xref: /openbmc/linux/fs/ubifs/lpt.c (revision 9fb29c73)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
50 
51 /**
52  * do_calc_lpt_geom - calculate sizes for the LPT area.
53  * @c: the UBIFS file-system description object
54  *
55  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56  * properties of the flash and whether LPT is "big" (c->big_lpt).
57  */
58 static void do_calc_lpt_geom(struct ubifs_info *c)
59 {
60 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 	long long sz, tot_wastage;
62 
63 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65 
66 	c->lpt_hght = 1;
67 	n = UBIFS_LPT_FANOUT;
68 	while (n < max_pnode_cnt) {
69 		c->lpt_hght += 1;
70 		n <<= UBIFS_LPT_FANOUT_SHIFT;
71 	}
72 
73 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74 
75 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 	c->nnode_cnt = n;
77 	for (i = 1; i < c->lpt_hght; i++) {
78 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 		c->nnode_cnt += n;
80 	}
81 
82 	c->space_bits = fls(c->leb_size) - 3;
83 	c->lpt_lnum_bits = fls(c->lpt_lebs);
84 	c->lpt_offs_bits = fls(c->leb_size - 1);
85 	c->lpt_spc_bits = fls(c->leb_size);
86 
87 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 	c->pcnt_bits = fls(n - 1);
89 
90 	c->lnum_bits = fls(c->max_leb_cnt - 1);
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 	c->pnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       (c->big_lpt ? c->pcnt_bits : 0) +
99 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 	c->nnode_sz = (bits + 7) / 8;
101 
102 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 	       c->lpt_lebs * c->lpt_spc_bits * 2;
104 	c->ltab_sz = (bits + 7) / 8;
105 
106 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 	       c->lnum_bits * c->lsave_cnt;
108 	c->lsave_sz = (bits + 7) / 8;
109 
110 	/* Calculate the minimum LPT size */
111 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 	c->lpt_sz += c->ltab_sz;
114 	if (c->big_lpt)
115 		c->lpt_sz += c->lsave_sz;
116 
117 	/* Add wastage */
118 	sz = c->lpt_sz;
119 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 	sz += per_leb_wastage;
121 	tot_wastage = per_leb_wastage;
122 	while (sz > c->leb_size) {
123 		sz += per_leb_wastage;
124 		sz -= c->leb_size;
125 		tot_wastage += per_leb_wastage;
126 	}
127 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 	c->lpt_sz += tot_wastage;
129 }
130 
131 /**
132  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133  * @c: the UBIFS file-system description object
134  *
135  * This function returns %0 on success and a negative error code on failure.
136  */
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
138 {
139 	int lebs_needed;
140 	long long sz;
141 
142 	do_calc_lpt_geom(c);
143 
144 	/* Verify that lpt_lebs is big enough */
145 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err(c, "too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err(c, "LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 	return 0;
160 }
161 
162 /**
163  * calc_dflt_lpt_geom - calculate default LPT geometry.
164  * @c: the UBIFS file-system description object
165  * @main_lebs: number of main area LEBs is passed and returned here
166  * @big_lpt: whether the LPT area is "big" is returned here
167  *
168  * The size of the LPT area depends on parameters that themselves are dependent
169  * on the size of the LPT area. This function, successively recalculates the LPT
170  * area geometry until the parameters and resultant geometry are consistent.
171  *
172  * This function returns %0 on success and a negative error code on failure.
173  */
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 			      int *big_lpt)
176 {
177 	int i, lebs_needed;
178 	long long sz;
179 
180 	/* Start by assuming the minimum number of LPT LEBs */
181 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 	c->main_lebs = *main_lebs - c->lpt_lebs;
183 	if (c->main_lebs <= 0)
184 		return -EINVAL;
185 
186 	/* And assume we will use the small LPT model */
187 	c->big_lpt = 0;
188 
189 	/*
190 	 * Calculate the geometry based on assumptions above and then see if it
191 	 * makes sense
192 	 */
193 	do_calc_lpt_geom(c);
194 
195 	/* Small LPT model must have lpt_sz < leb_size */
196 	if (c->lpt_sz > c->leb_size) {
197 		/* Nope, so try again using big LPT model */
198 		c->big_lpt = 1;
199 		do_calc_lpt_geom(c);
200 	}
201 
202 	/* Now check there are enough LPT LEBs */
203 	for (i = 0; i < 64 ; i++) {
204 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 		if (lebs_needed > c->lpt_lebs) {
207 			/* Not enough LPT LEBs so try again with more */
208 			c->lpt_lebs = lebs_needed;
209 			c->main_lebs = *main_lebs - c->lpt_lebs;
210 			if (c->main_lebs <= 0)
211 				return -EINVAL;
212 			do_calc_lpt_geom(c);
213 			continue;
214 		}
215 		if (c->ltab_sz > c->leb_size) {
216 			ubifs_err(c, "LPT ltab too big");
217 			return -EINVAL;
218 		}
219 		*main_lebs = c->main_lebs;
220 		*big_lpt = c->big_lpt;
221 		return 0;
222 	}
223 	return -EINVAL;
224 }
225 
226 /**
227  * pack_bits - pack bit fields end-to-end.
228  * @c: UBIFS file-system description object
229  * @addr: address at which to pack (passed and next address returned)
230  * @pos: bit position at which to pack (passed and next position returned)
231  * @val: value to pack
232  * @nrbits: number of bits of value to pack (1-32)
233  */
234 static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits)
235 {
236 	uint8_t *p = *addr;
237 	int b = *pos;
238 
239 	ubifs_assert(c, nrbits > 0);
240 	ubifs_assert(c, nrbits <= 32);
241 	ubifs_assert(c, *pos >= 0);
242 	ubifs_assert(c, *pos < 8);
243 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32);
244 	if (b) {
245 		*p |= ((uint8_t)val) << b;
246 		nrbits += b;
247 		if (nrbits > 8) {
248 			*++p = (uint8_t)(val >>= (8 - b));
249 			if (nrbits > 16) {
250 				*++p = (uint8_t)(val >>= 8);
251 				if (nrbits > 24) {
252 					*++p = (uint8_t)(val >>= 8);
253 					if (nrbits > 32)
254 						*++p = (uint8_t)(val >>= 8);
255 				}
256 			}
257 		}
258 	} else {
259 		*p = (uint8_t)val;
260 		if (nrbits > 8) {
261 			*++p = (uint8_t)(val >>= 8);
262 			if (nrbits > 16) {
263 				*++p = (uint8_t)(val >>= 8);
264 				if (nrbits > 24)
265 					*++p = (uint8_t)(val >>= 8);
266 			}
267 		}
268 	}
269 	b = nrbits & 7;
270 	if (b == 0)
271 		p++;
272 	*addr = p;
273 	*pos = b;
274 }
275 
276 /**
277  * ubifs_unpack_bits - unpack bit fields.
278  * @c: UBIFS file-system description object
279  * @addr: address at which to unpack (passed and next address returned)
280  * @pos: bit position at which to unpack (passed and next position returned)
281  * @nrbits: number of bits of value to unpack (1-32)
282  *
283  * This functions returns the value unpacked.
284  */
285 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits)
286 {
287 	const int k = 32 - nrbits;
288 	uint8_t *p = *addr;
289 	int b = *pos;
290 	uint32_t uninitialized_var(val);
291 	const int bytes = (nrbits + b + 7) >> 3;
292 
293 	ubifs_assert(c, nrbits > 0);
294 	ubifs_assert(c, nrbits <= 32);
295 	ubifs_assert(c, *pos >= 0);
296 	ubifs_assert(c, *pos < 8);
297 	if (b) {
298 		switch (bytes) {
299 		case 2:
300 			val = p[1];
301 			break;
302 		case 3:
303 			val = p[1] | ((uint32_t)p[2] << 8);
304 			break;
305 		case 4:
306 			val = p[1] | ((uint32_t)p[2] << 8) |
307 				     ((uint32_t)p[3] << 16);
308 			break;
309 		case 5:
310 			val = p[1] | ((uint32_t)p[2] << 8) |
311 				     ((uint32_t)p[3] << 16) |
312 				     ((uint32_t)p[4] << 24);
313 		}
314 		val <<= (8 - b);
315 		val |= *p >> b;
316 		nrbits += b;
317 	} else {
318 		switch (bytes) {
319 		case 1:
320 			val = p[0];
321 			break;
322 		case 2:
323 			val = p[0] | ((uint32_t)p[1] << 8);
324 			break;
325 		case 3:
326 			val = p[0] | ((uint32_t)p[1] << 8) |
327 				     ((uint32_t)p[2] << 16);
328 			break;
329 		case 4:
330 			val = p[0] | ((uint32_t)p[1] << 8) |
331 				     ((uint32_t)p[2] << 16) |
332 				     ((uint32_t)p[3] << 24);
333 			break;
334 		}
335 	}
336 	val <<= k;
337 	val >>= k;
338 	b = nrbits & 7;
339 	p += nrbits >> 3;
340 	*addr = p;
341 	*pos = b;
342 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32);
343 	return val;
344 }
345 
346 /**
347  * ubifs_pack_pnode - pack all the bit fields of a pnode.
