1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the functions that access LEB properties and their 25 * categories. LEBs are categorized based on the needs of UBIFS, and the 26 * categories are stored as either heaps or lists to provide a fast way of 27 * finding a LEB in a particular category. For example, UBIFS may need to find 28 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 29 */ 30 31 #include "ubifs.h" 32 33 /** 34 * get_heap_comp_val - get the LEB properties value for heap comparisons. 35 * @lprops: LEB properties 36 * @cat: LEB category 37 */ 38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 39 { 40 switch (cat) { 41 case LPROPS_FREE: 42 return lprops->free; 43 case LPROPS_DIRTY_IDX: 44 return lprops->free + lprops->dirty; 45 default: 46 return lprops->dirty; 47 } 48 } 49 50 /** 51 * move_up_lpt_heap - move a new heap entry up as far as possible. 52 * @c: UBIFS file-system description object 53 * @heap: LEB category heap 54 * @lprops: LEB properties to move 55 * @cat: LEB category 56 * 57 * New entries to a heap are added at the bottom and then moved up until the 58 * parent's value is greater. In the case of LPT's category heaps, the value 59 * is either the amount of free space or the amount of dirty space, depending 60 * on the category. 61 */ 62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 63 struct ubifs_lprops *lprops, int cat) 64 { 65 int val1, val2, hpos; 66 67 hpos = lprops->hpos; 68 if (!hpos) 69 return; /* Already top of the heap */ 70 val1 = get_heap_comp_val(lprops, cat); 71 /* Compare to parent and, if greater, move up the heap */ 72 do { 73 int ppos = (hpos - 1) / 2; 74 75 val2 = get_heap_comp_val(heap->arr[ppos], cat); 76 if (val2 >= val1) 77 return; 78 /* Greater than parent so move up */ 79 heap->arr[ppos]->hpos = hpos; 80 heap->arr[hpos] = heap->arr[ppos]; 81 heap->arr[ppos] = lprops; 82 lprops->hpos = ppos; 83 hpos = ppos; 84 } while (hpos); 85 } 86 87 /** 88 * adjust_lpt_heap - move a changed heap entry up or down the heap. 89 * @c: UBIFS file-system description object 90 * @heap: LEB category heap 91 * @lprops: LEB properties to move 92 * @hpos: heap position of @lprops 93 * @cat: LEB category 94 * 95 * Changed entries in a heap are moved up or down until the parent's value is 96 * greater. In the case of LPT's category heaps, the value is either the amount 97 * of free space or the amount of dirty space, depending on the category. 98 */ 99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 100 struct ubifs_lprops *lprops, int hpos, int cat) 101 { 102 int val1, val2, val3, cpos; 103 104 val1 = get_heap_comp_val(lprops, cat); 105 /* Compare to parent and, if greater than parent, move up the heap */ 106 if (hpos) { 107 int ppos = (hpos - 1) / 2; 108 109 val2 = get_heap_comp_val(heap->arr[ppos], cat); 110 if (val1 > val2) { 111 /* Greater than parent so move up */ 112 while (1) { 113 heap->arr[ppos]->hpos = hpos; 114 heap->arr[hpos] = heap->arr[ppos]; 115 heap->arr[ppos] = lprops; 116 lprops->hpos = ppos; 117 hpos = ppos; 118 if (!hpos) 119 return; 120 ppos = (hpos - 1) / 2; 121 val2 = get_heap_comp_val(heap->arr[ppos], cat); 122 if (val1 <= val2) 123 return; 124 /* Still greater than parent so keep going */ 125 } 126 } 127 } 128 129 /* Not greater than parent, so compare to children */ 130 while (1) { 131 /* Compare to left child */ 132 cpos = hpos * 2 + 1; 133 if (cpos >= heap->cnt) 134 return; 135 val2 = get_heap_comp_val(heap->arr[cpos], cat); 136 if (val1 < val2) { 137 /* Less than left child, so promote biggest child */ 138 if (cpos + 1 < heap->cnt) { 139 val3 = get_heap_comp_val(heap->arr[cpos + 1], 140 cat); 141 if (val3 > val2) 142 cpos += 1; /* Right child is bigger */ 143 } 144 heap->arr[cpos]->hpos = hpos; 145 heap->arr[hpos] = heap->arr[cpos]; 146 heap->arr[cpos] = lprops; 147 lprops->hpos = cpos; 148 hpos = cpos; 149 continue; 150 } 151 /* Compare to right child */ 152 cpos += 1; 153 if (cpos >= heap->cnt) 154 return; 155 val3 = get_heap_comp_val(heap->arr[cpos], cat); 156 if (val1 < val3) { 157 /* Less than right child, so promote right child */ 158 heap->arr[cpos]->hpos = hpos; 159 heap->arr[hpos] = heap->arr[cpos]; 160 heap->arr[cpos] = lprops; 161 lprops->hpos = cpos; 162 hpos = cpos; 163 continue; 164 } 165 return; 166 } 167 } 168 169 /** 170 * add_to_lpt_heap - add LEB properties to a LEB category heap. 171 * @c: UBIFS file-system description object 172 * @lprops: LEB properties to add 173 * @cat: LEB category 174 * 175 * This function returns %1 if @lprops is added to the heap for LEB category 176 * @cat, otherwise %0 is returned because the heap is full. 177 */ 178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 179 int cat) 180 { 181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 182 183 if (heap->cnt >= heap->max_cnt) { 184 