xref: /openbmc/linux/fs/ubifs/lprops.c (revision e290ed81)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the functions that access LEB properties and their
25  * categories. LEBs are categorized based on the needs of UBIFS, and the
26  * categories are stored as either heaps or lists to provide a fast way of
27  * finding a LEB in a particular category. For example, UBIFS may need to find
28  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29  */
30 
31 #include "ubifs.h"
32 
33 /**
34  * get_heap_comp_val - get the LEB properties value for heap comparisons.
35  * @lprops: LEB properties
36  * @cat: LEB category
37  */
38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 	switch (cat) {
41 	case LPROPS_FREE:
42 		return lprops->free;
43 	case LPROPS_DIRTY_IDX:
44 		return lprops->free + lprops->dirty;
45 	default:
46 		return lprops->dirty;
47 	}
48 }
49 
50 /**
51  * move_up_lpt_heap - move a new heap entry up as far as possible.
52  * @c: UBIFS file-system description object
53  * @heap: LEB category heap
54  * @lprops: LEB properties to move
55  * @cat: LEB category
56  *
57  * New entries to a heap are added at the bottom and then moved up until the
58  * parent's value is greater.  In the case of LPT's category heaps, the value
59  * is either the amount of free space or the amount of dirty space, depending
60  * on the category.
61  */
62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 			     struct ubifs_lprops *lprops, int cat)
64 {
65 	int val1, val2, hpos;
66 
67 	hpos = lprops->hpos;
68 	if (!hpos)
69 		return; /* Already top of the heap */
70 	val1 = get_heap_comp_val(lprops, cat);
71 	/* Compare to parent and, if greater, move up the heap */
72 	do {
73 		int ppos = (hpos - 1) / 2;
74 
75 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 		if (val2 >= val1)
77 			return;
78 		/* Greater than parent so move up */
79 		heap->arr[ppos]->hpos = hpos;
80 		heap->arr[hpos] = heap->arr[ppos];
81 		heap->arr[ppos] = lprops;
82 		lprops->hpos = ppos;
83 		hpos = ppos;
84 	} while (hpos);
85 }
86 
87 /**
88  * adjust_lpt_heap - move a changed heap entry up or down the heap.
89  * @c: UBIFS file-system description object
90  * @heap: LEB category heap
91  * @lprops: LEB properties to move
92  * @hpos: heap position of @lprops
93  * @cat: LEB category
94  *
95  * Changed entries in a heap are moved up or down until the parent's value is
96  * greater.  In the case of LPT's category heaps, the value is either the amount
97  * of free space or the amount of dirty space, depending on the category.
98  */
99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 			    struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 	int val1, val2, val3, cpos;
103 
104 	val1 = get_heap_comp_val(lprops, cat);
105 	/* Compare to parent and, if greater than parent, move up the heap */
106 	if (hpos) {
107 		int ppos = (hpos - 1) / 2;
108 
109 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 		if (val1 > val2) {
111 			/* Greater than parent so move up */
112 			while (1) {
113 				heap->arr[ppos]->hpos = hpos;
114 				heap->arr[hpos] = heap->arr[ppos];
115 				heap->arr[ppos] = lprops;
116 				lprops->hpos = ppos;
117 				hpos = ppos;
118 				if (!hpos)
119 					return;
120 				ppos = (hpos - 1) / 2;
121 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 				if (val1 <= val2)
123 					return;
124 				/* Still greater than parent so keep going */
125 			}
126 		}
127 	}
128 
129 	/* Not greater than parent, so compare to children */
130 	while (1) {
131 		/* Compare to left child */
132 		cpos = hpos * 2 + 1;
133 		if (cpos >= heap->cnt)
134 			return;
135 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 		if (val1 < val2) {
137 			/* Less than left child, so promote biggest child */
138 			if (cpos + 1 < heap->cnt) {
139 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 							 cat);
141 				if (val3 > val2)
142 					cpos += 1; /* Right child is bigger */
143 			}
144 			heap->arr[cpos]->hpos = hpos;
145 			heap->arr[hpos] = heap->arr[cpos];
146 			heap->arr[cpos] = lprops;
147 			lprops->hpos = cpos;
148 			hpos = cpos;
149 			continue;
150 		}
151 		/* Compare to right child */
152 		cpos += 1;
153 		if (cpos >= heap->cnt)
154 			return;
155 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 		if (val1 < val3) {
157 			/* Less than right child, so promote right child */
158 			heap->arr[cpos]->hpos = hpos;
159 			heap->arr[hpos] = heap->arr[cpos];
160 			heap->arr[cpos] = lprops;
161 			lprops->hpos = cpos;
162 			hpos = cpos;
163 			continue;
164 		}
165 		return;
166 	}
167 }
168 
169 /**
170  * add_to_lpt_heap - add LEB properties to a LEB category heap.
171  * @c: UBIFS file-system description object
172  * @lprops: LEB properties to add
173  * @cat: LEB category
174  *
175  * This function returns %1 if @lprops is added to the heap for LEB category
176  * @cat, otherwise %0 is returned because the heap is full.
