xref: /openbmc/linux/fs/ubifs/lpt.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists are marking the nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include <linux/crc16.h>
47 #include "ubifs.h"
48 
49 /**
50  * do_calc_lpt_geom - calculate sizes for the LPT area.
51  * @c: the UBIFS file-system description object
52  *
53  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
54  * properties of the flash and whether LPT is "big" (c->big_lpt).
55  */
56 static void do_calc_lpt_geom(struct ubifs_info *c)
57 {
58 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
59 	long long sz, tot_wastage;
60 
61 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
62 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
63 
64 	c->lpt_hght = 1;
65 	n = UBIFS_LPT_FANOUT;
66 	while (n < max_pnode_cnt) {
67 		c->lpt_hght += 1;
68 		n <<= UBIFS_LPT_FANOUT_SHIFT;
69 	}
70 
71 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
72 
73 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
74 	c->nnode_cnt = n;
75 	for (i = 1; i < c->lpt_hght; i++) {
76 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
77 		c->nnode_cnt += n;
78 	}
79 
80 	c->space_bits = fls(c->leb_size) - 3;
81 	c->lpt_lnum_bits = fls(c->lpt_lebs);
82 	c->lpt_offs_bits = fls(c->leb_size - 1);
83 	c->lpt_spc_bits = fls(c->leb_size);
84 
85 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
86 	c->pcnt_bits = fls(n - 1);
87 
88 	c->lnum_bits = fls(c->max_leb_cnt - 1);
89 
90 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
91 	       (c->big_lpt ? c->pcnt_bits : 0) +
92 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
93 	c->pnode_sz = (bits + 7) / 8;
94 
95 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
96 	       (c->big_lpt ? c->pcnt_bits : 0) +
97 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
98 	c->nnode_sz = (bits + 7) / 8;
99 
100 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
101 	       c->lpt_lebs * c->lpt_spc_bits * 2;
102 	c->ltab_sz = (bits + 7) / 8;
103 
104 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
105 	       c->lnum_bits * c->lsave_cnt;
106 	c->lsave_sz = (bits + 7) / 8;
107 
108 	/* Calculate the minimum LPT size */
109 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
110 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
111 	c->lpt_sz += c->ltab_sz;
112 	if (c->big_lpt)
113 		c->lpt_sz += c->lsave_sz;
114 
115 	/* Add wastage */
116 	sz = c->lpt_sz;
117 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
118 	sz += per_leb_wastage;
119 	tot_wastage = per_leb_wastage;
120 	while (sz > c->leb_size) {
121 		sz += per_leb_wastage;
122 		sz -= c->leb_size;
123 		tot_wastage += per_leb_wastage;
124 	}
125 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
126 	c->lpt_sz += tot_wastage;
127 }
128 
129 /**
130  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
131  * @c: the UBIFS file-system description object
132  *
133  * This function returns %0 on success and a negative error code on failure.
134  */
135 int ubifs_calc_lpt_geom(struct ubifs_info *c)
136 {
137 	int lebs_needed;
138 	uint64_t sz;
139 
140 	do_calc_lpt_geom(c);
141 
142 	/* Verify that lpt_lebs is big enough */
143 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
144 	sz += c->leb_size - 1;
145 	do_div(sz, c->leb_size);
146 	lebs_needed = sz;
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err("too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err("LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 
160 	return 0;
161 }
162 
163 /**
164  * calc_dflt_lpt_geom - calculate default LPT geometry.
165  * @c: the UBIFS file-system description object
166  * @main_lebs: number of main area LEBs is passed and returned here
167  * @big_lpt: whether the LPT area is "big" is returned here
168  *
169  * The size of the LPT area depends on parameters that themselves are dependent
170  * on the size of the LPT area. This function, successively recalculates the LPT
171  * area geometry until the parameters and resultant geometry are consistent.
172  *
173  * This function returns %0 on success and a negative error code on failure.
174  */
175 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
176 			      int *big_lpt)
177 {
178 	int i, lebs_needed;
179 	uint64_t sz;
180 
181 	/* Start by assuming the minimum number of LPT LEBs */
182 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
183 	c->main_lebs = *main_lebs - c->lpt_lebs;
184 	if (c->main_lebs <= 0)
185 		return -EINVAL;
186 
187 	/* And assume we will use the small LPT model */
188 	c->big_lpt = 0;
189 
190 	/*
191 	 * Calculate the geometry based on assumptions above and then see if it
192 	 * makes sense
193 	 */
194 	do_calc_lpt_geom(c);
195 
196 	/* Small LPT model must have lpt_sz < leb_size */
197 	if (c->lpt_sz > c->leb_size) {
198 		/* Nope, so try again using big LPT model */
199 		c->big_lpt = 1;
200 		do_calc_lpt_geom(c);
201 	}
202 
203 	/* Now check there are enough LPT LEBs */
204 	for (i = 0; i < 64 ; i++) {
205 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
206 		sz += c->leb_size - 1;
207 		do_div(sz, c->leb_size);
208 		lebs_needed = sz;
209 		if (lebs_needed > c->lpt_lebs) {
210 			/* Not enough LPT LEBs so try again with more */
211 			c->lpt_lebs = lebs_needed;
212 			c->main_lebs = *main_lebs - c->lpt_lebs;
213 			if (c->main_lebs <= 0)
214 				return -EINVAL;
215 			do_calc_lpt_geom(c);
216 			continue;
217 		}
218 		if (c->ltab_sz > c->leb_size) {
219 			ubifs_err("LPT ltab too big");
220 			return -EINVAL;
221 		}
222 		*main_lebs = c->main_lebs;
223 		*big_lpt = c->big_lpt;
224 		return 0;
225 	}
226 	return -EINVAL;
227 }
228 
229 /**
230  * pack_bits - pack bit fields end-to-end.
231  * @addr: address at which to pack (passed and next address returned)
232  * @pos: bit position at which to pack (passed and next position returned)
233  * @val: value to pack
234  * @nrbits: number of bits of value to pack (1-32)
235  */
236 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
237 {
238 	uint8_t *p = *addr;
239 	int b = *pos;
240 
241 	ubifs_assert(nrbits > 0);
242 	ubifs_assert(nrbits <= 32);
243 	ubifs_assert(*pos >= 0);
244 	ubifs_assert(*pos < 8);
245 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
246 	if (b) {
247 		*p |= ((uint8_t)val) << b;
248 		nrbits += b;
249 		if (nrbits > 8) {
250 			*++p = (uint8_t)(val >>= (8 - b));
251 			if (nrbits > 16) {
252 				*++p = (uint8_t)(val >>= 8);
253 				if (nrbits > 24) {
254 					*++p = (uint8_t)(val >>= 8);
255 					if (nrbits > 32)
256 						*++p = (uint8_t)(val >>= 8);
257 				}
258 			}
259 		}
260 	} else {
261 		*p = (uint8_t)val;
262 		if (nrbits > 8) {
263 			*++p = (uint8_t)(val >>= 8);
264 			if (nrbits > 16) {
265 				*++p = (uint8_t)(val >>= 8);
266 				if (nrbits > 24)
267 					*++p = (uint8_t)(val >>= 8);
268 			}
269 		}
270 	}
271 	b = nrbits & 7;
272 	if (b == 0)
273 		p++;
274 	*addr = p;
275 	*pos = b;
276 }
277 
278 /**
279  * ubifs_unpack_bits - unpack bit fields.
280  * @addr: address at which to unpack (passed and next address returned)
281  * @pos: bit position at which to unpack (passed and next position returned)
282  * @nrbits: number of bits of value to unpack (1-32)
283  *
284  * This functions returns the value unpacked.
285  */
286 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
287 {
288 	const int k = 32 - nrbits;
289 	uint8_t *p = *addr;
290 	int b = *pos;
291 	uint32_t uninitialized_var(val);
292 	const int bytes = (nrbits + b + 7) >> 3;
293 
294 	ubifs_assert(nrbits > 0);
295 	ubifs_assert(nrbits <= 32);
296 	ubifs_assert(*pos >= 0);
297 	ubifs_assert(*pos < 8);
298 	if (b) {
299 		switch (bytes) {
300 		case 2:
301 			val = p[1];
302 			break;
303 		case 3:
304 			val = p[1] | ((uint32_t)p[2] << 8);
305 			break;
306 		case 4:
307 			val = p[1] | ((uint32_t)p[2] << 8) |
308 				     ((uint32_t)p[3] << 16);
309 			break;
310 		case 5:
311 			val = p[1] | ((uint32_t)p[2] << 8) |
312 				     ((uint32_t)p[3] << 16) |
313 				     ((uint32_t)p[4] << 24);
314 		}
315 		val <<= (8 - b);
316 		val |= *p >> b;
317 		nrbits += b;
318 	} else {
319 		switch (bytes) {
320 		case 1:
321 			val = p[0];
322 			break;
323 		case 2:
324 			val = p[0] | ((uint32_t)p[1] << 8);
325 			break;
326 		case 3:
327 			val = p[0] | ((uint32_t)p[1] << 8) |
328 				     ((uint32_t)p[2] << 16);
329 			break;
330 		case 4:
331 			val = p[0] | ((uint32_t)p[1] << 8) |
332 				     ((uint32_t)p[2] << 16) |
333 				     ((uint32_t)p[3] << 24);
334 			break;
335 		}
336 	}
337 	val <<= k;
338 	val >>= k;
339 	b = nrbits & 7;
340 	p += nrbits >> 3;
341 	*addr = p;
342 	*pos = b;
343 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
344 	return val;
345 }
346 
347 /**
348  * ubifs_pack_pnode - pack all the bit fields of a pnode.