const int b = LPT_HEAP_SZ / 2 - 1; 185 int cpos, val1, val2; 186 187 /* Compare to some other LEB on the bottom of heap */ 188 /* Pick a position kind of randomly */ 189 cpos = (((size_t)lprops >> 4) & b) + b; 190 ubifs_assert(cpos >= b); 191 ubifs_assert(cpos < LPT_HEAP_SZ); 192 ubifs_assert(cpos < heap->cnt); 193 194 val1 = get_heap_comp_val(lprops, cat); 195 val2 = get_heap_comp_val(heap->arr[cpos], cat); 196 if (val1 > val2) { 197 struct ubifs_lprops *lp; 198 199 lp = heap->arr[cpos]; 200 lp->flags &= ~LPROPS_CAT_MASK; 201 lp->flags |= LPROPS_UNCAT; 202 list_add(&lp->list, &c->uncat_list); 203 lprops->hpos = cpos; 204 heap->arr[cpos] = lprops; 205 move_up_lpt_heap(c, heap, lprops, cat); 206 dbg_check_heap(c, heap, cat, lprops->hpos); 207 return 1; /* Added to heap */ 208 } 209 dbg_check_heap(c, heap, cat, -1); 210 return 0; /* Not added to heap */ 211 } else { 212 lprops->hpos = heap->cnt++; 213 heap->arr[lprops->hpos] = lprops; 214 move_up_lpt_heap(c, heap, lprops, cat); 215 dbg_check_heap(c, heap, cat, lprops->hpos); 216 return 1; /* Added to heap */ 217 } 218 } 219 220 /** 221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 222 * @c: UBIFS file-system description object 223 * @lprops: LEB properties to remove 224 * @cat: LEB category 225 */ 226 static void remove_from_lpt_heap(struct ubifs_info *c, 227 struct ubifs_lprops *lprops, int cat) 228 { 229 struct ubifs_lpt_heap *heap; 230 int hpos = lprops->hpos; 231 232 heap = &c->lpt_heap[cat - 1]; 233 ubifs_assert(hpos >= 0 && hpos < heap->cnt); 234 ubifs_assert(heap->arr[hpos] == lprops); 235 heap->cnt -= 1; 236 if (hpos < heap->cnt) { 237 heap->arr[hpos] = heap->arr[heap->cnt]; 238 heap->arr[hpos]->hpos = hpos; 239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 240 } 241 dbg_check_heap(c, heap, cat, -1); 242 } 243 244 /** 245 * lpt_heap_replace - replace lprops in a category heap. 246 * @c: UBIFS file-system description object 247 * @old_lprops: LEB properties to replace 248 * @new_lprops: LEB properties with which to replace 249 * @cat: LEB category 250 * 251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 252 * and the lprops that the pnode contains. When that happens, references in 253 * the category heaps to those lprops must be updated to point to the new 254 * lprops. This function does that. 255 */ 256 static void lpt_heap_replace(struct ubifs_info *c, 257 struct ubifs_lprops *old_lprops, 258 struct ubifs_lprops *new_lprops, int cat) 259 { 260 struct ubifs_lpt_heap *heap; 261 int hpos = new_lprops->hpos; 262 263 heap = &c->lpt_heap[cat - 1]; 264 heap->arr[hpos] = new_lprops; 265 } 266 267 /** 268 * ubifs_add_to_cat - add LEB properties to a category list or heap. 269 * @c: UBIFS file-system description object 270 * @lprops: LEB properties to add 271 * @cat: LEB category to which to add 272 * 273 * LEB properties are categorized to enable fast find operations. 274 */ 275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 276 int cat) 277 { 278 switch (cat) { 279 case LPROPS_DIRTY: 280 case LPROPS_DIRTY_IDX: 281 case LPROPS_FREE: 282 if (add_to_lpt_heap(c, lprops, cat)) 283 break; 284 /* No more room on heap so make it un-categorized */ 285 cat = LPROPS_UNCAT; 286 /* Fall through */ 287 case LPROPS_UNCAT: 288 list_add(&lprops->list, &c->uncat_list); 289 break; 290 case LPROPS_EMPTY: 291 list_add(&lprops->list, &c->empty_list); 292 break; 293 case LPROPS_FREEABLE: 294 list_add(&lprops->list, &c->freeable_list); 295 c->freeable_cnt += 1; 296 break; 297 case LPROPS_FRDI_IDX: 298 list_add(&lprops->list, &c->frdi_idx_list); 299 break; 300 default: 301 ubifs_assert(0); 302 } 303 lprops->flags &= ~LPROPS_CAT_MASK; 304 lprops->flags |= cat; 305 } 306 307 /** 308 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 309 * @c: UBIFS file-system description object 310 * @lprops: LEB properties to remove 311 * @cat: LEB category from which to remove 312 * 313 * LEB properties are categorized to enable fast find operations. 314 */ 315 static void ubifs_remove_from_cat(struct ubifs_info *c, 316 struct ubifs_lprops *lprops, int cat) 317 { 318 switch (cat) { 319 case LPROPS_DIRTY: 320 case LPROPS_DIRTY_IDX: 321 case LPROPS_FREE: 322 remove_from_lpt_heap(c, lprops, cat); 323 break; 324 case LPROPS_FREEABLE: 325 c->freeable_cnt -= 1; 326 ubifs_assert(c->freeable_cnt >= 0); 327 /* Fall through */ 328 case LPROPS_UNCAT: 329 case LPROPS_EMPTY: 330 case LPROPS_FRDI_IDX: 331 ubifs_assert(!list_empty(&lprops->list)); 332 list_del(&lprops->list); 333 break; 334 default: 335 ubifs_assert(0); 336 } 337 } 338 339 /** 340 * ubifs_replace_cat - replace lprops in a category list or heap. 341 * @c: UBIFS file-system description object 342 * @old_lprops: LEB properties to replace 343 * @new_lprops: LEB properties with which to replace 344 * 345 