS file-system description object
548  * @parent: parent nnode
549  * @iip: index in parent
550  *
551  * The nnode number is a number that uniquely identifies a nnode and can be used
552  * easily to traverse the tree from the root to that nnode.
553  *
554  * This function calculates and returns the nnode number based on the parent's
555  * nnode number and the index in parent.
556  */
557 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
558 				      struct ubifs_nnode *parent, int iip)
559 {
560 	int num, shft;
561 
562 	if (!parent)
563 		return 1;
564 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
565 	num = parent->num ^ (1 << shft);
566 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
567 	return num;
568 }
569 
570 /**
571  * calc_pnode_num_from_parent - calculate pnode number.
572  * @c: UBIFS file-system description object
573  * @parent: parent nnode
574  * @iip: index in parent
575  *
576  * The pnode number is a number that uniquely identifies a pnode and can be used
577  * easily to traverse the tree from the root to that pnode.
578  *
579  * This function calculates and returns the pnode number based on the parent's
580  * nnode number and the index in parent.
581  */
582 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
583 				      struct ubifs_nnode *parent, int iip)
584 {
585 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
586 
587 	for (i = 0; i < n; i++) {
588 		num <<= UBIFS_LPT_FANOUT_SHIFT;
589 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
590 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
591 	}
592 	num <<= UBIFS_LPT_FANOUT_SHIFT;
593 	num |= iip;
594 	return num;
595 }
596 
597 /**
598  * ubifs_create_dflt_lpt - create default LPT.
599  * @c: UBIFS file-system description object
600  * @main_lebs: number of main area LEBs is passed and returned here
601  * @lpt_first: LEB number of first LPT LEB
602  * @lpt_lebs: number of LEBs for LPT is passed and returned here
603  * @big_lpt: use big LPT model is passed and returned here
604  *
605  * This function returns %0 on success and a negative error code on failure.
606  */
607 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
608 			  int *lpt_lebs, int *big_lpt)
609 {
610 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
611 	int blnum, boffs, bsz, bcnt;
612 	struct ubifs_pnode *pnode = NULL;
613 	struct ubifs_nnode *nnode = NULL;
614 	void *buf = NULL, *p;
615 	struct ubifs_lpt_lprops *ltab = NULL;
616 	int *lsave = NULL;
617 
618 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
619 	if (err)
620 		return err;
621 	*lpt_lebs = c->lpt_lebs;
622 
623 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
624 	c->lpt_first = lpt_first;
625 	/* Needed by 'set_ltab()' */
626 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
627 	/* Needed by 'ubifs_pack_lsave()' */
628 	c->main_first = c->leb_cnt - *main_lebs;
629 
630 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
631 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
632 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
633 	buf = vmalloc(c->leb_size);
634 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
635 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
636 		err = -ENOMEM;
637 		goto out;
638 	}
639 
640 	ubifs_assert(!c->ltab);
641 	c->ltab = ltab; /* Needed by set_ltab */
642 
643 	/* Initialize LPT's own lprops */
644 	for (i = 0; i < c->lpt_lebs; i++) {
645 		ltab[i].free = c->leb_size;
646 		ltab[i].dirty = 0;
647 		ltab[i].tgc = 0;
648 		ltab[i].cmt = 0;
649 	}
650 
651 	lnum = lpt_first;
652 	p = buf;
653 	/* Number of leaf nodes (pnodes) */
654 	cnt = c->pnode_cnt;
655 
656 	/*
657 	 * The first pnode contains the LEB properties for the LEBs that contain
658 	 * the root inode node and the root index node of the index tree.
659 	 */
660 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
661 	iopos = ALIGN(node_sz, c->min_io_size);
662 	pnode->lprops[0].free = c->leb_size - iopos;
663 	pnode->lprops[0].dirty = iopos - node_sz;
664 	pnode->lprops[0].flags = LPROPS_INDEX;
665 
666 	node_sz = UBIFS_INO_NODE_SZ;
667 	iopos = ALIGN(node_sz, c->min_io_size);
668 	pnode->lprops[1].free = c->leb_size - iopos;
669 	pnode->lprops[1].dirty = iopos - node_sz;
670 
671 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
672 		pnode->lprops[i].free = c->leb_size;
673 
674 	/* Add first pnode */
675 	ubifs_pack_pnode(c, p, pnode);
676 	p += c->pnode_sz;
677 	len = c->pnode_sz;
678 	pnode->num += 1;
679 
680 	/* Reset pnode values for remaining pnodes */
681 	pnode->lprops[0].free = c->leb_size;
682 	pnode->lprops[0].dirty = 0;
683 	pnode->lprops[0].flags = 0;
684 
685 	pnode->lprops[1].free = c->leb_size;
686 	pnode->lprops[1].dirty = 0;
687 
688 	/*
689 	 * To calculate the internal node branches, we keep information about
690 	 * the level below.
691 	 */
692 	blnum = lnum; /* LEB number of level below */
693 	boffs = 0; /* Offset of level below */
694 	bcnt = cnt; /* Number of nodes in level below */
695 	bsz = c->pnode_sz; /* Size of nodes in level below */
696 
697 	/* Add all remaining pnodes */
698 	for (i = 1; i < cnt; i++) {
699 		if (len + c->pnode_sz > c->leb_size) {
700 			alen = ALIGN(len, c->min_io_size);
701 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
702 			memset(p, 0xff, alen - len);
703 			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
704 					     UBI_SHORTTERM);
705 			if (err)
706 				goto out;
707 			p = buf;
708 			len = 0;
709 		}
710 		ubifs_pack_pnode(c, p, pnode);
711 		p += c->pnode_sz;
712 		len += c->pnode_sz;
713 		/*
714 		 * pnodes are simply numbered left to right starting at zero,
715 		 * which means the pnode number can be used easily to traverse
716 		 * down the tree to the corresponding pnode.
