xref: /openbmc/linux/fs/ubifs/lpt.c (revision 3b23dc52)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
50 
51 /**
52  * do_calc_lpt_geom - calculate sizes for the LPT area.
53  * @c: the UBIFS file-system description object
54  *
55  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56  * properties of the flash and whether LPT is "big" (c->big_lpt).
57  */
58 static void do_calc_lpt_geom(struct ubifs_info *c)
59 {
60 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 	long long sz, tot_wastage;
62 
63 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65 
66 	c->lpt_hght = 1;
67 	n = UBIFS_LPT_FANOUT;
68 	while (n < max_pnode_cnt) {
69 		c->lpt_hght += 1;
70 		n <<= UBIFS_LPT_FANOUT_SHIFT;
71 	}
72 
73 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74 
75 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 	c->nnode_cnt = n;
77 	for (i = 1; i < c->lpt_hght; i++) {
78 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 		c->nnode_cnt += n;
80 	}
81 
82 	c->space_bits = fls(c->leb_size) - 3;
83 	c->lpt_lnum_bits = fls(c->lpt_lebs);
84 	c->lpt_offs_bits = fls(c->leb_size - 1);
85 	c->lpt_spc_bits = fls(c->leb_size);
86 
87 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 	c->pcnt_bits = fls(n - 1);
89 
90 	c->lnum_bits = fls(c->max_leb_cnt - 1);
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 	c->pnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       (c->big_lpt ? c->pcnt_bits : 0) +
99 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 	c->nnode_sz = (bits + 7) / 8;
101 
102 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 	       c->lpt_lebs * c->lpt_spc_bits * 2;
104 	c->ltab_sz = (bits + 7) / 8;
105 
106 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 	       c->lnum_bits * c->lsave_cnt;
108 	c->lsave_sz = (bits + 7) / 8;
109 
110 	/* Calculate the minimum LPT size */
111 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 	c->lpt_sz += c->ltab_sz;
114 	if (c->big_lpt)
115 		c->lpt_sz += c->lsave_sz;
116 
117 	/* Add wastage */
118 	sz = c->lpt_sz;
119 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 	sz += per_leb_wastage;
121 	tot_wastage = per_leb_wastage;
122 	while (sz > c->leb_size) {
123 		sz += per_leb_wastage;
124 		sz -= c->leb_size;
125 		tot_wastage += per_leb_wastage;
126 	}
127 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 	c->lpt_sz += tot_wastage;
129 }
130 
131 /**
132  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133  * @c: the UBIFS file-system description object
134  *
135  * This function returns %0 on success and a negative error code on failure.
136  */
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
138 {
139 	int lebs_needed;
140 	long long sz;
141 
142 	do_calc_lpt_geom(c);
143 
144 	/* Verify that lpt_lebs is big enough */
145 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err(c, "too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err(c, "LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 	return 0;
160 }
161 
162 /**
163  * calc_dflt_lpt_geom - calculate default LPT geometry.
164  * @c: the UBIFS file-system description object
165  * @main_lebs: number of main area LEBs is passed and returned here
166  * @big_lpt: whether the LPT area is "big" is returned here
167  *
168  * The size of the LPT area depends on parameters that themselves are dependent
169  * on the size of the LPT area. This function, successively recalculates the LPT
170  * area geometry until the parameters and resultant geometry are consistent.
171  *
172  * This function returns %0 on success and a negative error code on failure.
173  */
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 			      int *big_lpt)
176 {
177 	int i, lebs_needed;
178 	long long sz;
179 
180 	/* Start by assuming the minimum number of LPT LEBs */
181 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 	c->main_lebs = *main_lebs - c->lpt_lebs;
183 	if (c->main_lebs <= 0)
184 		return -EINVAL;
185 
186 	/* And assume we will use the small LPT model */
187 	c->big_lpt = 0;
188 
189 	/*
190 	 * Calculate the geometry based on assumptions above and then see if it
191 	 * makes sense
192 	 */
193 	do_calc_lpt_geom(c);
194 
195 	/* Small LPT model must have lpt_sz < leb_size */
196 	if (c->lpt_sz > c->leb_size) {
197 		/* Nope, so try again using big LPT model */
198 		c->big_lpt = 1;
199 		do_calc_lpt_geom(c);
200 	}
201 
202 	/* Now check there are enough LPT LEBs */
203 	for (i = 0; i < 64 ; i++) {
204 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 		if (lebs_needed > c->lpt_lebs) {
207 			/* Not enough LPT LEBs so try again with more */
208 			c->lpt_lebs = lebs_needed;
209 			c->main_lebs = *main_lebs - c->lpt_lebs;
210 			if (c->main_lebs <= 0)
211 				return -EINVAL;
212 			do_calc_lpt_geom(c);
213 			continue;
214 		}
215 		if (c->ltab_sz > c->leb_size) {
216 			ubifs_err(c, "LPT ltab too big");
217 			return -EINVAL;
218 		}
219 		*main_lebs = c->main_lebs;
220 		*big_lpt = c->big_lpt;
221 		return 0;
222 	}
223 	return -EINVAL;
224 }
225 
226 /**
227  * pack_bits - pack bit fields end-to-end.
228  * @addr: address at which to pack (passed and next address returned)
229  * @pos: bit position at which to pack (passed and next position returned)
230  * @val: value to pack
231  * @nrbits: number of bits of value to pack (1-32)
232  */
233 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234 {
235 	uint8_t *p = *addr;
236 	int b = *pos;
237 
238 	ubifs_assert(nrbits > 0);
239 	ubifs_assert(nrbits <= 32);
240 	ubifs_assert(*pos >= 0);
241 	ubifs_assert(*pos < 8);
242 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243 	if (b) {
244 		*p |= ((uint8_t)val) << b;
245 		nrbits += b;
246 		if (nrbits > 8) {
247 			*++p = (uint8_t)(val >>= (8 - b));
248 			if (nrbits > 16) {
249 				*++p = (uint8_t)(val >>= 8);
250 				if (nrbits > 24) {
251 					*++p = (uint8_t)(val >>= 8);
252 					if (nrbits > 32)
253 						*++p = (uint8_t)(val >>= 8);
254 				}
255 			}
256 		}
257 	} else {
258 		*p = (uint8_t)val;
259 		if (nrbits > 8) {
260 			*++p = (uint8_t)(val >>= 8);
261 			if (nrbits > 16) {
262 				*++p = (uint8_t)(val >>= 8);
263 				if (nrbits > 24)
264 					*++p = (uint8_t)(val >>= 8);
265 			}
266 		}
267 	}
268 	b = nrbits & 7;
269 	if (b == 0)
270 		p++;
271 	*addr = p;
272 	*pos = b;
273 }
274 
275 /**
276  * ubifs_unpack_bits - unpack bit fields.
277  * @addr: address at which to unpack (passed and next address returned)
278  * @pos: bit position at which to unpack (passed and next position returned)
279  * @nrbits: number of bits of value to unpack (1-32)
280  *
281  * This functions returns the value unpacked.
282  */
283 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284 {
285 	const int k = 32 - nrbits;
286 	uint8_t *p = *addr;
287 	int b = *pos;
288 	uint32_t uninitialized_var(val);
289 	const int bytes = (nrbits + b + 7) >> 3;
290 
291 	ubifs_assert(nrbits > 0);
292 	ubifs_assert(nrbits <= 32);
293 	ubifs_assert(*pos >= 0);
294 	ubifs_assert(*pos < 8);
295 	if (b) {
296 		switch (bytes) {
297 		case 2:
298 			val = p[1];
299 			break;
300 		case 3:
301 			val = p[1] | ((uint32_t)p[2] << 8);
302 			break;
303 		case 4:
304 			val = p[1] | ((uint32_t)p[2] << 8) |
305 				     ((uint32_t)p[3] << 16);
306 			break;
307 		case 5:
308 			val = p[1] | ((uint32_t)p[2] << 8) |
309 				     ((uint32_t)p[3] << 16) |
310 				     ((uint32_t)p[4] << 24);
311 		}
312 		val <<= (8 - b);
313 		val |= *p >> b;
314 		nrbits += b;
315 	} else {
316 		switch (bytes) {
317 		case 1:
318 			val = p[0];
319 			break;
320 		case 2:
321 			val = p[0] | ((uint32_t)p[1] << 8);
322 			break;
323 		case 3:
324 			val = p[0] | ((uint32_t)p[1] << 8) |
325 				     ((uint32_t)p[2] << 16);
326 			break;
327 		case 4:
328 			val = p[0] | ((uint32_t)p[1] << 8) |
329 				     ((uint32_t)p[2] << 16) |
330 				     ((uint32_t)p[3] << 24);
331 			break;
332 		}
333 	}
334 	val <<= k;
335 	val >>= k;
336 	b = nrbits & 7;
337 	p += nrbits >> 3;
338 	*addr = p;
339 	*pos = b;
340 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341 	return val;
342 }
343 
344 /**
345  * ubifs_pack_pnode - pack all the bit fields of a pnode.