177  */
178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 			   int cat)
180 {
181 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182 
183 	if (heap->cnt >= heap->max_cnt) {
184 		const int b = LPT_HEAP_SZ / 2 - 1;
185 		int cpos, val1, val2;
186 
187 		/* Compare to some other LEB on the bottom of heap */
188 		/* Pick a position kind of randomly */
189 		cpos = (((size_t)lprops >> 4) & b) + b;
190 		ubifs_assert(cpos >= b);
191 		ubifs_assert(cpos < LPT_HEAP_SZ);
192 		ubifs_assert(cpos < heap->cnt);
193 
194 		val1 = get_heap_comp_val(lprops, cat);
195 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 		if (val1 > val2) {
197 			struct ubifs_lprops *lp;
198 
199 			lp = heap->arr[cpos];
200 			lp->flags &= ~LPROPS_CAT_MASK;
201 			lp->flags |= LPROPS_UNCAT;
202 			list_add(&lp->list, &c->uncat_list);
203 			lprops->hpos = cpos;
204 			heap->arr[cpos] = lprops;
205 			move_up_lpt_heap(c, heap, lprops, cat);
206 			dbg_check_heap(c, heap, cat, lprops->hpos);
207 			return 1; /* Added to heap */
208 		}
209 		dbg_check_heap(c, heap, cat, -1);
210 		return 0; /* Not added to heap */
211 	} else {
212 		lprops->hpos = heap->cnt++;
213 		heap->arr[lprops->hpos] = lprops;
214 		move_up_lpt_heap(c, heap, lprops, cat);
215 		dbg_check_heap(c, heap, cat, lprops->hpos);
216 		return 1; /* Added to heap */
217 	}
218 }
219 
220 /**
221  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222  * @c: UBIFS file-system description object
223  * @lprops: LEB properties to remove
224  * @cat: LEB category
225  */
226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 				 struct ubifs_lprops *lprops, int cat)
228 {
229 	struct ubifs_lpt_heap *heap;
230 	int hpos = lprops->hpos;
231 
232 	heap = &c->lpt_heap[cat - 1];
233 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 	ubifs_assert(heap->arr[hpos] == lprops);
235 	heap->cnt -= 1;
236 	if (hpos < heap->cnt) {
237 		heap->arr[hpos] = heap->arr[heap->cnt];
238 		heap->arr[hpos]->hpos = hpos;
239 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 	}
241 	dbg_check_heap(c, heap, cat, -1);
242 }
243 
244 /**
245  * lpt_heap_replace - replace lprops in a category heap.
246  * @c: UBIFS file-system description object
247  * @old_lprops: LEB properties to replace
248  * @new_lprops: LEB properties with which to replace
249  * @cat: LEB category
250  *
251  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252  * and the lprops that the pnode contains.  When that happens, references in
253  * the category heaps to those lprops must be updated to point to the new
254  * lprops.  This function does that.
255  */
256 static void lpt_heap_replace(struct ubifs_info *c,
257 			     struct ubifs_lprops *old_lprops,
258 			     struct ubifs_lprops *new_lprops, int cat)
259 {
260 	struct ubifs_lpt_heap *heap;
261 	int hpos = new_lprops->hpos;
262 
263 	heap = &c->lpt_heap[cat - 1];
264 	heap->arr[hpos] = new_lprops;
265 }
266 
267 /**
268  * ubifs_add_to_cat - add LEB properties to a category list or heap.
269  * @c: UBIFS file-system description object
270  * @lprops: LEB properties to add
271  * @cat: LEB category to which to add
272  *
273  * LEB properties are categorized to enable fast find operations.
274  */
275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276 		      int cat)
277 {
278 	switch (cat) {
279 	case LPROPS_DIRTY:
280 	case LPROPS_DIRTY_IDX:
281 	case LPROPS_FREE:
282 		if (add_to_lpt_heap(c, lprops, cat))
283 			break;
284 		/* No more room on heap so make it un-categorized */
285 		cat = LPROPS_UNCAT;
286 		/* Fall through */
287 	case LPROPS_UNCAT:
288 		list_add(&lprops->list, &c->uncat_list);
289 		break;
290 	case LPROPS_EMPTY:
291 		list_add(&lprops->list, &c->empty_list);
292 		break;
293 	case LPROPS_FREEABLE:
294 		list_add(&lprops->list, &c->freeable_list);
295 		c->freeable_cnt += 1;
296 		break;
297 	case LPROPS_FRDI_IDX:
298 		list_add(&lprops->list, &c->frdi_idx_list);
299 		break;
300 	default:
301 		ubifs_assert(0);
302 	}
303 	lprops->flags &= ~LPROPS_CAT_MASK;
304 	lprops->flags |= cat;
305 }
306 
307 /**
308  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
309  * @c: UBIFS file-system description object
310  * @lprops: LEB properties to remove
311  * @cat: LEB category from which to remove
312  *
313  * LEB properties are categorized to enable fast find operations.