348  * @c: UBIFS file-system description object
349  * @buf: buffer into which to pack
350  * @pnode: pnode to pack
351  */
352 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
353 		      struct ubifs_pnode *pnode)
354 {
355 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
356 	int i, pos = 0;
357 	uint16_t crc;
358 
359 	pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
360 	if (c->big_lpt)
361 		pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits);
362 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
363 		pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3,
364 			  c->space_bits);
365 		pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3,
366 			  c->space_bits);
367 		if (pnode->lprops[i].flags & LPROPS_INDEX)
368 			pack_bits(c, &addr, &pos, 1, 1);
369 		else
370 			pack_bits(c, &addr, &pos, 0, 1);
371 	}
372 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
373 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
374 	addr = buf;
375 	pos = 0;
376 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
377 }
378 
379 /**
380  * ubifs_pack_nnode - pack all the bit fields of a nnode.
381  * @c: UBIFS file-system description object
382  * @buf: buffer into which to pack
383  * @nnode: nnode to pack
384  */
385 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
386 		      struct ubifs_nnode *nnode)
387 {
388 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
389 	int i, pos = 0;
390 	uint16_t crc;
391 
392 	pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
393 	if (c->big_lpt)
394 		pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits);
395 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
396 		int lnum = nnode->nbranch[i].lnum;
397 
398 		if (lnum == 0)
399 			lnum = c->lpt_last + 1;
400 		pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
401 		pack_bits(c, &addr, &pos, nnode->nbranch[i].offs,
402 			  c->lpt_offs_bits);
403 	}
404 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
405 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
406 	addr = buf;
407 	pos = 0;
408 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
409 }
410 
411 /**
412  * ubifs_pack_ltab - pack the LPT's own lprops table.
413  * @c: UBIFS file-system description object
414  * @buf: buffer into which to pack
415  * @ltab: LPT's own lprops table to pack
416  */
417 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
418 		     struct ubifs_lpt_lprops *ltab)
419 {
420 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
421 	int i, pos = 0;
422 	uint16_t crc;
423 
424 	pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
425 	for (i = 0; i < c->lpt_lebs; i++) {
426 		pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits);
427 		pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
428 	}
429 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
430 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
431 	addr = buf;
432 	pos = 0;
433 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
434 }
435 
436 /**
437  * ubifs_pack_lsave - pack the LPT's save table.
438  * @c: UBIFS file-system description object
439  * @buf: buffer into which to pack
440  * @lsave: LPT's save table to pack
441  */
442 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
443 {
444 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
445 	int i, pos = 0;
446 	uint16_t crc;
447 
448 	pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
449 	for (i = 0; i < c->lsave_cnt; i++)
450 		pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits);
451 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
452 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
453 	addr = buf;
454 	pos = 0;
455 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
456 }
457 
458 /**
459  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
460  * @c: UBIFS file-system description object
461  * @lnum: LEB number to which to add dirty space
462  * @dirty: amount of dirty space to add
463  */
464 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
465 {
466 	if (!dirty || !lnum)
467 		return;
468 	dbg_lp("LEB %d add %d to %d",
469 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
470 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
471 	c->ltab[lnum - c->lpt_first].dirty += dirty;
472 }
473 
474 /**
475  * set_ltab - set LPT LEB properties.
476  * @c: UBIFS file-system description object
477  * @lnum: LEB number
478  * @free: amount of free space
479  * @dirty: amount of dirty space
480  */
481 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
482 {
483 	dbg_lp("LEB %d free %d dirty %d to %d %d",
484 	       lnum, c->ltab[lnum - c->lpt_first].free,
485 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
486 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
487 	c->ltab[lnum - c->lpt_first].free = free;
488 	c->ltab[lnum - c->lpt_first].dirty = dirty;
489 }
490 
491 /**
492  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
493  * @c: UBIFS file-system description object
494  * @nnode: nnode for which to add dirt
495  */
496 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
497 {
498 	struct ubifs_nnode *np = nnode->parent;
499 
500 	if (np)
501 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
502 				   c->nnode_sz);
503 	else {
504 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
505 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
506 			c->lpt_drty_flgs |= LTAB_DIRTY;
507 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
508 		}
509 	}
510 }
511 
512 /**
513  * add_pnode_dirt - add dirty space to LPT LEB properties.
514  * @c: UBIFS file-system description object
515  * @pnode: pnode for which to add dirt
516  */
517 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
518 {
519 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
520 			   c->pnode_sz);
521 }
522 
523 /**
524  * calc_nnode_num - calculate nnode number.
525  * @row: the row in the tree (root is zero)
526  * @col: the column in the row (leftmost is zero)
527  *
528  * The nnode number is a number that uniquely identifies a nnode and can be used
529  * easily to traverse the tree from the root to that nnode.
530  *
531  * This function calculates and returns the nnode number for the nnode at @row
532  * and @col.
533  */
534 static int calc_nnode_num(int row, int col)
535 {
536 	int num, bits;
537 
538 	num = 1;
539 	while (row--) {
540 		bits = (col & (UBIFS_LPT_FANOUT - 1));
541 		col >>= UBIFS_LPT_FANOUT_SHIFT;
542 		num <<= UBIFS_LPT_FANOUT_SHIFT;
543 		num |= bits;
544 	}
545 	return num;
546 }
547 
548 /**
549  * calc_nnode_num_from_parent - calculate nnode number.
550  * @c: UBIFS file-system description object
551  * @parent: parent nnode
552  * @iip: index in parent
553  *
554  * The nnode number is a number that uniquely identifies a nnode and can be used
555  * easily to traverse the tree from the root to that nnode.
556  *
557  * This function calculates and returns the nnode number based on the parent's
558  * nnode number and the index in parent.
559  */
560 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
561 				      struct ubifs_nnode *parent, int iip)
562 {
563 	int num, shft;
564 
565 	if (!parent)
566 		return 1;
567 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
568 	num = parent->num ^ (1 << shft);
569 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
570 	return num;
571 }
572 
573 /**
574  * calc_pnode_num_from_parent - calculate pnode number.
575  * @c: UBIFS file-system description object
576  * @parent: parent nnode
577  * @iip: index in parent
578  *
579  * The pnode number is a number that uniquely identifies a pnode and can be used
580  * easily to traverse the tree from the root to that pnode.
581  *
582  * This function calculates and returns the pnode number based on the parent's
583  * nnode number and the index in parent.
584  */
585 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
586 				      struct ubifs_nnode *parent, int iip)
587 {
588 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
589 
590 	for (i = 0; i < n; i++) {
591 		num <<= UBIFS_LPT_FANOUT_SHIFT;
592 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
593 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
594 	}
595 	num <<= UBIFS_LPT_FANOUT_SHIFT;
596 	num |= iip;
597 	return num;
598 }
599 
600 /**
601  * ubifs_create_dflt_lpt - create default LPT.
602  * @c: UBIFS file-system description object
603  * @main_lebs: number of main area LEBs is passed and returned here
604  * @lpt_first: LEB number of first LPT LEB
605  * @lpt_lebs: number of LEBs for LPT is passed and returned here
606  * @big_lpt: use big LPT model is passed and returned here
607  * @hash: hash of the LPT is returned here
608  *
609  * This function returns %0 on success and a negative error code on failure.
610  */
611 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
612 			  int *lpt_lebs, int *big_lpt, u8 *hash)
613 {
614 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
615 	int blnum, boffs, bsz, bcnt;
616 	struct ubifs_pnode *pnode = NULL;
617 	struct ubifs_nnode *nnode = NULL;
618 	void *buf = NULL, *p;
619 	struct ubifs_lpt_lprops *ltab = NULL;
620 	int *lsave = NULL;
621 	struct shash_desc *desc;
622 
623 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
624 	if (err)
625 		return err;
626 	*lpt_lebs = c->lpt_lebs;
627 
628 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
629 	c->lpt_first = lpt_first;
630 	/* Needed by 'set_ltab()' */
631 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
632 	/* Needed by 'ubifs_pack_lsave()' */
633 	c->main_first = c->leb_cnt - *main_lebs;
634 
635 	desc = ubifs_hash_get_desc(c);
636 	if (IS_ERR(desc))
637 		return PTR_ERR(desc);
638 
639 	lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
640 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
641 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
642 	buf = vmalloc(c->leb_size);
643 	ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
644 				  c->lpt_lebs));
645 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
646 		err = -ENOMEM;
647 		goto out;
648 	}
649 
650 	ubifs_assert(c, !c->ltab);
651 	c->ltab = ltab; /* Needed by set_ltab */
652 
653 	/* Initialize LPT's own lprops */
654 	for (i = 0; i < c->lpt_lebs; i++) {
655 		ltab[i].free = c->leb_size;
656 		ltab[i].dirty = 0;
657 		ltab[i].tgc = 0;
658 		ltab[i].cmt = 0;
659 	}
660 
661 	lnum = lpt_first;
662 	p = buf;
663 	/* Number of leaf nodes (pnodes) */
664 	cnt = c->pnode_cnt;
665 
666 	/*
667 	 * The first pnode contains the LEB properties for the LEBs that contain
668 	 * the root inode node and the root index node of the index tree.