346  * @c: UBIFS file-system description object
347  * @buf: buffer into which to pack
348  * @pnode: pnode to pack
349  */
350 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351 		      struct ubifs_pnode *pnode)
352 {
353 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354 	int i, pos = 0;
355 	uint16_t crc;
356 
357 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358 	if (c->big_lpt)
359 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362 			  c->space_bits);
363 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364 			  c->space_bits);
365 		if (pnode->lprops[i].flags & LPROPS_INDEX)
366 			pack_bits(&addr, &pos, 1, 1);
367 		else
368 			pack_bits(&addr, &pos, 0, 1);
369 	}
370 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372 	addr = buf;
373 	pos = 0;
374 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375 }
376 
377 /**
378  * ubifs_pack_nnode - pack all the bit fields of a nnode.
379  * @c: UBIFS file-system description object
380  * @buf: buffer into which to pack
381  * @nnode: nnode to pack
382  */
383 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384 		      struct ubifs_nnode *nnode)
385 {
386 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387 	int i, pos = 0;
388 	uint16_t crc;
389 
390 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391 	if (c->big_lpt)
392 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394 		int lnum = nnode->nbranch[i].lnum;
395 
396 		if (lnum == 0)
397 			lnum = c->lpt_last + 1;
398 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400 			  c->lpt_offs_bits);
401 	}
402 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404 	addr = buf;
405 	pos = 0;
406 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407 }
408 
409 /**
410  * ubifs_pack_ltab - pack the LPT's own lprops table.
411  * @c: UBIFS file-system description object
412  * @buf: buffer into which to pack
413  * @ltab: LPT's own lprops table to pack
414  */
415 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416 		     struct ubifs_lpt_lprops *ltab)
417 {
418 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419 	int i, pos = 0;
420 	uint16_t crc;
421 
422 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423 	for (i = 0; i < c->lpt_lebs; i++) {
424 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426 	}
427 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429 	addr = buf;
430 	pos = 0;
431 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432 }
433 
434 /**
435  * ubifs_pack_lsave - pack the LPT's save table.
436  * @c: UBIFS file-system description object
437  * @buf: buffer into which to pack
438  * @lsave: LPT's save table to pack
439  */
440 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441 {
442 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443 	int i, pos = 0;
444 	uint16_t crc;
445 
446 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447 	for (i = 0; i < c->lsave_cnt; i++)
448 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451 	addr = buf;
452 	pos = 0;
453 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454 }
455 
456 /**
457  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458  * @c: UBIFS file-system description object
459  * @lnum: LEB number to which to add dirty space
460  * @dirty: amount of dirty space to add
461  */
462 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463 {
464 	if (!dirty || !lnum)
465 		return;
466 	dbg_lp("LEB %d add %d to %d",
467 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469 	c->ltab[lnum - c->lpt_first].dirty += dirty;
470 }
471 
472 /**
473  * set_ltab - set LPT LEB properties.
474  * @c: UBIFS file-system description object
475  * @lnum: LEB number
476  * @free: amount of free space
477  * @dirty: amount of dirty space
478  */
479 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480 {
481 	dbg_lp("LEB %d free %d dirty %d to %d %d",
482 	       lnum, c->ltab[lnum - c->lpt_first].free,
483 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485 	c->ltab[lnum - c->lpt_first].free = free;
486 	c->ltab[lnum - c->lpt_first].dirty = dirty;
487 }
488 
489 /**
490  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491  * @c: UBIFS file-system description object
492  * @nnode: nnode for which to add dirt
493  */
494 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495 {
496 	struct ubifs_nnode *np = nnode->parent;
497 
498 	if (np)
499 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500 				   c->nnode_sz);
501 	else {
502 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504 			c->lpt_drty_flgs |= LTAB_DIRTY;
505 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506 		}
507 	}
508 }
509 
510 /**
511  * add_pnode_dirt - add dirty space to LPT LEB properties.
512  * @c: UBIFS file-system description object
513  * @pnode: pnode for which to add dirt
514  */
515 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516 {
517 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518 			   c->pnode_sz);
519 }
520 
521 /**
522  * calc_nnode_num - calculate nnode number.
523  * @row: the row in the tree (root is zero)
524  * @col: the column in the row (leftmost is zero)
525  *
526  * The nnode number is a number that uniquely identifies a nnode and can be used
527  * easily to traverse the tree from the root to that nnode.
528  *
529  * This function calculates and returns the nnode number for the nnode at @row
530  * and @col.
531  */
532 static int calc_nnode_num(int row, int col)
533 {
534 	int num, bits;
535 
536 	num = 1;
537 	while (row--) {
538 		bits = (col & (UBIFS_LPT_FANOUT - 1));
539 		col >>= UBIFS_LPT_FANOUT_SHIFT;
540 		num <<= UBIFS_LPT_FANOUT_SHIFT;
541 		num |= bits;
542 	}
543 	return num;
544 }
545 
546 /**
547  * calc_nnode_num_from_parent - calculate nnode number.
548  * @c: UBIFS file-system description object
549  * @parent: parent nnode
550  * @iip: index in parent
551  *
552  * The nnode number is a number that uniquely identifies a nnode and can be used
553  * easily to traverse the tree from the root to that nnode.
554  *
555  * This function calculates and returns the nnode number based on the parent's
556  * nnode number and the index in parent.
557  */
558 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559 				      struct ubifs_nnode *parent, int iip)
560 {
561 	int num, shft;
562 
563 	if (!parent)
564 		return 1;
565 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566 	num = parent->num ^ (1 << shft);
567 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
568 	return num;
569 }
570 
571 /**
572  * calc_pnode_num_from_parent - calculate pnode number.
573  * @c: UBIFS file-system description object
574  * @parent: parent nnode
575  * @iip: index in parent
576  *
577  * The pnode number is a number that uniquely identifies a pnode and can be used
578  * easily to traverse the tree from the root to that pnode.
579  *
580  * This function calculates and returns the pnode number based on the parent's
581  * nnode number and the index in parent.
582  */
583 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584 				      struct ubifs_nnode *parent, int iip)
585 {
586 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587 
588 	for (i = 0; i < n; i++) {
589 		num <<= UBIFS_LPT_FANOUT_SHIFT;
590 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
591 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592 	}
593 	num <<= UBIFS_LPT_FANOUT_SHIFT;
594 	num |= iip;
595 	return num;
596 }
597 
598 /**
599  * ubifs_create_dflt_lpt - create default LPT.
600  * @c: UBIFS file-system description object
601  * @main_lebs: number of main area LEBs is passed and returned here
602  * @lpt_first: LEB number of first LPT LEB
603  * @lpt_lebs: number of LEBs for LPT is passed and returned here
604  * @big_lpt: use big LPT model is passed and returned here
605  *
606  * This function returns %0 on success and a negative error code on failure.
607  */
608 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609 			  int *lpt_lebs, int *big_lpt)
610 {
611 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612 	int blnum, boffs, bsz, bcnt;
613 	struct ubifs_pnode *pnode = NULL;
614 	struct ubifs_nnode *nnode = NULL;
615 	void *buf = NULL, *p;
616 	struct ubifs_lpt_lprops *ltab = NULL;
617 	int *lsave = NULL;
618 
619 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620 	if (err)
621 		return err;
622 	*lpt_lebs = c->lpt_lebs;
623 
624 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 	c->lpt_first = lpt_first;
626 	/* Needed by 'set_ltab()' */
627 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
628 	/* Needed by 'ubifs_pack_lsave()' */
629 	c->main_first = c->leb_cnt - *main_lebs;
630 
631 	lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
632 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634 	buf = vmalloc(c->leb_size);
635 	ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
636 				  c->lpt_lebs));
637 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
638 		err = -ENOMEM;
639 		goto out;
640 	}
641 
642 	ubifs_assert(!c->ltab);
643 	c->ltab = ltab; /* Needed by set_ltab */
644 
645 	/* Initialize LPT's own lprops */
646 	for (i = 0; i < c->lpt_lebs; i++) {
647 		ltab[i].free = c->leb_size;
648 		ltab[i].dirty = 0;
649 		ltab[i].tgc = 0;
650 		ltab[i].cmt = 0;
651 	}
652 
653 	lnum = lpt_first;
654 	p = buf;
655 	/* Number of leaf nodes (pnodes) */
656 	cnt = c->pnode_cnt;
657 
658 	/*
659 	 * The first pnode contains the LEB properties for the LEBs that contain
660 	 * the root inode node and the root index node of the index tree.