717 		 */
718 		pnode->num += 1;
719 	}
720 
721 	row = 0;
722 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
723 		row += 1;
724 	/* Add all nnodes, one level at a time */
725 	while (1) {
726 		/* Number of internal nodes (nnodes) at next level */
727 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
728 		for (i = 0; i < cnt; i++) {
729 			if (len + c->nnode_sz > c->leb_size) {
730 				alen = ALIGN(len, c->min_io_size);
731 				set_ltab(c, lnum, c->leb_size - alen,
732 					    alen - len);
733 				memset(p, 0xff, alen - len);
734 				err = ubi_leb_change(c->ubi, lnum++, buf, alen,
735 						     UBI_SHORTTERM);
736 				if (err)
737 					goto out;
738 				p = buf;
739 				len = 0;
740 			}
741 			/* Only 1 nnode at this level, so it is the root */
742 			if (cnt == 1) {
743 				c->lpt_lnum = lnum;
744 				c->lpt_offs = len;
745 			}
746 			/* Set branches to the level below */
747 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
748 				if (bcnt) {
749 					if (boffs + bsz > c->leb_size) {
750 						blnum += 1;
751 						boffs = 0;
752 					}
753 					nnode->nbranch[j].lnum = blnum;
754 					nnode->nbranch[j].offs = boffs;
755 					boffs += bsz;
756 					bcnt--;
757 				} else {
758 					nnode->nbranch[j].lnum = 0;
759 					nnode->nbranch[j].offs = 0;
760 				}
761 			}
762 			nnode->num = calc_nnode_num(row, i);
763 			ubifs_pack_nnode(c, p, nnode);
764 			p += c->nnode_sz;
765 			len += c->nnode_sz;
766 		}
767 		/* Only 1 nnode at this level, so it is the root */
768 		if (cnt == 1)
769 			break;
770 		/* Update the information about the level below */
771 		bcnt = cnt;
772 		bsz = c->nnode_sz;
773 		row -= 1;
774 	}
775 
776 	if (*big_lpt) {
777 		/* Need to add LPT's save table */
778 		if (len + c->lsave_sz > c->leb_size) {
779 			alen = ALIGN(len, c->min_io_size);
780 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
781 			memset(p, 0xff, alen - len);
782 			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
783 					     UBI_SHORTTERM);
784 			if (err)
785 				goto out;
786 			p = buf;
787 			len = 0;
788 		}
789 
790 		c->lsave_lnum = lnum;
791 		c->lsave_offs = len;
792 
793 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
794 			lsave[i] = c->main_first + i;
795 		for (; i < c->lsave_cnt; i++)
796 			lsave[i] = c->main_first;
797 
798 		ubifs_pack_lsave(c, p, lsave);
799 		p += c->lsave_sz;
800 		len += c->lsave_sz;
801 	}
802 
803 	/* Need to add LPT's own LEB properties table */
804 	if (len + c->ltab_sz > c->leb_size) {
805 		alen = ALIGN(len, c->min_io_size);
806 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
807 		memset(p, 0xff, alen - len);
808 		err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
809 		if (err)
810 			goto out;
811 		p = buf;
812 		len = 0;
813 	}
814 
815 	c->ltab_lnum = lnum;
816 	c->ltab_offs = len;
817 
818 	/* Update ltab before packing it */
819 	len += c->ltab_sz;
820 	alen = ALIGN(len, c->min_io_size);
821 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
822 
823 	ubifs_pack_ltab(c, p, ltab);
824 	p += c->ltab_sz;
825 
826 	/* Write remaining buffer */
827 	memset(p, 0xff, alen - len);
828 	err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
829 	if (err)
830 		goto out;
831 
832 	c->nhead_lnum = lnum;
833 	c->nhead_offs = ALIGN(len, c->min_io_size);
834 
835 	dbg_lp("space_bits %d", c->space_bits);
836 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
837 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
838 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
839 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
840 	dbg_lp("lnum_bits %d", c->lnum_bits);
841 	dbg_lp("pnode_sz %d", c->pnode_sz);
842 	dbg_lp("nnode_sz %d", c->nnode_sz);
843 	dbg_lp("ltab_sz %d", c->ltab_sz);
844 	dbg_lp("lsave_sz %d", c->lsave_sz);
845 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
846 	dbg_lp("lpt_hght %d", c->lpt_hght);
847 	dbg_lp("big_lpt %d", c->big_lpt);
848 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
849 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
850 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
851 	if (c->big_lpt)
852 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
853 out:
854 	c->ltab = NULL;
855 	kfree(lsave);
856 	vfree(ltab);
857 	vfree(buf);
858 	kfree(nnode);
859 	kfree(pnode);
860 	return err;
861 }
862 
863 /**
864  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
865  * @c: UBIFS file-system description object
866  * @pnode: pnode
867  *
868  * When a pnode is loaded into memory, the LEB properties it contains are added,
869  * by this function, to the LEB category lists and heaps.
870  */
871 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
872 {
873 	int i;
874 
875 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
876 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
877 		int lnum = pnode->lprops[i].lnum;
878 
879 		if (!lnum)
880 			return;
881 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
882 	}
883 }
884 
885 /**
886  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
887  * @c: UBIFS file-system description object
888  * @old_pnode: pnode copied
889  * @new_pnode: pnode copy
890  *
891  * During commit it is sometimes necessary to copy a pnode
892  * (see dirty_cow_pnode).  When that happens, references in
893  * category lists and heaps must be replaced.  This function does that.
894  */
895 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
896 			 struct ubifs_pnode *new_pnode)
897 {
898 	int i;
899 
900 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
901 		if (!new_pnode->lprops[i].lnum)
902 			return;
903 		ubifs_replace_cat(c, &old_pnode->lprops[i],
904 				  &new_pnode->lprops[i]);
905 	}
906 }
907 
908 /**
909  * check_lpt_crc - check LPT node crc is correct.
910  * @c: UBIFS file-system description object
911  * @buf: buffer containing node
912  * @len: length of node
913  *
914  * This function returns %0 on success and a negative error code on failure.
915  */
916 static int check_lpt_crc(void *buf, int len)
917 {
918 	int pos = 0;
919 	uint8_t *addr = buf;
920 	uint16_t crc, calc_crc;
921 
922 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
923 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
924 			 len - UBIFS_LPT_CRC_BYTES);
925 	if (crc != calc_crc) {
926 		ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
927 			  calc_crc);
928 		dbg_dump_stack();
929 		return -EINVAL;
930 	}
931 	return 0;
932 }
933 
934 /**
935  * check_lpt_type - check LPT node type is correct.
936  * @c: UBIFS file-system description object
937  * @addr: address of type bit field is passed and returned updated here
938  * @pos: position of type bit field is passed and returned updated here
939  * @type: expected type
940  *
941  * This function returns %0 on success and a negative error code on failure.
942  */
943 static int check_lpt_type(uint8_t **addr, int *pos, int type)
944 {
945 	int node_type;
946 
947 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
948 	if (node_type != type) {
949 		ubifs_err("invalid type (%d) in LPT node type %d", node_type,
950 			  type);
951 		dbg_dump_stack();
952 		return -EINVAL;
953 	}
954 	return 0;
955 }
956 
957 /**
958  * unpack_pnode - unpack a pnode.
959  * @c: UBIFS file-system description object
960  * @buf: buffer containing packed pnode to unpack
961  * @pnode: pnode structure to fill
962  *
963  * This function returns %0 on success and a negative error code on failure.