349  * @c: UBIFS file-system description object
350  * @buf: buffer into which to pack
351  * @pnode: pnode to pack
352  */
353 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
354 		      struct ubifs_pnode *pnode)
355 {
356 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
357 	int i, pos = 0;
358 	uint16_t crc;
359 
360 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
361 	if (c->big_lpt)
362 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
363 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
364 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
365 			  c->space_bits);
366 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
367 			  c->space_bits);
368 		if (pnode->lprops[i].flags & LPROPS_INDEX)
369 			pack_bits(&addr, &pos, 1, 1);
370 		else
371 			pack_bits(&addr, &pos, 0, 1);
372 	}
373 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
374 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
375 	addr = buf;
376 	pos = 0;
377 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
378 }
379 
380 /**
381  * ubifs_pack_nnode - pack all the bit fields of a nnode.
382  * @c: UBIFS file-system description object
383  * @buf: buffer into which to pack
384  * @nnode: nnode to pack
385  */
386 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
387 		      struct ubifs_nnode *nnode)
388 {
389 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
390 	int i, pos = 0;
391 	uint16_t crc;
392 
393 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
394 	if (c->big_lpt)
395 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
396 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
397 		int lnum = nnode->nbranch[i].lnum;
398 
399 		if (lnum == 0)
400 			lnum = c->lpt_last + 1;
401 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
402 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
403 			  c->lpt_offs_bits);
404 	}
405 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
406 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
407 	addr = buf;
408 	pos = 0;
409 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
410 }
411 
412 /**
413  * ubifs_pack_ltab - pack the LPT's own lprops table.
414  * @c: UBIFS file-system description object
415  * @buf: buffer into which to pack
416  * @ltab: LPT's own lprops table to pack
417  */
418 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
419 		     struct ubifs_lpt_lprops *ltab)
420 {
421 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
422 	int i, pos = 0;
423 	uint16_t crc;
424 
425 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
426 	for (i = 0; i < c->lpt_lebs; i++) {
427 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
428 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
429 	}
430 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
431 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
432 	addr = buf;
433 	pos = 0;
434 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
435 }
436 
437 /**
438  * ubifs_pack_lsave - pack the LPT's save table.
439  * @c: UBIFS file-system description object
440  * @buf: buffer into which to pack
441  * @lsave: LPT's save table to pack
442  */
443 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
444 {
445 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
446 	int i, pos = 0;
447 	uint16_t crc;
448 
449 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
450 	for (i = 0; i < c->lsave_cnt; i++)
451 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
452 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
453 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
454 	addr = buf;
455 	pos = 0;
456 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
457 }
458 
459 /**
460  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
461  * @c: UBIFS file-system description object
462  * @lnum: LEB number to which to add dirty space
463  * @dirty: amount of dirty space to add
464  */
465 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
466 {
467 	if (!dirty || !lnum)
468 		return;
469 	dbg_lp("LEB %d add %d to %d",
470 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
471 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
472 	c->ltab[lnum - c->lpt_first].dirty += dirty;
473 }
474 
475 /**
476  * set_ltab - set LPT LEB properties.
477  * @c: UBIFS file-system description object
478  * @lnum: LEB number
479  * @free: amount of free space
480  * @dirty: amount of dirty space
481  */
482 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
483 {
484 	dbg_lp("LEB %d free %d dirty %d to %d %d",
485 	       lnum, c->ltab[lnum - c->lpt_first].free,
486 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
487 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
488 	c->ltab[lnum - c->lpt_first].free = free;
489 	c->ltab[lnum - c->lpt_first].dirty = dirty;
490 }
491 
492 /**
493  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
494  * @c: UBIFS file-system description object
495  * @nnode: nnode for which to add dirt
496  */
497 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
498 {
499 	struct ubifs_nnode *np = nnode->parent;
500 
501 	if (np)
502 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
503 				   c->nnode_sz);
504 	else {
505 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
506 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
507 			c->lpt_drty_flgs |= LTAB_DIRTY;
508 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
509 		}
510 	}
511 }
512 
513 /**
514  * add_pnode_dirt - add dirty space to LPT LEB properties.
515  * @c: UBIFS file-system description object
516  * @pnode: pnode for which to add dirt
517  */
518 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
519 {
520 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
521 			   c->pnode_sz);
522 }
523 
524 /**
525  * calc_nnode_num - calculate nnode number.
526  * @row: the row in the tree (root is zero)
527  * @col: the column in the row (leftmost is zero)
528  *
529  * The nnode number is a number that uniquely identifies a nnode and can be used
530  * easily to traverse the tree from the root to that nnode.
531  *
532  * This function calculates and returns the nnode number for the nnode at @row
533  * and @col.
534  */
535 static int calc_nnode_num(int row, int col)
536 {
537 	int num, bits;
538 
539 	num = 1;
540 	while (row--) {
541 		bits = (col & (UBIFS_LPT_FANOUT - 1));
542 		col >>= UBIFS_LPT_FANOUT_SHIFT;
543 		num <<= UBIFS_LPT_FANOUT_SHIFT;
544 		num |= bits;
545 	}
546 	return num;
547 }
548 
549 /**
550  * calc_nnode_num_from_parent - calculate nnode number.
551  * @c: UBIFS file-system description object
552  * @parent: parent nnode
553  * @iip: index in parent
554  *
555  * The nnode number is a number that uniquely identifies a nnode and can be used
556  * easily to traverse the tree from the root to that nnode.
557  *
558  * This function calculates and returns the nnode number based on the parent's
559  * nnode number and the index in parent.
560  */
561 static int calc_nnode_num_from_parent(struct ubifs_info *c,
562 				      struct ubifs_nnode *parent, int iip)
563 {
564 	int num, shft;
565 
566 	if (!parent)
567 		return 1;
568 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
569 	num = parent->num ^ (1 << shft);
570 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
571 	return num;
572 }
573 
574 /**
575  * calc_pnode_num_from_parent - calculate pnode number.
576  * @c: UBIFS file-system description object
577  * @parent: parent nnode
578  * @iip: index in parent
579  *
580  * The pnode number is a number that uniquely identifies a pnode and can be used
581  * easily to traverse the tree from the root to that pnode.
582  *
583  * This function calculates and returns the pnode number based on the parent's
584  * nnode number and the index in parent.
585  */
586 static int calc_pnode_num_from_parent(struct ubifs_info *c,
587 				      struct ubifs_nnode *parent, int iip)
588 {
589 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
590 
591 	for (i = 0; i < n; i++) {
592 		num <<= UBIFS_LPT_FANOUT_SHIFT;
593 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
594 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
595 	}
596 	num <<= UBIFS_LPT_FANOUT_SHIFT;
597 	num |= iip;
598 	return num;
599 }
600 
601 /**
602  * ubifs_create_dflt_lpt - create default LPT.
603  * @c: UBIFS file-system description object
604  * @main_lebs: number of main area LEBs is passed and returned here
605  * @lpt_first: LEB number of first LPT LEB
606  * @lpt_lebs: number of LEBs for LPT is passed and returned here
607  * @big_lpt: use big LPT model is passed and returned here
608  *
609  * This function returns %0 on success and a negative error code on failure.