314  */
315 static void ubifs_remove_from_cat(struct ubifs_info *c,
316 				  struct ubifs_lprops *lprops, int cat)
317 {
318 	switch (cat) {
319 	case LPROPS_DIRTY:
320 	case LPROPS_DIRTY_IDX:
321 	case LPROPS_FREE:
322 		remove_from_lpt_heap(c, lprops, cat);
323 		break;
324 	case LPROPS_FREEABLE:
325 		c->freeable_cnt -= 1;
326 		ubifs_assert(c->freeable_cnt >= 0);
327 		/* Fall through */
328 	case LPROPS_UNCAT:
329 	case LPROPS_EMPTY:
330 	case LPROPS_FRDI_IDX:
331 		ubifs_assert(!list_empty(&lprops->list));
332 		list_del(&lprops->list);
333 		break;
334 	default:
335 		ubifs_assert(0);
336 	}
337 }
338 
339 /**
340  * ubifs_replace_cat - replace lprops in a category list or heap.
341  * @c: UBIFS file-system description object
342  * @old_lprops: LEB properties to replace
343  * @new_lprops: LEB properties with which to replace
344  *
345  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
346  * and the lprops that the pnode contains. When that happens, references in
347  * category lists and heaps must be replaced. This function does that.
348  */
349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
350 		       struct ubifs_lprops *new_lprops)
351 {
352 	int cat;
353 
354 	cat = new_lprops->flags & LPROPS_CAT_MASK;
355 	switch (cat) {
356 	case LPROPS_DIRTY:
357 	case LPROPS_DIRTY_IDX:
358 	case LPROPS_FREE:
359 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
360 		break;
361 	case LPROPS_UNCAT:
362 	case LPROPS_EMPTY:
363 	case LPROPS_FREEABLE:
364 	case LPROPS_FRDI_IDX:
365 		list_replace(&old_lprops->list, &new_lprops->list);
366 		break;
367 	default:
368 		ubifs_assert(0);
369 	}
370 }
371 
372 /**
373  * ubifs_ensure_cat - ensure LEB properties are categorized.
374  * @c: UBIFS file-system description object
375  * @lprops: LEB properties
376  *
377  * A LEB may have fallen off of the bottom of a heap, and ended up as
378  * un-categorized even though it has enough space for us now. If that is the
379  * case this function will put the LEB back onto a heap.
380  */
381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
382 {
383 	int cat = lprops->flags & LPROPS_CAT_MASK;
384 
385 	if (cat != LPROPS_UNCAT)
386 		return;
387 	cat = ubifs_categorize_lprops(c, lprops);
388 	if (cat == LPROPS_UNCAT)
389 		return;
390 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
391 	ubifs_add_to_cat(c, lprops, cat);
392 }
393 
394 /**
395  * ubifs_categorize_lprops - categorize LEB properties.
396  * @c: UBIFS file-system description object
397  * @lprops: LEB properties to categorize
398  *
399  * LEB properties are categorized to enable fast find operations. This function
400  * returns the LEB category to which the LEB properties belong. Note however
401  * that if the LEB category is stored as a heap and the heap is full, the
402  * LEB properties may have their category changed to %LPROPS_UNCAT.
403  */
404 int ubifs_categorize_lprops(const struct ubifs_info *c,
405 			    const struct ubifs_lprops *lprops)
406 {
407 	if (lprops->flags & LPROPS_TAKEN)
408 		return LPROPS_UNCAT;
409 
410 	if (lprops->free == c->leb_size) {
411 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
412 		return LPROPS_EMPTY;
413 	}
414 
415 	if (lprops->free + lprops->dirty == c->leb_size) {
416 		if (lprops->flags & LPROPS_INDEX)
417 			return LPROPS_FRDI_IDX;
418 		else
419 			return LPROPS_FREEABLE;
420 	}
421 
422 	if (lprops->flags & LPROPS_INDEX) {
423 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
424 			return LPROPS_DIRTY_IDX;
425 	} else {
426 		if (lprops->dirty >= c->dead_wm &&
427 		    lprops->dirty > lprops->free)
428 			return LPROPS_DIRTY;
429 		if (lprops->free > 0)
430 			return LPROPS_FREE;
431 	}
432 
433 	return LPROPS_UNCAT;
434 }
435 
436 /**
437  * change_category - change LEB properties category.
438  * @c: UBIFS file-system description object
439  * @lprops: LEB properties to re-categorize
440  *
441  * LEB properties are categorized to enable fast find operations. When the LEB
442  * properties change they must be re-categorized.
443  */
444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
445 {
446 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
447 	int new_cat = ubifs_categorize_lprops(c, lprops);
448 
449 	if (old_cat == new_cat) {
450 		struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
451 
452 		/* lprops on a heap now must be moved up or down */
453 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
454 			return; /* Not on a heap */
455 		heap = &c->lpt_heap[new_cat - 1];
456 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
457 	} else {
458 		ubifs_remove_from_cat(c, lprops, old_cat);
459 		ubifs_add_to_cat(c, lprops, new_cat);
460 	}
461 }
462 
463 /**
464  * ubifs_calc_dark - calculate LEB dark space size.
465  * @c: the UBIFS file-system description object
466  * @spc: amount of free and dirty space in the LEB
467  *
468  * This function calculates and returns amount of dark space in an LEB which
469  * has @spc bytes of free and dirty space.
470  *
471  * UBIFS is trying to account the space which might not be usable, and this
472  * space is called "dark space". For example, if an LEB has only %512 free
473  * bytes, it is dark space, because it cannot fit a large data node.
474  */
475 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
476 {
477 	ubifs_assert(!(spc & 7));
478 
479 	if (spc < c->dark_wm)
480 		return spc;
481 
482 	/*
483 	 * If we have slightly more space then the dark space watermark, we can
484 	 * anyway safely assume it we'll be able to write a node of the
485 	 * smallest size there.