964  */
965 static int unpack_pnode(const struct ubifs_info *c, void *buf,
966 			struct ubifs_pnode *pnode)
967 {
968 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
969 	int i, pos = 0, err;
970 
971 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
972 	if (err)
973 		return err;
974 	if (c->big_lpt)
975 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
976 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
977 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
978 
979 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
980 		lprops->free <<= 3;
981 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
982 		lprops->dirty <<= 3;
983 
984 		if (ubifs_unpack_bits(&addr, &pos, 1))
985 			lprops->flags = LPROPS_INDEX;
986 		else
987 			lprops->flags = 0;
988 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
989 	}
990 	err = check_lpt_crc(buf, c->pnode_sz);
991 	return err;
992 }
993 
994 /**
995  * ubifs_unpack_nnode - unpack a nnode.
996  * @c: UBIFS file-system description object
997  * @buf: buffer containing packed nnode to unpack
998  * @nnode: nnode structure to fill
999  *
1000  * This function returns %0 on success and a negative error code on failure.
1001  */
1002 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1003 		       struct ubifs_nnode *nnode)
1004 {
1005 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1006 	int i, pos = 0, err;
1007 
1008 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1009 	if (err)
1010 		return err;
1011 	if (c->big_lpt)
1012 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1013 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1014 		int lnum;
1015 
1016 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1017 		       c->lpt_first;
1018 		if (lnum == c->lpt_last + 1)
1019 			lnum = 0;
1020 		nnode->nbranch[i].lnum = lnum;
1021 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1022 						     c->lpt_offs_bits);
1023 	}
1024 	err = check_lpt_crc(buf, c->nnode_sz);
1025 	return err;
1026 }
1027 
1028 /**
1029  * unpack_ltab - unpack the LPT's own lprops table.
1030  * @c: UBIFS file-system description object
1031  * @buf: buffer from which to unpack
1032  *
1033  * This function returns %0 on success and a negative error code on failure.
1034  */
1035 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1036 {
1037 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1038 	int i, pos = 0, err;
1039 
1040 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1041 	if (err)
1042 		return err;
1043 	for (i = 0; i < c->lpt_lebs; i++) {
1044 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1045 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1046 
1047 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1048 		    dirty > c->leb_size || free + dirty > c->leb_size)
1049 			return -EINVAL;
1050 
1051 		c->ltab[i].free = free;
1052 		c->ltab[i].dirty = dirty;
1053 		c->ltab[i].tgc = 0;
1054 		c->ltab[i].cmt = 0;
1055 	}
1056 	err = check_lpt_crc(buf, c->ltab_sz);
1057 	return err;
1058 }
1059 
1060 /**
1061  * unpack_lsave - unpack the LPT's save table.
1062  * @c: UBIFS file-system description object
1063  * @buf: buffer from which to unpack
1064  *
1065  * This function returns %0 on success and a negative error code on failure.
1066  */
1067 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1068 {
1069 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1070 	int i, pos = 0, err;
1071 
1072 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1073 	if (err)
1074 		return err;
1075 	for (i = 0; i < c->lsave_cnt; i++) {
1076 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1077 
1078 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1079 			return -EINVAL;
1080 		c->lsave[i] = lnum;
1081 	}
1082 	err = check_lpt_crc(buf, c->lsave_sz);
1083 	return err;
1084 }
1085 
1086 /**
1087  * validate_nnode - validate a nnode.
1088  * @c: UBIFS file-system description object
1089  * @nnode: nnode to validate
1090  * @parent: parent nnode (or NULL for the root nnode)
1091  * @iip: index in parent
1092  *
1093  * This function returns %0 on success and a negative error code on failure.
1094  */
1095 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1096 			  struct ubifs_nnode *parent, int iip)
1097 {
1098 	int i, lvl, max_offs;
1099 
1100 	if (c->big_lpt) {
1101 		int num = calc_nnode_num_from_parent(c, parent, iip);
1102 
1103 		if (nnode->num != num)
1104 			return -EINVAL;
1105 	}
1106 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1107 	if (lvl < 1)
1108 		return -EINVAL;
1109 	if (lvl == 1)
1110 		max_offs = c->leb_size - c->pnode_sz;
1111 	else
1112 		max_offs = c->leb_size - c->nnode_sz;
1113 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1114 		int lnum = nnode->nbranch[i].lnum;
1115 		int offs = nnode->nbranch[i].offs;
1116 
1117 		if (lnum == 0) {
1118 			if (offs != 0)
1119 				return -EINVAL;
1120 			continue;
1121 		}
1122 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1123 			return -EINVAL;
1124 		if (offs < 0 || offs > max_offs)
1125 			return -EINVAL;
1126 	}
1127 	return 0;
1128 }
1129 
1130 /**
1131  * validate_pnode - validate a pnode.
1132  * @c: UBIFS file-system description object
1133  * @pnode: pnode to validate
1134  * @parent: parent nnode
1135  * @iip: index in parent
1136  *
1137  * This function returns %0 on success and a negative error code on failure.
1138  */
1139 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1140 			  struct ubifs_nnode *parent, int iip)
1141 {
1142 	int i;
1143 
1144 	if (c->big_lpt) {
1145 		int num = calc_pnode_num_from_parent(c, parent, iip);
1146 
1147 		if (pnode->num != num)
1148 			return -EINVAL;
1149 	}
1150 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1151 		int free = pnode->lprops[i].free;
1152 		int dirty = pnode->lprops[i].dirty;
1153 
1154 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1155 		    (free & 7))
1156 			return -EINVAL;
1157 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1158 			return -EINVAL;
1159 		if (dirty + free > c->leb_size)
1160 			return -EINVAL;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /**
1166  * set_pnode_lnum - set LEB numbers on a pnode.
1167  * @c: UBIFS file-system description object
1168  * @pnode: pnode to update
1169  *
1170  * This function calculates the LEB numbers for the LEB properties it contains
1171  * based on the pnode number.
1172  */
1173 static void set_pnode_lnum(const struct ubifs_info *c,
1174 			   struct ubifs_pnode *pnode)
1175 {
1176 	int i, lnum;
1177 
1178 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1179 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1180 		if (lnum >= c->leb_cnt)
1181 			return;
1182 		pnode->lprops[i].lnum = lnum++;
1183 	}
1184 }
1185 
1186 /**
1187  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1188  * @c: UBIFS file-system description object
1189  * @parent: parent nnode (or NULL for the root)
1190  * @iip: index in parent
1191  *
1192  * This function returns %0 on success and a negative error code on failure.
1193  */
1194 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1195 {
1196 	struct ubifs_nbranch *branch = NULL;
1197 	struct ubifs_nnode *nnode = NULL;
1198 	void *buf = c->lpt_nod_buf;
1199 	int err, lnum, offs;
1200 
1201 	if (parent) {
1202 		branch = &parent->nbranch[iip];
1203 		lnum = branch->lnum;
1204 		offs = branch->offs;
1205 	} else {
1206 		lnum = c->lpt_lnum;
1207 		offs = c->lpt_offs;
1208 	}
1209 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1210 	if (!nnode) {
1211 		err = -ENOMEM;
1212 		goto out;
1213 	}
1214 	if (lnum == 0) {
1215 		/*
1216 		 * This nnode was not written which just means that the LEB
1217 		 * properties in the subtree below it describe empty LEBs. We
1218 		 * make the nnode as though we had read it, which in fact means
1219 		 * doing almost nothing.