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 346 * and the lprops that the pnode contains. When that happens, references in 347 * category lists and heaps must be replaced. This function does that. 348 */ 349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 350 struct ubifs_lprops *new_lprops) 351 { 352 int cat; 353 354 cat = new_lprops->flags & LPROPS_CAT_MASK; 355 switch (cat) { 356 case LPROPS_DIRTY: 357 case LPROPS_DIRTY_IDX: 358 case LPROPS_FREE: 359 lpt_heap_replace(c, old_lprops, new_lprops, cat); 360 break; 361 case LPROPS_UNCAT: 362 case LPROPS_EMPTY: 363 case LPROPS_FREEABLE: 364 case LPROPS_FRDI_IDX: 365 list_replace(&old_lprops->list, &new_lprops->list); 366 break; 367 default: 368 ubifs_assert(0); 369 } 370 } 371 372 /** 373 * ubifs_ensure_cat - ensure LEB properties are categorized. 374 * @c: UBIFS file-system description object 375 * @lprops: LEB properties 376 * 377 * A LEB may have fallen off of the bottom of a heap, and ended up as 378 * un-categorized even though it has enough space for us now. If that is the 379 * case this function will put the LEB back onto a heap. 380 */ 381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 382 { 383 int cat = lprops->flags & LPROPS_CAT_MASK; 384 385 if (cat != LPROPS_UNCAT) 386 return; 387 cat = ubifs_categorize_lprops(c, lprops); 388 if (cat == LPROPS_UNCAT) 389 return; 390 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 391 ubifs_add_to_cat(c, lprops, cat); 392 } 393 394 /** 395 * ubifs_categorize_lprops - categorize LEB properties. 396 * @c: UBIFS file-system description object 397 * @lprops: LEB properties to categorize 398 * 399 * LEB properties are categorized to enable fast find operations. This function 400 * returns the LEB category to which the LEB properties belong. Note however 401 * that if the LEB category is stored as a heap and the heap is full, the 402 * LEB properties may have their category changed to %LPROPS_UNCAT. 403 */ 404 int ubifs_categorize_lprops(const struct ubifs_info *c, 405 const struct ubifs_lprops *lprops) 406 { 407 if (lprops->flags & LPROPS_TAKEN) 408 return LPROPS_UNCAT; 409 410 if (lprops->free == c->leb_size) { 411 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 412 return LPROPS_EMPTY; 413 } 414 415 if (lprops->free + lprops->dirty == c->leb_size) { 416 if (lprops->flags & LPROPS_INDEX) 417 return LPROPS_FRDI_IDX; 418 else 419 return LPROPS_FREEABLE; 420 } 421 422 if (lprops->flags & LPROPS_INDEX) { 423 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 424 return LPROPS_DIRTY_IDX; 425 } else { 426 if (lprops->dirty >= c->dead_wm && 427 lprops->dirty > lprops->free) 428 return LPROPS_DIRTY; 429 if (lprops->free > 0) 430 return LPROPS_FREE; 431 } 432 433 return LPROPS_UNCAT; 434 } 435 436 /** 437 * change_category - change LEB properties category. 438 * @c: UBIFS file-system description object 439 * @lprops: LEB properties to re-categorize 440 * 441 * LEB properties are categorized to enable fast find operations. When the LEB 442 * properties change they must be re-categorized. 443 */ 444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 445 { 446 int old_cat = lprops->flags & LPROPS_CAT_MASK; 447 int new_cat = ubifs_categorize_lprops(c, lprops); 448 449 if (old_cat == new_cat) { 450 struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1]; 451 452 /* lprops on a heap now must be moved up or down */ 453 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 454 return; /* Not on a heap */ 455 heap = &c->lpt_heap[new_cat - 1]; 456 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 457 } else { 458 ubifs_remove_from_cat(c, lprops, old_cat); 459 ubifs_add_to_cat(c, lprops, new_cat); 460 } 461 } 462 463 /** 464 * ubifs_calc_dark - calculate LEB dark space size. 465 * @c: the UBIFS file-system description object 466 * @spc: amount of free and dirty space in the LEB 467 * 468 * This function calculates and returns amount of dark space in an LEB which 469 * has @spc bytes of free and dirty space. 470 * 471 * UBIFS is trying to account the space which might not be usable, and this 472 * space is called "dark space". For example, if an LEB has only %512 free 473 * bytes, it is dark space, because it cannot fit a large data node. 474 */ 475 int ubifs_calc_dark(const struct ubifs_info *c, int spc) 476 { 477 ubifs_assert(!(spc & 7)); 478 479 if (spc < c->dark_wm) 480 return spc; 481 482 /* 483 * If we have slightly more space then the dark space watermark, we can 484 * anyway safely assume it we'll be able to write a node of the 485 * smallest size there. 486 */ 487 if (spc - c->dark_wm < MIN_WRITE_SZ) 488 return spc - MIN_WRITE_SZ; 489 490 return c->dark_wm; 491 } 492 493 /** 494 * is_lprops_dirty - determine if LEB properties are dirty. 