669 	 */
670 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
671 	iopos = ALIGN(node_sz, c->min_io_size);
672 	pnode->lprops[0].free = c->leb_size - iopos;
673 	pnode->lprops[0].dirty = iopos - node_sz;
674 	pnode->lprops[0].flags = LPROPS_INDEX;
675 
676 	node_sz = UBIFS_INO_NODE_SZ;
677 	iopos = ALIGN(node_sz, c->min_io_size);
678 	pnode->lprops[1].free = c->leb_size - iopos;
679 	pnode->lprops[1].dirty = iopos - node_sz;
680 
681 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
682 		pnode->lprops[i].free = c->leb_size;
683 
684 	/* Add first pnode */
685 	ubifs_pack_pnode(c, p, pnode);
686 	err = ubifs_shash_update(c, desc, p, c->pnode_sz);
687 	if (err)
688 		goto out;
689 
690 	p += c->pnode_sz;
691 	len = c->pnode_sz;
692 	pnode->num += 1;
693 
694 	/* Reset pnode values for remaining pnodes */
695 	pnode->lprops[0].free = c->leb_size;
696 	pnode->lprops[0].dirty = 0;
697 	pnode->lprops[0].flags = 0;
698 
699 	pnode->lprops[1].free = c->leb_size;
700 	pnode->lprops[1].dirty = 0;
701 
702 	/*
703 	 * To calculate the internal node branches, we keep information about
704 	 * the level below.
705 	 */
706 	blnum = lnum; /* LEB number of level below */
707 	boffs = 0; /* Offset of level below */
708 	bcnt = cnt; /* Number of nodes in level below */
709 	bsz = c->pnode_sz; /* Size of nodes in level below */
710 
711 	/* Add all remaining pnodes */
712 	for (i = 1; i < cnt; i++) {
713 		if (len + c->pnode_sz > c->leb_size) {
714 			alen = ALIGN(len, c->min_io_size);
715 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
716 			memset(p, 0xff, alen - len);
717 			err = ubifs_leb_change(c, lnum++, buf, alen);
718 			if (err)
719 				goto out;
720 			p = buf;
721 			len = 0;
722 		}
723 		ubifs_pack_pnode(c, p, pnode);
724 		err = ubifs_shash_update(c, desc, p, c->pnode_sz);
725 		if (err)
726 			goto out;
727 
728 		p += c->pnode_sz;
729 		len += c->pnode_sz;
730 		/*
731 		 * pnodes are simply numbered left to right starting at zero,
732 		 * which means the pnode number can be used easily to traverse
733 		 * down the tree to the corresponding pnode.
734 		 */
735 		pnode->num += 1;
736 	}
737 
738 	row = 0;
739 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
740 		row += 1;
741 	/* Add all nnodes, one level at a time */
742 	while (1) {
743 		/* Number of internal nodes (nnodes) at next level */
744 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
745 		for (i = 0; i < cnt; i++) {
746 			if (len + c->nnode_sz > c->leb_size) {
747 				alen = ALIGN(len, c->min_io_size);
748 				set_ltab(c, lnum, c->leb_size - alen,
749 					    alen - len);
750 				memset(p, 0xff, alen - len);
751 				err = ubifs_leb_change(c, lnum++, buf, alen);
752 				if (err)
753 					goto out;
754 				p = buf;
755 				len = 0;
756 			}
757 			/* Only 1 nnode at this level, so it is the root */
758 			if (cnt == 1) {
759 				c->lpt_lnum = lnum;
760 				c->lpt_offs = len;
761 			}
762 			/* Set branches to the level below */
763 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
764 				if (bcnt) {
765 					if (boffs + bsz > c->leb_size) {
766 						blnum += 1;
767 						boffs = 0;
768 					}
769 					nnode->nbranch[j].lnum = blnum;
770 					nnode->nbranch[j].offs = boffs;
771 					boffs += bsz;
772 					bcnt--;
773 				} else {
774 					nnode->nbranch[j].lnum = 0;
775 					nnode->nbranch[j].offs = 0;
776 				}
777 			}
778 			nnode->num = calc_nnode_num(row, i);
779 			ubifs_pack_nnode(c, p, nnode);
780 			p += c->nnode_sz;
781 			len += c->nnode_sz;
782 		}
783 		/* Only 1 nnode at this level, so it is the root */
784 		if (cnt == 1)
785 			break;
786 		/* Update the information about the level below */
787 		bcnt = cnt;
788 		bsz = c->nnode_sz;
789 		row -= 1;
790 	}
791 
792 	if (*big_lpt) {
793 		/* Need to add LPT's save table */
794 		if (len + c->lsave_sz > c->leb_size) {
795 			alen = ALIGN(len, c->min_io_size);
796 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
797 			memset(p, 0xff, alen - len);
798 			err = ubifs_leb_change(c, lnum++, buf, alen);
799 			if (err)
800 				goto out;
801 			p = buf;
802 			len = 0;
803 		}
804 
805 		c->lsave_lnum = lnum;
806 		c->lsave_offs = len;
807 
808 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
809 			lsave[i] = c->main_first + i;
810 		for (; i < c->lsave_cnt; i++)
811 			lsave[i] = c->main_first;
812 
813 		ubifs_pack_lsave(c, p, lsave);
814 		p += c->lsave_sz;
815 		len += c->lsave_sz;
816 	}
817 
818 	/* Need to add LPT's own LEB properties table */
819 	if (len + c->ltab_sz > c->leb_size) {
820 		alen = ALIGN(len, c->min_io_size);
821 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
822 		memset(p, 0xff, alen - len);
823 		err = ubifs_leb_change(c, lnum++, buf, alen);
824 		if (err)
825 			goto out;
826 		p = buf;
827 		len = 0;
828 	}
829 
830 	c->ltab_lnum = lnum;
831 	c->ltab_offs = len;
832 
833 	/* Update ltab before packing it */
834 	len += c->ltab_sz;
835 	alen = ALIGN(len, c->min_io_size);
836 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
837 
838 	ubifs_pack_ltab(c, p, ltab);
839 	p += c->ltab_sz;
840 
841 	/* Write remaining buffer */
842 	memset(p, 0xff, alen - len);
843 	err = ubifs_leb_change(c, lnum, buf, alen);
844 	if (err)
845 		goto out;
846 
847 	err = ubifs_shash_final(c, desc, hash);
848 	if (err)
849 		goto out;
850 
851 	c->nhead_lnum = lnum;
852 	c->nhead_offs = ALIGN(len, c->min_io_size);
853 
854 	dbg_lp("space_bits %d", c->space_bits);
855 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
856 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
857 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
858 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
859 	dbg_lp("lnum_bits %d", c->lnum_bits);
860 	dbg_lp("pnode_sz %d", c->pnode_sz);
861 	dbg_lp("nnode_sz %d", c->nnode_sz);
862 	dbg_lp("ltab_sz %d", c->ltab_sz);
863 	dbg_lp("lsave_sz %d", c->lsave_sz);
864 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
865 	dbg_lp("lpt_hght %d", c->lpt_hght);
866 	dbg_lp("big_lpt %d", c->big_lpt);
867 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
868 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
869 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
870 	if (c->big_lpt)
871 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
872 out:
873 	c->ltab = NULL;
874 	kfree(desc);
875 	kfree(lsave);
876 	vfree(ltab);
877 	vfree(buf);
878 	kfree(nnode);
879 	kfree(pnode);
880 	return err;
881 }
882 
883 /**
884  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
885  * @c: UBIFS file-system description object
886  * @pnode: pnode
887  *
888  * When a pnode is loaded into memory, the LEB properties it contains are added,
889  * by this function, to the LEB category lists and heaps.
890  */
891 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
892 {
893 	int i;
894 
895 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
896 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
897 		int lnum = pnode->lprops[i].lnum;
898 
899 		if (!lnum)
900 			return;
901 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
902 	}
903 }
904 
905 /**
906  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
907  * @c: UBIFS file-system description object
908  * @old_pnode: pnode copied
909  * @new_pnode: pnode copy
910  *
911  * During commit it is sometimes necessary to copy a pnode
912  * (see dirty_cow_pnode).  When that happens, references in
913  * category lists and heaps must be replaced.  This function does that.
914  */
915 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
916 			 struct ubifs_pnode *new_pnode)
917 {
918 	int i;
919 
920 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
921 		if (!new_pnode->lprops[i].lnum)
922 			return;
923 		ubifs_replace_cat(c, &old_pnode->lprops[i],
924 				  &new_pnode->lprops[i]);
925 	}
926 }
927 
928 /**
929  * check_lpt_crc - check LPT node crc is correct.
930  * @c: UBIFS file-system description object
931  * @buf: buffer containing node
932  * @len: length of node
933  *
934  * This function returns %0 on success and a negative error code on failure.
935  */
936 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
937 {
938 	int pos = 0;
939 	uint8_t *addr = buf;
940 	uint16_t crc, calc_crc;
941 
942 	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
943 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
944 			 len - UBIFS_LPT_CRC_BYTES);
945 	if (crc != calc_crc) {
946 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
947 			  crc, calc_crc);
948 		dump_stack();
949 		return -EINVAL;
950 	}
951 	return 0;
952 }
953 
954 /**
955  * check_lpt_type - check LPT node type is correct.
956  * @c: UBIFS file-system description object
957  * @addr: address of type bit field is passed and returned updated here
958  * @pos: position of type bit field is passed and returned updated here
959  * @type: expected type
960  *
961  * This function returns %0 on success and a negative error code on failure.