661 	 */
662 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
663 	iopos = ALIGN(node_sz, c->min_io_size);
664 	pnode->lprops[0].free = c->leb_size - iopos;
665 	pnode->lprops[0].dirty = iopos - node_sz;
666 	pnode->lprops[0].flags = LPROPS_INDEX;
667 
668 	node_sz = UBIFS_INO_NODE_SZ;
669 	iopos = ALIGN(node_sz, c->min_io_size);
670 	pnode->lprops[1].free = c->leb_size - iopos;
671 	pnode->lprops[1].dirty = iopos - node_sz;
672 
673 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
674 		pnode->lprops[i].free = c->leb_size;
675 
676 	/* Add first pnode */
677 	ubifs_pack_pnode(c, p, pnode);
678 	p += c->pnode_sz;
679 	len = c->pnode_sz;
680 	pnode->num += 1;
681 
682 	/* Reset pnode values for remaining pnodes */
683 	pnode->lprops[0].free = c->leb_size;
684 	pnode->lprops[0].dirty = 0;
685 	pnode->lprops[0].flags = 0;
686 
687 	pnode->lprops[1].free = c->leb_size;
688 	pnode->lprops[1].dirty = 0;
689 
690 	/*
691 	 * To calculate the internal node branches, we keep information about
692 	 * the level below.
693 	 */
694 	blnum = lnum; /* LEB number of level below */
695 	boffs = 0; /* Offset of level below */
696 	bcnt = cnt; /* Number of nodes in level below */
697 	bsz = c->pnode_sz; /* Size of nodes in level below */
698 
699 	/* Add all remaining pnodes */
700 	for (i = 1; i < cnt; i++) {
701 		if (len + c->pnode_sz > c->leb_size) {
702 			alen = ALIGN(len, c->min_io_size);
703 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
704 			memset(p, 0xff, alen - len);
705 			err = ubifs_leb_change(c, lnum++, buf, alen);
706 			if (err)
707 				goto out;
708 			p = buf;
709 			len = 0;
710 		}
711 		ubifs_pack_pnode(c, p, pnode);
712 		p += c->pnode_sz;
713 		len += c->pnode_sz;
714 		/*
715 		 * pnodes are simply numbered left to right starting at zero,
716 		 * which means the pnode number can be used easily to traverse
717 		 * down the tree to the corresponding pnode.
718 		 */
719 		pnode->num += 1;
720 	}
721 
722 	row = 0;
723 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
724 		row += 1;
725 	/* Add all nnodes, one level at a time */
726 	while (1) {
727 		/* Number of internal nodes (nnodes) at next level */
728 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
729 		for (i = 0; i < cnt; i++) {
730 			if (len + c->nnode_sz > c->leb_size) {
731 				alen = ALIGN(len, c->min_io_size);
732 				set_ltab(c, lnum, c->leb_size - alen,
733 					    alen - len);
734 				memset(p, 0xff, alen - len);
735 				err = ubifs_leb_change(c, lnum++, buf, alen);
736 				if (err)
737 					goto out;
738 				p = buf;
739 				len = 0;
740 			}
741 			/* Only 1 nnode at this level, so it is the root */
742 			if (cnt == 1) {
743 				c->lpt_lnum = lnum;
744 				c->lpt_offs = len;
745 			}
746 			/* Set branches to the level below */
747 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
748 				if (bcnt) {
749 					if (boffs + bsz > c->leb_size) {
750 						blnum += 1;
751 						boffs = 0;
752 					}
753 					nnode->nbranch[j].lnum = blnum;
754 					nnode->nbranch[j].offs = boffs;
755 					boffs += bsz;
756 					bcnt--;
757 				} else {
758 					nnode->nbranch[j].lnum = 0;
759 					nnode->nbranch[j].offs = 0;
760 				}
761 			}
762 			nnode->num = calc_nnode_num(row, i);
763 			ubifs_pack_nnode(c, p, nnode);
764 			p += c->nnode_sz;
765 			len += c->nnode_sz;
766 		}
767 		/* Only 1 nnode at this level, so it is the root */
768 		if (cnt == 1)
769 			break;
770 		/* Update the information about the level below */
771 		bcnt = cnt;
772 		bsz = c->nnode_sz;
773 		row -= 1;
774 	}
775 
776 	if (*big_lpt) {
777 		/* Need to add LPT's save table */
778 		if (len + c->lsave_sz > c->leb_size) {
779 			alen = ALIGN(len, c->min_io_size);
780 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
781 			memset(p, 0xff, alen - len);
782 			err = ubifs_leb_change(c, lnum++, buf, alen);
783 			if (err)
784 				goto out;
785 			p = buf;
786 			len = 0;
787 		}
788 
789 		c->lsave_lnum = lnum;
790 		c->lsave_offs = len;
791 
792 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
793 			lsave[i] = c->main_first + i;
794 		for (; i < c->lsave_cnt; i++)
795 			lsave[i] = c->main_first;
796 
797 		ubifs_pack_lsave(c, p, lsave);
798 		p += c->lsave_sz;
799 		len += c->lsave_sz;
800 	}
801 
802 	/* Need to add LPT's own LEB properties table */
803 	if (len + c->ltab_sz > c->leb_size) {
804 		alen = ALIGN(len, c->min_io_size);
805 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
806 		memset(p, 0xff, alen - len);
807 		err = ubifs_leb_change(c, lnum++, buf, alen);
808 		if (err)
809 			goto out;
810 		p = buf;
811 		len = 0;
812 	}
813 
814 	c->ltab_lnum = lnum;
815 	c->ltab_offs = len;
816 
817 	/* Update ltab before packing it */
818 	len += c->ltab_sz;
819 	alen = ALIGN(len, c->min_io_size);
820 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
821 
822 	ubifs_pack_ltab(c, p, ltab);
823 	p += c->ltab_sz;
824 
825 	/* Write remaining buffer */
826 	memset(p, 0xff, alen - len);
827 	err = ubifs_leb_change(c, lnum, buf, alen);
828 	if (err)
829 		goto out;
830 
831 	c->nhead_lnum = lnum;
832 	c->nhead_offs = ALIGN(len, c->min_io_size);
833 
834 	dbg_lp("space_bits %d", c->space_bits);
835 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
836 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
837 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
838 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
839 	dbg_lp("lnum_bits %d", c->lnum_bits);
840 	dbg_lp("pnode_sz %d", c->pnode_sz);
841 	dbg_lp("nnode_sz %d", c->nnode_sz);
842 	dbg_lp("ltab_sz %d", c->ltab_sz);
843 	dbg_lp("lsave_sz %d", c->lsave_sz);
844 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
845 	dbg_lp("lpt_hght %d", c->lpt_hght);
846 	dbg_lp("big_lpt %d", c->big_lpt);
847 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
848 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
849 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
850 	if (c->big_lpt)
851 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
852 out:
853 	c->ltab = NULL;
854 	kfree(lsave);
855 	vfree(ltab);
856 	vfree(buf);
857 	kfree(nnode);
858 	kfree(pnode);
859 	return err;
860 }
861 
862 /**
863  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
864  * @c: UBIFS file-system description object
865  * @pnode: pnode
866  *
867  * When a pnode is loaded into memory, the LEB properties it contains are added,
868  * by this function, to the LEB category lists and heaps.
869  */
870 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
871 {
872 	int i;
873 
874 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
875 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
876 		int lnum = pnode->lprops[i].lnum;
877 
878 		if (!lnum)
879 			return;
880 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
881 	}
882 }
883 
884 /**
885  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
886  * @c: UBIFS file-system description object
887  * @old_pnode: pnode copied
888  * @new_pnode: pnode copy
889  *
890  * During commit it is sometimes necessary to copy a pnode
891  * (see dirty_cow_pnode).  When that happens, references in
892  * category lists and heaps must be replaced.  This function does that.