610  */
611 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
612 			  int *lpt_lebs, int *big_lpt)
613 {
614 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
615 	int blnum, boffs, bsz, bcnt;
616 	struct ubifs_pnode *pnode = NULL;
617 	struct ubifs_nnode *nnode = NULL;
618 	void *buf = NULL, *p;
619 	struct ubifs_lpt_lprops *ltab = NULL;
620 	int *lsave = NULL;
621 
622 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
623 	if (err)
624 		return err;
625 	*lpt_lebs = c->lpt_lebs;
626 
627 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
628 	c->lpt_first = lpt_first;
629 	/* Needed by 'set_ltab()' */
630 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
631 	/* Needed by 'ubifs_pack_lsave()' */
632 	c->main_first = c->leb_cnt - *main_lebs;
633 
634 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
635 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
636 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
637 	buf = vmalloc(c->leb_size);
638 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
639 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
640 		err = -ENOMEM;
641 		goto out;
642 	}
643 
644 	ubifs_assert(!c->ltab);
645 	c->ltab = ltab; /* Needed by set_ltab */
646 
647 	/* Initialize LPT's own lprops */
648 	for (i = 0; i < c->lpt_lebs; i++) {
649 		ltab[i].free = c->leb_size;
650 		ltab[i].dirty = 0;
651 		ltab[i].tgc = 0;
652 		ltab[i].cmt = 0;
653 	}
654 
655 	lnum = lpt_first;
656 	p = buf;
657 	/* Number of leaf nodes (pnodes) */
658 	cnt = c->pnode_cnt;
659 
660 	/*
661 	 * The first pnode contains the LEB properties for the LEBs that contain
662 	 * the root inode node and the root index node of the index tree.
663 	 */
664 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
665 	iopos = ALIGN(node_sz, c->min_io_size);
666 	pnode->lprops[0].free = c->leb_size - iopos;
667 	pnode->lprops[0].dirty = iopos - node_sz;
668 	pnode->lprops[0].flags = LPROPS_INDEX;
669 
670 	node_sz = UBIFS_INO_NODE_SZ;
671 	iopos = ALIGN(node_sz, c->min_io_size);
672 	pnode->lprops[1].free = c->leb_size - iopos;
673 	pnode->lprops[1].dirty = iopos - node_sz;
674 
675 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
676 		pnode->lprops[i].free = c->leb_size;
677 
678 	/* Add first pnode */
679 	ubifs_pack_pnode(c, p, pnode);
680 	p += c->pnode_sz;
681 	len = c->pnode_sz;
682 	pnode->num += 1;
683 
684 	/* Reset pnode values for remaining pnodes */
685 	pnode->lprops[0].free = c->leb_size;
686 	pnode->lprops[0].dirty = 0;
687 	pnode->lprops[0].flags = 0;
688 
689 	pnode->lprops[1].free = c->leb_size;
690 	pnode->lprops[1].dirty = 0;
691 
692 	/*
693 	 * To calculate the internal node branches, we keep information about
694 	 * the level below.
695 	 */
696 	blnum = lnum; /* LEB number of level below */
697 	boffs = 0; /* Offset of level below */
698 	bcnt = cnt; /* Number of nodes in level below */
699 	bsz = c->pnode_sz; /* Size of nodes in level below */
700 
701 	/* Add all remaining pnodes */
702 	for (i = 1; i < cnt; i++) {
703 		if (len + c->pnode_sz > c->leb_size) {
704 			alen = ALIGN(len, c->min_io_size);
705 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
706 			memset(p, 0xff, alen - len);
707 			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
708 					     UBI_SHORTTERM);
709 			if (err)
710 				goto out;
711 			p = buf;
712 			len = 0;
713 		}
714 		ubifs_pack_pnode(c, p, pnode);
715 		p += c->pnode_sz;
716 		len += c->pnode_sz;
717 		/*
718 		 * pnodes are simply numbered left to right starting at zero,
719 		 * which means the pnode number can be used easily to traverse
720 		 * down the tree to the corresponding pnode.
721 		 */
722 		pnode->num += 1;
723 	}
724 
725 	row = 0;
726 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
727 		row += 1;
728 	/* Add all nnodes, one level at a time */
729 	while (1) {
730 		/* Number of internal nodes (nnodes) at next level */
731 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
732 		for (i = 0; i < cnt; i++) {
733 			if (len + c->nnode_sz > c->leb_size) {
734 				alen = ALIGN(len, c->min_io_size);
735 				set_ltab(c, lnum, c->leb_size - alen,
736 					    alen - len);
737 				memset(p, 0xff, alen - len);
738 				err = ubi_leb_change(c->ubi, lnum++, buf, alen,
739 						     UBI_SHORTTERM);
740 				if (err)
741 					goto out;
742 				p = buf;
743 				len = 0;
744 			}
745 			/* Only 1 nnode at this level, so it is the root */
746 			if (cnt == 1) {
747 				c->lpt_lnum = lnum;
748 				c->lpt_offs = len;
749 			}
750 			/* Set branches to the level below */
751 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
752 				if (bcnt) {
753 					if (boffs + bsz > c->leb_size) {
754 						blnum += 1;
755 						boffs = 0;
756 					}
757 					nnode->nbranch[j].lnum = blnum;
758 					nnode->nbranch[j].offs = boffs;
759 					boffs += bsz;
760 					bcnt--;
761 				} else {
762 					nnode->nbranch[j].lnum = 0;
763 					nnode->nbranch[j].offs = 0;
764 				}
765 			}
766 			nnode->num = calc_nnode_num(row, i);
767 			ubifs_pack_nnode(c, p, nnode);
768 			p += c->nnode_sz;
769 			len += c->nnode_sz;
770 		}
771 		/* Only 1 nnode at this level, so it is the root */
772 		if (cnt == 1)
773 			break;
774 		/* Update the information about the level below */
775 		bcnt = cnt;
776 		bsz = c->nnode_sz;
777 		row -= 1;
778 	}
779 
780 	if (*big_lpt) {
781 		/* Need to add LPT's save table */
782 		if (len + c->lsave_sz > c->leb_size) {
783 			alen = ALIGN(len, c->min_io_size);
784 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
785 			memset(p, 0xff, alen - len);
786 			err = ubi_leb_change(c->ubi, lnum++, buf, alen,
787 					     UBI_SHORTTERM);
788 			if (err)
789 				goto out;
790 			p = buf;
791 			len = 0;
792 		}
793 
794 		c->lsave_lnum = lnum;
795 		c->lsave_offs = len;
796 
797 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
798 			lsave[i] = c->main_first + i;
799 		for (; i < c->lsave_cnt; i++)
800 			lsave[i] = c->main_first;
801 
802 		ubifs_pack_lsave(c, p, lsave);
803 		p += c->lsave_sz;
804 		len += c->lsave_sz;
805 	}
806 
807 	/* Need to add LPT's own LEB properties table */
808 	if (len + c->ltab_sz > c->leb_size) {
809 		alen = ALIGN(len, c->min_io_size);
810 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
811 		memset(p, 0xff, alen - len);
812 		err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
813 		if (err)
814 			goto out;
815 		p = buf;
816 		len = 0;
817 	}
818 
819 	c->ltab_lnum = lnum;
820 	c->ltab_offs = len;
821 
822 	/* Update ltab before packing it */
823 	len += c->ltab_sz;
824 	alen = ALIGN(len, c->min_io_size);
825 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
826 
827 	ubifs_pack_ltab(c, p, ltab);
828 	p += c->ltab_sz;
829 
830 	/* Write remaining buffer */
831 	memset(p, 0xff, alen - len);
832 	err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
833 	if (err)
834 		goto out;
835 
836 	c->nhead_lnum = lnum;
837 	c->nhead_offs = ALIGN(len, c->min_io_size);
838 
839 	dbg_lp("space_bits %d", c->space_bits);
840 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
841 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
842 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
843 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
844 	dbg_lp("lnum_bits %d", c->lnum_bits);
845 	dbg_lp("pnode_sz %d", c->pnode_sz);
846 	dbg_lp("nnode_sz %d", c->nnode_sz);
847 	dbg_lp("ltab_sz %d", c->ltab_sz);
848 	dbg_lp("lsave_sz %d", c->lsave_sz);
849 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
850 	dbg_lp("lpt_hght %d", c->lpt_hght);
851 	dbg_lp("big_lpt %d", c->big_lpt);
852 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
853 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
854 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
855 	if (c->big_lpt)
856 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
857 out:
858 	c->ltab = NULL;
859 	kfree(lsave);
860 	vfree(ltab);
861 	vfree(buf);
862 	kfree(nnode);
863 	kfree(pnode);
864 	return err;
865 }
866 
867 /**
868  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
869  * @c: UBIFS file-system description object
870  * @pnode: pnode
871  *
872  * When a pnode is loaded into memory, the LEB properties it contains are added,
873  * by this function, to the LEB category lists and heaps.