962  */
963 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
964 			  int *pos, int type)
965 {
966 	int node_type;
967 
968 	node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS);
969 	if (node_type != type) {
970 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
971 			  node_type, type);
972 		dump_stack();
973 		return -EINVAL;
974 	}
975 	return 0;
976 }
977 
978 /**
979  * unpack_pnode - unpack a pnode.
980  * @c: UBIFS file-system description object
981  * @buf: buffer containing packed pnode to unpack
982  * @pnode: pnode structure to fill
983  *
984  * This function returns %0 on success and a negative error code on failure.
985  */
986 static int unpack_pnode(const struct ubifs_info *c, void *buf,
987 			struct ubifs_pnode *pnode)
988 {
989 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
990 	int i, pos = 0, err;
991 
992 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
993 	if (err)
994 		return err;
995 	if (c->big_lpt)
996 		pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
997 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
998 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
999 
1000 		lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
1001 		lprops->free <<= 3;
1002 		lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
1003 		lprops->dirty <<= 3;
1004 
1005 		if (ubifs_unpack_bits(c, &addr, &pos, 1))
1006 			lprops->flags = LPROPS_INDEX;
1007 		else
1008 			lprops->flags = 0;
1009 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
1010 	}
1011 	err = check_lpt_crc(c, buf, c->pnode_sz);
1012 	return err;
1013 }
1014 
1015 /**
1016  * ubifs_unpack_nnode - unpack a nnode.
1017  * @c: UBIFS file-system description object
1018  * @buf: buffer containing packed nnode to unpack
1019  * @nnode: nnode structure to fill
1020  *
1021  * This function returns %0 on success and a negative error code on failure.
1022  */
1023 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1024 		       struct ubifs_nnode *nnode)
1025 {
1026 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1027 	int i, pos = 0, err;
1028 
1029 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1030 	if (err)
1031 		return err;
1032 	if (c->big_lpt)
1033 		nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1034 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1035 		int lnum;
1036 
1037 		lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) +
1038 		       c->lpt_first;
1039 		if (lnum == c->lpt_last + 1)
1040 			lnum = 0;
1041 		nnode->nbranch[i].lnum = lnum;
1042 		nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos,
1043 						     c->lpt_offs_bits);
1044 	}
1045 	err = check_lpt_crc(c, buf, c->nnode_sz);
1046 	return err;
1047 }
1048 
1049 /**
1050  * unpack_ltab - unpack the LPT's own lprops table.
1051  * @c: UBIFS file-system description object
1052  * @buf: buffer from which to unpack
1053  *
1054  * This function returns %0 on success and a negative error code on failure.
1055  */
1056 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1057 {
1058 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1059 	int i, pos = 0, err;
1060 
1061 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1062 	if (err)
1063 		return err;
1064 	for (i = 0; i < c->lpt_lebs; i++) {
1065 		int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1066 		int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1067 
1068 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1069 		    dirty > c->leb_size || free + dirty > c->leb_size)
1070 			return -EINVAL;
1071 
1072 		c->ltab[i].free = free;
1073 		c->ltab[i].dirty = dirty;
1074 		c->ltab[i].tgc = 0;
1075 		c->ltab[i].cmt = 0;
1076 	}
1077 	err = check_lpt_crc(c, buf, c->ltab_sz);
1078 	return err;
1079 }
1080 
1081 /**
1082  * unpack_lsave - unpack the LPT's save table.
1083  * @c: UBIFS file-system description object
1084  * @buf: buffer from which to unpack
1085  *
1086  * This function returns %0 on success and a negative error code on failure.
1087  */
1088 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1089 {
1090 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1091 	int i, pos = 0, err;
1092 
1093 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1094 	if (err)
1095 		return err;
1096 	for (i = 0; i < c->lsave_cnt; i++) {
1097 		int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits);
1098 
1099 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1100 			return -EINVAL;
1101 		c->lsave[i] = lnum;
1102 	}
1103 	err = check_lpt_crc(c, buf, c->lsave_sz);
1104 	return err;
1105 }
1106 
1107 /**
1108  * validate_nnode - validate a nnode.
1109  * @c: UBIFS file-system description object
1110  * @nnode: nnode to validate
1111  * @parent: parent nnode (or NULL for the root nnode)
1112  * @iip: index in parent
1113  *
1114  * This function returns %0 on success and a negative error code on failure.
1115  */
1116 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1117 			  struct ubifs_nnode *parent, int iip)
1118 {
1119 	int i, lvl, max_offs;
1120 
1121 	if (c->big_lpt) {
1122 		int num = calc_nnode_num_from_parent(c, parent, iip);
1123 
1124 		if (nnode->num != num)
1125 			return -EINVAL;
1126 	}
1127 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1128 	if (lvl < 1)
1129 		return -EINVAL;
1130 	if (lvl == 1)
1131 		max_offs = c->leb_size - c->pnode_sz;
1132 	else
1133 		max_offs = c->leb_size - c->nnode_sz;
1134 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1135 		int lnum = nnode->nbranch[i].lnum;
1136 		int offs = nnode->nbranch[i].offs;
1137 
1138 		if (lnum == 0) {
1139 			if (offs != 0)
1140 				return -EINVAL;
1141 			continue;
1142 		}
1143 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1144 			return -EINVAL;
1145 		if (offs < 0 || offs > max_offs)
1146 			return -EINVAL;
1147 	}
1148 	return 0;
1149 }
1150 
1151 /**
1152  * validate_pnode - validate a pnode.
1153  * @c: UBIFS file-system description object
1154  * @pnode: pnode to validate
1155  * @parent: parent nnode
1156  * @iip: index in parent
1157  *
1158  * This function returns %0 on success and a negative error code on failure.
1159  */
1160 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1161 			  struct ubifs_nnode *parent, int iip)
1162 {
1163 	int i;
1164 
1165 	if (c->big_lpt) {
1166 		int num = calc_pnode_num_from_parent(c, parent, iip);
1167 
1168 		if (pnode->num != num)
1169 			return -EINVAL;
1170 	}
1171 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1172 		int free = pnode->lprops[i].free;
1173 		int dirty = pnode->lprops[i].dirty;
1174 
1175 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1176 		    (free & 7))
1177 			return -EINVAL;
1178 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1179 			return -EINVAL;
1180 		if (dirty + free > c->leb_size)
1181 			return -EINVAL;
1182 	}
1183 	return 0;
1184 }
1185 
1186 /**
1187  * set_pnode_lnum - set LEB numbers on a pnode.
1188  * @c: UBIFS file-system description object
1189  * @pnode: pnode to update
1190  *
1191  * This function calculates the LEB numbers for the LEB properties it contains
1192  * based on the pnode number.
1193  */
1194 static void set_pnode_lnum(const struct ubifs_info *c,
1195 			   struct ubifs_pnode *pnode)
1196 {
1197 	int i, lnum;
1198 
1199 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1200 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1201 		if (lnum >= c->leb_cnt)
1202 			return;
1203 		pnode->lprops[i].lnum = lnum++;
1204 	}
1205 }
1206 
1207 /**
1208  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1209  * @c: UBIFS file-system description object
1210  * @parent: parent nnode (or NULL for the root)
1211  * @iip: index in parent
1212  *
1213  * This function returns %0 on success and a negative error code on failure.
1214  */
1215 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1216 {
1217 	struct ubifs_nbranch *branch = NULL;
1218 	struct ubifs_nnode *nnode = NULL;
1219 	void *buf = c->lpt_nod_buf;
1220 	int err, lnum, offs;
1221 
1222 	if (parent) {
1223 		branch = &parent->nbranch[iip];
1224 		lnum = branch->lnum;
1225 		offs = branch->offs;
1226 	} else {
1227 		lnum = c->lpt_lnum;
1228 		offs = c->lpt_offs;
1229 	}
1230 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1231 	if (!nnode) {
1232 		err = -ENOMEM;
1233 		goto out;
1234 	}
1235 	if (lnum == 0) {
1236 		/*
1237 		 * This nnode was not written which just means that the LEB
1238 		 * properties in the subtree below it describe empty LEBs. We
1239 		 * make the nnode as though we had read it, which in fact means
1240 		 * doing almost nothing.
1241 		 */
1242 		if (c->big_lpt)
1243 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1244 	} else {
1245 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1246 		if (err)
1247 			goto out;
1248 		err = ubifs_unpack_nnode(c, buf, nnode);
1249 		if (err)
1250 			goto out;
1251 	}
1252 	err = validate_nnode(c, nnode, parent, iip);
1253 	if (err)
1254 		goto out;
1255 	if (!c->big_lpt)
1256 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1257 	if (parent) {
1258 		branch->nnode = nnode;
1259 		nnode->level = parent->level - 1;
1260 	} else {
1261 		c->nroot = nnode;
1262 		nnode->level = c->lpt_hght;
1263 	}
1264 	nnode->parent = parent;
1265 	nnode->iip = iip;
1266 	return 0;
1267 
1268 out:
1269 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1270 	dump_stack();
1271 	kfree(nnode);
1272 	return err;
1273 }
1274 
1275 /**
1276  * read_pnode - read a pnode from flash and link it to the tree in memory.
1277  * @c: UBIFS file-system description object
1278  * @parent: parent nnode
1279  * @iip: index in parent
1280  *
1281  * This function returns %0 on success and a negative error code on failure.