495 * @c: the UBIFS file-system description object 496 * @lprops: LEB properties to test 497 */ 498 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 499 { 500 struct ubifs_pnode *pnode; 501 int pos; 502 503 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 504 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 505 struct ubifs_pnode, 506 lprops[0]); 507 return !test_bit(COW_CNODE, &pnode->flags) && 508 test_bit(DIRTY_CNODE, &pnode->flags); 509 } 510 511 /** 512 * ubifs_change_lp - change LEB properties. 513 * @c: the UBIFS file-system description object 514 * @lp: LEB properties to change 515 * @free: new free space amount 516 * @dirty: new dirty space amount 517 * @flags: new flags 518 * @idx_gc_cnt: change to the count of @idx_gc list 519 * 520 * This function changes LEB properties (@free, @dirty or @flag). However, the 521 * property which has the %LPROPS_NC value is not changed. Returns a pointer to 522 * the updated LEB properties on success and a negative error code on failure. 523 * 524 * Note, the LEB properties may have had to be copied (due to COW) and 525 * consequently the pointer returned may not be the same as the pointer 526 * passed. 527 */ 528 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 529 const struct ubifs_lprops *lp, 530 int free, int dirty, int flags, 531 int idx_gc_cnt) 532 { 533 /* 534 * This is the only function that is allowed to change lprops, so we 535 * discard the "const" qualifier. 536 */ 537 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 538 539 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 540 lprops->lnum, free, dirty, flags); 541 542 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 543 ubifs_assert(c->lst.empty_lebs >= 0 && 544 c->lst.empty_lebs <= c->main_lebs); 545 ubifs_assert(c->freeable_cnt >= 0); 546 ubifs_assert(c->freeable_cnt <= c->main_lebs); 547 ubifs_assert(c->lst.taken_empty_lebs >= 0); 548 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); 549 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 550 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 551 ubifs_assert(!(c->lst.total_used & 7)); 552 ubifs_assert(free == LPROPS_NC || free >= 0); 553 ubifs_assert(dirty == LPROPS_NC || dirty >= 0); 554 555 if (!is_lprops_dirty(c, lprops)) { 556 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 557 if (IS_ERR(lprops)) 558 return lprops; 559 } else 560 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 561 562 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); 563 564 spin_lock(&c->space_lock); 565 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 566 c->lst.taken_empty_lebs -= 1; 567 568 if (!(lprops->flags & LPROPS_INDEX)) { 569 int old_spc; 570 571 old_spc = lprops->free + lprops->dirty; 572 if (old_spc < c->dead_wm) 573 c->lst.total_dead -= old_spc; 574 else 575 c->lst.total_dark -= ubifs_calc_dark(c, old_spc); 576 577 c->lst.total_used -= c->leb_size - old_spc; 578 } 579 580 if (free != LPROPS_NC) { 581 free = ALIGN(free, 8); 582 c->lst.total_free += free - lprops->free; 583 584 /* Increase or decrease empty LEBs counter if needed */ 585 if (free == c->leb_size) { 586 if (lprops->free != c->leb_size) 587 c->lst.empty_lebs += 1; 588 } else if (lprops->free == c->leb_size) 589 c->lst.empty_lebs -= 1; 590 lprops->free = free; 591 } 592 593 if (dirty != LPROPS_NC) { 594 dirty = ALIGN(dirty, 8); 595 c->lst.total_dirty += dirty - lprops->dirty; 596 lprops->dirty = dirty; 597 } 598 599 if (flags != LPROPS_NC) { 600 /* Take care about indexing LEBs counter if needed */ 601 if ((lprops->flags & LPROPS_INDEX)) { 602 if (!(flags & LPROPS_INDEX)) 603 c->lst.idx_lebs -= 1; 604 } else if (flags & LPROPS_INDEX) 605 c->lst.idx_lebs += 1; 606 lprops->flags = flags; 607 } 608 609 if (!(lprops->flags & LPROPS_INDEX)) { 610 int new_spc; 611 612 new_spc = lprops->free + lprops->dirty; 613 if (new_spc < c->dead_wm) 614 c->lst.total_dead += new_spc; 615 else 616 c->lst.total_dark += ubifs_calc_dark(c, new_spc); 617 618 c->lst.total_used += c->leb_size - new_spc; 619 } 620 621 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 622 c->lst.taken_empty_lebs += 1; 623 624 change_category(c, lprops); 625 c->idx_gc_cnt += idx_gc_cnt; 626 spin_unlock(&c->space_lock); 627 return lprops; 628 } 629 630 /** 631 * ubifs_get_lp_stats - get lprops statistics. 632 * @c: UBIFS file-system description object 633 * @st: return statistics 634 */ 635 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) 636 { 637 spin_lock(&c->space_lock); 638 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); 639 spin_unlock(&c->space_lock); 640 } 641 642 /** 643 * ubifs_change_one_lp - change LEB properties. 