486 	 */
487 	if (spc - c->dark_wm < MIN_WRITE_SZ)
488 		return spc - MIN_WRITE_SZ;
489 
490 	return c->dark_wm;
491 }
492 
493 /**
494  * is_lprops_dirty - determine if LEB properties are dirty.
495  * @c: the UBIFS file-system description object
496  * @lprops: LEB properties to test
497  */
498 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
499 {
500 	struct ubifs_pnode *pnode;
501 	int pos;
502 
503 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
504 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
505 						   struct ubifs_pnode,
506 						   lprops[0]);
507 	return !test_bit(COW_CNODE, &pnode->flags) &&
508 	       test_bit(DIRTY_CNODE, &pnode->flags);
509 }
510 
511 /**
512  * ubifs_change_lp - change LEB properties.
513  * @c: the UBIFS file-system description object
514  * @lp: LEB properties to change
515  * @free: new free space amount
516  * @dirty: new dirty space amount
517  * @flags: new flags
518  * @idx_gc_cnt: change to the count of @idx_gc list
519  *
520  * This function changes LEB properties (@free, @dirty or @flag). However, the
521  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
522  * the updated LEB properties on success and a negative error code on failure.
523  *
524  * Note, the LEB properties may have had to be copied (due to COW) and
525  * consequently the pointer returned may not be the same as the pointer
526  * passed.
527  */
528 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
529 					   const struct ubifs_lprops *lp,
530 					   int free, int dirty, int flags,
531 					   int idx_gc_cnt)
532 {
533 	/*
534 	 * This is the only function that is allowed to change lprops, so we
535 	 * discard the "const" qualifier.
536 	 */
537 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
538 
539 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
540 	       lprops->lnum, free, dirty, flags);
541 
542 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
543 	ubifs_assert(c->lst.empty_lebs >= 0 &&
544 		     c->lst.empty_lebs <= c->main_lebs);
545 	ubifs_assert(c->freeable_cnt >= 0);
546 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
547 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
548 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
549 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
550 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
551 	ubifs_assert(!(c->lst.total_used & 7));
552 	ubifs_assert(free == LPROPS_NC || free >= 0);
553 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
554 
555 	if (!is_lprops_dirty(c, lprops)) {
556 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
557 		if (IS_ERR(lprops))
558 			return lprops;
559 	} else
560 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
561 
562 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
563 
564 	spin_lock(&c->space_lock);
565 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
566 		c->lst.taken_empty_lebs -= 1;
567 
568 	if (!(lprops->flags & LPROPS_INDEX)) {
569 		int old_spc;
570 
571 		old_spc = lprops->free + lprops->dirty;
572 		if (old_spc < c->dead_wm)
573 			c->lst.total_dead -= old_spc;
574 		else
575 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
576 
577 		c->lst.total_used -= c->leb_size - old_spc;
578 	}
579 
580 	if (free != LPROPS_NC) {
581 		free = ALIGN(free, 8);
582 		c->lst.total_free += free - lprops->free;
583 
584 		/* Increase or decrease empty LEBs counter if needed */
585 		if (free == c->leb_size) {
586 			if (lprops->free != c->leb_size)
587 				c->lst.empty_lebs += 1;
588 		} else if (lprops->free == c->leb_size)
589 			c->lst.empty_lebs -= 1;
590 		lprops->free = free;
591 	}
592 
593 	if (dirty != LPROPS_NC) {
594 		dirty = ALIGN(dirty, 8);
595 		c->lst.total_dirty += dirty - lprops->dirty;
596 		lprops->dirty = dirty;
597 	}
598 
599 	if (flags != LPROPS_NC) {
600 		/* Take care about indexing LEBs counter if needed */
601 		if ((lprops->flags & LPROPS_INDEX)) {
602 			if (!(flags & LPROPS_INDEX))
603 				c->lst.idx_lebs -= 1;
604 		} else if (flags & LPROPS_INDEX)
605 			c->lst.idx_lebs += 1;
606 		lprops->flags = flags;
607 	}
608 
609 	if (!(lprops->flags & LPROPS_INDEX)) {
610 		int new_spc;
611 
612 		new_spc = lprops->free + lprops->dirty;
613 		if (new_spc < c->dead_wm)
614 			c->lst.total_dead += new_spc;
615 		else
616 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
617 
618 		c->lst.total_used += c->leb_size - new_spc;
619 	}
620 
621 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
622 		c->lst.taken_empty_lebs += 1;
623 
624 	change_category(c, lprops);
625 	c->idx_gc_cnt += idx_gc_cnt;
626 	spin_unlock(&c->space_lock);
627 	return lprops;
628 }
629 
630 /**
631  * ubifs_get_lp_stats - get lprops statistics.
632  * @c: UBIFS file-system description object
633  * @st: return statistics
634  */
635 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
636 {
637 	spin_lock(&c->space_lock);
638 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
639 	spin_unlock(&c->space_lock);
640 }
641 
642 /**
643  * ubifs_change_one_lp - change LEB properties.