1282  */
1283 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1284 {
1285 	struct ubifs_nbranch *branch;
1286 	struct ubifs_pnode *pnode = NULL;
1287 	void *buf = c->lpt_nod_buf;
1288 	int err, lnum, offs;
1289 
1290 	branch = &parent->nbranch[iip];
1291 	lnum = branch->lnum;
1292 	offs = branch->offs;
1293 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1294 	if (!pnode)
1295 		return -ENOMEM;
1296 
1297 	if (lnum == 0) {
1298 		/*
1299 		 * This pnode was not written which just means that the LEB
1300 		 * properties in it describe empty LEBs. We make the pnode as
1301 		 * though we had read it.
1302 		 */
1303 		int i;
1304 
1305 		if (c->big_lpt)
1306 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1307 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1308 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1309 
1310 			lprops->free = c->leb_size;
1311 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1312 		}
1313 	} else {
1314 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1315 		if (err)
1316 			goto out;
1317 		err = unpack_pnode(c, buf, pnode);
1318 		if (err)
1319 			goto out;
1320 	}
1321 	err = validate_pnode(c, pnode, parent, iip);
1322 	if (err)
1323 		goto out;
1324 	if (!c->big_lpt)
1325 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1326 	branch->pnode = pnode;
1327 	pnode->parent = parent;
1328 	pnode->iip = iip;
1329 	set_pnode_lnum(c, pnode);
1330 	c->pnodes_have += 1;
1331 	return 0;
1332 
1333 out:
1334 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1335 	ubifs_dump_pnode(c, pnode, parent, iip);
1336 	dump_stack();
1337 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1338 	kfree(pnode);
1339 	return err;
1340 }
1341 
1342 /**
1343  * read_ltab - read LPT's own lprops table.
1344  * @c: UBIFS file-system description object
1345  *
1346  * This function returns %0 on success and a negative error code on failure.
1347  */
1348 static int read_ltab(struct ubifs_info *c)
1349 {
1350 	int err;
1351 	void *buf;
1352 
1353 	buf = vmalloc(c->ltab_sz);
1354 	if (!buf)
1355 		return -ENOMEM;
1356 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1357 	if (err)
1358 		goto out;
1359 	err = unpack_ltab(c, buf);
1360 out:
1361 	vfree(buf);
1362 	return err;
1363 }
1364 
1365 /**
1366  * read_lsave - read LPT's save table.
1367  * @c: UBIFS file-system description object
1368  *
1369  * This function returns %0 on success and a negative error code on failure.
1370  */
1371 static int read_lsave(struct ubifs_info *c)
1372 {
1373 	int err, i;
1374 	void *buf;
1375 
1376 	buf = vmalloc(c->lsave_sz);
1377 	if (!buf)
1378 		return -ENOMEM;
1379 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1380 			     c->lsave_sz, 1);
1381 	if (err)
1382 		goto out;
1383 	err = unpack_lsave(c, buf);
1384 	if (err)
1385 		goto out;
1386 	for (i = 0; i < c->lsave_cnt; i++) {
1387 		int lnum = c->lsave[i];
1388 		struct ubifs_lprops *lprops;
1389 
1390 		/*
1391 		 * Due to automatic resizing, the values in the lsave table
1392 		 * could be beyond the volume size - just ignore them.
1393 		 */
1394 		if (lnum >= c->leb_cnt)
1395 			continue;
1396 		lprops = ubifs_lpt_lookup(c, lnum);
1397 		if (IS_ERR(lprops)) {
1398 			err = PTR_ERR(lprops);
1399 			goto out;
1400 		}
1401 	}
1402 out:
1403 	vfree(buf);
1404 	return err;
1405 }
1406 
1407 /**
1408  * ubifs_get_nnode - get a nnode.
1409  * @c: UBIFS file-system description object
1410  * @parent: parent nnode (or NULL for the root)
1411  * @iip: index in parent
1412  *
1413  * This function returns a pointer to the nnode on success or a negative error
1414  * code on failure.
1415  */
1416 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1417 				    struct ubifs_nnode *parent, int iip)
1418 {
1419 	struct ubifs_nbranch *branch;
1420 	struct ubifs_nnode *nnode;
1421 	int err;
1422 
1423 	branch = &parent->nbranch[iip];
1424 	nnode = branch->nnode;
1425 	if (nnode)
1426 		return nnode;
1427 	err = ubifs_read_nnode(c, parent, iip);
1428 	if (err)
1429 		return ERR_PTR(err);
1430 	return branch->nnode;
1431 }
1432 
1433 /**
1434  * ubifs_get_pnode - get a pnode.
1435  * @c: UBIFS file-system description object
1436  * @parent: parent nnode
1437  * @iip: index in parent
1438  *
1439  * This function returns a pointer to the pnode on success or a negative error
1440  * code on failure.
1441  */
1442 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1443 				    struct ubifs_nnode *parent, int iip)
1444 {
1445 	struct ubifs_nbranch *branch;
1446 	struct ubifs_pnode *pnode;
1447 	int err;
1448 
1449 	branch = &parent->nbranch[iip];
1450 	pnode = branch->pnode;
1451 	if (pnode)
1452 		return pnode;
1453 	err = read_pnode(c, parent, iip);
1454 	if (err)
1455 		return ERR_PTR(err);
1456 	update_cats(c, branch->pnode);
1457 	return branch->pnode;
1458 }
1459 
1460 /**
1461  * ubifs_pnode_lookup - lookup a pnode in the LPT.
1462  * @c: UBIFS file-system description object
1463  * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT)
1464  *
1465  * This function returns a pointer to the pnode on success or a negative
1466  * error code on failure.
1467  */
1468 struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i)
1469 {
1470 	int err, h, iip, shft;
1471 	struct ubifs_nnode *nnode;
1472 
1473 	if (!c->nroot) {
1474 		err = ubifs_read_nnode(c, NULL, 0);
1475 		if (err)
1476 			return ERR_PTR(err);
1477 	}
1478 	i <<= UBIFS_LPT_FANOUT_SHIFT;
1479 	nnode = c->nroot;
1480 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1481 	for (h = 1; h < c->lpt_hght; h++) {
1482 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1483 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1484 		nnode = ubifs_get_nnode(c, nnode, iip);
1485 		if (IS_ERR(nnode))
1486 			return ERR_CAST(nnode);
1487 	}
1488 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1489 	return ubifs_get_pnode(c, nnode, iip);
1490 }
1491 
1492 /**
1493  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1494  * @c: UBIFS file-system description object
1495  * @lnum: LEB number to lookup
1496  *
1497  * This function returns a pointer to the LEB properties on success or a
1498  * negative error code on failure.
1499  */
1500 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1501 {
1502 	int i, iip;
1503 	struct ubifs_pnode *pnode;
1504 
1505 	i = lnum - c->main_first;
1506 	pnode = ubifs_pnode_lookup(c, i >> UBIFS_LPT_FANOUT_SHIFT);
1507 	if (IS_ERR(pnode))
1508 		return ERR_CAST(pnode);
1509 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1510 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1511 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1512 	       pnode->lprops[iip].flags);
1513 	return &pnode->lprops[iip];
1514 }
1515 
1516 /**
1517  * dirty_cow_nnode - ensure a nnode is not being committed.
1518  * @c: UBIFS file-system description object
1519  * @nnode: nnode to check
1520  *
1521  * Returns dirtied nnode on success or negative error code on failure.
1522  */
1523 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1524 					   struct ubifs_nnode *nnode)
1525 {
1526 	struct ubifs_nnode *n;
1527 	int i;
1528 
1529 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1530 		/* nnode is not being committed */
1531 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1532 			c->dirty_nn_cnt += 1;
1533 			ubifs_add_nnode_dirt(c, nnode);
1534 		}
1535 		return nnode;
1536 	}
1537 
1538 	/* nnode is being committed, so copy it */
1539 	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1540 	if (unlikely(!n))
1541 		return ERR_PTR(-ENOMEM);
1542 
1543 	n->cnext = NULL;
1544 	__set_bit(DIRTY_CNODE, &n->flags);
1545 	__clear_bit(COW_CNODE, &n->flags);
1546 
1547 	/* The children now have new parent */
1548 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1549 		struct ubifs_nbranch *branch = &n->nbranch[i];
1550 
1551 		if (branch->cnode)
1552 			branch->cnode->parent = n;
1553 	}
1554 
1555 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags));
1556 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1557 
1558 	c->dirty_nn_cnt += 1;
1559 	ubifs_add_nnode_dirt(c, nnode);
1560 	if (nnode->parent)
1561 		nnode->parent->nbranch[n->iip].nnode = n;
1562 	else
1563 		c->nroot = n;
1564 	return n;
1565 }
1566 
1567 /**
1568  * dirty_cow_pnode - ensure a pnode is not being committed.
1569  * @c: UBIFS file-system description object
1570  * @pnode: pnode to check
1571  *
1572  * Returns dirtied pnode on success or negative error code on failure.