874  */
875 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
876 {
877 	int i;
878 
879 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
880 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
881 		int lnum = pnode->lprops[i].lnum;
882 
883 		if (!lnum)
884 			return;
885 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
886 	}
887 }
888 
889 /**
890  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
891  * @c: UBIFS file-system description object
892  * @old_pnode: pnode copied
893  * @new_pnode: pnode copy
894  *
895  * During commit it is sometimes necessary to copy a pnode
896  * (see dirty_cow_pnode).  When that happens, references in
897  * category lists and heaps must be replaced.  This function does that.
898  */
899 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
900 			 struct ubifs_pnode *new_pnode)
901 {
902 	int i;
903 
904 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
905 		if (!new_pnode->lprops[i].lnum)
906 			return;
907 		ubifs_replace_cat(c, &old_pnode->lprops[i],
908 				  &new_pnode->lprops[i]);
909 	}
910 }
911 
912 /**
913  * check_lpt_crc - check LPT node crc is correct.
914  * @c: UBIFS file-system description object
915  * @buf: buffer containing node
916  * @len: length of node
917  *
918  * This function returns %0 on success and a negative error code on failure.
919  */
920 static int check_lpt_crc(void *buf, int len)
921 {
922 	int pos = 0;
923 	uint8_t *addr = buf;
924 	uint16_t crc, calc_crc;
925 
926 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
927 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
928 			 len - UBIFS_LPT_CRC_BYTES);
929 	if (crc != calc_crc) {
930 		ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
931 			  calc_crc);
932 		dbg_dump_stack();
933 		return -EINVAL;
934 	}
935 	return 0;
936 }
937 
938 /**
939  * check_lpt_type - check LPT node type is correct.
940  * @c: UBIFS file-system description object
941  * @addr: address of type bit field is passed and returned updated here
942  * @pos: position of type bit field is passed and returned updated here
943  * @type: expected type
944  *
945  * This function returns %0 on success and a negative error code on failure.
946  */
947 static int check_lpt_type(uint8_t **addr, int *pos, int type)
948 {
949 	int node_type;
950 
951 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
952 	if (node_type != type) {
953 		ubifs_err("invalid type (%d) in LPT node type %d", node_type,
954 			  type);
955 		dbg_dump_stack();
956 		return -EINVAL;
957 	}
958 	return 0;
959 }
960 
961 /**
962  * unpack_pnode - unpack a pnode.
963  * @c: UBIFS file-system description object
964  * @buf: buffer containing packed pnode to unpack
965  * @pnode: pnode structure to fill
966  *
967  * This function returns %0 on success and a negative error code on failure.
968  */
969 static int unpack_pnode(struct ubifs_info *c, void *buf,
970 			struct ubifs_pnode *pnode)
971 {
972 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
973 	int i, pos = 0, err;
974 
975 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
976 	if (err)
977 		return err;
978 	if (c->big_lpt)
979 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
980 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
981 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
982 
983 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
984 		lprops->free <<= 3;
985 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
986 		lprops->dirty <<= 3;
987 
988 		if (ubifs_unpack_bits(&addr, &pos, 1))
989 			lprops->flags = LPROPS_INDEX;
990 		else
991 			lprops->flags = 0;
992 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
993 	}
994 	err = check_lpt_crc(buf, c->pnode_sz);
995 	return err;
996 }
997 
998 /**
999  * unpack_nnode - unpack a nnode.
1000  * @c: UBIFS file-system description object
1001  * @buf: buffer containing packed nnode to unpack
1002  * @nnode: nnode structure to fill
1003  *
1004  * This function returns %0 on success and a negative error code on failure.
1005  */
1006 static int unpack_nnode(struct ubifs_info *c, void *buf,
1007 			struct ubifs_nnode *nnode)
1008 {
1009 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1010 	int i, pos = 0, err;
1011 
1012 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1013 	if (err)
1014 		return err;
1015 	if (c->big_lpt)
1016 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1017 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1018 		int lnum;
1019 
1020 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1021 		       c->lpt_first;
1022 		if (lnum == c->lpt_last + 1)
1023 			lnum = 0;
1024 		nnode->nbranch[i].lnum = lnum;
1025 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1026 						     c->lpt_offs_bits);
1027 	}
1028 	err = check_lpt_crc(buf, c->nnode_sz);
1029 	return err;
1030 }
1031 
1032 /**
1033  * unpack_ltab - unpack the LPT's own lprops table.
1034  * @c: UBIFS file-system description object
1035  * @buf: buffer from which to unpack
1036  *
1037  * This function returns %0 on success and a negative error code on failure.
1038  */
1039 static int unpack_ltab(struct ubifs_info *c, void *buf)
1040 {
1041 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1042 	int i, pos = 0, err;
1043 
1044 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1045 	if (err)
1046 		return err;
1047 	for (i = 0; i < c->lpt_lebs; i++) {
1048 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1049 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1050 
1051 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1052 		    dirty > c->leb_size || free + dirty > c->leb_size)
1053 			return -EINVAL;
1054 
1055 		c->ltab[i].free = free;
1056 		c->ltab[i].dirty = dirty;
1057 		c->ltab[i].tgc = 0;
1058 		c->ltab[i].cmt = 0;
1059 	}
1060 	err = check_lpt_crc(buf, c->ltab_sz);
1061 	return err;
1062 }
1063 
1064 /**
1065  * unpack_lsave - unpack the LPT's save table.
1066  * @c: UBIFS file-system description object
1067  * @buf: buffer from which to unpack
1068  *
1069  * This function returns %0 on success and a negative error code on failure.
1070  */
1071 static int unpack_lsave(struct ubifs_info *c, void *buf)
1072 {
1073 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1074 	int i, pos = 0, err;
1075 
1076 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1077 	if (err)
1078 		return err;
1079 	for (i = 0; i < c->lsave_cnt; i++) {
1080 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1081 
1082 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1083 			return -EINVAL;
1084 		c->lsave[i] = lnum;
1085 	}
1086 	err = check_lpt_crc(buf, c->lsave_sz);
1087 	return err;
1088 }
1089 
1090 /**
1091  * validate_nnode - validate a nnode.
1092  * @c: UBIFS file-system description object
1093  * @nnode: nnode to validate
1094  * @parent: parent nnode (or NULL for the root nnode)
1095  * @iip: index in parent
1096  *
1097  * This function returns %0 on success and a negative error code on failure.
1098  */
1099 static int validate_nnode(struct ubifs_info *c, struct ubifs_nnode *nnode,
1100 			  struct ubifs_nnode *parent, int iip)
1101 {
1102 	int i, lvl, max_offs;
1103 
1104 	if (c->big_lpt) {
1105 		int num = calc_nnode_num_from_parent(c, parent, iip);
1106 
1107 		if (nnode->num != num)
1108 			return -EINVAL;
1109 	}
1110 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1111 	if (lvl < 1)
1112 		return -EINVAL;
1113 	if (lvl == 1)
1114 		max_offs = c->leb_size - c->pnode_sz;
1115 	else
1116 		max_offs = c->leb_size - c->nnode_sz;
1117 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1118 		int lnum = nnode->nbranch[i].lnum;
1119 		int offs = nnode->nbranch[i].offs;
1120 
1121 		if (lnum == 0) {
1122 			if (offs != 0)
1123 				return -EINVAL;
1124 			continue;
1125 		}
1126 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1127 			return -EINVAL;
1128 		if (offs < 0 || offs > max_offs)
1129 			return -EINVAL;
1130 	}
1131 	return 0;
1132 }
1133 
1134 /**
1135  * validate_pnode - validate a pnode.
1136  * @c: UBIFS file-system description object
1137  * @pnode: pnode to validate
1138  * @parent: parent nnode
1139  * @iip: index in parent
1140  *
1141  * This function returns %0 on success and a negative error code on failure.
1142  */
1143 static int validate_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
1144 			  struct ubifs_nnode *parent, int iip)
1145 {
1146 	int i;
1147 
1148 	if (c->big_lpt) {
1149 		int num = calc_pnode_num_from_parent(c, parent, iip);
1150 
1151 		if (pnode->num != num)
1152 			return -EINVAL;
1153 	}
1154 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1155 		int free = pnode->lprops[i].free;
1156 		int dirty = pnode->lprops[i].dirty;
1157 
1158 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1159 		    (free & 7))
1160 			return -EINVAL;
1161 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1162 			return -EINVAL;
1163 		if (dirty + free > c->leb_size)
1164 			return -EINVAL;
1165 	}
1166 	return 0;
1167 }
1168 
1169 /**
1170  * set_pnode_lnum - set LEB numbers on a pnode.
1171  * @c: UBIFS file-system description object
1172  * @pnode: pnode to update
1173  *
1174  * This function calculates the LEB numbers for the LEB properties it contains
1175  * based on the pnode number.