893  */
894 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
895 			 struct ubifs_pnode *new_pnode)
896 {
897 	int i;
898 
899 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
900 		if (!new_pnode->lprops[i].lnum)
901 			return;
902 		ubifs_replace_cat(c, &old_pnode->lprops[i],
903 				  &new_pnode->lprops[i]);
904 	}
905 }
906 
907 /**
908  * check_lpt_crc - check LPT node crc is correct.
909  * @c: UBIFS file-system description object
910  * @buf: buffer containing node
911  * @len: length of node
912  *
913  * This function returns %0 on success and a negative error code on failure.
914  */
915 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
916 {
917 	int pos = 0;
918 	uint8_t *addr = buf;
919 	uint16_t crc, calc_crc;
920 
921 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
922 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
923 			 len - UBIFS_LPT_CRC_BYTES);
924 	if (crc != calc_crc) {
925 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
926 			  crc, calc_crc);
927 		dump_stack();
928 		return -EINVAL;
929 	}
930 	return 0;
931 }
932 
933 /**
934  * check_lpt_type - check LPT node type is correct.
935  * @c: UBIFS file-system description object
936  * @addr: address of type bit field is passed and returned updated here
937  * @pos: position of type bit field is passed and returned updated here
938  * @type: expected type
939  *
940  * This function returns %0 on success and a negative error code on failure.
941  */
942 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
943 			  int *pos, int type)
944 {
945 	int node_type;
946 
947 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
948 	if (node_type != type) {
949 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
950 			  node_type, type);
951 		dump_stack();
952 		return -EINVAL;
953 	}
954 	return 0;
955 }
956 
957 /**
958  * unpack_pnode - unpack a pnode.
959  * @c: UBIFS file-system description object
960  * @buf: buffer containing packed pnode to unpack
961  * @pnode: pnode structure to fill
962  *
963  * This function returns %0 on success and a negative error code on failure.
964  */
965 static int unpack_pnode(const struct ubifs_info *c, void *buf,
966 			struct ubifs_pnode *pnode)
967 {
968 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
969 	int i, pos = 0, err;
970 
971 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
972 	if (err)
973 		return err;
974 	if (c->big_lpt)
975 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
976 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
977 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
978 
979 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
980 		lprops->free <<= 3;
981 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
982 		lprops->dirty <<= 3;
983 
984 		if (ubifs_unpack_bits(&addr, &pos, 1))
985 			lprops->flags = LPROPS_INDEX;
986 		else
987 			lprops->flags = 0;
988 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
989 	}
990 	err = check_lpt_crc(c, buf, c->pnode_sz);
991 	return err;
992 }
993 
994 /**
995  * ubifs_unpack_nnode - unpack a nnode.
996  * @c: UBIFS file-system description object
997  * @buf: buffer containing packed nnode to unpack
998  * @nnode: nnode structure to fill
999  *
1000  * This function returns %0 on success and a negative error code on failure.
1001  */
1002 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1003 		       struct ubifs_nnode *nnode)
1004 {
1005 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1006 	int i, pos = 0, err;
1007 
1008 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1009 	if (err)
1010 		return err;
1011 	if (c->big_lpt)
1012 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1013 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1014 		int lnum;
1015 
1016 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1017 		       c->lpt_first;
1018 		if (lnum == c->lpt_last + 1)
1019 			lnum = 0;
1020 		nnode->nbranch[i].lnum = lnum;
1021 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1022 						     c->lpt_offs_bits);
1023 	}
1024 	err = check_lpt_crc(c, buf, c->nnode_sz);
1025 	return err;
1026 }
1027 
1028 /**
1029  * unpack_ltab - unpack the LPT's own lprops table.
1030  * @c: UBIFS file-system description object
1031  * @buf: buffer from which to unpack
1032  *
1033  * This function returns %0 on success and a negative error code on failure.
1034  */
1035 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1036 {
1037 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1038 	int i, pos = 0, err;
1039 
1040 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1041 	if (err)
1042 		return err;
1043 	for (i = 0; i < c->lpt_lebs; i++) {
1044 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1045 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1046 
1047 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1048 		    dirty > c->leb_size || free + dirty > c->leb_size)
1049 			return -EINVAL;
1050 
1051 		c->ltab[i].free = free;
1052 		c->ltab[i].dirty = dirty;
1053 		c->ltab[i].tgc = 0;
1054 		c->ltab[i].cmt = 0;
1055 	}
1056 	err = check_lpt_crc(c, buf, c->ltab_sz);
1057 	return err;
1058 }
1059 
1060 /**
1061  * unpack_lsave - unpack the LPT's save table.
1062  * @c: UBIFS file-system description object
1063  * @buf: buffer from which to unpack
1064  *
1065  * This function returns %0 on success and a negative error code on failure.
1066  */
1067 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1068 {
1069 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1070 	int i, pos = 0, err;
1071 
1072 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1073 	if (err)
1074 		return err;
1075 	for (i = 0; i < c->lsave_cnt; i++) {
1076 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1077 
1078 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1079 			return -EINVAL;
1080 		c->lsave[i] = lnum;
1081 	}
1082 	err = check_lpt_crc(c, buf, c->lsave_sz);
1083 	return err;
1084 }
1085 
1086 /**
1087  * validate_nnode - validate a nnode.
1088  * @c: UBIFS file-system description object
1089  * @nnode: nnode to validate
1090  * @parent: parent nnode (or NULL for the root nnode)
1091  * @iip: index in parent
1092  *
1093  * This function returns %0 on success and a negative error code on failure.
1094  */
1095 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1096 			  struct ubifs_nnode *parent, int iip)
1097 {
1098 	int i, lvl, max_offs;
1099 
1100 	if (c->big_lpt) {
1101 		int num = calc_nnode_num_from_parent(c, parent, iip);
1102 
1103 		if (nnode->num != num)
1104 			return -EINVAL;
1105 	}
1106 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1107 	if (lvl < 1)
1108 		return -EINVAL;
1109 	if (lvl == 1)
1110 		max_offs = c->leb_size - c->pnode_sz;
1111 	else
1112 		max_offs = c->leb_size - c->nnode_sz;
1113 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1114 		int lnum = nnode->nbranch[i].lnum;
1115 		int offs = nnode->nbranch[i].offs;
1116 
1117 		if (lnum == 0) {
1118 			if (offs != 0)
1119 				return -EINVAL;
1120 			continue;
1121 		}
1122 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1123 			return -EINVAL;
1124 		if (offs < 0 || offs > max_offs)
1125 			return -EINVAL;
1126 	}
1127 	return 0;
1128 }
1129 
1130 /**
1131  * validate_pnode - validate a pnode.
1132  * @c: UBIFS file-system description object
1133  * @pnode: pnode to validate
1134  * @parent: parent nnode
1135  * @iip: index in parent
1136  *
1137  * This function returns %0 on success and a negative error code on failure.
1138  */
1139 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1140 			  struct ubifs_nnode *parent, int iip)
1141 {
1142 	int i;
1143 
1144 	if (c->big_lpt) {
1145 		int num = calc_pnode_num_from_parent(c, parent, iip);
1146 
1147 		if (pnode->num != num)
1148 			return -EINVAL;
1149 	}
1150 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1151 		int free = pnode->lprops[i].free;
1152 		int dirty = pnode->lprops[i].dirty;
1153 
1154 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1155 		    (free & 7))
1156 			return -EINVAL;
1157 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1158 			return -EINVAL;
1159 		if (dirty + free > c->leb_size)
1160 			return -EINVAL;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /**
1166  * set_pnode_lnum - set LEB numbers on a pnode.
1167  * @c: UBIFS file-system description object
1168  * @pnode: pnode to update
1169  *
1170  * This function calculates the LEB numbers for the LEB properties it contains
1171  * based on the pnode number.
1172  */
1173 static void set_pnode_lnum(const struct ubifs_info *c,
1174 			   struct ubifs_pnode *pnode)
1175 {
1176 	int i, lnum;
1177 
1178 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1179 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1180 		if (lnum >= c->leb_cnt)
1181 			return;
1182 		pnode->lprops[i].lnum = lnum++;
1183 	}
1184 }
1185 
1186 /**
1187  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1188  * @c: UBIFS file-system description object
1189  * @parent: parent nnode (or NULL for the root)
1190  * @iip: index in parent
1191  *
1192  * This function returns %0 on success and a negative error code on failure.