1220 		 */
1221 		if (c->big_lpt)
1222 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1223 	} else {
1224 		err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
1225 		if (err)
1226 			goto out;
1227 		err = ubifs_unpack_nnode(c, buf, nnode);
1228 		if (err)
1229 			goto out;
1230 	}
1231 	err = validate_nnode(c, nnode, parent, iip);
1232 	if (err)
1233 		goto out;
1234 	if (!c->big_lpt)
1235 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1236 	if (parent) {
1237 		branch->nnode = nnode;
1238 		nnode->level = parent->level - 1;
1239 	} else {
1240 		c->nroot = nnode;
1241 		nnode->level = c->lpt_hght;
1242 	}
1243 	nnode->parent = parent;
1244 	nnode->iip = iip;
1245 	return 0;
1246 
1247 out:
1248 	ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1249 	kfree(nnode);
1250 	return err;
1251 }
1252 
1253 /**
1254  * read_pnode - read a pnode from flash and link it to the tree in memory.
1255  * @c: UBIFS file-system description object
1256  * @parent: parent nnode
1257  * @iip: index in parent
1258  *
1259  * This function returns %0 on success and a negative error code on failure.
1260  */
1261 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1262 {
1263 	struct ubifs_nbranch *branch;
1264 	struct ubifs_pnode *pnode = NULL;
1265 	void *buf = c->lpt_nod_buf;
1266 	int err, lnum, offs;
1267 
1268 	branch = &parent->nbranch[iip];
1269 	lnum = branch->lnum;
1270 	offs = branch->offs;
1271 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1272 	if (!pnode) {
1273 		err = -ENOMEM;
1274 		goto out;
1275 	}
1276 	if (lnum == 0) {
1277 		/*
1278 		 * This pnode was not written which just means that the LEB
1279 		 * properties in it describe empty LEBs. We make the pnode as
1280 		 * though we had read it.
1281 		 */
1282 		int i;
1283 
1284 		if (c->big_lpt)
1285 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1286 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1287 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1288 
1289 			lprops->free = c->leb_size;
1290 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1291 		}
1292 	} else {
1293 		err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
1294 		if (err)
1295 			goto out;
1296 		err = unpack_pnode(c, buf, pnode);
1297 		if (err)
1298 			goto out;
1299 	}
1300 	err = validate_pnode(c, pnode, parent, iip);
1301 	if (err)
1302 		goto out;
1303 	if (!c->big_lpt)
1304 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1305 	branch->pnode = pnode;
1306 	pnode->parent = parent;
1307 	pnode->iip = iip;
1308 	set_pnode_lnum(c, pnode);
1309 	c->pnodes_have += 1;
1310 	return 0;
1311 
1312 out:
1313 	ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1314 	dbg_dump_pnode(c, pnode, parent, iip);
1315 	dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1316 	kfree(pnode);
1317 	return err;
1318 }
1319 
1320 /**
1321  * read_ltab - read LPT's own lprops table.
1322  * @c: UBIFS file-system description object
1323  *
1324  * This function returns %0 on success and a negative error code on failure.
1325  */
1326 static int read_ltab(struct ubifs_info *c)
1327 {
1328 	int err;
1329 	void *buf;
1330 
1331 	buf = vmalloc(c->ltab_sz);
1332 	if (!buf)
1333 		return -ENOMEM;
1334 	err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
1335 	if (err)
1336 		goto out;
1337 	err = unpack_ltab(c, buf);
1338 out:
1339 	vfree(buf);
1340 	return err;
1341 }
1342 
1343 /**
1344  * read_lsave - read LPT's save table.
1345  * @c: UBIFS file-system description object
1346  *
1347  * This function returns %0 on success and a negative error code on failure.
1348  */
1349 static int read_lsave(struct ubifs_info *c)
1350 {
1351 	int err, i;
1352 	void *buf;
1353 
1354 	buf = vmalloc(c->lsave_sz);
1355 	if (!buf)
1356 		return -ENOMEM;
1357 	err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz);
1358 	if (err)
1359 		goto out;
1360 	err = unpack_lsave(c, buf);
1361 	if (err)
1362 		goto out;
1363 	for (i = 0; i < c->lsave_cnt; i++) {
1364 		int lnum = c->lsave[i];
1365 
1366 		/*
1367 		 * Due to automatic resizing, the values in the lsave table
1368 		 * could be beyond the volume size - just ignore them.
1369 		 */
1370 		if (lnum >= c->leb_cnt)
1371 			continue;
1372 		ubifs_lpt_lookup(c, lnum);
1373 	}
1374 out:
1375 	vfree(buf);
1376 	return err;
1377 }
1378 
1379 /**
1380  * ubifs_get_nnode - get a nnode.
1381  * @c: UBIFS file-system description object
1382  * @parent: parent nnode (or NULL for the root)
1383  * @iip: index in parent
1384  *
1385  * This function returns a pointer to the nnode on success or a negative error
1386  * code on failure.
1387  */
1388 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1389 				    struct ubifs_nnode *parent, int iip)
1390 {
1391 	struct ubifs_nbranch *branch;
1392 	struct ubifs_nnode *nnode;
1393 	int err;
1394 
1395 	branch = &parent->nbranch[iip];
1396 	nnode = branch->nnode;
1397 	if (nnode)
1398 		return nnode;
1399 	err = ubifs_read_nnode(c, parent, iip);
1400 	if (err)
1401 		return ERR_PTR(err);
1402 	return branch->nnode;
1403 }
1404 
1405 /**
1406  * ubifs_get_pnode - get a pnode.
1407  * @c: UBIFS file-system description object
1408  * @parent: parent nnode
1409  * @iip: index in parent
1410  *
1411  * This function returns a pointer to the pnode on success or a negative error
1412  * code on failure.
1413  */
1414 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1415 				    struct ubifs_nnode *parent, int iip)
1416 {
1417 	struct ubifs_nbranch *branch;
1418 	struct ubifs_pnode *pnode;
1419 	int err;
1420 
1421 	branch = &parent->nbranch[iip];
1422 	pnode = branch->pnode;
1423 	if (pnode)
1424 		return pnode;
1425 	err = read_pnode(c, parent, iip);
1426 	if (err)
1427 		return ERR_PTR(err);
1428 	update_cats(c, branch->pnode);
1429 	return branch->pnode;
1430 }
1431 
1432 /**
1433  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1434  * @c: UBIFS file-system description object
1435  * @lnum: LEB number to lookup
1436  *
1437  * This function returns a pointer to the LEB properties on success or a
1438  * negative error code on failure.