1176  */
1177 static void set_pnode_lnum(struct ubifs_info *c, struct ubifs_pnode *pnode)
1178 {
1179 	int i, lnum;
1180 
1181 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1182 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1183 		if (lnum >= c->leb_cnt)
1184 			return;
1185 		pnode->lprops[i].lnum = lnum++;
1186 	}
1187 }
1188 
1189 /**
1190  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1191  * @c: UBIFS file-system description object
1192  * @parent: parent nnode (or NULL for the root)
1193  * @iip: index in parent
1194  *
1195  * This function returns %0 on success and a negative error code on failure.
1196  */
1197 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1198 {
1199 	struct ubifs_nbranch *branch = NULL;
1200 	struct ubifs_nnode *nnode = NULL;
1201 	void *buf = c->lpt_nod_buf;
1202 	int err, lnum, offs;
1203 
1204 	if (parent) {
1205 		branch = &parent->nbranch[iip];
1206 		lnum = branch->lnum;
1207 		offs = branch->offs;
1208 	} else {
1209 		lnum = c->lpt_lnum;
1210 		offs = c->lpt_offs;
1211 	}
1212 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1213 	if (!nnode) {
1214 		err = -ENOMEM;
1215 		goto out;
1216 	}
1217 	if (lnum == 0) {
1218 		/*
1219 		 * This nnode was not written which just means that the LEB
1220 		 * properties in the subtree below it describe empty LEBs. We
1221 		 * make the nnode as though we had read it, which in fact means
1222 		 * doing almost nothing.
1223 		 */
1224 		if (c->big_lpt)
1225 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1226 	} else {
1227 		err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
1228 		if (err)
1229 			goto out;
1230 		err = unpack_nnode(c, buf, nnode);
1231 		if (err)
1232 			goto out;
1233 	}
1234 	err = validate_nnode(c, nnode, parent, iip);
1235 	if (err)
1236 		goto out;
1237 	if (!c->big_lpt)
1238 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1239 	if (parent) {
1240 		branch->nnode = nnode;
1241 		nnode->level = parent->level - 1;
1242 	} else {
1243 		c->nroot = nnode;
1244 		nnode->level = c->lpt_hght;
1245 	}
1246 	nnode->parent = parent;
1247 	nnode->iip = iip;
1248 	return 0;
1249 
1250 out:
1251 	ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1252 	kfree(nnode);
1253 	return err;
1254 }
1255 
1256 /**
1257  * read_pnode - read a pnode from flash and link it to the tree in memory.
1258  * @c: UBIFS file-system description object
1259  * @parent: parent nnode
1260  * @iip: index in parent
1261  *
1262  * This function returns %0 on success and a negative error code on failure.
1263  */
1264 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1265 {
1266 	struct ubifs_nbranch *branch;
1267 	struct ubifs_pnode *pnode = NULL;
1268 	void *buf = c->lpt_nod_buf;
1269 	int err, lnum, offs;
1270 
1271 	branch = &parent->nbranch[iip];
1272 	lnum = branch->lnum;
1273 	offs = branch->offs;
1274 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1275 	if (!pnode) {
1276 		err = -ENOMEM;
1277 		goto out;
1278 	}
1279 	if (lnum == 0) {
1280 		/*
1281 		 * This pnode was not written which just means that the LEB
1282 		 * properties in it describe empty LEBs. We make the pnode as
1283 		 * though we had read it.
1284 		 */
1285 		int i;
1286 
1287 		if (c->big_lpt)
1288 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1289 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1290 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1291 
1292 			lprops->free = c->leb_size;
1293 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1294 		}
1295 	} else {
1296 		err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
1297 		if (err)
1298 			goto out;
1299 		err = unpack_pnode(c, buf, pnode);
1300 		if (err)
1301 			goto out;
1302 	}
1303 	err = validate_pnode(c, pnode, parent, iip);
1304 	if (err)
1305 		goto out;
1306 	if (!c->big_lpt)
1307 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1308 	branch->pnode = pnode;
1309 	pnode->parent = parent;
1310 	pnode->iip = iip;
1311 	set_pnode_lnum(c, pnode);
1312 	c->pnodes_have += 1;
1313 	return 0;
1314 
1315 out:
1316 	ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1317 	dbg_dump_pnode(c, pnode, parent, iip);
1318 	dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1319 	kfree(pnode);
1320 	return err;
1321 }
1322 
1323 /**
1324  * read_ltab - read LPT's own lprops table.
1325  * @c: UBIFS file-system description object
1326  *
1327  * This function returns %0 on success and a negative error code on failure.
1328  */
1329 static int read_ltab(struct ubifs_info *c)
1330 {
1331 	int err;
1332 	void *buf;
1333 
1334 	buf = vmalloc(c->ltab_sz);
1335 	if (!buf)
1336 		return -ENOMEM;
1337 	err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
1338 	if (err)
1339 		goto out;
1340 	err = unpack_ltab(c, buf);
1341 out:
1342 	vfree(buf);
1343 	return err;
1344 }
1345 
1346 /**
1347  * read_lsave - read LPT's save table.
1348  * @c: UBIFS file-system description object
1349  *
1350  * This function returns %0 on success and a negative error code on failure.
1351  */
1352 static int read_lsave(struct ubifs_info *c)
1353 {
1354 	int err, i;
1355 	void *buf;
1356 
1357 	buf = vmalloc(c->lsave_sz);
1358 	if (!buf)
1359 		return -ENOMEM;
1360 	err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz);
1361 	if (err)
1362 		goto out;
1363 	err = unpack_lsave(c, buf);
1364 	if (err)
1365 		goto out;
1366 	for (i = 0; i < c->lsave_cnt; i++) {
1367 		int lnum = c->lsave[i];
1368 
1369 		/*
1370 		 * Due to automatic resizing, the values in the lsave table
1371 		 * could be beyond the volume size - just ignore them.
1372 		 */
1373 		if (lnum >= c->leb_cnt)
1374 			continue;
1375 		ubifs_lpt_lookup(c, lnum);
1376 	}
1377 out:
1378 	vfree(buf);
1379 	return err;
1380 }
1381 
1382 /**
1383  * ubifs_get_nnode - get a nnode.
1384  * @c: UBIFS file-system description object
1385  * @parent: parent nnode (or NULL for the root)
1386  * @iip: index in parent
1387  *
1388  * This function returns a pointer to the nnode on success or a negative error
1389  * code on failure.
1390  */
1391 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1392 				    struct ubifs_nnode *parent, int iip)
1393 {
1394 	struct ubifs_nbranch *branch;
1395 	struct ubifs_nnode *nnode;
1396 	int err;
1397 
1398 	branch = &parent->nbranch[iip];
1399 	nnode = branch->nnode;
1400 	if (nnode)
1401 		return nnode;
1402 	err = ubifs_read_nnode(c, parent, iip);
1403 	if (err)
1404 		return ERR_PTR(err);
1405 	return branch->nnode;
1406 }
1407 
1408 /**
1409  * ubifs_get_pnode - get a pnode.
1410  * @c: UBIFS file-system description object
1411  * @parent: parent nnode
1412  * @iip: index in parent
1413  *
1414  * This function returns a pointer to the pnode on success or a negative error
1415  * code on failure.
1416  */
1417 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1418 				    struct ubifs_nnode *parent, int iip)
1419 {
1420 	struct ubifs_nbranch *branch;
1421 	struct ubifs_pnode *pnode;
1422 	int err;
1423 
1424 	branch = &parent->nbranch[iip];
1425 	pnode = branch->pnode;
1426 	if (pnode)
1427 		return pnode;
1428 	err = read_pnode(c, parent, iip);
1429 	if (err)
1430 		return ERR_PTR(err);
1431 	update_cats(c, branch->pnode);
1432 	return branch->pnode;
1433 }
1434 
1435 /**
1436  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1437  * @c: UBIFS file-system description object
1438  * @lnum: LEB number to lookup
1439  *
1440  * This function returns a pointer to the LEB properties on success or a
1441  * negative error code on failure.
1442  */
1443 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1444 {
1445 	int err, i, h, iip, shft;
1446 	struct ubifs_nnode *nnode;
1447 	struct ubifs_pnode *pnode;
1448 
1449 	if (!c->nroot) {
1450 		err = ubifs_read_nnode(c, NULL, 0);
1451 		if (err)
1452 			return ERR_PTR(err);
1453 	}
1454 	nnode = c->nroot;
1455 	i = lnum - c->main_first;
1456 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1457 	for (h = 1; h < c->lpt_hght; h++) {
1458 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1459 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1460 		nnode = ubifs_get_nnode(c, nnode, iip);
1461 		if (IS_ERR(nnode))
1462 			return ERR_PTR(PTR_ERR(nnode));
1463 	}
1464 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1465 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1466 	pnode = ubifs_get_pnode(c, nnode, iip);
1467 	if (IS_ERR(pnode))
1468 		return ERR_PTR(PTR_ERR(pnode));
1469 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1470 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1471 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1472 	       pnode->lprops[iip].flags);
1473 	return &pnode->lprops[iip];
1474 }
1475 
1476 /**
1477  * dirty_cow_nnode - ensure a nnode is not being committed.