1193  */
1194 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1195 {
1196 	struct ubifs_nbranch *branch = NULL;
1197 	struct ubifs_nnode *nnode = NULL;
1198 	void *buf = c->lpt_nod_buf;
1199 	int err, lnum, offs;
1200 
1201 	if (parent) {
1202 		branch = &parent->nbranch[iip];
1203 		lnum = branch->lnum;
1204 		offs = branch->offs;
1205 	} else {
1206 		lnum = c->lpt_lnum;
1207 		offs = c->lpt_offs;
1208 	}
1209 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1210 	if (!nnode) {
1211 		err = -ENOMEM;
1212 		goto out;
1213 	}
1214 	if (lnum == 0) {
1215 		/*
1216 		 * This nnode was not written which just means that the LEB
1217 		 * properties in the subtree below it describe empty LEBs. We
1218 		 * make the nnode as though we had read it, which in fact means
1219 		 * doing almost nothing.
1220 		 */
1221 		if (c->big_lpt)
1222 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1223 	} else {
1224 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1225 		if (err)
1226 			goto out;
1227 		err = ubifs_unpack_nnode(c, buf, nnode);
1228 		if (err)
1229 			goto out;
1230 	}
1231 	err = validate_nnode(c, nnode, parent, iip);
1232 	if (err)
1233 		goto out;
1234 	if (!c->big_lpt)
1235 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1236 	if (parent) {
1237 		branch->nnode = nnode;
1238 		nnode->level = parent->level - 1;
1239 	} else {
1240 		c->nroot = nnode;
1241 		nnode->level = c->lpt_hght;
1242 	}
1243 	nnode->parent = parent;
1244 	nnode->iip = iip;
1245 	return 0;
1246 
1247 out:
1248 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1249 	dump_stack();
1250 	kfree(nnode);
1251 	return err;
1252 }
1253 
1254 /**
1255  * read_pnode - read a pnode from flash and link it to the tree in memory.
1256  * @c: UBIFS file-system description object
1257  * @parent: parent nnode
1258  * @iip: index in parent
1259  *
1260  * This function returns %0 on success and a negative error code on failure.
1261  */
1262 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1263 {
1264 	struct ubifs_nbranch *branch;
1265 	struct ubifs_pnode *pnode = NULL;
1266 	void *buf = c->lpt_nod_buf;
1267 	int err, lnum, offs;
1268 
1269 	branch = &parent->nbranch[iip];
1270 	lnum = branch->lnum;
1271 	offs = branch->offs;
1272 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1273 	if (!pnode)
1274 		return -ENOMEM;
1275 
1276 	if (lnum == 0) {
1277 		/*
1278 		 * This pnode was not written which just means that the LEB
1279 		 * properties in it describe empty LEBs. We make the pnode as
1280 		 * though we had read it.
1281 		 */
1282 		int i;
1283 
1284 		if (c->big_lpt)
1285 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1286 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1287 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1288 
1289 			lprops->free = c->leb_size;
1290 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1291 		}
1292 	} else {
1293 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1294 		if (err)
1295 			goto out;
1296 		err = unpack_pnode(c, buf, pnode);
1297 		if (err)
1298 			goto out;
1299 	}
1300 	err = validate_pnode(c, pnode, parent, iip);
1301 	if (err)
1302 		goto out;
1303 	if (!c->big_lpt)
1304 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1305 	branch->pnode = pnode;
1306 	pnode->parent = parent;
1307 	pnode->iip = iip;
1308 	set_pnode_lnum(c, pnode);
1309 	c->pnodes_have += 1;
1310 	return 0;
1311 
1312 out:
1313 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1314 	ubifs_dump_pnode(c, pnode, parent, iip);
1315 	dump_stack();
1316 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1317 	kfree(pnode);
1318 	return err;
1319 }
1320 
1321 /**
1322  * read_ltab - read LPT's own lprops table.
1323  * @c: UBIFS file-system description object
1324  *
1325  * This function returns %0 on success and a negative error code on failure.
1326  */
1327 static int read_ltab(struct ubifs_info *c)
1328 {
1329 	int err;
1330 	void *buf;
1331 
1332 	buf = vmalloc(c->ltab_sz);
1333 	if (!buf)
1334 		return -ENOMEM;
1335 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1336 	if (err)
1337 		goto out;
1338 	err = unpack_ltab(c, buf);
1339 out:
1340 	vfree(buf);
1341 	return err;
1342 }
1343 
1344 /**
1345  * read_lsave - read LPT's save table.
1346  * @c: UBIFS file-system description object
1347  *
1348  * This function returns %0 on success and a negative error code on failure.
1349  */
1350 static int read_lsave(struct ubifs_info *c)
1351 {
1352 	int err, i;
1353 	void *buf;
1354 
1355 	buf = vmalloc(c->lsave_sz);
1356 	if (!buf)
1357 		return -ENOMEM;
1358 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1359 			     c->lsave_sz, 1);
1360 	if (err)
1361 		goto out;
1362 	err = unpack_lsave(c, buf);
1363 	if (err)
1364 		goto out;
1365 	for (i = 0; i < c->lsave_cnt; i++) {
1366 		int lnum = c->lsave[i];
1367 		struct ubifs_lprops *lprops;
1368 
1369 		/*
1370 		 * Due to automatic resizing, the values in the lsave table
1371 		 * could be beyond the volume size - just ignore them.
1372 		 */
1373 		if (lnum >= c->leb_cnt)
1374 			continue;
1375 		lprops = ubifs_lpt_lookup(c, lnum);
1376 		if (IS_ERR(lprops)) {
1377 			err = PTR_ERR(lprops);
1378 			goto out;
1379 		}
1380 	}
1381 out:
1382 	vfree(buf);
1383 	return err;
1384 }
1385 
1386 /**
1387  * ubifs_get_nnode - get a nnode.
1388  * @c: UBIFS file-system description object
1389  * @parent: parent nnode (or NULL for the root)
1390  * @iip: index in parent
1391  *
1392  * This function returns a pointer to the nnode on success or a negative error
1393  * code on failure.
1394  */
1395 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1396 				    struct ubifs_nnode *parent, int iip)
1397 {
1398 	struct ubifs_nbranch *branch;
1399 	struct ubifs_nnode *nnode;
1400 	int err;
1401 
1402 	branch = &parent->nbranch[iip];
1403 	nnode = branch->nnode;
1404 	if (nnode)
1405 		return nnode;
1406 	err = ubifs_read_nnode(c, parent, iip);
1407 	if (err)
1408 		return ERR_PTR(err);
1409 	return branch->nnode;
1410 }
1411 
1412 /**
1413  * ubifs_get_pnode - get a pnode.
1414  * @c: UBIFS file-system description object
1415  * @parent: parent nnode
1416  * @iip: index in parent
1417  *
1418  * This function returns a pointer to the pnode on success or a negative error
1419  * code on failure.
1420  */
1421 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1422 				    struct ubifs_nnode *parent, int iip)
1423 {
1424 	struct ubifs_nbranch *branch;
1425 	struct ubifs_pnode *pnode;
1426 	int err;
1427 
1428 	branch = &parent->nbranch[iip];
1429 	pnode = branch->pnode;
1430 	if (pnode)
1431 		return pnode;
1432 	err = read_pnode(c, parent, iip);
1433 	if (err)
1434 		return ERR_PTR(err);
1435 	update_cats(c, branch->pnode);
1436 	return branch->pnode;
1437 }
1438 
1439 /**
1440  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1441  * @c: UBIFS file-system description object
1442  * @lnum: LEB number to lookup
1443  *
1444  * This function returns a pointer to the LEB properties on success or a
1445  * negative error code on failure.
1446  */
1447 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1448 {
1449 	int err, i, h, iip, shft;
1450 	struct ubifs_nnode *nnode;
1451 	struct ubifs_pnode *pnode;
1452 
1453 	if (!c->nroot) {
1454 		err = ubifs_read_nnode(c, NULL, 0);
1455 		if (err)
1456 			return ERR_PTR(err);
1457 	}
1458 	nnode = c->nroot;
1459 	i = lnum - c->main_first;
1460 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1461 	for (h = 1; h < c->lpt_hght; h++) {
1462 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1463 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1464 		nnode = ubifs_get_nnode(c, nnode, iip);
1465 		if (IS_ERR(nnode))
1466 			return ERR_CAST(nnode);
1467 	}
1468 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1469 	pnode = ubifs_get_pnode(c, nnode, iip);
1470 	if (IS_ERR(pnode))
1471 		return ERR_CAST(pnode);
1472 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1473 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1474 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1475 	       pnode->lprops[iip].flags);
1476 	return &pnode->lprops[iip];
1477 }
1478 
1479 /**
1480  * dirty_cow_nnode - ensure a nnode is not being committed.