644 * @c: the UBIFS file-system description object 645 * @lnum: LEB to change properties for 646 * @free: amount of free space 647 * @dirty: amount of dirty space 648 * @flags_set: flags to set 649 * @flags_clean: flags to clean 650 * @idx_gc_cnt: change to the count of idx_gc list 651 * 652 * This function changes properties of LEB @lnum. It is a helper wrapper over 653 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 654 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 655 * a negative error code in case of failure. 656 */ 657 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 658 int flags_set, int flags_clean, int idx_gc_cnt) 659 { 660 int err = 0, flags; 661 const struct ubifs_lprops *lp; 662 663 ubifs_get_lprops(c); 664 665 lp = ubifs_lpt_lookup_dirty(c, lnum); 666 if (IS_ERR(lp)) { 667 err = PTR_ERR(lp); 668 goto out; 669 } 670 671 flags = (lp->flags | flags_set) & ~flags_clean; 672 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 673 if (IS_ERR(lp)) 674 err = PTR_ERR(lp); 675 676 out: 677 ubifs_release_lprops(c); 678 if (err) 679 ubifs_err("cannot change properties of LEB %d, error %d", 680 lnum, err); 681 return err; 682 } 683 684 /** 685 * ubifs_update_one_lp - update LEB properties. 686 * @c: the UBIFS file-system description object 687 * @lnum: LEB to change properties for 688 * @free: amount of free space 689 * @dirty: amount of dirty space to add 690 * @flags_set: flags to set 691 * @flags_clean: flags to clean 692 * 693 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 694 * current dirty space, not substitutes it. 695 */ 696 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 697 int flags_set, int flags_clean) 698 { 699 int err = 0, flags; 700 const struct ubifs_lprops *lp; 701 702 ubifs_get_lprops(c); 703 704 lp = ubifs_lpt_lookup_dirty(c, lnum); 705 if (IS_ERR(lp)) { 706 err = PTR_ERR(lp); 707 goto out; 708 } 709 710 flags = (lp->flags | flags_set) & ~flags_clean; 711 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 712 if (IS_ERR(lp)) 713 err = PTR_ERR(lp); 714 715 out: 716 ubifs_release_lprops(c); 717 if (err) 718 ubifs_err("cannot update properties of LEB %d, error %d", 719 lnum, err); 720 return err; 721 } 722 723 /** 724 * ubifs_read_one_lp - read LEB properties. 725 * @c: the UBIFS file-system description object 726 * @lnum: LEB to read properties for 727 * @lp: where to store read properties 728 * 729 * This helper function reads properties of a LEB @lnum and stores them in @lp. 730 * Returns zero in case of success and a negative error code in case of 731 * failure. 732 */ 733 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 734 { 735 int err = 0; 736 const struct ubifs_lprops *lpp; 737 738 ubifs_get_lprops(c); 739 740 lpp = ubifs_lpt_lookup(c, lnum); 741 if (IS_ERR(lpp)) { 742 err = PTR_ERR(lpp); 743 ubifs_err("cannot read properties of LEB %d, error %d", 744 lnum, err); 745 goto out; 746 } 747 748 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 749 750 out: 751 ubifs_release_lprops(c); 752 return err; 753 } 754 755 /** 756 * ubifs_fast_find_free - try to find a LEB with free space quickly. 757 * @c: the UBIFS file-system description object 758 * 759 * This function returns LEB properties for a LEB with free space or %NULL if 760 * the function is unable to find a LEB quickly. 761 */ 762 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 763 { 764 struct ubifs_lprops *lprops; 765 struct ubifs_lpt_heap *heap; 766 767 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 768 769 heap = &c->lpt_heap[LPROPS_FREE - 1]; 770 if (heap->cnt == 0) 771 return NULL; 772 773 lprops = heap->arr[0]; 774 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 775 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 776 return lprops; 777 } 778 779 /** 780 * ubifs_fast_find_empty - try to find an empty LEB quickly. 781 * @c: the UBIFS file-system description object 782 * 783 * This function returns LEB properties for an empty LEB or %NULL if the 784 * function is unable to find an empty LEB quickly. 785 */ 786 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 787 { 788 struct ubifs_lprops *lprops; 789 790 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 791 792 if (list_empty(&c->empty_list)) 793 return NULL; 794 795 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 796 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 797 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 798 ubifs_assert(lprops->free == c->leb_size); 799 return lprops; 800 } 801 802 /** 803 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 804 * @c: the UBIFS file-system description object 805 * 806 * This function returns LEB properties for a freeable LEB or %NULL if the 807 * function is unable to find a freeable LEB quickly. 