1478  * @c: UBIFS file-system description object
1479  * @nnode: nnode to check
1480  *
1481  * Returns dirtied nnode on success or negative error code on failure.
1482  */
1483 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1484 					   struct ubifs_nnode *nnode)
1485 {
1486 	struct ubifs_nnode *n;
1487 	int i;
1488 
1489 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1490 		/* nnode is not being committed */
1491 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1492 			c->dirty_nn_cnt += 1;
1493 			ubifs_add_nnode_dirt(c, nnode);
1494 		}
1495 		return nnode;
1496 	}
1497 
1498 	/* nnode is being committed, so copy it */
1499 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1500 	if (unlikely(!n))
1501 		return ERR_PTR(-ENOMEM);
1502 
1503 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1504 	n->cnext = NULL;
1505 	__set_bit(DIRTY_CNODE, &n->flags);
1506 	__clear_bit(COW_CNODE, &n->flags);
1507 
1508 	/* The children now have new parent */
1509 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1510 		struct ubifs_nbranch *branch = &n->nbranch[i];
1511 
1512 		if (branch->cnode)
1513 			branch->cnode->parent = n;
1514 	}
1515 
1516 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1517 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1518 
1519 	c->dirty_nn_cnt += 1;
1520 	ubifs_add_nnode_dirt(c, nnode);
1521 	if (nnode->parent)
1522 		nnode->parent->nbranch[n->iip].nnode = n;
1523 	else
1524 		c->nroot = n;
1525 	return n;
1526 }
1527 
1528 /**
1529  * dirty_cow_pnode - ensure a pnode is not being committed.
1530  * @c: UBIFS file-system description object
1531  * @pnode: pnode to check
1532  *
1533  * Returns dirtied pnode on success or negative error code on failure.
1534  */
1535 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1536 					   struct ubifs_pnode *pnode)
1537 {
1538 	struct ubifs_pnode *p;
1539 
1540 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1541 		/* pnode is not being committed */
1542 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1543 			c->dirty_pn_cnt += 1;
1544 			add_pnode_dirt(c, pnode);
1545 		}
1546 		return pnode;
1547 	}
1548 
1549 	/* pnode is being committed, so copy it */
1550 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1551 	if (unlikely(!p))
1552 		return ERR_PTR(-ENOMEM);
1553 
1554 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1555 	p->cnext = NULL;
1556 	__set_bit(DIRTY_CNODE, &p->flags);
1557 	__clear_bit(COW_CNODE, &p->flags);
1558 	replace_cats(c, pnode, p);
1559 
1560 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1561 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1562 
1563 	c->dirty_pn_cnt += 1;
1564 	add_pnode_dirt(c, pnode);
1565 	pnode->parent->nbranch[p->iip].pnode = p;
1566 	return p;
1567 }
1568 
1569 /**
1570  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1571  * @c: UBIFS file-system description object
1572  * @lnum: LEB number to lookup
1573  *
1574  * This function returns a pointer to the LEB properties on success or a
1575  * negative error code on failure.
1576  */
1577 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1578 {
1579 	int err, i, h, iip, shft;
1580 	struct ubifs_nnode *nnode;
1581 	struct ubifs_pnode *pnode;
1582 
1583 	if (!c->nroot) {
1584 		err = ubifs_read_nnode(c, NULL, 0);
1585 		if (err)
1586 			return ERR_PTR(err);
1587 	}
1588 	nnode = c->nroot;
1589 	nnode = dirty_cow_nnode(c, nnode);
1590 	if (IS_ERR(nnode))
1591 		return ERR_PTR(PTR_ERR(nnode));
1592 	i = lnum - c->main_first;
1593 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1594 	for (h = 1; h < c->lpt_hght; h++) {
1595 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1596 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1597 		nnode = ubifs_get_nnode(c, nnode, iip);
1598 		if (IS_ERR(nnode))
1599 			return ERR_PTR(PTR_ERR(nnode));
1600 		nnode = dirty_cow_nnode(c, nnode);
1601 		if (IS_ERR(nnode))
1602 			return ERR_PTR(PTR_ERR(nnode));
1603 	}
1604 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1605 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1606 	pnode = ubifs_get_pnode(c, nnode, iip);
1607 	if (IS_ERR(pnode))
1608 		return ERR_PTR(PTR_ERR(pnode));
1609 	pnode = dirty_cow_pnode(c, pnode);
1610 	if (IS_ERR(pnode))
1611 		return ERR_PTR(PTR_ERR(pnode));
1612 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1613 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615 	       pnode->lprops[iip].flags);
1616 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617 	return &pnode->lprops[iip];
1618 }
1619 
1620 /**
1621  * lpt_init_rd - initialize the LPT for reading.
1622  * @c: UBIFS file-system description object
1623  *
1624  * This function returns %0 on success and a negative error code on failure.
1625  */
1626 static int lpt_init_rd(struct ubifs_info *c)
1627 {
1628 	int err, i;
1629 
1630 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1631 	if (!c->ltab)
1632 		return -ENOMEM;
1633 
1634 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1635 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1636 	if (!c->lpt_nod_buf)
1637 		return -ENOMEM;
1638 
1639 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1640 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1641 					     GFP_KERNEL);
1642 		if (!c->lpt_heap[i].arr)
1643 			return -ENOMEM;
1644 		c->lpt_heap[i].cnt = 0;
1645 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1646 	}
1647 
1648 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1649 	if (!c->dirty_idx.arr)
1650 		return -ENOMEM;
1651 	c->dirty_idx.cnt = 0;
1652 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1653 
1654 	err = read_ltab(c);
1655 	if (err)
1656 		return err;
1657 
1658 	dbg_lp("space_bits %d", c->space_bits);
1659 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1660 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1661 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1662 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1663 	dbg_lp("lnum_bits %d", c->lnum_bits);
1664 	dbg_lp("pnode_sz %d", c->pnode_sz);
1665 	dbg_lp("nnode_sz %d", c->nnode_sz);
1666 	dbg_lp("ltab_sz %d", c->ltab_sz);
1667 	dbg_lp("lsave_sz %d", c->lsave_sz);
1668 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1669 	dbg_lp("lpt_hght %d", c->lpt_hght);
1670 	dbg_lp("big_lpt %d", c->big_lpt);
1671 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1672 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1673 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1674 	if (c->big_lpt)
1675 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * lpt_init_wr - initialize the LPT for writing.
1682  * @c: UBIFS file-system description object
1683  *
1684  * 'lpt_init_rd()' must have been called already.
1685  *
1686  * This function returns %0 on success and a negative error code on failure.
1687  */
1688 static int lpt_init_wr(struct ubifs_info *c)
1689 {
1690 	int err, i;
1691 
1692 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1693 	if (!c->ltab_cmt)
1694 		return -ENOMEM;
1695 
1696 	c->lpt_buf = vmalloc(c->leb_size);
1697 	if (!c->lpt_buf)
1698 		return -ENOMEM;
1699 
1700 	if (c->big_lpt) {
1701 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1702 		if (!c->lsave)
1703 			return -ENOMEM;
1704 		err = read_lsave(c);
1705 		if (err)
1706 			return err;
1707 	}
1708 
1709 	for (i = 0; i < c->lpt_lebs; i++)
1710 		if (c->ltab[i].free == c->leb_size) {
1711 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1712 			if (err)
1713 				return err;
1714 		}
1715 
1716 	return 0;
1717 }
1718 
1719 /**
1720  * ubifs_lpt_init - initialize the LPT.
1721  * @c: UBIFS file-system description object
1722  * @rd: whether to initialize lpt for reading
1723  * @wr: whether to initialize lpt for writing
1724  *
1725  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1726  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1727  * true.
1728  *
1729  * This function returns %0 on success and a negative error code on failure.