1481  * @c: UBIFS file-system description object
1482  * @nnode: nnode to check
1483  *
1484  * Returns dirtied nnode on success or negative error code on failure.
1485  */
1486 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1487 					   struct ubifs_nnode *nnode)
1488 {
1489 	struct ubifs_nnode *n;
1490 	int i;
1491 
1492 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1493 		/* nnode is not being committed */
1494 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1495 			c->dirty_nn_cnt += 1;
1496 			ubifs_add_nnode_dirt(c, nnode);
1497 		}
1498 		return nnode;
1499 	}
1500 
1501 	/* nnode is being committed, so copy it */
1502 	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1503 	if (unlikely(!n))
1504 		return ERR_PTR(-ENOMEM);
1505 
1506 	n->cnext = NULL;
1507 	__set_bit(DIRTY_CNODE, &n->flags);
1508 	__clear_bit(COW_CNODE, &n->flags);
1509 
1510 	/* The children now have new parent */
1511 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1512 		struct ubifs_nbranch *branch = &n->nbranch[i];
1513 
1514 		if (branch->cnode)
1515 			branch->cnode->parent = n;
1516 	}
1517 
1518 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1519 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1520 
1521 	c->dirty_nn_cnt += 1;
1522 	ubifs_add_nnode_dirt(c, nnode);
1523 	if (nnode->parent)
1524 		nnode->parent->nbranch[n->iip].nnode = n;
1525 	else
1526 		c->nroot = n;
1527 	return n;
1528 }
1529 
1530 /**
1531  * dirty_cow_pnode - ensure a pnode is not being committed.
1532  * @c: UBIFS file-system description object
1533  * @pnode: pnode to check
1534  *
1535  * Returns dirtied pnode on success or negative error code on failure.
1536  */
1537 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1538 					   struct ubifs_pnode *pnode)
1539 {
1540 	struct ubifs_pnode *p;
1541 
1542 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1543 		/* pnode is not being committed */
1544 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1545 			c->dirty_pn_cnt += 1;
1546 			add_pnode_dirt(c, pnode);
1547 		}
1548 		return pnode;
1549 	}
1550 
1551 	/* pnode is being committed, so copy it */
1552 	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1553 	if (unlikely(!p))
1554 		return ERR_PTR(-ENOMEM);
1555 
1556 	p->cnext = NULL;
1557 	__set_bit(DIRTY_CNODE, &p->flags);
1558 	__clear_bit(COW_CNODE, &p->flags);
1559 	replace_cats(c, pnode, p);
1560 
1561 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1562 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1563 
1564 	c->dirty_pn_cnt += 1;
1565 	add_pnode_dirt(c, pnode);
1566 	pnode->parent->nbranch[p->iip].pnode = p;
1567 	return p;
1568 }
1569 
1570 /**
1571  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1572  * @c: UBIFS file-system description object
1573  * @lnum: LEB number to lookup
1574  *
1575  * This function returns a pointer to the LEB properties on success or a
1576  * negative error code on failure.
1577  */
1578 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1579 {
1580 	int err, i, h, iip, shft;
1581 	struct ubifs_nnode *nnode;
1582 	struct ubifs_pnode *pnode;
1583 
1584 	if (!c->nroot) {
1585 		err = ubifs_read_nnode(c, NULL, 0);
1586 		if (err)
1587 			return ERR_PTR(err);
1588 	}
1589 	nnode = c->nroot;
1590 	nnode = dirty_cow_nnode(c, nnode);
1591 	if (IS_ERR(nnode))
1592 		return ERR_CAST(nnode);
1593 	i = lnum - c->main_first;
1594 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1595 	for (h = 1; h < c->lpt_hght; h++) {
1596 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1597 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1598 		nnode = ubifs_get_nnode(c, nnode, iip);
1599 		if (IS_ERR(nnode))
1600 			return ERR_CAST(nnode);
1601 		nnode = dirty_cow_nnode(c, nnode);
1602 		if (IS_ERR(nnode))
1603 			return ERR_CAST(nnode);
1604 	}
1605 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1606 	pnode = ubifs_get_pnode(c, nnode, iip);
1607 	if (IS_ERR(pnode))
1608 		return ERR_CAST(pnode);
1609 	pnode = dirty_cow_pnode(c, pnode);
1610 	if (IS_ERR(pnode))
1611 		return ERR_CAST(pnode);
1612 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1613 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1614 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1615 	       pnode->lprops[iip].flags);
1616 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1617 	return &pnode->lprops[iip];
1618 }
1619 
1620 /**
1621  * lpt_init_rd - initialize the LPT for reading.
1622  * @c: UBIFS file-system description object
1623  *
1624  * This function returns %0 on success and a negative error code on failure.
1625  */
1626 static int lpt_init_rd(struct ubifs_info *c)
1627 {
1628 	int err, i;
1629 
1630 	c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1631 				     c->lpt_lebs));
1632 	if (!c->ltab)
1633 		return -ENOMEM;
1634 
1635 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1636 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1637 	if (!c->lpt_nod_buf)
1638 		return -ENOMEM;
1639 
1640 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1641 		c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1642 						   sizeof(void *),
1643 						   GFP_KERNEL);
1644 		if (!c->lpt_heap[i].arr)
1645 			return -ENOMEM;
1646 		c->lpt_heap[i].cnt = 0;
1647 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1648 	}
1649 
1650 	c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1651 					 GFP_KERNEL);
1652 	if (!c->dirty_idx.arr)
1653 		return -ENOMEM;
1654 	c->dirty_idx.cnt = 0;
1655 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1656 
1657 	err = read_ltab(c);
1658 	if (err)
1659 		return err;
1660 
1661 	dbg_lp("space_bits %d", c->space_bits);
1662 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1663 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1664 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1665 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1666 	dbg_lp("lnum_bits %d", c->lnum_bits);
1667 	dbg_lp("pnode_sz %d", c->pnode_sz);
1668 	dbg_lp("nnode_sz %d", c->nnode_sz);
1669 	dbg_lp("ltab_sz %d", c->ltab_sz);
1670 	dbg_lp("lsave_sz %d", c->lsave_sz);
1671 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1672 	dbg_lp("lpt_hght %d", c->lpt_hght);
1673 	dbg_lp("big_lpt %d", c->big_lpt);
1674 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1675 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1676 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1677 	if (c->big_lpt)
1678 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1679 
1680 	return 0;
1681 }
1682 
1683 /**
1684  * lpt_init_wr - initialize the LPT for writing.
1685  * @c: UBIFS file-system description object
1686  *
1687  * 'lpt_init_rd()' must have been called already.
1688  *
1689  * This function returns %0 on success and a negative error code on failure.
1690  */
1691 static int lpt_init_wr(struct ubifs_info *c)
1692 {
1693 	int err, i;
1694 
1695 	c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1696 					 c->lpt_lebs));
1697 	if (!c->ltab_cmt)
1698 		return -ENOMEM;
1699 
1700 	c->lpt_buf = vmalloc(c->leb_size);
1701 	if (!c->lpt_buf)
1702 		return -ENOMEM;
1703 
1704 	if (c->big_lpt) {
1705 		c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1706 		if (!c->lsave)
1707 			return -ENOMEM;
1708 		err = read_lsave(c);
1709 		if (err)
1710 			return err;
1711 	}
1712 
1713 	for (i = 0; i < c->lpt_lebs; i++)
1714 		if (c->ltab[i].free == c->leb_size) {
1715 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1716 			if (err)
1717 				return err;
1718 		}
1719 
1720 	return 0;
1721 }
1722 
1723 /**
1724  * ubifs_lpt_init - initialize the LPT.
1725  * @c: UBIFS file-system description object
1726  * @rd: whether to initialize lpt for reading
1727  * @wr: whether to initialize lpt for writing
1728  *
1729  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1730  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1731  * true.
1732  *
1733  * This function returns %0 on success and a negative error code on failure.