1573  */
1574 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1575 					   struct ubifs_pnode *pnode)
1576 {
1577 	struct ubifs_pnode *p;
1578 
1579 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1580 		/* pnode is not being committed */
1581 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1582 			c->dirty_pn_cnt += 1;
1583 			add_pnode_dirt(c, pnode);
1584 		}
1585 		return pnode;
1586 	}
1587 
1588 	/* pnode is being committed, so copy it */
1589 	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1590 	if (unlikely(!p))
1591 		return ERR_PTR(-ENOMEM);
1592 
1593 	p->cnext = NULL;
1594 	__set_bit(DIRTY_CNODE, &p->flags);
1595 	__clear_bit(COW_CNODE, &p->flags);
1596 	replace_cats(c, pnode, p);
1597 
1598 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags));
1599 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1600 
1601 	c->dirty_pn_cnt += 1;
1602 	add_pnode_dirt(c, pnode);
1603 	pnode->parent->nbranch[p->iip].pnode = p;
1604 	return p;
1605 }
1606 
1607 /**
1608  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1609  * @c: UBIFS file-system description object
1610  * @lnum: LEB number to lookup
1611  *
1612  * This function returns a pointer to the LEB properties on success or a
1613  * negative error code on failure.
1614  */
1615 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1616 {
1617 	int err, i, h, iip, shft;
1618 	struct ubifs_nnode *nnode;
1619 	struct ubifs_pnode *pnode;
1620 
1621 	if (!c->nroot) {
1622 		err = ubifs_read_nnode(c, NULL, 0);
1623 		if (err)
1624 			return ERR_PTR(err);
1625 	}
1626 	nnode = c->nroot;
1627 	nnode = dirty_cow_nnode(c, nnode);
1628 	if (IS_ERR(nnode))
1629 		return ERR_CAST(nnode);
1630 	i = lnum - c->main_first;
1631 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1632 	for (h = 1; h < c->lpt_hght; h++) {
1633 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1634 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1635 		nnode = ubifs_get_nnode(c, nnode, iip);
1636 		if (IS_ERR(nnode))
1637 			return ERR_CAST(nnode);
1638 		nnode = dirty_cow_nnode(c, nnode);
1639 		if (IS_ERR(nnode))
1640 			return ERR_CAST(nnode);
1641 	}
1642 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1643 	pnode = ubifs_get_pnode(c, nnode, iip);
1644 	if (IS_ERR(pnode))
1645 		return ERR_CAST(pnode);
1646 	pnode = dirty_cow_pnode(c, pnode);
1647 	if (IS_ERR(pnode))
1648 		return ERR_CAST(pnode);
1649 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1650 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1651 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1652 	       pnode->lprops[iip].flags);
1653 	ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags));
1654 	return &pnode->lprops[iip];
1655 }
1656 
1657 /**
1658  * ubifs_lpt_calc_hash - Calculate hash of the LPT pnodes
1659  * @c: UBIFS file-system description object
1660  * @hash: the returned hash of the LPT pnodes
1661  *
1662  * This function iterates over the LPT pnodes and creates a hash over them.
1663  * Returns 0 for success or a negative error code otherwise.
1664  */
1665 int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash)
1666 {
1667 	struct ubifs_nnode *nnode, *nn;
1668 	struct ubifs_cnode *cnode;
1669 	struct shash_desc *desc;
1670 	int iip = 0, i;
1671 	int bufsiz = max_t(int, c->nnode_sz, c->pnode_sz);
1672 	void *buf;
1673 	int err;
1674 
1675 	if (!ubifs_authenticated(c))
1676 		return 0;
1677 
1678 	if (!c->nroot) {
1679 		err = ubifs_read_nnode(c, NULL, 0);
1680 		if (err)
1681 			return err;
1682 	}
1683 
1684 	desc = ubifs_hash_get_desc(c);
1685 	if (IS_ERR(desc))
1686 		return PTR_ERR(desc);
1687 
1688 	buf = kmalloc(bufsiz, GFP_NOFS);
1689 	if (!buf) {
1690 		err = -ENOMEM;
1691 		goto out;
1692 	}
1693 
1694 	cnode = (struct ubifs_cnode *)c->nroot;
1695 
1696 	while (cnode) {
1697 		nnode = cnode->parent;
1698 		nn = (struct ubifs_nnode *)cnode;
1699 		if (cnode->level > 1) {
1700 			while (iip < UBIFS_LPT_FANOUT) {
1701 				if (nn->nbranch[iip].lnum == 0) {
1702 					/* Go right */
1703 					iip++;
1704 					continue;
1705 				}
1706 
1707 				nnode = ubifs_get_nnode(c, nn, iip);
1708 				if (IS_ERR(nnode)) {
1709 					err = PTR_ERR(nnode);
1710 					goto out;
1711 				}
1712 
1713 				/* Go down */
1714 				iip = 0;
1715 				cnode = (struct ubifs_cnode *)nnode;
1716 				break;
1717 			}
1718 			if (iip < UBIFS_LPT_FANOUT)
1719 				continue;
1720 		} else {
1721 			struct ubifs_pnode *pnode;
1722 
1723 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1724 				if (nn->nbranch[i].lnum == 0)
1725 					continue;
1726 				pnode = ubifs_get_pnode(c, nn, i);
1727 				if (IS_ERR(pnode)) {
1728 					err = PTR_ERR(pnode);
1729 					goto out;
1730 				}
1731 
1732 				ubifs_pack_pnode(c, buf, pnode);
1733 				err = ubifs_shash_update(c, desc, buf,
1734 							 c->pnode_sz);
1735 				if (err)
1736 					goto out;
1737 			}
1738 		}
1739 		/* Go up and to the right */
1740 		iip = cnode->iip + 1;
1741 		cnode = (struct ubifs_cnode *)nnode;
1742 	}
1743 
1744 	err = ubifs_shash_final(c, desc, hash);
1745 out:
1746 	kfree(desc);
1747 	kfree(buf);
1748 
1749 	return err;
1750 }
1751 
1752 /**
1753  * lpt_check_hash - check the hash of the LPT.
1754  * @c: UBIFS file-system description object
1755  *
1756  * This function calculates a hash over all pnodes in the LPT and compares it with
1757  * the hash stored in the master node. Returns %0 on success and a negative error
1758  * code on failure.
1759  */
1760 static int lpt_check_hash(struct ubifs_info *c)
1761 {
1762 	int err;
1763 	u8 hash[UBIFS_HASH_ARR_SZ];
1764 
1765 	if (!ubifs_authenticated(c))
1766 		return 0;
1767 
1768 	err = ubifs_lpt_calc_hash(c, hash);
1769 	if (err)
1770 		return err;
1771 
1772 	if (ubifs_check_hash(c, c->mst_node->hash_lpt, hash)) {
1773 		err = -EPERM;
1774 		ubifs_err(c, "Failed to authenticate LPT");
1775 	} else {
1776 		err = 0;
1777 	}
1778 
1779 	return err;
1780 }
1781 
1782 /**
1783  * lpt_init_rd - initialize the LPT for reading.
1784  * @c: UBIFS file-system description object
1785  *
1786  * This function returns %0 on success and a negative error code on failure.
1787  */
1788 static int lpt_init_rd(struct ubifs_info *c)
1789 {
1790 	int err, i;
1791 
1792 	c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1793 				     c->lpt_lebs));
1794 	if (!c->ltab)
1795 		return -ENOMEM;
1796 
1797 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1798 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1799 	if (!c->lpt_nod_buf)
1800 		return -ENOMEM;
1801 
1802 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1803 		c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1804 						   sizeof(void *),
1805 						   GFP_KERNEL);
1806 		if (!c->lpt_heap[i].arr)
1807 			return -ENOMEM;
1808 		c->lpt_heap[i].cnt = 0;
1809 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1810 	}
1811 
1812 	c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1813 					 GFP_KERNEL);
1814 	if (!c->dirty_idx.arr)
1815 		return -ENOMEM;
1816 	c->dirty_idx.cnt = 0;
1817 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1818 
1819 	err = read_ltab(c);
1820 	if (err)
1821 		return err;
1822 
1823 	err = lpt_check_hash(c);
1824 	if (err)
1825 		return err;
1826 
1827 	dbg_lp("space_bits %d", c->space_bits);
1828 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1829 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1830 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1831 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1832 	dbg_lp("lnum_bits %d", c->lnum_bits);
1833 	dbg_lp("pnode_sz %d", c->pnode_sz);
1834 	dbg_lp("nnode_sz %d", c->nnode_sz);
1835 	dbg_lp("ltab_sz %d", c->ltab_sz);
1836 	dbg_lp("lsave_sz %d", c->lsave_sz);
1837 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1838 	dbg_lp("lpt_hght %d", c->lpt_hght);
1839 	dbg_lp("big_lpt %d", c->big_lpt);
1840 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1841 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1842 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1843 	if (c->big_lpt)
1844 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  * lpt_init_wr - initialize the LPT for writing.
1851  * @c: UBIFS file-system description object
1852  *
1853  * 'lpt_init_rd()' must have been called already.
1854  *
1855  * This function returns %0 on success and a negative error code on failure.
1856  */
1857 static int lpt_init_wr(struct ubifs_info *c)
1858 {
1859 	int err, i;
1860 
1861 	c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1862 					 c->lpt_lebs));
1863 	if (!c->ltab_cmt)
1864 		return -ENOMEM;
1865 
1866 	c->lpt_buf = vmalloc(c->leb_size);
1867 	if (!c->lpt_buf)
1868 		return -ENOMEM;
1869 
1870 	if (c->big_lpt) {
1871 		c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1872 		if (!c->lsave)
1873 			return -ENOMEM;
1874 		err = read_lsave(c);
1875 		if (err)
1876 			return err;
1877 	}
1878 
1879 	for (i = 0; i < c->lpt_lebs; i++)
1880 		if (c->ltab[i].free == c->leb_size) {
1881 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1882 			if (err)
1883 				return err;
1884 		}
1885 
1886 	return 0;
1887 }
1888 
1889 /**
1890  * ubifs_lpt_init - initialize the LPT.