1439  */
1440 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1441 {
1442 	int err, i, h, iip, shft;
1443 	struct ubifs_nnode *nnode;
1444 	struct ubifs_pnode *pnode;
1445 
1446 	if (!c->nroot) {
1447 		err = ubifs_read_nnode(c, NULL, 0);
1448 		if (err)
1449 			return ERR_PTR(err);
1450 	}
1451 	nnode = c->nroot;
1452 	i = lnum - c->main_first;
1453 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1454 	for (h = 1; h < c->lpt_hght; h++) {
1455 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1456 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1457 		nnode = ubifs_get_nnode(c, nnode, iip);
1458 		if (IS_ERR(nnode))
1459 			return ERR_PTR(PTR_ERR(nnode));
1460 	}
1461 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1462 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1463 	pnode = ubifs_get_pnode(c, nnode, iip);
1464 	if (IS_ERR(pnode))
1465 		return ERR_PTR(PTR_ERR(pnode));
1466 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1467 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1468 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1469 	       pnode->lprops[iip].flags);
1470 	return &pnode->lprops[iip];
1471 }
1472 
1473 /**
1474  * dirty_cow_nnode - ensure a nnode is not being committed.
1475  * @c: UBIFS file-system description object
1476  * @nnode: nnode to check
1477  *
1478  * Returns dirtied nnode on success or negative error code on failure.
1479  */
1480 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1481 					   struct ubifs_nnode *nnode)
1482 {
1483 	struct ubifs_nnode *n;
1484 	int i;
1485 
1486 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1487 		/* nnode is not being committed */
1488 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1489 			c->dirty_nn_cnt += 1;
1490 			ubifs_add_nnode_dirt(c, nnode);
1491 		}
1492 		return nnode;
1493 	}
1494 
1495 	/* nnode is being committed, so copy it */
1496 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1497 	if (unlikely(!n))
1498 		return ERR_PTR(-ENOMEM);
1499 
1500 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1501 	n->cnext = NULL;
1502 	__set_bit(DIRTY_CNODE, &n->flags);
1503 	__clear_bit(COW_CNODE, &n->flags);
1504 
1505 	/* The children now have new parent */
1506 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1507 		struct ubifs_nbranch *branch = &n->nbranch[i];
1508 
1509 		if (branch->cnode)
1510 			branch->cnode->parent = n;
1511 	}
1512 
1513 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1514 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1515 
1516 	c->dirty_nn_cnt += 1;
1517 	ubifs_add_nnode_dirt(c, nnode);
1518 	if (nnode->parent)
1519 		nnode->parent->nbranch[n->iip].nnode = n;
1520 	else
1521 		c->nroot = n;
1522 	return n;
1523 }
1524 
1525 /**
1526  * dirty_cow_pnode - ensure a pnode is not being committed.
1527  * @c: UBIFS file-system description object
1528  * @pnode: pnode to check
1529  *
1530  * Returns dirtied pnode on success or negative error code on failure.
1531  */
1532 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1533 					   struct ubifs_pnode *pnode)
1534 {
1535 	struct ubifs_pnode *p;
1536 
1537 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1538 		/* pnode is not being committed */
1539 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1540 			c->dirty_pn_cnt += 1;
1541 			add_pnode_dirt(c, pnode);
1542 		}
1543 		return pnode;
1544 	}
1545 
1546 	/* pnode is being committed, so copy it */
1547 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1548 	if (unlikely(!p))
1549 		return ERR_PTR(-ENOMEM);
1550 
1551 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1552 	p->cnext = NULL;
1553 	__set_bit(DIRTY_CNODE, &p->flags);
1554 	__clear_bit(COW_CNODE, &p->flags);
1555 	replace_cats(c, pnode, p);
1556 
1557 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1558 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1559 
1560 	c->dirty_pn_cnt += 1;
1561 	add_pnode_dirt(c, pnode);
1562 	pnode->parent->nbranch[p->iip].pnode = p;
1563 	return p;
1564 }
1565 
1566 /**
1567  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1568  * @c: UBIFS file-system description object
1569  * @lnum: LEB number to lookup
1570  *
1571  * This function returns a pointer to the LEB properties on success or a
1572  * negative error code on failure.
1573  */
1574 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1575 {
1576 	int err, i, h, iip, shft;
1577 	struct ubifs_nnode *nnode;
1578 	struct ubifs_pnode *pnode;
1579 
1580 	if (!c->nroot) {
1581 		err = ubifs_read_nnode(c, NULL, 0);
1582 		if (err)
1583 			return ERR_PTR(err);
1584 	}
1585 	nnode = c->nroot;
1586 	nnode = dirty_cow_nnode(c, nnode);
1587 	if (IS_ERR(nnode))
1588 		return ERR_PTR(PTR_ERR(nnode));
1589 	i = lnum - c->main_first;
1590 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1591 	for (h = 1; h < c->lpt_hght; h++) {
1592 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1593 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1594 		nnode = ubifs_get_nnode(c, nnode, iip);
1595 		if (IS_ERR(nnode))
1596 			return ERR_PTR(PTR_ERR(nnode));
1597 		nnode = dirty_cow_nnode(c, nnode);
1598 		if (IS_ERR(nnode))
1599 			return ERR_PTR(PTR_ERR(nnode));
1600 	}
1601 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1602 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1603 	pnode = ubifs_get_pnode(c, nnode, iip);
1604 	if (IS_ERR(pnode))
1605 		return ERR_PTR(PTR_ERR(pnode));
1606 	pnode = dirty_cow_pnode(c, pnode);
1607 	if (IS_ERR(pnode))
1608 		return ERR_PTR(PTR_ERR(pnode));
1609 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1610 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1611 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1612 	       pnode->lprops[iip].flags);
1613 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1614 	return &pnode->lprops[iip];
1615 }
1616 
1617 /**
1618  * lpt_init_rd - initialize the LPT for reading.
1619  * @c: UBIFS file-system description object
1620  *
1621  * This function returns %0 on success and a negative error code on failure.