1734  */
1735 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1736 {
1737 	int err;
1738 
1739 	if (rd) {
1740 		err = lpt_init_rd(c);
1741 		if (err)
1742 			goto out_err;
1743 	}
1744 
1745 	if (wr) {
1746 		err = lpt_init_wr(c);
1747 		if (err)
1748 			goto out_err;
1749 	}
1750 
1751 	return 0;
1752 
1753 out_err:
1754 	if (wr)
1755 		ubifs_lpt_free(c, 1);
1756 	if (rd)
1757 		ubifs_lpt_free(c, 0);
1758 	return err;
1759 }
1760 
1761 /**
1762  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1763  * @nnode: where to keep a nnode
1764  * @pnode: where to keep a pnode
1765  * @cnode: where to keep a cnode
1766  * @in_tree: is the node in the tree in memory
1767  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1768  * the tree
1769  * @ptr.pnode: ditto for pnode
1770  * @ptr.cnode: ditto for cnode
1771  */
1772 struct lpt_scan_node {
1773 	union {
1774 		struct ubifs_nnode nnode;
1775 		struct ubifs_pnode pnode;
1776 		struct ubifs_cnode cnode;
1777 	};
1778 	int in_tree;
1779 	union {
1780 		struct ubifs_nnode *nnode;
1781 		struct ubifs_pnode *pnode;
1782 		struct ubifs_cnode *cnode;
1783 	} ptr;
1784 };
1785 
1786 /**
1787  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1788  * @c: the UBIFS file-system description object
1789  * @path: where to put the nnode
1790  * @parent: parent of the nnode
1791  * @iip: index in parent of the nnode
1792  *
1793  * This function returns a pointer to the nnode on success or a negative error
1794  * code on failure.
1795  */
1796 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1797 					  struct lpt_scan_node *path,
1798 					  struct ubifs_nnode *parent, int iip)
1799 {
1800 	struct ubifs_nbranch *branch;
1801 	struct ubifs_nnode *nnode;
1802 	void *buf = c->lpt_nod_buf;
1803 	int err;
1804 
1805 	branch = &parent->nbranch[iip];
1806 	nnode = branch->nnode;
1807 	if (nnode) {
1808 		path->in_tree = 1;
1809 		path->ptr.nnode = nnode;
1810 		return nnode;
1811 	}
1812 	nnode = &path->nnode;
1813 	path->in_tree = 0;
1814 	path->ptr.nnode = nnode;
1815 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1816 	if (branch->lnum == 0) {
1817 		/*
1818 		 * This nnode was not written which just means that the LEB
1819 		 * properties in the subtree below it describe empty LEBs. We
1820 		 * make the nnode as though we had read it, which in fact means
1821 		 * doing almost nothing.
1822 		 */
1823 		if (c->big_lpt)
1824 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1825 	} else {
1826 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1827 				     c->nnode_sz, 1);
1828 		if (err)
1829 			return ERR_PTR(err);
1830 		err = ubifs_unpack_nnode(c, buf, nnode);
1831 		if (err)
1832 			return ERR_PTR(err);
1833 	}
1834 	err = validate_nnode(c, nnode, parent, iip);
1835 	if (err)
1836 		return ERR_PTR(err);
1837 	if (!c->big_lpt)
1838 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1839 	nnode->level = parent->level - 1;
1840 	nnode->parent = parent;
1841 	nnode->iip = iip;
1842 	return nnode;
1843 }
1844 
1845 /**
1846  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1847  * @c: the UBIFS file-system description object
1848  * @path: where to put the pnode
1849  * @parent: parent of the pnode
1850  * @iip: index in parent of the pnode
1851  *
1852  * This function returns a pointer to the pnode on success or a negative error
1853  * code on failure.
1854  */
1855 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1856 					  struct lpt_scan_node *path,
1857 					  struct ubifs_nnode *parent, int iip)
1858 {
1859 	struct ubifs_nbranch *branch;
1860 	struct ubifs_pnode *pnode;
1861 	void *buf = c->lpt_nod_buf;
1862 	int err;
1863 
1864 	branch = &parent->nbranch[iip];
1865 	pnode = branch->pnode;
1866 	if (pnode) {
1867 		path->in_tree = 1;
1868 		path->ptr.pnode = pnode;
1869 		return pnode;
1870 	}
1871 	pnode = &path->pnode;
1872 	path->in_tree = 0;
1873 	path->ptr.pnode = pnode;
1874 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1875 	if (branch->lnum == 0) {
1876 		/*
1877 		 * This pnode was not written which just means that the LEB
1878 		 * properties in it describe empty LEBs. We make the pnode as
1879 		 * though we had read it.
1880 		 */
1881 		int i;
1882 
1883 		if (c->big_lpt)
1884 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1885 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1886 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1887 
1888 			lprops->free = c->leb_size;
1889 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1890 		}
1891 	} else {
1892 		ubifs_assert(branch->lnum >= c->lpt_first &&
1893 			     branch->lnum <= c->lpt_last);
1894 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1895 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1896 				     c->pnode_sz, 1);
1897 		if (err)
1898 			return ERR_PTR(err);
1899 		err = unpack_pnode(c, buf, pnode);
1900 		if (err)
1901 			return ERR_PTR(err);
1902 	}
1903 	err = validate_pnode(c, pnode, parent, iip);
1904 	if (err)
1905 		return ERR_PTR(err);
1906 	if (!c->big_lpt)
1907 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1908 	pnode->parent = parent;
1909 	pnode->iip = iip;
1910 	set_pnode_lnum(c, pnode);
1911 	return pnode;
1912 }
1913 
1914 /**
1915  * ubifs_lpt_scan_nolock - scan the LPT.
1916  * @c: the UBIFS file-system description object
1917  * @start_lnum: LEB number from which to start scanning
1918  * @end_lnum: LEB number at which to stop scanning
1919  * @scan_cb: callback function called for each lprops
1920  * @data: data to be passed to the callback function
1921  *
1922  * This function returns %0 on success and a negative error code on failure.
1923  */
1924 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1925 			  ubifs_lpt_scan_callback scan_cb, void *data)
1926 {
1927 	int err = 0, i, h, iip, shft;
1928 	struct ubifs_nnode *nnode;
1929 	struct ubifs_pnode *pnode;
1930 	struct lpt_scan_node *path;
1931 
1932 	if (start_lnum == -1) {
1933 		start_lnum = end_lnum + 1;
1934 		if (start_lnum >= c->leb_cnt)
1935 			start_lnum = c->main_first;
1936 	}
1937 
1938 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1939 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1940 
1941 	if (!c->nroot) {
1942 		err = ubifs_read_nnode(c, NULL, 0);
1943 		if (err)
1944 			return err;
1945 	}
1946 
1947 	path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
1948 			     GFP_NOFS);
1949 	if (!path)
1950 		return -ENOMEM;
1951 
1952 	path[0].ptr.nnode = c->nroot;
1953 	path[0].in_tree = 1;
1954 again:
1955 	/* Descend to the pnode containing start_lnum */
1956 	nnode = c->nroot;
1957 	i = start_lnum - c->main_first;
1958 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1959 	for (h = 1; h < c->lpt_hght; h++) {
1960 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1961 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1962 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1963 		if (IS_ERR(nnode)) {
1964 			err = PTR_ERR(nnode);
1965 			goto out;
1966 		}
1967 	}
1968 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1969 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1970 	if (IS_ERR(pnode)) {
1971 		err = PTR_ERR(pnode);
1972 		goto out;
1973 	}
1974 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1975 
1976 	/* Loop for each lprops */
1977 	while (1) {
1978 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1979 		int ret, lnum = lprops->lnum;
1980 
1981 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1982 		if (ret < 0) {
1983 			err = ret;
1984 			goto out;
1985 		}
1986 		if (ret & LPT_SCAN_ADD) {
1987 			/* Add all the nodes in path to the tree in memory */
1988 			for (h = 1; h < c->lpt_hght; h++) {
1989 				const size_t sz = sizeof(struct ubifs_nnode);
1990 				struct ubifs_nnode *parent;
1991 
1992 				if (path[h].in_tree)
1993 					continue;
1994 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1995 				if (!nnode) {
1996 					err = -ENOMEM;
1997 					goto out;
1998 				}
1999 				parent = nnode->parent;
2000 				parent->nbranch[nnode->iip].nnode = nnode;
2001 				path[h].ptr.nnode = nnode;
2002 				path[h].in_tree = 1;
2003 				path[h + 1].cnode.parent = nnode;
2004 			}
2005 			if (path[h].in_tree)
2006 				ubifs_ensure_cat(c, lprops);
2007 			else {
2008 				const size_t sz = sizeof(struct ubifs_pnode);
2009 				struct ubifs_nnode *parent;
2010 
2011 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2012 				if (!pnode) {
2013 					err = -ENOMEM;
2014 					goto out;
2015 				}
2016 				parent = pnode->parent;
2017 				parent->nbranch[pnode->iip].pnode = pnode;
2018 				path[h].ptr.pnode = pnode;
2019 				path[h].in_tree = 1;
2020 				update_cats(c, pnode);
2021 				c->pnodes_have += 1;
2022 			}
2023 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2024 						  c->nroot, 0, 0);
2025 			if (err)
2026 				goto out;
2027 			err = dbg_check_cats(c);
2028 			if (err)
2029 				goto out;
2030 		}
2031 		if (ret & LPT_SCAN_STOP) {
2032 			err = 0;
2033 			break;
2034 		}
2035 		/* Get the next lprops */
2036 		if (lnum == end_lnum) {
2037 			/*
2038 			 * We got to the end without finding what we were
2039 			 * looking for
2040 			 */
2041 			err = -ENOSPC;
2042 			goto out;
2043 		}
2044 		if (lnum + 1 >= c->leb_cnt) {
2045 			/* Wrap-around to the beginning */
2046 			start_lnum = c->main_first;
2047 			goto again;
2048 		}
2049 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2050 			/* Next lprops is in the same pnode */
2051 			iip += 1;
2052 			continue;
2053 		}
2054 		/* We need to get the next pnode. Go up until we can go right */
2055 		iip = pnode->iip;
2056 		while (1) {
2057 			h -= 1;
2058 			ubifs_assert(h >= 0);
2059 			nnode = path[h].ptr.nnode;
2060 			if (iip + 1 < UBIFS_LPT_FANOUT)
2061 				break;
2062 			iip = nnode->iip;
2063 		}
2064 		/* Go right */
2065 		iip += 1;
2066 		/* Descend to the pnode */
2067 		h += 1;
2068 		for (; h < c->lpt_hght; h++) {
2069 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2070 			if (IS_ERR(nnode)) {
2071 				err = PTR_ERR(nnode);
2072 				goto out;
2073 			}
2074 			iip = 0;
2075 		}
2076 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2077 		if (IS_ERR(pnode)) {
2078 			err = PTR_ERR(pnode);
2079 			goto out;
2080 		}
2081 		iip = 0;
2082 	}
2083 out:
2084 	kfree(path);
2085 	return err;
2086 }
2087 
2088 /**
2089  * dbg_chk_pnode - check a pnode.