1891  * @c: UBIFS file-system description object
1892  * @rd: whether to initialize lpt for reading
1893  * @wr: whether to initialize lpt for writing
1894  *
1895  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1896  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1897  * true.
1898  *
1899  * This function returns %0 on success and a negative error code on failure.
1900  */
1901 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1902 {
1903 	int err;
1904 
1905 	if (rd) {
1906 		err = lpt_init_rd(c);
1907 		if (err)
1908 			goto out_err;
1909 	}
1910 
1911 	if (wr) {
1912 		err = lpt_init_wr(c);
1913 		if (err)
1914 			goto out_err;
1915 	}
1916 
1917 	return 0;
1918 
1919 out_err:
1920 	if (wr)
1921 		ubifs_lpt_free(c, 1);
1922 	if (rd)
1923 		ubifs_lpt_free(c, 0);
1924 	return err;
1925 }
1926 
1927 /**
1928  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1929  * @nnode: where to keep a nnode
1930  * @pnode: where to keep a pnode
1931  * @cnode: where to keep a cnode
1932  * @in_tree: is the node in the tree in memory
1933  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1934  * the tree
1935  * @ptr.pnode: ditto for pnode
1936  * @ptr.cnode: ditto for cnode
1937  */
1938 struct lpt_scan_node {
1939 	union {
1940 		struct ubifs_nnode nnode;
1941 		struct ubifs_pnode pnode;
1942 		struct ubifs_cnode cnode;
1943 	};
1944 	int in_tree;
1945 	union {
1946 		struct ubifs_nnode *nnode;
1947 		struct ubifs_pnode *pnode;
1948 		struct ubifs_cnode *cnode;
1949 	} ptr;
1950 };
1951 
1952 /**
1953  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1954  * @c: the UBIFS file-system description object
1955  * @path: where to put the nnode
1956  * @parent: parent of the nnode
1957  * @iip: index in parent of the nnode
1958  *
1959  * This function returns a pointer to the nnode on success or a negative error
1960  * code on failure.
1961  */
1962 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1963 					  struct lpt_scan_node *path,
1964 					  struct ubifs_nnode *parent, int iip)
1965 {
1966 	struct ubifs_nbranch *branch;
1967 	struct ubifs_nnode *nnode;
1968 	void *buf = c->lpt_nod_buf;
1969 	int err;
1970 
1971 	branch = &parent->nbranch[iip];
1972 	nnode = branch->nnode;
1973 	if (nnode) {
1974 		path->in_tree = 1;
1975 		path->ptr.nnode = nnode;
1976 		return nnode;
1977 	}
1978 	nnode = &path->nnode;
1979 	path->in_tree = 0;
1980 	path->ptr.nnode = nnode;
1981 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1982 	if (branch->lnum == 0) {
1983 		/*
1984 		 * This nnode was not written which just means that the LEB
1985 		 * properties in the subtree below it describe empty LEBs. We
1986 		 * make the nnode as though we had read it, which in fact means
1987 		 * doing almost nothing.
1988 		 */
1989 		if (c->big_lpt)
1990 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1991 	} else {
1992 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1993 				     c->nnode_sz, 1);
1994 		if (err)
1995 			return ERR_PTR(err);
1996 		err = ubifs_unpack_nnode(c, buf, nnode);
1997 		if (err)
1998 			return ERR_PTR(err);
1999 	}
2000 	err = validate_nnode(c, nnode, parent, iip);
2001 	if (err)
2002 		return ERR_PTR(err);
2003 	if (!c->big_lpt)
2004 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
2005 	nnode->level = parent->level - 1;
2006 	nnode->parent = parent;
2007 	nnode->iip = iip;
2008 	return nnode;
2009 }
2010 
2011 /**
2012  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
2013  * @c: the UBIFS file-system description object
2014  * @path: where to put the pnode
2015  * @parent: parent of the pnode
2016  * @iip: index in parent of the pnode
2017  *
2018  * This function returns a pointer to the pnode on success or a negative error
2019  * code on failure.
2020  */
2021 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
2022 					  struct lpt_scan_node *path,
2023 					  struct ubifs_nnode *parent, int iip)
2024 {
2025 	struct ubifs_nbranch *branch;
2026 	struct ubifs_pnode *pnode;
2027 	void *buf = c->lpt_nod_buf;
2028 	int err;
2029 
2030 	branch = &parent->nbranch[iip];
2031 	pnode = branch->pnode;
2032 	if (pnode) {
2033 		path->in_tree = 1;
2034 		path->ptr.pnode = pnode;
2035 		return pnode;
2036 	}
2037 	pnode = &path->pnode;
2038 	path->in_tree = 0;
2039 	path->ptr.pnode = pnode;
2040 	memset(pnode, 0, sizeof(struct ubifs_pnode));
2041 	if (branch->lnum == 0) {
2042 		/*
2043 		 * This pnode was not written which just means that the LEB
2044 		 * properties in it describe empty LEBs. We make the pnode as
2045 		 * though we had read it.
2046 		 */
2047 		int i;
2048 
2049 		if (c->big_lpt)
2050 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
2051 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2052 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
2053 
2054 			lprops->free = c->leb_size;
2055 			lprops->flags = ubifs_categorize_lprops(c, lprops);
2056 		}
2057 	} else {
2058 		ubifs_assert(c, branch->lnum >= c->lpt_first &&
2059 			     branch->lnum <= c->lpt_last);
2060 		ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size);
2061 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
2062 				     c->pnode_sz, 1);
2063 		if (err)
2064 			return ERR_PTR(err);
2065 		err = unpack_pnode(c, buf, pnode);
2066 		if (err)
2067 			return ERR_PTR(err);
2068 	}
2069 	err = validate_pnode(c, pnode, parent, iip);
2070 	if (err)
2071 		return ERR_PTR(err);
2072 	if (!c->big_lpt)
2073 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
2074 	pnode->parent = parent;
2075 	pnode->iip = iip;
2076 	set_pnode_lnum(c, pnode);
2077 	return pnode;
2078 }
2079 
2080 /**
2081  * ubifs_lpt_scan_nolock - scan the LPT.
2082  * @c: the UBIFS file-system description object
2083  * @start_lnum: LEB number from which to start scanning
2084  * @end_lnum: LEB number at which to stop scanning
2085  * @scan_cb: callback function called for each lprops
2086  * @data: data to be passed to the callback function
2087  *
2088  * This function returns %0 on success and a negative error code on failure.