644  * @c: the UBIFS file-system description object
645  * @lnum: LEB to change properties for
646  * @free: amount of free space
647  * @dirty: amount of dirty space
648  * @flags_set: flags to set
649  * @flags_clean: flags to clean
650  * @idx_gc_cnt: change to the count of idx_gc list
651  *
652  * This function changes properties of LEB @lnum. It is a helper wrapper over
653  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
654  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
655  * a negative error code in case of failure.
656  */
657 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
658 			int flags_set, int flags_clean, int idx_gc_cnt)
659 {
660 	int err = 0, flags;
661 	const struct ubifs_lprops *lp;
662 
663 	ubifs_get_lprops(c);
664 
665 	lp = ubifs_lpt_lookup_dirty(c, lnum);
666 	if (IS_ERR(lp)) {
667 		err = PTR_ERR(lp);
668 		goto out;
669 	}
670 
671 	flags = (lp->flags | flags_set) & ~flags_clean;
672 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
673 	if (IS_ERR(lp))
674 		err = PTR_ERR(lp);
675 
676 out:
677 	ubifs_release_lprops(c);
678 	if (err)
679 		ubifs_err("cannot change properties of LEB %d, error %d",
680 			  lnum, err);
681 	return err;
682 }
683 
684 /**
685  * ubifs_update_one_lp - update LEB properties.
686  * @c: the UBIFS file-system description object
687  * @lnum: LEB to change properties for
688  * @free: amount of free space
689  * @dirty: amount of dirty space to add
690  * @flags_set: flags to set
691  * @flags_clean: flags to clean
692  *
693  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
694  * current dirty space, not substitutes it.
695  */
696 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
697 			int flags_set, int flags_clean)
698 {
699 	int err = 0, flags;
700 	const struct ubifs_lprops *lp;
701 
702 	ubifs_get_lprops(c);
703 
704 	lp = ubifs_lpt_lookup_dirty(c, lnum);
705 	if (IS_ERR(lp)) {
706 		err = PTR_ERR(lp);
707 		goto out;
708 	}
709 
710 	flags = (lp->flags | flags_set) & ~flags_clean;
711 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
712 	if (IS_ERR(lp))
713 		err = PTR_ERR(lp);
714 
715 out:
716 	ubifs_release_lprops(c);
717 	if (err)
718 		ubifs_err("cannot update properties of LEB %d, error %d",
719 			  lnum, err);
720 	return err;
721 }
722 
723 /**
724  * ubifs_read_one_lp - read LEB properties.
725  * @c: the UBIFS file-system description object
726  * @lnum: LEB to read properties for
727  * @lp: where to store read properties
728  *
729  * This helper function reads properties of a LEB @lnum and stores them in @lp.
730  * Returns zero in case of success and a negative error code in case of
731  * failure.
732  */
733 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
734 {
735 	int err = 0;
736 	const struct ubifs_lprops *lpp;
737 
738 	ubifs_get_lprops(c);
739 
740 	lpp = ubifs_lpt_lookup(c, lnum);
741 	if (IS_ERR(lpp)) {
742 		err = PTR_ERR(lpp);
743 		ubifs_err("cannot read properties of LEB %d, error %d",
744 			  lnum, err);
745 		goto out;
746 	}
747 
748 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
749 
750 out:
751 	ubifs_release_lprops(c);
752 	return err;
753 }
754 
755 /**
756  * ubifs_fast_find_free - try to find a LEB with free space quickly.
757  * @c: the UBIFS file-system description object
758  *
759  * This function returns LEB properties for a LEB with free space or %NULL if
760  * the function is unable to find a LEB quickly.
761  */
762 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
763 {
764 	struct ubifs_lprops *lprops;
765 	struct ubifs_lpt_heap *heap;
766 
767 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
768 
769 	heap = &c->lpt_heap[LPROPS_FREE - 1];
770 	if (heap->cnt == 0)
771 		return NULL;
772 
773 	lprops = heap->arr[0];
774 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
775 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
776 	return lprops;
777 }
778 
779 /**
780  * ubifs_fast_find_empty - try to find an empty LEB quickly.
781  * @c: the UBIFS file-system description object
782  *
783  * This function returns LEB properties for an empty LEB or %NULL if the
784  * function is unable to find an empty LEB quickly.
785  */
786 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
787 {
788 	struct ubifs_lprops *lprops;
789 
790 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
791 
792 	if (list_empty(&c->empty_list))
793 		return NULL;
794 
795 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
796 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
797 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
798 	ubifs_assert(lprops->free == c->leb_size);
799 	return lprops;
800 }
801 
802 /**
803  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
804  * @c: the UBIFS file-system description object
805  *
806  * This function returns LEB properties for a freeable LEB or %NULL if the
807  * function is unable to find a freeable LEB quickly.
808  */
809 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
810 {
811 	struct ubifs_lprops *lprops;
812 
813 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
814 
815 	if (list_empty(&c->freeable_list))
816 		return NULL;
817 
818 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
819 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
820 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
821 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
822 	ubifs_assert(c->freeable_cnt > 0);
823 	return lprops;
824 }
825 
826 /**
827  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
828  * @c: the UBIFS file-system description object
829  *
830  * This function returns LEB properties for a freeable index LEB or %NULL if the
831  * function is unable to find a freeable index LEB quickly.