2090  * @c: the UBIFS file-system description object
2091  * @pnode: pnode to check
2092  * @col: pnode column
2093  *
2094  * This function returns %0 on success and a negative error code on failure.
2095  */
2096 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2097 			 int col)
2098 {
2099 	int i;
2100 
2101 	if (pnode->num != col) {
2102 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2103 			  pnode->num, col, pnode->parent->num, pnode->iip);
2104 		return -EINVAL;
2105 	}
2106 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2107 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2108 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2109 			   c->main_first;
2110 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2111 		struct ubifs_lpt_heap *heap;
2112 		struct list_head *list = NULL;
2113 
2114 		if (lnum >= c->leb_cnt)
2115 			continue;
2116 		if (lprops->lnum != lnum) {
2117 			ubifs_err(c, "bad LEB number %d expected %d",
2118 				  lprops->lnum, lnum);
2119 			return -EINVAL;
2120 		}
2121 		if (lprops->flags & LPROPS_TAKEN) {
2122 			if (cat != LPROPS_UNCAT) {
2123 				ubifs_err(c, "LEB %d taken but not uncat %d",
2124 					  lprops->lnum, cat);
2125 				return -EINVAL;
2126 			}
2127 			continue;
2128 		}
2129 		if (lprops->flags & LPROPS_INDEX) {
2130 			switch (cat) {
2131 			case LPROPS_UNCAT:
2132 			case LPROPS_DIRTY_IDX:
2133 			case LPROPS_FRDI_IDX:
2134 				break;
2135 			default:
2136 				ubifs_err(c, "LEB %d index but cat %d",
2137 					  lprops->lnum, cat);
2138 				return -EINVAL;
2139 			}
2140 		} else {
2141 			switch (cat) {
2142 			case LPROPS_UNCAT:
2143 			case LPROPS_DIRTY:
2144 			case LPROPS_FREE:
2145 			case LPROPS_EMPTY:
2146 			case LPROPS_FREEABLE:
2147 				break;
2148 			default:
2149 				ubifs_err(c, "LEB %d not index but cat %d",
2150 					  lprops->lnum, cat);
2151 				return -EINVAL;
2152 			}
2153 		}
2154 		switch (cat) {
2155 		case LPROPS_UNCAT:
2156 			list = &c->uncat_list;
2157 			break;
2158 		case LPROPS_EMPTY:
2159 			list = &c->empty_list;
2160 			break;
2161 		case LPROPS_FREEABLE:
2162 			list = &c->freeable_list;
2163 			break;
2164 		case LPROPS_FRDI_IDX:
2165 			list = &c->frdi_idx_list;
2166 			break;
2167 		}
2168 		found = 0;
2169 		switch (cat) {
2170 		case LPROPS_DIRTY:
2171 		case LPROPS_DIRTY_IDX:
2172 		case LPROPS_FREE:
2173 			heap = &c->lpt_heap[cat - 1];
2174 			if (lprops->hpos < heap->cnt &&
2175 			    heap->arr[lprops->hpos] == lprops)
2176 				found = 1;
2177 			break;
2178 		case LPROPS_UNCAT:
2179 		case LPROPS_EMPTY:
2180 		case LPROPS_FREEABLE:
2181 		case LPROPS_FRDI_IDX:
2182 			list_for_each_entry(lp, list, list)
2183 				if (lprops == lp) {
2184 					found = 1;
2185 					break;
2186 				}
2187 			break;
2188 		}
2189 		if (!found) {
2190 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2191 				  lprops->lnum, cat);
2192 			return -EINVAL;
2193 		}
2194 		switch (cat) {
2195 		case LPROPS_EMPTY:
2196 			if (lprops->free != c->leb_size) {
2197 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2198 					  lprops->lnum, cat, lprops->free,
2199 					  lprops->dirty);
2200 				return -EINVAL;
2201 			}
2202 			break;
2203 		case LPROPS_FREEABLE:
2204 		case LPROPS_FRDI_IDX:
2205 			if (lprops->free + lprops->dirty != c->leb_size) {
2206 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2207 					  lprops->lnum, cat, lprops->free,
2208 					  lprops->dirty);
2209 				return -EINVAL;
2210 			}
2211 			break;
2212 		}
2213 	}
2214 	return 0;
2215 }
2216 
2217 /**
2218  * dbg_check_lpt_nodes - check nnodes and pnodes.
2219  * @c: the UBIFS file-system description object
2220  * @cnode: next cnode (nnode or pnode) to check
2221  * @row: row of cnode (root is zero)
2222  * @col: column of cnode (leftmost is zero)
2223  *
2224  * This function returns %0 on success and a negative error code on failure.
2225  */
2226 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2227 			int row, int col)
2228 {
2229 	struct ubifs_nnode *nnode, *nn;
2230 	struct ubifs_cnode *cn;
2231 	int num, iip = 0, err;
2232 
2233 	if (!dbg_is_chk_lprops(c))
2234 		return 0;
2235 
2236 	while (cnode) {
2237 		ubifs_assert(row >= 0);
2238 		nnode = cnode->parent;
2239 		if (cnode->level) {
2240 			/* cnode is a nnode */
2241 			num = calc_nnode_num(row, col);
2242 			if (cnode->num != num) {
2243 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2244 					  cnode->num, num,
2245 					  (nnode ? nnode->num : 0), cnode->iip);
2246 				return -EINVAL;
2247 			}
2248 			nn = (struct ubifs_nnode *)cnode;
2249 			while (iip < UBIFS_LPT_FANOUT) {
2250 				cn = nn->nbranch[iip].cnode;
2251 				if (cn) {
2252 					/* Go down */
2253 					row += 1;
2254 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2255 					col += iip;
2256 					iip = 0;
2257 					cnode = cn;
2258 					break;
2259 				}
2260 				/* Go right */
2261 				iip += 1;
2262 			}
2263 			if (iip < UBIFS_LPT_FANOUT)
2264 				continue;
2265 		} else {
2266 			struct ubifs_pnode *pnode;
2267 
2268 			/* cnode is a pnode */
2269 			pnode = (struct ubifs_pnode *)cnode;
2270 			err = dbg_chk_pnode(c, pnode, col);
2271 			if (err)
2272 				return err;
2273 		}
2274 		/* Go up and to the right */
2275 		row -= 1;
2276 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2277 		iip = cnode->iip + 1;
2278 		cnode = (struct ubifs_cnode *)nnode;
2279 	}
2280 	return 0;
2281 }
2282