1622  */
1623 static int lpt_init_rd(struct ubifs_info *c)
1624 {
1625 	int err, i;
1626 
1627 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1628 	if (!c->ltab)
1629 		return -ENOMEM;
1630 
1631 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1632 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1633 	if (!c->lpt_nod_buf)
1634 		return -ENOMEM;
1635 
1636 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1637 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1638 					     GFP_KERNEL);
1639 		if (!c->lpt_heap[i].arr)
1640 			return -ENOMEM;
1641 		c->lpt_heap[i].cnt = 0;
1642 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1643 	}
1644 
1645 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1646 	if (!c->dirty_idx.arr)
1647 		return -ENOMEM;
1648 	c->dirty_idx.cnt = 0;
1649 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1650 
1651 	err = read_ltab(c);
1652 	if (err)
1653 		return err;
1654 
1655 	dbg_lp("space_bits %d", c->space_bits);
1656 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1657 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1658 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1659 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1660 	dbg_lp("lnum_bits %d", c->lnum_bits);
1661 	dbg_lp("pnode_sz %d", c->pnode_sz);
1662 	dbg_lp("nnode_sz %d", c->nnode_sz);
1663 	dbg_lp("ltab_sz %d", c->ltab_sz);
1664 	dbg_lp("lsave_sz %d", c->lsave_sz);
1665 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1666 	dbg_lp("lpt_hght %d", c->lpt_hght);
1667 	dbg_lp("big_lpt %d", c->big_lpt);
1668 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1669 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1670 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1671 	if (c->big_lpt)
1672 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1673 
1674 	return 0;
1675 }
1676 
1677 /**
1678  * lpt_init_wr - initialize the LPT for writing.
1679  * @c: UBIFS file-system description object
1680  *
1681  * 'lpt_init_rd()' must have been called already.
1682  *
1683  * This function returns %0 on success and a negative error code on failure.
1684  */
1685 static int lpt_init_wr(struct ubifs_info *c)
1686 {
1687 	int err, i;
1688 
1689 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1690 	if (!c->ltab_cmt)
1691 		return -ENOMEM;
1692 
1693 	c->lpt_buf = vmalloc(c->leb_size);
1694 	if (!c->lpt_buf)
1695 		return -ENOMEM;
1696 
1697 	if (c->big_lpt) {
1698 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1699 		if (!c->lsave)
1700 			return -ENOMEM;
1701 		err = read_lsave(c);
1702 		if (err)
1703 			return err;
1704 	}
1705 
1706 	for (i = 0; i < c->lpt_lebs; i++)
1707 		if (c->ltab[i].free == c->leb_size) {
1708 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1709 			if (err)
1710 				return err;
1711 		}
1712 
1713 	return 0;
1714 }
1715 
1716 /**
1717  * ubifs_lpt_init - initialize the LPT.
1718  * @c: UBIFS file-system description object
1719  * @rd: whether to initialize lpt for reading
1720  * @wr: whether to initialize lpt for writing
1721  *
1722  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1723  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1724  * true.
1725  *
1726  * This function returns %0 on success and a negative error code on failure.
1727  */
1728 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1729 {
1730 	int err;
1731 
1732 	if (rd) {
1733 		err = lpt_init_rd(c);
1734 		if (err)
1735 			return err;
1736 	}
1737 
1738 	if (wr) {
1739 		err = lpt_init_wr(c);
1740 		if (err)
1741 			return err;
1742 	}
1743 
1744 	return 0;
1745 }
1746 
1747 /**
1748  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1749  * @nnode: where to keep a nnode
1750  * @pnode: where to keep a pnode
1751  * @cnode: where to keep a cnode
1752  * @in_tree: is the node in the tree in memory
1753  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1754  * the tree
1755  * @ptr.pnode: ditto for pnode
1756  * @ptr.cnode: ditto for cnode
1757  */
1758 struct lpt_scan_node {
1759 	union {
1760 		struct ubifs_nnode nnode;
1761 		struct ubifs_pnode pnode;
1762 		struct ubifs_cnode cnode;
1763 	};
1764 	int in_tree;
1765 	union {
1766 		struct ubifs_nnode *nnode;
1767 		struct ubifs_pnode *pnode;
1768 		struct ubifs_cnode *cnode;
1769 	} ptr;
1770 };
1771 
1772 /**
1773  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1774  * @c: the UBIFS file-system description object
1775  * @path: where to put the nnode
1776  * @parent: parent of the nnode
1777  * @iip: index in parent of the nnode
1778  *
1779  * This function returns a pointer to the nnode on success or a negative error
1780  * code on failure.
1781  */
1782 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1783 					  struct lpt_scan_node *path,
1784 					  struct ubifs_nnode *parent, int iip)
1785 {
1786 	struct ubifs_nbranch *branch;
1787 	struct ubifs_nnode *nnode;
1788 	void *buf = c->lpt_nod_buf;
1789 	int err;
1790 
1791 	branch = &parent->nbranch[iip];
1792 	nnode = branch->nnode;
1793 	if (nnode) {
1794 		path->in_tree = 1;
1795 		path->ptr.nnode = nnode;
1796 		return nnode;
1797 	}
1798 	nnode = &path->nnode;
1799 	path->in_tree = 0;
1800 	path->ptr.nnode = nnode;
1801 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1802 	if (branch->lnum == 0) {
1803 		/*
1804 		 * This nnode was not written which just means that the LEB
1805 		 * properties in the subtree below it describe empty LEBs. We
1806 		 * make the nnode as though we had read it, which in fact means
1807 		 * doing almost nothing.
1808 		 */
1809 		if (c->big_lpt)
1810 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1811 	} else {
1812 		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1813 			       c->nnode_sz);
1814 		if (err)
1815 			return ERR_PTR(err);
1816 		err = ubifs_unpack_nnode(c, buf, nnode);
1817 		if (err)
1818 			return ERR_PTR(err);
1819 	}
1820 	err = validate_nnode(c, nnode, parent, iip);
1821 	if (err)
1822 		return ERR_PTR(err);
1823 	if (!c->big_lpt)
1824 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1825 	nnode->level = parent->level - 1;
1826 	nnode->parent = parent;
1827 	nnode->iip = iip;
1828 	return nnode;
1829 }
1830 
1831 /**
1832  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1833  * @c: the UBIFS file-system description object
1834  * @path: where to put the pnode
1835  * @parent: parent of the pnode
1836  * @iip: index in parent of the pnode
1837  *
1838  * This function returns a pointer to the pnode on success or a negative error
1839  * code on failure.
1840  */
1841 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1842 					  struct lpt_scan_node *path,
1843 					  struct ubifs_nnode *parent, int iip)
1844 {
1845 	struct ubifs_nbranch *branch;
1846 	struct ubifs_pnode *pnode;
1847 	void *buf = c->lpt_nod_buf;
1848 	int err;
1849 
1850 	branch = &parent->nbranch[iip];
1851 	pnode = branch->pnode;
1852 	if (pnode) {
1853 		path->in_tree = 1;
1854 		path->ptr.pnode = pnode;
1855 		return pnode;
1856 	}
1857 	pnode = &path->pnode;
1858 	path->in_tree = 0;
1859 	path->ptr.pnode = pnode;
1860 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1861 	if (branch->lnum == 0) {
1862 		/*
1863 		 * This pnode was not written which just means that the LEB
1864 		 * properties in it describe empty LEBs. We make the pnode as
1865 		 * though we had read it.