2089  */
2090 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
2091 			  ubifs_lpt_scan_callback scan_cb, void *data)
2092 {
2093 	int err = 0, i, h, iip, shft;
2094 	struct ubifs_nnode *nnode;
2095 	struct ubifs_pnode *pnode;
2096 	struct lpt_scan_node *path;
2097 
2098 	if (start_lnum == -1) {
2099 		start_lnum = end_lnum + 1;
2100 		if (start_lnum >= c->leb_cnt)
2101 			start_lnum = c->main_first;
2102 	}
2103 
2104 	ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt);
2105 	ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt);
2106 
2107 	if (!c->nroot) {
2108 		err = ubifs_read_nnode(c, NULL, 0);
2109 		if (err)
2110 			return err;
2111 	}
2112 
2113 	path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
2114 			     GFP_NOFS);
2115 	if (!path)
2116 		return -ENOMEM;
2117 
2118 	path[0].ptr.nnode = c->nroot;
2119 	path[0].in_tree = 1;
2120 again:
2121 	/* Descend to the pnode containing start_lnum */
2122 	nnode = c->nroot;
2123 	i = start_lnum - c->main_first;
2124 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
2125 	for (h = 1; h < c->lpt_hght; h++) {
2126 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
2127 		shft -= UBIFS_LPT_FANOUT_SHIFT;
2128 		nnode = scan_get_nnode(c, path + h, nnode, iip);
2129 		if (IS_ERR(nnode)) {
2130 			err = PTR_ERR(nnode);
2131 			goto out;
2132 		}
2133 	}
2134 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
2135 	pnode = scan_get_pnode(c, path + h, nnode, iip);
2136 	if (IS_ERR(pnode)) {
2137 		err = PTR_ERR(pnode);
2138 		goto out;
2139 	}
2140 	iip = (i & (UBIFS_LPT_FANOUT - 1));
2141 
2142 	/* Loop for each lprops */
2143 	while (1) {
2144 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
2145 		int ret, lnum = lprops->lnum;
2146 
2147 		ret = scan_cb(c, lprops, path[h].in_tree, data);
2148 		if (ret < 0) {
2149 			err = ret;
2150 			goto out;
2151 		}
2152 		if (ret & LPT_SCAN_ADD) {
2153 			/* Add all the nodes in path to the tree in memory */
2154 			for (h = 1; h < c->lpt_hght; h++) {
2155 				const size_t sz = sizeof(struct ubifs_nnode);
2156 				struct ubifs_nnode *parent;
2157 
2158 				if (path[h].in_tree)
2159 					continue;
2160 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
2161 				if (!nnode) {
2162 					err = -ENOMEM;
2163 					goto out;
2164 				}
2165 				parent = nnode->parent;
2166 				parent->nbranch[nnode->iip].nnode = nnode;
2167 				path[h].ptr.nnode = nnode;
2168 				path[h].in_tree = 1;
2169 				path[h + 1].cnode.parent = nnode;
2170 			}
2171 			if (path[h].in_tree)
2172 				ubifs_ensure_cat(c, lprops);
2173 			else {
2174 				const size_t sz = sizeof(struct ubifs_pnode);
2175 				struct ubifs_nnode *parent;
2176 
2177 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2178 				if (!pnode) {
2179 					err = -ENOMEM;
2180 					goto out;
2181 				}
2182 				parent = pnode->parent;
2183 				parent->nbranch[pnode->iip].pnode = pnode;
2184 				path[h].ptr.pnode = pnode;
2185 				path[h].in_tree = 1;
2186 				update_cats(c, pnode);
2187 				c->pnodes_have += 1;
2188 			}
2189 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2190 						  c->nroot, 0, 0);
2191 			if (err)
2192 				goto out;
2193 			err = dbg_check_cats(c);
2194 			if (err)
2195 				goto out;
2196 		}
2197 		if (ret & LPT_SCAN_STOP) {
2198 			err = 0;
2199 			break;
2200 		}
2201 		/* Get the next lprops */
2202 		if (lnum == end_lnum) {
2203 			/*
2204 			 * We got to the end without finding what we were
2205 			 * looking for
2206 			 */
2207 			err = -ENOSPC;
2208 			goto out;
2209 		}
2210 		if (lnum + 1 >= c->leb_cnt) {
2211 			/* Wrap-around to the beginning */
2212 			start_lnum = c->main_first;
2213 			goto again;
2214 		}
2215 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2216 			/* Next lprops is in the same pnode */
2217 			iip += 1;
2218 			continue;
2219 		}
2220 		/* We need to get the next pnode. Go up until we can go right */
2221 		iip = pnode->iip;
2222 		while (1) {
2223 			h -= 1;
2224 			ubifs_assert(c, h >= 0);
2225 			nnode = path[h].ptr.nnode;
2226 			if (iip + 1 < UBIFS_LPT_FANOUT)
2227 				break;
2228 			iip = nnode->iip;
2229 		}
2230 		/* Go right */
2231 		iip += 1;
2232 		/* Descend to the pnode */
2233 		h += 1;
2234 		for (; h < c->lpt_hght; h++) {
2235 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2236 			if (IS_ERR(nnode)) {
2237 				err = PTR_ERR(nnode);
2238 				goto out;
2239 			}
2240 			iip = 0;
2241 		}
2242 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2243 		if (IS_ERR(pnode)) {
2244 			err = PTR_ERR(pnode);
2245 			goto out;
2246 		}
2247 		iip = 0;
2248 	}
2249 out:
2250 	kfree(path);
2251 	return err;
2252 }
2253 
2254 /**
2255  * dbg_chk_pnode - check a pnode.
2256  * @c: the UBIFS file-system description object
2257  * @pnode: pnode to check
2258  * @col: pnode column
2259  *
2260  * This function returns %0 on success and a negative error code on failure.
2261  */
2262 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2263 			 int col)
2264 {
2265 	int i;
2266 
2267 	if (pnode->num != col) {
2268 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2269 			  pnode->num, col, pnode->parent->num, pnode->iip);
2270 		return -EINVAL;
2271 	}
2272 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2273 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2274 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2275 			   c->main_first;
2276 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2277 		struct ubifs_lpt_heap *heap;
2278 		struct list_head *list = NULL;
2279 
2280 		if (lnum >= c->leb_cnt)
2281 			continue;
2282 		if (lprops->lnum != lnum) {
2283 			ubifs_err(c, "bad LEB number %d expected %d",
2284 				  lprops->lnum, lnum);
2285 			return -EINVAL;
2286 		}
2287 		if (lprops->flags & LPROPS_TAKEN) {
2288 			if (cat != LPROPS_UNCAT) {
2289 				ubifs_err(c, "LEB %d taken but not uncat %d",
2290 					  lprops->lnum, cat);
2291 				return -EINVAL;
2292 			}
2293 			continue;
2294 		}
2295 		if (lprops->flags & LPROPS_INDEX) {
2296 			switch (cat) {
2297 			case LPROPS_UNCAT:
2298 			case LPROPS_DIRTY_IDX:
2299 			case LPROPS_FRDI_IDX:
2300 				break;
2301 			default:
2302 				ubifs_err(c, "LEB %d index but cat %d",
2303 					  lprops->lnum, cat);
2304 				return -EINVAL;
2305 			}
2306 		} else {
2307 			switch (cat) {
2308 			case LPROPS_UNCAT:
2309 			case LPROPS_DIRTY:
2310 			case LPROPS_FREE:
2311 			case LPROPS_EMPTY:
2312 			case LPROPS_FREEABLE:
2313 				break;
2314 			default:
2315 				ubifs_err(c, "LEB %d not index but cat %d",
2316 					  lprops->lnum, cat);
2317 				return -EINVAL;
2318 			}
2319 		}
2320 		switch (cat) {
2321 		case LPROPS_UNCAT:
2322 			list = &c->uncat_list;
2323 			break;
2324 		case LPROPS_EMPTY:
2325 			list = &c->empty_list;
2326 			break;
2327 		case LPROPS_FREEABLE:
2328 			list = &c->freeable_list;
2329 			break;
2330 		case LPROPS_FRDI_IDX:
2331 			list = &c->frdi_idx_list;
2332 			break;
2333 		}
2334 		found = 0;
2335 		switch (cat) {
2336 		case LPROPS_DIRTY:
2337 		case LPROPS_DIRTY_IDX:
2338 		case LPROPS_FREE:
2339 			heap = &c->lpt_heap[cat - 1];
2340 			if (lprops->hpos < heap->cnt &&
2341 			    heap->arr[lprops->hpos] == lprops)
2342 				found = 1;
2343 			break;
2344 		case LPROPS_UNCAT:
2345 		case LPROPS_EMPTY:
2346 		case LPROPS_FREEABLE:
2347 		case LPROPS_FRDI_IDX:
2348 			list_for_each_entry(lp, list, list)
2349 				if (lprops == lp) {
2350 					found = 1;
2351 					break;
2352 				}
2353 			break;
2354 		}
2355 		if (!found) {
2356 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2357 				  lprops->lnum, cat);
2358 			return -EINVAL;
2359 		}
2360 		switch (cat) {
2361 		case LPROPS_EMPTY:
2362 			if (lprops->free != c->leb_size) {
2363 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2364 					  lprops->lnum, cat, lprops->free,
2365 					  lprops->dirty);
2366 				return -EINVAL;
2367 			}
2368 			break;
2369 		case LPROPS_FREEABLE:
2370 		case LPROPS_FRDI_IDX:
2371 			if (lprops->free + lprops->dirty != c->leb_size) {
2372 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2373 					  lprops->lnum, cat, lprops->free,
2374 					  lprops->dirty);
2375 				return -EINVAL;
2376 			}
2377 			break;
2378 		}
2379 	}
2380 	return 0;
2381 }
2382 
2383 /**
2384  * dbg_check_lpt_nodes - check nnodes and pnodes.
2385  * @c: the UBIFS file-system description object
2386  * @cnode: next cnode (nnode or pnode) to check
2387  * @row: row of cnode (root is zero)
2388  * @col: column of cnode (leftmost is zero)
2389  *
2390  * This function returns %0 on success and a negative error code on failure.
2391  */
2392 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2393 			int row, int col)
2394 {
2395 	struct ubifs_nnode *nnode, *nn;
2396 	struct ubifs_cnode *cn;
2397 	int num, iip = 0, err;
2398 
2399 	if (!dbg_is_chk_lprops(c))
2400 		return 0;
2401 
2402 	while (cnode) {
2403 		ubifs_assert(c, row >= 0);
2404 		nnode = cnode->parent;
2405 		if (cnode->level) {
2406 			/* cnode is a nnode */
2407 			num = calc_nnode_num(row, col);
2408 			if (cnode->num != num) {
2409 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2410 					  cnode->num, num,
2411 					  (nnode ? nnode->num : 0), cnode->iip);
2412 				return -EINVAL;
2413 			}
2414 			nn = (struct ubifs_nnode *)cnode;
2415 			while (iip < UBIFS_LPT_FANOUT) {
2416 				cn = nn->nbranch[iip].cnode;
2417 				if (cn) {
2418 					/* Go down */
2419 					row += 1;
2420 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2421 					col += iip;
2422 					iip = 0;
2423 					cnode = cn;
2424 					break;
2425 				}
2426 				/* Go right */
2427 				iip += 1;
2428 			}
2429 			if (iip < UBIFS_LPT_FANOUT)
2430 				continue;
2431 		} else {
2432 			struct ubifs_pnode *pnode;
2433 
2434 			/* cnode is a pnode */
2435 			pnode = (struct ubifs_pnode *)cnode;
2436 			err = dbg_chk_pnode(c, pnode, col);
2437 			if (err)
2438 				return err;
2439 		}
2440 		/* Go up and to the right */
2441 		row -= 1;
2442 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2443 		iip = cnode->iip + 1;
2444 		cnode = (struct ubifs_cnode *)nnode;
2445 	}
2446 	return 0;
2447 }
2448