1730  */
1731 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1732 {
1733 	int err;
1734 
1735 	if (rd) {
1736 		err = lpt_init_rd(c);
1737 		if (err)
1738 			return err;
1739 	}
1740 
1741 	if (wr) {
1742 		err = lpt_init_wr(c);
1743 		if (err)
1744 			return err;
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1752  * @nnode: where to keep a nnode
1753  * @pnode: where to keep a pnode
1754  * @cnode: where to keep a cnode
1755  * @in_tree: is the node in the tree in memory
1756  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1757  * the tree
1758  * @ptr.pnode: ditto for pnode
1759  * @ptr.cnode: ditto for cnode
1760  */
1761 struct lpt_scan_node {
1762 	union {
1763 		struct ubifs_nnode nnode;
1764 		struct ubifs_pnode pnode;
1765 		struct ubifs_cnode cnode;
1766 	};
1767 	int in_tree;
1768 	union {
1769 		struct ubifs_nnode *nnode;
1770 		struct ubifs_pnode *pnode;
1771 		struct ubifs_cnode *cnode;
1772 	} ptr;
1773 };
1774 
1775 /**
1776  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1777  * @c: the UBIFS file-system description object
1778  * @path: where to put the nnode
1779  * @parent: parent of the nnode
1780  * @iip: index in parent of the nnode
1781  *
1782  * This function returns a pointer to the nnode on success or a negative error
1783  * code on failure.
1784  */
1785 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1786 					  struct lpt_scan_node *path,
1787 					  struct ubifs_nnode *parent, int iip)
1788 {
1789 	struct ubifs_nbranch *branch;
1790 	struct ubifs_nnode *nnode;
1791 	void *buf = c->lpt_nod_buf;
1792 	int err;
1793 
1794 	branch = &parent->nbranch[iip];
1795 	nnode = branch->nnode;
1796 	if (nnode) {
1797 		path->in_tree = 1;
1798 		path->ptr.nnode = nnode;
1799 		return nnode;
1800 	}
1801 	nnode = &path->nnode;
1802 	path->in_tree = 0;
1803 	path->ptr.nnode = nnode;
1804 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1805 	if (branch->lnum == 0) {
1806 		/*
1807 		 * This nnode was not written which just means that the LEB
1808 		 * properties in the subtree below it describe empty LEBs. We
1809 		 * make the nnode as though we had read it, which in fact means
1810 		 * doing almost nothing.
1811 		 */
1812 		if (c->big_lpt)
1813 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1814 	} else {
1815 		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1816 			       c->nnode_sz);
1817 		if (err)
1818 			return ERR_PTR(err);
1819 		err = unpack_nnode(c, buf, nnode);
1820 		if (err)
1821 			return ERR_PTR(err);
1822 	}
1823 	err = validate_nnode(c, nnode, parent, iip);
1824 	if (err)
1825 		return ERR_PTR(err);
1826 	if (!c->big_lpt)
1827 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1828 	nnode->level = parent->level - 1;
1829 	nnode->parent = parent;
1830 	nnode->iip = iip;
1831 	return nnode;
1832 }
1833 
1834 /**
1835  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1836  * @c: the UBIFS file-system description object
1837  * @path: where to put the pnode
1838  * @parent: parent of the pnode
1839  * @iip: index in parent of the pnode
1840  *
1841  * This function returns a pointer to the pnode on success or a negative error
1842  * code on failure.
1843  */
1844 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1845 					  struct lpt_scan_node *path,
1846 					  struct ubifs_nnode *parent, int iip)
1847 {
1848 	struct ubifs_nbranch *branch;
1849 	struct ubifs_pnode *pnode;
1850 	void *buf = c->lpt_nod_buf;
1851 	int err;
1852 
1853 	branch = &parent->nbranch[iip];
1854 	pnode = branch->pnode;
1855 	if (pnode) {
1856 		path->in_tree = 1;
1857 		path->ptr.pnode = pnode;
1858 		return pnode;
1859 	}
1860 	pnode = &path->pnode;
1861 	path->in_tree = 0;
1862 	path->ptr.pnode = pnode;
1863 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1864 	if (branch->lnum == 0) {
1865 		/*
1866 		 * This pnode was not written which just means that the LEB
1867 		 * properties in it describe empty LEBs. We make the pnode as
1868 		 * though we had read it.
1869 		 */
1870 		int i;
1871 
1872 		if (c->big_lpt)
1873 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1874 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1875 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1876 
1877 			lprops->free = c->leb_size;
1878 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1879 		}
1880 	} else {
1881 		ubifs_assert(branch->lnum >= c->lpt_first &&
1882 			     branch->lnum <= c->lpt_last);
1883 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1884 		err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1885 			       c->pnode_sz);
1886 		if (err)
1887 			return ERR_PTR(err);
1888 		err = unpack_pnode(c, buf, pnode);
1889 		if (err)
1890 			return ERR_PTR(err);
1891 	}
1892 	err = validate_pnode(c, pnode, parent, iip);
1893 	if (err)
1894 		return ERR_PTR(err);
1895 	if (!c->big_lpt)
1896 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1897 	pnode->parent = parent;
1898 	pnode->iip = iip;
1899 	set_pnode_lnum(c, pnode);
1900 	return pnode;
1901 }
1902 
1903 /**
1904  * ubifs_lpt_scan_nolock - scan the LPT.
1905  * @c: the UBIFS file-system description object
1906  * @start_lnum: LEB number from which to start scanning
1907  * @end_lnum: LEB number at which to stop scanning
1908  * @scan_cb: callback function called for each lprops
1909  * @data: data to be passed to the callback function
1910  *
1911  * This function returns %0 on success and a negative error code on failure.
1912  */
1913 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1914 			  ubifs_lpt_scan_callback scan_cb, void *data)
1915 {
1916 	int err = 0, i, h, iip, shft;
1917 	struct ubifs_nnode *nnode;
1918 	struct ubifs_pnode *pnode;
1919 	struct lpt_scan_node *path;
1920 
1921 	if (start_lnum == -1) {
1922 		start_lnum = end_lnum + 1;
1923 		if (start_lnum >= c->leb_cnt)
1924 			start_lnum = c->main_first;
1925 	}
1926 
1927 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1928 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1929 
1930 	if (!c->nroot) {
1931 		err = ubifs_read_nnode(c, NULL, 0);
1932 		if (err)
1933 			return err;
1934 	}
1935 
1936 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1937 		       GFP_NOFS);
1938 	if (!path)
1939 		return -ENOMEM;
1940 
1941 	path[0].ptr.nnode = c->nroot;
1942 	path[0].in_tree = 1;
1943 again:
1944 	/* Descend to the pnode containing start_lnum */
1945 	nnode = c->nroot;
1946 	i = start_lnum - c->main_first;
1947 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1948 	for (h = 1; h < c->lpt_hght; h++) {
1949 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1950 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1951 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1952 		if (IS_ERR(nnode)) {
1953 			err = PTR_ERR(nnode);
1954 			goto out;
1955 		}
1956 	}
1957 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1958 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1959 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1960 	if (IS_ERR(pnode)) {
1961 		err = PTR_ERR(pnode);
1962 		goto out;
1963 	}
1964 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1965 
1966 	/* Loop for each lprops */
1967 	while (1) {
1968 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1969 		int ret, lnum = lprops->lnum;
1970 
1971 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1972 		if (ret < 0) {
1973 			err = ret;
1974 			goto out;
1975 		}
1976 		if (ret & LPT_SCAN_ADD) {
1977 			/* Add all the nodes in path to the tree in memory */
1978 			for (h = 1; h < c->lpt_hght; h++) {
1979 				const size_t sz = sizeof(struct ubifs_nnode);
1980 				struct ubifs_nnode *parent;
1981 
1982 				if (path[h].in_tree)
1983 					continue;
1984 				nnode = kmalloc(sz, GFP_NOFS);
1985 				if (!nnode) {
1986 					err = -ENOMEM;
1987 					goto out;
1988 				}
1989 				memcpy(nnode, &path[h].nnode, sz);
1990 				parent = nnode->parent;
1991 				parent->nbranch[nnode->iip].nnode = nnode;
1992 				path[h].ptr.nnode = nnode;
1993 				path[h].in_tree = 1;
1994 				path[h + 1].cnode.parent = nnode;
1995 			}
1996 			if (path[h].in_tree)
1997 				ubifs_ensure_cat(c, lprops);
1998 			else {
1999 				const size_t sz = sizeof(struct ubifs_pnode);
2000 				struct ubifs_nnode *parent;
2001 
2002 				pnode = kmalloc(sz, GFP_NOFS);
2003 				if (!pnode) {
2004 					err = -ENOMEM;
2005 					goto out;
2006 				}
2007 				memcpy(pnode, &path[h].pnode, sz);
2008 				parent = pnode->parent;
2009 				parent->nbranch[pnode->iip].pnode = pnode;
2010 				path[h].ptr.pnode = pnode;
2011 				path[h].in_tree = 1;
2012 				update_cats(c, pnode);
2013 				c->pnodes_have += 1;
2014 			}
2015 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2016 						  c->nroot, 0, 0);
2017 			if (err)
2018 				goto out;
2019 			err = dbg_check_cats(c);
2020 			if (err)
2021 				goto out;
2022 		}
2023 		if (ret & LPT_SCAN_STOP) {
2024 			err = 0;
2025 			break;
2026 		}
2027 		/* Get the next lprops */
2028 		if (lnum == end_lnum) {
2029 			/*
2030 			 * We got to the end without finding what we were
2031 			 * looking for
2032 			 */
2033 			err = -ENOSPC;
2034 			goto out;
2035 		}
2036 		if (lnum + 1 >= c->leb_cnt) {
2037 			/* Wrap-around to the beginning */
2038 			start_lnum = c->main_first;
2039 			goto again;
2040 		}
2041 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2042 			/* Next lprops is in the same pnode */
2043 			iip += 1;
2044 			continue;
2045 		}
2046 		/* We need to get the next pnode. Go up until we can go right */
2047 		iip = pnode->iip;
2048 		while (1) {
2049 			h -= 1;
2050 			ubifs_assert(h >= 0);
2051 			nnode = path[h].ptr.nnode;
2052 			if (iip + 1 < UBIFS_LPT_FANOUT)
2053 				break;
2054 			iip = nnode->iip;
2055 		}
2056 		/* Go right */
2057 		iip += 1;
2058 		/* Descend to the pnode */
2059 		h += 1;
2060 		for (; h < c->lpt_hght; h++) {
2061 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2062 			if (IS_ERR(nnode)) {
2063 				err = PTR_ERR(nnode);
2064 				goto out;
2065 			}
2066 			iip = 0;
2067 		}
2068 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2069 		if (IS_ERR(pnode)) {
2070 			err = PTR_ERR(pnode);
2071 			goto out;
2072 		}
2073 		iip = 0;
2074 	}
2075 out:
2076 	kfree(path);
2077 	return err;
2078 }
2079 
2080 #ifdef CONFIG_UBIFS_FS_DEBUG
2081 
2082 /**
2083  * dbg_chk_pnode - check a pnode.