1866 		 */
1867 		int i;
1868 
1869 		if (c->big_lpt)
1870 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1871 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1872 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1873 
1874 			lprops->free = c->leb_size;
1875 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1876 		}
1877 	} else {
1878 		ubifs_assert(branch->lnum >= c->lpt_first &&
1879 			     branch->lnum <= c->lpt_last);
1880 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1881 		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1882 			       c->pnode_sz);
1883 		if (err)
1884 			return ERR_PTR(err);
1885 		err = unpack_pnode(c, buf, pnode);
1886 		if (err)
1887 			return ERR_PTR(err);
1888 	}
1889 	err = validate_pnode(c, pnode, parent, iip);
1890 	if (err)
1891 		return ERR_PTR(err);
1892 	if (!c->big_lpt)
1893 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1894 	pnode->parent = parent;
1895 	pnode->iip = iip;
1896 	set_pnode_lnum(c, pnode);
1897 	return pnode;
1898 }
1899 
1900 /**
1901  * ubifs_lpt_scan_nolock - scan the LPT.
1902  * @c: the UBIFS file-system description object
1903  * @start_lnum: LEB number from which to start scanning
1904  * @end_lnum: LEB number at which to stop scanning
1905  * @scan_cb: callback function called for each lprops
1906  * @data: data to be passed to the callback function
1907  *
1908  * This function returns %0 on success and a negative error code on failure.
1909  */
1910 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1911 			  ubifs_lpt_scan_callback scan_cb, void *data)
1912 {
1913 	int err = 0, i, h, iip, shft;
1914 	struct ubifs_nnode *nnode;
1915 	struct ubifs_pnode *pnode;
1916 	struct lpt_scan_node *path;
1917 
1918 	if (start_lnum == -1) {
1919 		start_lnum = end_lnum + 1;
1920 		if (start_lnum >= c->leb_cnt)
1921 			start_lnum = c->main_first;
1922 	}
1923 
1924 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1925 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1926 
1927 	if (!c->nroot) {
1928 		err = ubifs_read_nnode(c, NULL, 0);
1929 		if (err)
1930 			return err;
1931 	}
1932 
1933 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1934 		       GFP_NOFS);
1935 	if (!path)
1936 		return -ENOMEM;
1937 
1938 	path[0].ptr.nnode = c->nroot;
1939 	path[0].in_tree = 1;
1940 again:
1941 	/* Descend to the pnode containing start_lnum */
1942 	nnode = c->nroot;
1943 	i = start_lnum - c->main_first;
1944 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1945 	for (h = 1; h < c->lpt_hght; h++) {
1946 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1947 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1948 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1949 		if (IS_ERR(nnode)) {
1950 			err = PTR_ERR(nnode);
1951 			goto out;
1952 		}
1953 	}
1954 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1955 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1956 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1957 	if (IS_ERR(pnode)) {
1958 		err = PTR_ERR(pnode);
1959 		goto out;
1960 	}
1961 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1962 
1963 	/* Loop for each lprops */
1964 	while (1) {
1965 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1966 		int ret, lnum = lprops->lnum;
1967 
1968 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1969 		if (ret < 0) {
1970 			err = ret;
1971 			goto out;
1972 		}
1973 		if (ret & LPT_SCAN_ADD) {
1974 			/* Add all the nodes in path to the tree in memory */
1975 			for (h = 1; h < c->lpt_hght; h++) {
1976 				const size_t sz = sizeof(struct ubifs_nnode);
1977 				struct ubifs_nnode *parent;
1978 
1979 				if (path[h].in_tree)
1980 					continue;
1981 				nnode = kmalloc(sz, GFP_NOFS);
1982 				if (!nnode) {
1983 					err = -ENOMEM;
1984 					goto out;
1985 				}
1986 				memcpy(nnode, &path[h].nnode, sz);
1987 				parent = nnode->parent;
1988 				parent->nbranch[nnode->iip].nnode = nnode;
1989 				path[h].ptr.nnode = nnode;
1990 				path[h].in_tree = 1;
1991 				path[h + 1].cnode.parent = nnode;
1992 			}
1993 			if (path[h].in_tree)
1994 				ubifs_ensure_cat(c, lprops);
1995 			else {
1996 				const size_t sz = sizeof(struct ubifs_pnode);
1997 				struct ubifs_nnode *parent;
1998 
1999 				pnode = kmalloc(sz, GFP_NOFS);
2000 				if (!pnode) {
2001 					err = -ENOMEM;
2002 					goto out;
2003 				}
2004 				memcpy(pnode, &path[h].pnode, sz);
2005 				parent = pnode->parent;
2006 				parent->nbranch[pnode->iip].pnode = pnode;
2007 				path[h].ptr.pnode = pnode;
2008 				path[h].in_tree = 1;
2009 				update_cats(c, pnode);
2010 				c->pnodes_have += 1;
2011 			}
2012 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2013 						  c->nroot, 0, 0);
2014 			if (err)
2015 				goto out;
2016 			err = dbg_check_cats(c);
2017 			if (err)
2018 				goto out;
2019 		}
2020 		if (ret & LPT_SCAN_STOP) {
2021 			err = 0;
2022 			break;
2023 		}
2024 		/* Get the next lprops */
2025 		if (lnum == end_lnum) {
2026 			/*
2027 			 * We got to the end without finding what we were
2028 			 * looking for
2029 			 */
2030 			err = -ENOSPC;
2031 			goto out;
2032 		}
2033 		if (lnum + 1 >= c->leb_cnt) {
2034 			/* Wrap-around to the beginning */
2035 			start_lnum = c->main_first;
2036 			goto again;
2037 		}
2038 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2039 			/* Next lprops is in the same pnode */
2040 			iip += 1;
2041 			continue;
2042 		}
2043 		/* We need to get the next pnode. Go up until we can go right */
2044 		iip = pnode->iip;
2045 		while (1) {
2046 			h -= 1;
2047 			ubifs_assert(h >= 0);
2048 			nnode = path[h].ptr.nnode;
2049 			if (iip + 1 < UBIFS_LPT_FANOUT)
2050 				break;
2051 			iip = nnode->iip;
2052 		}
2053 		/* Go right */
2054 		iip += 1;
2055 		/* Descend to the pnode */
2056 		h += 1;
2057 		for (; h < c->lpt_hght; h++) {
2058 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2059 			if (IS_ERR(nnode)) {
2060 				err = PTR_ERR(nnode);
2061 				goto out;
2062 			}
2063 			iip = 0;
2064 		}
2065 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2066 		if (IS_ERR(pnode)) {
2067 			err = PTR_ERR(pnode);
2068 			goto out;
2069 		}
2070 		iip = 0;
2071 	}
2072 out:
2073 	kfree(path);
2074 	return err;
2075 }
2076 
2077 #ifdef CONFIG_UBIFS_FS_DEBUG
2078 
2079 /**
2080  * dbg_chk_pnode - check a pnode.