832  */
833 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
834 {
835 	struct ubifs_lprops *lprops;
836 
837 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
838 
839 	if (list_empty(&c->frdi_idx_list))
840 		return NULL;
841 
842 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
843 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
844 	ubifs_assert((lprops->flags & LPROPS_INDEX));
845 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
846 	return lprops;
847 }
848 
849 #ifdef CONFIG_UBIFS_FS_DEBUG
850 
851 /**
852  * dbg_check_cats - check category heaps and lists.
853  * @c: UBIFS file-system description object
854  *
855  * This function returns %0 on success and a negative error code on failure.
856  */
857 int dbg_check_cats(struct ubifs_info *c)
858 {
859 	struct ubifs_lprops *lprops;
860 	struct list_head *pos;
861 	int i, cat;
862 
863 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
864 		return 0;
865 
866 	list_for_each_entry(lprops, &c->empty_list, list) {
867 		if (lprops->free != c->leb_size) {
868 			ubifs_err("non-empty LEB %d on empty list "
869 				  "(free %d dirty %d flags %d)", lprops->lnum,
870 				  lprops->free, lprops->dirty, lprops->flags);
871 			return -EINVAL;
872 		}
873 		if (lprops->flags & LPROPS_TAKEN) {
874 			ubifs_err("taken LEB %d on empty list "
875 				  "(free %d dirty %d flags %d)", lprops->lnum,
876 				  lprops->free, lprops->dirty, lprops->flags);
877 			return -EINVAL;
878 		}
879 	}
880 
881 	i = 0;
882 	list_for_each_entry(lprops, &c->freeable_list, list) {
883 		if (lprops->free + lprops->dirty != c->leb_size) {
884 			ubifs_err("non-freeable LEB %d on freeable list "
885 				  "(free %d dirty %d flags %d)", lprops->lnum,
886 				  lprops->free, lprops->dirty, lprops->flags);
887 			return -EINVAL;
888 		}
889 		if (lprops->flags & LPROPS_TAKEN) {
890 			ubifs_err("taken LEB %d on freeable list "
891 				  "(free %d dirty %d flags %d)", lprops->lnum,
892 				  lprops->free, lprops->dirty, lprops->flags);
893 			return -EINVAL;
894 		}
895 		i += 1;
896 	}
897 	if (i != c->freeable_cnt) {
898 		ubifs_err("freeable list count %d expected %d", i,
899 			  c->freeable_cnt);
900 		return -EINVAL;
901 	}
902 
903 	i = 0;
904 	list_for_each(pos, &c->idx_gc)
905 		i += 1;
906 	if (i != c->idx_gc_cnt) {
907 		ubifs_err("idx_gc list count %d expected %d", i,
908 			  c->idx_gc_cnt);
909 		return -EINVAL;
910 	}
911 
912 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
913 		if (lprops->free + lprops->dirty != c->leb_size) {
914 			ubifs_err("non-freeable LEB %d on frdi_idx list "
915 				  "(free %d dirty %d flags %d)", lprops->lnum,
916 				  lprops->free, lprops->dirty, lprops->flags);
917 			return -EINVAL;
918 		}
919 		if (lprops->flags & LPROPS_TAKEN) {
920 			ubifs_err("taken LEB %d on frdi_idx list "
921 				  "(free %d dirty %d flags %d)", lprops->lnum,
922 				  lprops->free, lprops->dirty, lprops->flags);
923 			return -EINVAL;
924 		}
925 		if (!(lprops->flags & LPROPS_INDEX)) {
926 			ubifs_err("non-index LEB %d on frdi_idx list "
927 				  "(free %d dirty %d flags %d)", lprops->lnum,
928 				  lprops->free, lprops->dirty, lprops->flags);
929 			return -EINVAL;
930 		}
931 	}
932 
933 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
934 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
935 
936 		for (i = 0; i < heap->cnt; i++) {
937 			lprops = heap->arr[i];
938 			if (!lprops) {
939 				ubifs_err("null ptr in LPT heap cat %d", cat);
940 				return -EINVAL;
941 			}
942 			if (lprops->hpos != i) {
943 				ubifs_err("bad ptr in LPT heap cat %d", cat);
944 				return -EINVAL;
945 			}
946 			if (lprops->flags & LPROPS_TAKEN) {
947 				ubifs_err("taken LEB in LPT heap cat %d", cat);
948 				return -EINVAL;
949 			}
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
957 		    int add_pos)
958 {
959 	int i = 0, j, err = 0;
960 
961 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
962 		return;
963 
964 	for (i = 0; i < heap->cnt; i++) {
965 		struct ubifs_lprops *lprops = heap->arr[i];
966 		struct ubifs_lprops *lp;
967 
968 		if (i != add_pos)
969 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
970 				err = 1;
971 				goto out;
972 			}
973 		if (lprops->hpos != i) {
974 			err = 2;
975 			goto out;
976 		}
977 		lp = ubifs_lpt_lookup(c, lprops->lnum);
978 		if (IS_ERR(lp)) {
979 			err = 3;
980 			goto out;
981 		}
982 		if (lprops != lp) {
983 			dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
984 				(size_t)lprops, (size_t)lp, lprops->lnum,
985 				lp->lnum);
986 			err = 4;
987 			goto out;
988 		}
989 		for (j = 0; j < i; j++) {
990 			lp = heap->arr[j];
991 			if (lp == lprops) {
992 				err = 5;
993 				goto out;
994 			}
995 			if (lp->lnum == lprops->lnum) {
996 				err = 6;
997 				goto out;
998 			}
999 		}
1000 	}
1001 out:
1002 	if (err) {
1003 		dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
1004 		dbg_dump_stack();
1005 		dbg_dump_heap(c, heap, cat);
1006 	}
1007 }
1008 
1009 /**
1010  * scan_check_cb - scan callback.