808 */ 809 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 810 { 811 struct ubifs_lprops *lprops; 812 813 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 814 815 if (list_empty(&c->freeable_list)) 816 return NULL; 817 818 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 819 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 820 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 821 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 822 ubifs_assert(c->freeable_cnt > 0); 823 return lprops; 824 } 825 826 /** 827 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 828 * @c: the UBIFS file-system description object 829 * 830 * This function returns LEB properties for a freeable index LEB or %NULL if the 831 * function is unable to find a freeable index LEB quickly. 832 */ 833 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 834 { 835 struct ubifs_lprops *lprops; 836 837 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 838 839 if (list_empty(&c->frdi_idx_list)) 840 return NULL; 841 842 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 843 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 844 ubifs_assert((lprops->flags & LPROPS_INDEX)); 845 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 846 return lprops; 847 } 848 849 #ifdef CONFIG_UBIFS_FS_DEBUG 850 851 /** 852 * dbg_check_cats - check category heaps and lists. 853 * @c: UBIFS file-system description object 854 * 855 * This function returns %0 on success and a negative error code on failure. 856 */ 857 int dbg_check_cats(struct ubifs_info *c) 858 { 859 struct ubifs_lprops *lprops; 860 struct list_head *pos; 861 int i, cat; 862 863 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 864 return 0; 865 866 list_for_each_entry(lprops, &c->empty_list, list) { 867 if (lprops->free != c->leb_size) { 868 ubifs_err("non-empty LEB %d on empty list " 869 "(free %d dirty %d flags %d)", lprops->lnum, 870 lprops->free, lprops->dirty, lprops->flags); 871 return -EINVAL; 872 } 873 if (lprops->flags & LPROPS_TAKEN) { 874 ubifs_err("taken LEB %d on empty list " 875 "(free %d dirty %d flags %d)", lprops->lnum, 876 lprops->free, lprops->dirty, lprops->flags); 877 return -EINVAL; 878 } 879 } 880 881 i = 0; 882 list_for_each_entry(lprops, &c->freeable_list, list) { 883 if (lprops->free + lprops->dirty != c->leb_size) { 884 ubifs_err("non-freeable LEB %d on freeable list " 885 "(free %d dirty %d flags %d)", lprops->lnum, 886 lprops->free, lprops->dirty, lprops->flags); 887 return -EINVAL; 888 } 889 if (lprops->flags & LPROPS_TAKEN) { 890 ubifs_err("taken LEB %d on freeable list " 891 "(free %d dirty %d flags %d)", lprops->lnum, 892 lprops->free, lprops->dirty, lprops->flags); 893 return -EINVAL; 894 } 895 i += 1; 896 } 897 if (i != c->freeable_cnt) { 898 ubifs_err("freeable list count %d expected %d", i, 899 c->freeable_cnt); 900 return -EINVAL; 901 } 902 903 i = 0; 904 list_for_each(pos, &c->idx_gc) 905 i += 1; 906 if (i != c->idx_gc_cnt) { 907 ubifs_err("idx_gc list count %d expected %d", i, 908 c->idx_gc_cnt); 909 return -EINVAL; 910 } 911 912 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 913 if (lprops->free + lprops->dirty != c->leb_size) { 914 ubifs_err("non-freeable LEB %d on frdi_idx list " 915 "(free %d dirty %d flags %d)", lprops->lnum, 916 lprops->free, lprops->dirty, lprops->flags); 917 return -EINVAL; 918 } 919 if (lprops->flags & LPROPS_TAKEN) { 920 ubifs_err("taken LEB %d on frdi_idx list " 921 "(free %d dirty %d flags %d)", lprops->lnum, 922 lprops->free, lprops->dirty, lprops->flags); 923 return -EINVAL; 924 } 925 if (!(lprops->flags & LPROPS_INDEX)) { 926 ubifs_err("non-index LEB %d on frdi_idx list " 927 "(free %d dirty %d flags %d)", lprops->lnum, 928 lprops->free, lprops->dirty, lprops->flags); 929 return -EINVAL; 930 } 931 } 932 933 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 934 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 935 936 for (i = 0; i < heap->cnt; i++) { 937 lprops = heap->arr[i]; 938 if (!lprops) { 939 ubifs_err("null ptr in LPT heap cat %d", cat); 940 return -EINVAL; 941 } 942 if (lprops->hpos != i) { 943 ubifs_err("bad ptr in LPT heap cat %d", cat); 944 return -EINVAL; 945 } 946 if (lprops->flags & LPROPS_TAKEN) { 947 ubifs_err("taken LEB in LPT heap cat %d", cat); 948 return -EINVAL; 949 } 950 } 951 } 952 953 return 0; 954 } 955 956 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 957 int add_pos) 958 { 959 int i = 0, j, err = 0; 960 961 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 962 return; 963 964 for (i = 0; i < heap->cnt; i++) { 965 struct ubifs_lprops *lprops = heap->arr[i]; 966 struct ubifs_lprops *lp; 967 968 if (i != add_pos) 969 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 970 err = 1; 971 goto out; 972 } 973 if (lprops->hpos != i) { 974 err = 2; 975 goto out; 976 } 977 lp = ubifs_lpt_lookup(c, lprops->lnum); 978 if (IS_ERR(lp)) { 979 err = 3; 980 goto out; 981 } 982 if (lprops != lp) { 983 dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 984 (size_t)lprops, (size_t)lp, lprops->lnum, 985 lp->lnum); 986 err = 4; 987 goto out; 988 } 989 for (j = 0; j < i; j++) { 990 lp = heap->arr[j]; 991 if (lp == lprops) { 992 err = 5; 993 goto out; 994 } 995 if (lp->lnum == lprops->lnum) { 996 err = 6; 997 goto out; 998 } 999 } 1000 } 1001 out: 1002 if (err) { 1003 dbg_msg("failed cat %d hpos %d err %d", cat, i, err); 1004 dbg_dump_stack(); 1005 dbg_dump_heap(c, heap, cat); 1006 } 1007 } 1008 1009 /** 1010 * scan_check_cb - scan callback. 