2084  * @c: the UBIFS file-system description object
2085  * @pnode: pnode to check
2086  * @col: pnode column
2087  *
2088  * This function returns %0 on success and a negative error code on failure.
2089  */
2090 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2091 			 int col)
2092 {
2093 	int i;
2094 
2095 	if (pnode->num != col) {
2096 		dbg_err("pnode num %d expected %d parent num %d iip %d",
2097 			pnode->num, col, pnode->parent->num, pnode->iip);
2098 		return -EINVAL;
2099 	}
2100 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2101 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2102 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2103 			   c->main_first;
2104 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2105 		struct ubifs_lpt_heap *heap;
2106 		struct list_head *list = NULL;
2107 
2108 		if (lnum >= c->leb_cnt)
2109 			continue;
2110 		if (lprops->lnum != lnum) {
2111 			dbg_err("bad LEB number %d expected %d",
2112 				lprops->lnum, lnum);
2113 			return -EINVAL;
2114 		}
2115 		if (lprops->flags & LPROPS_TAKEN) {
2116 			if (cat != LPROPS_UNCAT) {
2117 				dbg_err("LEB %d taken but not uncat %d",
2118 					lprops->lnum, cat);
2119 				return -EINVAL;
2120 			}
2121 			continue;
2122 		}
2123 		if (lprops->flags & LPROPS_INDEX) {
2124 			switch (cat) {
2125 			case LPROPS_UNCAT:
2126 			case LPROPS_DIRTY_IDX:
2127 			case LPROPS_FRDI_IDX:
2128 				break;
2129 			default:
2130 				dbg_err("LEB %d index but cat %d",
2131 					lprops->lnum, cat);
2132 				return -EINVAL;
2133 			}
2134 		} else {
2135 			switch (cat) {
2136 			case LPROPS_UNCAT:
2137 			case LPROPS_DIRTY:
2138 			case LPROPS_FREE:
2139 			case LPROPS_EMPTY:
2140 			case LPROPS_FREEABLE:
2141 				break;
2142 			default:
2143 				dbg_err("LEB %d not index but cat %d",
2144 					lprops->lnum, cat);
2145 				return -EINVAL;
2146 			}
2147 		}
2148 		switch (cat) {
2149 		case LPROPS_UNCAT:
2150 			list = &c->uncat_list;
2151 			break;
2152 		case LPROPS_EMPTY:
2153 			list = &c->empty_list;
2154 			break;
2155 		case LPROPS_FREEABLE:
2156 			list = &c->freeable_list;
2157 			break;
2158 		case LPROPS_FRDI_IDX:
2159 			list = &c->frdi_idx_list;
2160 			break;
2161 		}
2162 		found = 0;
2163 		switch (cat) {
2164 		case LPROPS_DIRTY:
2165 		case LPROPS_DIRTY_IDX:
2166 		case LPROPS_FREE:
2167 			heap = &c->lpt_heap[cat - 1];
2168 			if (lprops->hpos < heap->cnt &&
2169 			    heap->arr[lprops->hpos] == lprops)
2170 				found = 1;
2171 			break;
2172 		case LPROPS_UNCAT:
2173 		case LPROPS_EMPTY:
2174 		case LPROPS_FREEABLE:
2175 		case LPROPS_FRDI_IDX:
2176 			list_for_each_entry(lp, list, list)
2177 				if (lprops == lp) {
2178 					found = 1;
2179 					break;
2180 				}
2181 			break;
2182 		}
2183 		if (!found) {
2184 			dbg_err("LEB %d cat %d not found in cat heap/list",
2185 				lprops->lnum, cat);
2186 			return -EINVAL;
2187 		}
2188 		switch (cat) {
2189 		case LPROPS_EMPTY:
2190 			if (lprops->free != c->leb_size) {
2191 				dbg_err("LEB %d cat %d free %d dirty %d",
2192 					lprops->lnum, cat, lprops->free,
2193 					lprops->dirty);
2194 				return -EINVAL;
2195 			}
2196 		case LPROPS_FREEABLE:
2197 		case LPROPS_FRDI_IDX:
2198 			if (lprops->free + lprops->dirty != c->leb_size) {
2199 				dbg_err("LEB %d cat %d free %d dirty %d",
2200 					lprops->lnum, cat, lprops->free,
2201 					lprops->dirty);
2202 				return -EINVAL;
2203 			}
2204 		}
2205 	}
2206 	return 0;
2207 }
2208 
2209 /**
2210  * dbg_check_lpt_nodes - check nnodes and pnodes.
2211  * @c: the UBIFS file-system description object
2212  * @cnode: next cnode (nnode or pnode) to check
2213  * @row: row of cnode (root is zero)
2214  * @col: column of cnode (leftmost is zero)
2215  *
2216  * This function returns %0 on success and a negative error code on failure.
2217  */
2218 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2219 			int row, int col)
2220 {
2221 	struct ubifs_nnode *nnode, *nn;
2222 	struct ubifs_cnode *cn;
2223 	int num, iip = 0, err;
2224 
2225 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
2226 		return 0;
2227 
2228 	while (cnode) {
2229 		ubifs_assert(row >= 0);
2230 		nnode = cnode->parent;
2231 		if (cnode->level) {
2232 			/* cnode is a nnode */
2233 			num = calc_nnode_num(row, col);
2234 			if (cnode->num != num) {
2235 				dbg_err("nnode num %d expected %d "
2236 					"parent num %d iip %d", cnode->num, num,
2237 					(nnode ? nnode->num : 0), cnode->iip);
2238 				return -EINVAL;
2239 			}
2240 			nn = (struct ubifs_nnode *)cnode;
2241 			while (iip < UBIFS_LPT_FANOUT) {
2242 				cn = nn->nbranch[iip].cnode;
2243 				if (cn) {
2244 					/* Go down */
2245 					row += 1;
2246 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2247 					col += iip;
2248 					iip = 0;
2249 					cnode = cn;
2250 					break;
2251 				}
2252 				/* Go right */
2253 				iip += 1;
2254 			}
2255 			if (iip < UBIFS_LPT_FANOUT)
2256 				continue;
2257 		} else {
2258 			struct ubifs_pnode *pnode;
2259 
2260 			/* cnode is a pnode */
2261 			pnode = (struct ubifs_pnode *)cnode;
2262 			err = dbg_chk_pnode(c, pnode, col);
2263 			if (err)
2264 				return err;
2265 		}
2266 		/* Go up and to the right */
2267 		row -= 1;
2268 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2269 		iip = cnode->iip + 1;
2270 		cnode = (struct ubifs_cnode *)nnode;
2271 	}
2272 	return 0;
2273 }
2274 
2275 #endif /* CONFIG_UBIFS_FS_DEBUG */
2276