1011  * @c: the UBIFS file-system description object
1012  * @lp: LEB properties to scan
1013  * @in_tree: whether the LEB properties are in main memory
1014  * @lst: lprops statistics to update
1015  *
1016  * This function returns a code that indicates whether the scan should continue
1017  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1018  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1019  * (%LPT_SCAN_STOP).
1020  */
1021 static int scan_check_cb(struct ubifs_info *c,
1022 			 const struct ubifs_lprops *lp, int in_tree,
1023 			 struct ubifs_lp_stats *lst)
1024 {
1025 	struct ubifs_scan_leb *sleb;
1026 	struct ubifs_scan_node *snod;
1027 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1028 	void *buf = NULL;
1029 
1030 	cat = lp->flags & LPROPS_CAT_MASK;
1031 	if (cat != LPROPS_UNCAT) {
1032 		cat = ubifs_categorize_lprops(c, lp);
1033 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1034 			ubifs_err("bad LEB category %d expected %d",
1035 				  (lp->flags & LPROPS_CAT_MASK), cat);
1036 			return -EINVAL;
1037 		}
1038 	}
1039 
1040 	/* Check lp is on its category list (if it has one) */
1041 	if (in_tree) {
1042 		struct list_head *list = NULL;
1043 
1044 		switch (cat) {
1045 		case LPROPS_EMPTY:
1046 			list = &c->empty_list;
1047 			break;
1048 		case LPROPS_FREEABLE:
1049 			list = &c->freeable_list;
1050 			break;
1051 		case LPROPS_FRDI_IDX:
1052 			list = &c->frdi_idx_list;
1053 			break;
1054 		case LPROPS_UNCAT:
1055 			list = &c->uncat_list;
1056 			break;
1057 		}
1058 		if (list) {
1059 			struct ubifs_lprops *lprops;
1060 			int found = 0;
1061 
1062 			list_for_each_entry(lprops, list, list) {
1063 				if (lprops == lp) {
1064 					found = 1;
1065 					break;
1066 				}
1067 			}
1068 			if (!found) {
1069 				ubifs_err("bad LPT list (category %d)", cat);
1070 				return -EINVAL;
1071 			}
1072 		}
1073 	}
1074 
1075 	/* Check lp is on its category heap (if it has one) */
1076 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1077 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1078 
1079 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1080 		    lp != heap->arr[lp->hpos]) {
1081 			ubifs_err("bad LPT heap (category %d)", cat);
1082 			return -EINVAL;
1083 		}
1084 	}
1085 
1086 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1087 	if (!buf)
1088 		return -ENOMEM;
1089 
1090 	/*
1091 	 * After an unclean unmount, empty and freeable LEBs
1092 	 * may contain garbage - do not scan them.
1093 	 */
1094 	if (lp->free == c->leb_size) {
1095 		lst->empty_lebs += 1;
1096 		lst->total_free += c->leb_size;
1097 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1098 		return LPT_SCAN_CONTINUE;
1099 	}
1100 	if (lp->free + lp->dirty == c->leb_size &&
1101 	    !(lp->flags & LPROPS_INDEX)) {
1102 		lst->total_free  += lp->free;
1103 		lst->total_dirty += lp->dirty;
1104 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1105 		return LPT_SCAN_CONTINUE;
1106 	}
1107 
1108 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1109 	if (IS_ERR(sleb)) {
1110 		ret = PTR_ERR(sleb);
1111 		if (ret == -EUCLEAN) {
1112 			dbg_dump_lprops(c);
1113 			dbg_dump_budg(c, &c->bi);
1114 		}
1115 		goto out;
1116 	}
1117 
1118 	is_idx = -1;
1119 	list_for_each_entry(snod, &sleb->nodes, list) {
1120 		int found, level = 0;
1121 
1122 		cond_resched();
1123 
1124 		if (is_idx == -1)
1125 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1126 
1127 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1128 			ubifs_err("indexing node in data LEB %d:%d",
1129 				  lnum, snod->offs);
1130 			goto out_destroy;
1131 		}
1132 
1133 		if (snod->type == UBIFS_IDX_NODE) {
1134 			struct ubifs_idx_node *idx = snod->node;
1135 
1136 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1137 			level = le16_to_cpu(idx->level);
1138 		}
1139 
1140 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1141 					   snod->offs, is_idx);
1142 		if (found) {
1143 			if (found < 0)
1144 				goto out_destroy;
1145 			used += ALIGN(snod->len, 8);
1146 		}
1147 	}
1148 
1149 	free = c->leb_size - sleb->endpt;
1150 	dirty = sleb->endpt - used;
1151 
1152 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1153 	    dirty < 0) {
1154 		ubifs_err("bad calculated accounting for LEB %d: "
1155 			  "free %d, dirty %d", lnum, free, dirty);
1156 		goto out_destroy;
1157 	}
1158 
1159 	if (lp->free + lp->dirty == c->leb_size &&
1160 	    free + dirty == c->leb_size)
1161 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1162 		    (!is_idx && free == c->leb_size) ||
1163 		    lp->free == c->leb_size) {
1164 			/*
1165 			 * Empty or freeable LEBs could contain index
1166 			 * nodes from an uncompleted commit due to an
1167 			 * unclean unmount. Or they could be empty for
1168 			 * the same reason. Or it may simply not have been
1169 			 * unmapped.