1011 * @c: the UBIFS file-system description object 1012 * @lp: LEB properties to scan 1013 * @in_tree: whether the LEB properties are in main memory 1014 * @lst: lprops statistics to update 1015 * 1016 * This function returns a code that indicates whether the scan should continue 1017 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1018 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1019 * (%LPT_SCAN_STOP). 1020 */ 1021 static int scan_check_cb(struct ubifs_info *c, 1022 const struct ubifs_lprops *lp, int in_tree, 1023 struct ubifs_lp_stats *lst) 1024 { 1025 struct ubifs_scan_leb *sleb; 1026 struct ubifs_scan_node *snod; 1027 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; 1028 void *buf = NULL; 1029 1030 cat = lp->flags & LPROPS_CAT_MASK; 1031 if (cat != LPROPS_UNCAT) { 1032 cat = ubifs_categorize_lprops(c, lp); 1033 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1034 ubifs_err("bad LEB category %d expected %d", 1035 (lp->flags & LPROPS_CAT_MASK), cat); 1036 return -EINVAL; 1037 } 1038 } 1039 1040 /* Check lp is on its category list (if it has one) */ 1041 if (in_tree) { 1042 struct list_head *list = NULL; 1043 1044 switch (cat) { 1045 case LPROPS_EMPTY: 1046 list = &c->empty_list; 1047 break; 1048 case LPROPS_FREEABLE: 1049 list = &c->freeable_list; 1050 break; 1051 case LPROPS_FRDI_IDX: 1052 list = &c->frdi_idx_list; 1053 break; 1054 case LPROPS_UNCAT: 1055 list = &c->uncat_list; 1056 break; 1057 } 1058 if (list) { 1059 struct ubifs_lprops *lprops; 1060 int found = 0; 1061 1062 list_for_each_entry(lprops, list, list) { 1063 if (lprops == lp) { 1064 found = 1; 1065 break; 1066 } 1067 } 1068 if (!found) { 1069 ubifs_err("bad LPT list (category %d)", cat); 1070 return -EINVAL; 1071 } 1072 } 1073 } 1074 1075 /* Check lp is on its category heap (if it has one) */ 1076 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1077 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1078 1079 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1080 lp != heap->arr[lp->hpos]) { 1081 ubifs_err("bad LPT heap (category %d)", cat); 1082 return -EINVAL; 1083 } 1084 } 1085 1086 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1087 if (!buf) 1088 return -ENOMEM; 1089 1090 /* 1091 * After an unclean unmount, empty and freeable LEBs 1092 * may contain garbage - do not scan them. 1093 */ 1094 if (lp->free == c->leb_size) { 1095 lst->empty_lebs += 1; 1096 lst->total_free += c->leb_size; 1097 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1098 return LPT_SCAN_CONTINUE; 1099 } 1100 if (lp->free + lp->dirty == c->leb_size && 1101 !(lp->flags & LPROPS_INDEX)) { 1102 lst->total_free += lp->free; 1103 lst->total_dirty += lp->dirty; 1104 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1105 return LPT_SCAN_CONTINUE; 1106 } 1107 1108 sleb = ubifs_scan(c, lnum, 0, buf, 0); 1109 if (IS_ERR(sleb)) { 1110 ret = PTR_ERR(sleb); 1111 if (ret == -EUCLEAN) { 1112 dbg_dump_lprops(c); 1113 dbg_dump_budg(c, &c->bi); 1114 } 1115 goto out; 1116 } 1117 1118 is_idx = -1; 1119 list_for_each_entry(snod, &sleb->nodes, list) { 1120 int found, level = 0; 1121 1122 cond_resched(); 1123 1124 if (is_idx == -1) 1125 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1126 1127 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1128 ubifs_err("indexing node in data LEB %d:%d", 1129 lnum, snod->offs); 1130 goto out_destroy; 1131 } 1132 1133 if (snod->type == UBIFS_IDX_NODE) { 1134 struct ubifs_idx_node *idx = snod->node; 1135 1136 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1137 level = le16_to_cpu(idx->level); 1138 } 1139 1140 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1141 snod->offs, is_idx); 1142 if (found) { 1143 if (found < 0) 1144 goto out_destroy; 1145 used += ALIGN(snod->len, 8); 1146 } 1147 } 1148 1149 free = c->leb_size - sleb->endpt; 1150 dirty = sleb->endpt - used; 1151 1152 if (free > c->leb_size || free < 0 || dirty > c->leb_size || 1153 dirty < 0) { 1154 ubifs_err("bad calculated accounting for LEB %d: " 1155 "free %d, dirty %d", lnum, free, dirty); 1156 goto out_destroy; 1157 } 1158 1159 if (lp->free + lp->dirty == c->leb_size && 1160 free + dirty == c->leb_size) 1161 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1162 (!is_idx && free == c->leb_size) || 1163 lp->free == c->leb_size) { 1164 /* 1165 * Empty or freeable LEBs could contain index 1166 * nodes from an uncompleted commit due to an 1167 * unclean unmount. Or they could be empty for 1168 * the same reason. Or it may simply not have been 1169 * unmapped. 