2081  * @c: the UBIFS file-system description object
2082  * @pnode: pnode to check
2083  * @col: pnode column
2084  *
2085  * This function returns %0 on success and a negative error code on failure.
2086  */
2087 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2088 			 int col)
2089 {
2090 	int i;
2091 
2092 	if (pnode->num != col) {
2093 		dbg_err("pnode num %d expected %d parent num %d iip %d",
2094 			pnode->num, col, pnode->parent->num, pnode->iip);
2095 		return -EINVAL;
2096 	}
2097 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2098 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2099 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2100 			   c->main_first;
2101 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2102 		struct ubifs_lpt_heap *heap;
2103 		struct list_head *list = NULL;
2104 
2105 		if (lnum >= c->leb_cnt)
2106 			continue;
2107 		if (lprops->lnum != lnum) {
2108 			dbg_err("bad LEB number %d expected %d",
2109 				lprops->lnum, lnum);
2110 			return -EINVAL;
2111 		}
2112 		if (lprops->flags & LPROPS_TAKEN) {
2113 			if (cat != LPROPS_UNCAT) {
2114 				dbg_err("LEB %d taken but not uncat %d",
2115 					lprops->lnum, cat);
2116 				return -EINVAL;
2117 			}
2118 			continue;
2119 		}
2120 		if (lprops->flags & LPROPS_INDEX) {
2121 			switch (cat) {
2122 			case LPROPS_UNCAT:
2123 			case LPROPS_DIRTY_IDX:
2124 			case LPROPS_FRDI_IDX:
2125 				break;
2126 			default:
2127 				dbg_err("LEB %d index but cat %d",
2128 					lprops->lnum, cat);
2129 				return -EINVAL;
2130 			}
2131 		} else {
2132 			switch (cat) {
2133 			case LPROPS_UNCAT:
2134 			case LPROPS_DIRTY:
2135 			case LPROPS_FREE:
2136 			case LPROPS_EMPTY:
2137 			case LPROPS_FREEABLE:
2138 				break;
2139 			default:
2140 				dbg_err("LEB %d not index but cat %d",
2141 					lprops->lnum, cat);
2142 				return -EINVAL;
2143 			}
2144 		}
2145 		switch (cat) {
2146 		case LPROPS_UNCAT:
2147 			list = &c->uncat_list;
2148 			break;
2149 		case LPROPS_EMPTY:
2150 			list = &c->empty_list;
2151 			break;
2152 		case LPROPS_FREEABLE:
2153 			list = &c->freeable_list;
2154 			break;
2155 		case LPROPS_FRDI_IDX:
2156 			list = &c->frdi_idx_list;
2157 			break;
2158 		}
2159 		found = 0;
2160 		switch (cat) {
2161 		case LPROPS_DIRTY:
2162 		case LPROPS_DIRTY_IDX:
2163 		case LPROPS_FREE:
2164 			heap = &c->lpt_heap[cat - 1];
2165 			if (lprops->hpos < heap->cnt &&
2166 			    heap->arr[lprops->hpos] == lprops)
2167 				found = 1;
2168 			break;
2169 		case LPROPS_UNCAT:
2170 		case LPROPS_EMPTY:
2171 		case LPROPS_FREEABLE:
2172 		case LPROPS_FRDI_IDX:
2173 			list_for_each_entry(lp, list, list)
2174 				if (lprops == lp) {
2175 					found = 1;
2176 					break;
2177 				}
2178 			break;
2179 		}
2180 		if (!found) {
2181 			dbg_err("LEB %d cat %d not found in cat heap/list",
2182 				lprops->lnum, cat);
2183 			return -EINVAL;
2184 		}
2185 		switch (cat) {
2186 		case LPROPS_EMPTY:
2187 			if (lprops->free != c->leb_size) {
2188 				dbg_err("LEB %d cat %d free %d dirty %d",
2189 					lprops->lnum, cat, lprops->free,
2190 					lprops->dirty);
2191 				return -EINVAL;
2192 			}
2193 		case LPROPS_FREEABLE:
2194 		case LPROPS_FRDI_IDX:
2195 			if (lprops->free + lprops->dirty != c->leb_size) {
2196 				dbg_err("LEB %d cat %d free %d dirty %d",
2197 					lprops->lnum, cat, lprops->free,
2198 					lprops->dirty);
2199 				return -EINVAL;
2200 			}
2201 		}
2202 	}
2203 	return 0;
2204 }
2205 
2206 /**
2207  * dbg_check_lpt_nodes - check nnodes and pnodes.
2208  * @c: the UBIFS file-system description object
2209  * @cnode: next cnode (nnode or pnode) to check
2210  * @row: row of cnode (root is zero)
2211  * @col: column of cnode (leftmost is zero)
2212  *
2213  * This function returns %0 on success and a negative error code on failure.
2214  */
2215 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2216 			int row, int col)
2217 {
2218 	struct ubifs_nnode *nnode, *nn;
2219 	struct ubifs_cnode *cn;
2220 	int num, iip = 0, err;
2221 
2222 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
2223 		return 0;
2224 
2225 	while (cnode) {
2226 		ubifs_assert(row >= 0);
2227 		nnode = cnode->parent;
2228 		if (cnode->level) {
2229 			/* cnode is a nnode */
2230 			num = calc_nnode_num(row, col);
2231 			if (cnode->num != num) {
2232 				dbg_err("nnode num %d expected %d "
2233 					"parent num %d iip %d", cnode->num, num,
2234 					(nnode ? nnode->num : 0), cnode->iip);
2235 				return -EINVAL;
2236 			}
2237 			nn = (struct ubifs_nnode *)cnode;
2238 			while (iip < UBIFS_LPT_FANOUT) {
2239 				cn = nn->nbranch[iip].cnode;
2240 				if (cn) {
2241 					/* Go down */
2242 					row += 1;
2243 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2244 					col += iip;
2245 					iip = 0;
2246 					cnode = cn;
2247 					break;
2248 				}
2249 				/* Go right */
2250 				iip += 1;
2251 			}
2252 			if (iip < UBIFS_LPT_FANOUT)
2253 				continue;
2254 		} else {
2255 			struct ubifs_pnode *pnode;
2256 
2257 			/* cnode is a pnode */
2258 			pnode = (struct ubifs_pnode *)cnode;
2259 			err = dbg_chk_pnode(c, pnode, col);
2260 			if (err)
2261 				return err;
2262 		}
2263 		/* Go up and to the right */
2264 		row -= 1;
2265 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2266 		iip = cnode->iip + 1;
2267 		cnode = (struct ubifs_cnode *)nnode;
2268 	}
2269 	return 0;
2270 }
2271 
2272 #endif /* CONFIG_UBIFS_FS_DEBUG */
2273