1170 */ 1171 free = lp->free; 1172 dirty = lp->dirty; 1173 is_idx = 0; 1174 } 1175 1176 if (is_idx && lp->free + lp->dirty == free + dirty && 1177 lnum != c->ihead_lnum) { 1178 /* 1179 * After an unclean unmount, an index LEB could have a different 1180 * amount of free space than the value recorded by lprops. That 1181 * is because the in-the-gaps method may use free space or 1182 * create free space (as a side-effect of using ubi_leb_change 1183 * and not writing the whole LEB). The incorrect free space 1184 * value is not a problem because the index is only ever 1185 * allocated empty LEBs, so there will never be an attempt to 1186 * write to the free space at the end of an index LEB - except 1187 * by the in-the-gaps method for which it is not a problem. 1188 */ 1189 free = lp->free; 1190 dirty = lp->dirty; 1191 } 1192 1193 if (lp->free != free || lp->dirty != dirty) 1194 goto out_print; 1195 1196 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1197 if (free == c->leb_size) 1198 /* Free but not unmapped LEB, it's fine */ 1199 is_idx = 0; 1200 else { 1201 ubifs_err("indexing node without indexing " 1202 "flag"); 1203 goto out_print; 1204 } 1205 } 1206 1207 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1208 ubifs_err("data node with indexing flag"); 1209 goto out_print; 1210 } 1211 1212 if (free == c->leb_size) 1213 lst->empty_lebs += 1; 1214 1215 if (is_idx) 1216 lst->idx_lebs += 1; 1217 1218 if (!(lp->flags & LPROPS_INDEX)) 1219 lst->total_used += c->leb_size - free - dirty; 1220 lst->total_free += free; 1221 lst->total_dirty += dirty; 1222 1223 if (!(lp->flags & LPROPS_INDEX)) { 1224 int spc = free + dirty; 1225 1226 if (spc < c->dead_wm) 1227 lst->total_dead += spc; 1228 else 1229 lst->total_dark += ubifs_calc_dark(c, spc); 1230 } 1231 1232 ubifs_scan_destroy(sleb); 1233 vfree(buf); 1234 return LPT_SCAN_CONTINUE; 1235 1236 out_print: 1237 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, " 1238 "should be free %d, dirty %d", 1239 lnum, lp->free, lp->dirty, lp->flags, free, dirty); 1240 dbg_dump_leb(c, lnum); 1241 out_destroy: 1242 ubifs_scan_destroy(sleb); 1243 ret = -EINVAL; 1244 out: 1245 vfree(buf); 1246 return ret; 1247 } 1248 1249 /** 1250 * dbg_check_lprops - check all LEB properties. 1251 * @c: UBIFS file-system description object 1252 * 1253 * This function checks all LEB properties and makes sure they are all correct. 1254 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1255 * and other negative error codes in case of other errors. This function is 1256 * called while the file system is locked (because of commit start), so no 1257 * additional locking is required. Note that locking the LPT mutex would cause 1258 * a circular lock dependency with the TNC mutex. 1259 */ 1260 int dbg_check_lprops(struct ubifs_info *c) 1261 { 1262 int i, err; 1263 struct ubifs_lp_stats lst; 1264 1265 if (!dbg_is_chk_lprops(c)) 1266 return 0; 1267 1268 /* 1269 * As we are going to scan the media, the write buffers have to be 1270 * synchronized. 1271 */ 1272 for (i = 0; i < c->jhead_cnt; i++) { 1273 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1274 if (err) 1275 return err; 1276 } 1277 1278 memset(&lst, 0, sizeof(struct ubifs_lp_stats)); 1279 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1280 (ubifs_lpt_scan_callback)scan_check_cb, 1281 &lst); 1282 if (err && err != -ENOSPC) 1283 goto out; 1284 1285 if (lst.empty_lebs != c->lst.empty_lebs || 1286 lst.idx_lebs != c->lst.idx_lebs || 1287 lst.total_free != c->lst.total_free || 1288 lst.total_dirty != c->lst.total_dirty || 1289 lst.total_used != c->lst.total_used) { 1290 ubifs_err("bad overall accounting"); 1291 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, " 1292 "total_free %lld, total_dirty %lld, total_used %lld", 1293 lst.empty_lebs, lst.idx_lebs, lst.total_free, 1294 lst.total_dirty, lst.total_used); 1295 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, " 1296 "total_free %lld, total_dirty %lld, total_used %lld", 1297 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1298 c->lst.total_dirty, c->lst.total_used); 1299 err = -EINVAL; 1300 goto out; 1301 } 1302 1303 if (lst.total_dead != c->lst.total_dead || 1304 lst.total_dark != c->lst.total_dark) { 1305 ubifs_err("bad dead/dark space accounting"); 1306 ubifs_err("calculated: total_dead %lld, total_dark %lld", 1307 lst.total_dead, lst.total_dark); 1308 ubifs_err("read from lprops: total_dead %lld, total_dark %lld", 1309 c->lst.total_dead, c->lst.total_dark); 1310 err = -EINVAL; 1311 goto out; 1312 } 1313 1314 err = dbg_check_cats(c); 1315 out: 1316 return err; 1317 } 1318 1319 #endif /* CONFIG_UBIFS_FS_DEBUG */ 1320