1170 			 */
1171 			free = lp->free;
1172 			dirty = lp->dirty;
1173 			is_idx = 0;
1174 		    }
1175 
1176 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1177 	    lnum != c->ihead_lnum) {
1178 		/*
1179 		 * After an unclean unmount, an index LEB could have a different
1180 		 * amount of free space than the value recorded by lprops. That
1181 		 * is because the in-the-gaps method may use free space or
1182 		 * create free space (as a side-effect of using ubi_leb_change
1183 		 * and not writing the whole LEB). The incorrect free space
1184 		 * value is not a problem because the index is only ever
1185 		 * allocated empty LEBs, so there will never be an attempt to
1186 		 * write to the free space at the end of an index LEB - except
1187 		 * by the in-the-gaps method for which it is not a problem.
1188 		 */
1189 		free = lp->free;
1190 		dirty = lp->dirty;
1191 	}
1192 
1193 	if (lp->free != free || lp->dirty != dirty)
1194 		goto out_print;
1195 
1196 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1197 		if (free == c->leb_size)
1198 			/* Free but not unmapped LEB, it's fine */
1199 			is_idx = 0;
1200 		else {
1201 			ubifs_err("indexing node without indexing "
1202 				  "flag");
1203 			goto out_print;
1204 		}
1205 	}
1206 
1207 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1208 		ubifs_err("data node with indexing flag");
1209 		goto out_print;
1210 	}
1211 
1212 	if (free == c->leb_size)
1213 		lst->empty_lebs += 1;
1214 
1215 	if (is_idx)
1216 		lst->idx_lebs += 1;
1217 
1218 	if (!(lp->flags & LPROPS_INDEX))
1219 		lst->total_used += c->leb_size - free - dirty;
1220 	lst->total_free += free;
1221 	lst->total_dirty += dirty;
1222 
1223 	if (!(lp->flags & LPROPS_INDEX)) {
1224 		int spc = free + dirty;
1225 
1226 		if (spc < c->dead_wm)
1227 			lst->total_dead += spc;
1228 		else
1229 			lst->total_dark += ubifs_calc_dark(c, spc);
1230 	}
1231 
1232 	ubifs_scan_destroy(sleb);
1233 	vfree(buf);
1234 	return LPT_SCAN_CONTINUE;
1235 
1236 out_print:
1237 	ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
1238 		  "should be free %d, dirty %d",
1239 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1240 	dbg_dump_leb(c, lnum);
1241 out_destroy:
1242 	ubifs_scan_destroy(sleb);
1243 	ret = -EINVAL;
1244 out:
1245 	vfree(buf);
1246 	return ret;
1247 }
1248 
1249 /**
1250  * dbg_check_lprops - check all LEB properties.
1251  * @c: UBIFS file-system description object
1252  *
1253  * This function checks all LEB properties and makes sure they are all correct.
1254  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1255  * and other negative error codes in case of other errors. This function is
1256  * called while the file system is locked (because of commit start), so no
1257  * additional locking is required. Note that locking the LPT mutex would cause
1258  * a circular lock dependency with the TNC mutex.
1259  */
1260 int dbg_check_lprops(struct ubifs_info *c)
1261 {
1262 	int i, err;
1263 	struct ubifs_lp_stats lst;
1264 
1265 	if (!dbg_is_chk_lprops(c))
1266 		return 0;
1267 
1268 	/*
1269 	 * As we are going to scan the media, the write buffers have to be
1270 	 * synchronized.
1271 	 */
1272 	for (i = 0; i < c->jhead_cnt; i++) {
1273 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1274 		if (err)
1275 			return err;
1276 	}
1277 
1278 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1279 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1280 				    (ubifs_lpt_scan_callback)scan_check_cb,
1281 				    &lst);
1282 	if (err && err != -ENOSPC)
1283 		goto out;
1284 
1285 	if (lst.empty_lebs != c->lst.empty_lebs ||
1286 	    lst.idx_lebs != c->lst.idx_lebs ||
1287 	    lst.total_free != c->lst.total_free ||
1288 	    lst.total_dirty != c->lst.total_dirty ||
1289 	    lst.total_used != c->lst.total_used) {
1290 		ubifs_err("bad overall accounting");
1291 		ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
1292 			  "total_free %lld, total_dirty %lld, total_used %lld",
1293 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1294 			  lst.total_dirty, lst.total_used);
1295 		ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
1296 			  "total_free %lld, total_dirty %lld, total_used %lld",
1297 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1298 			  c->lst.total_dirty, c->lst.total_used);
1299 		err = -EINVAL;
1300 		goto out;
1301 	}
1302 
1303 	if (lst.total_dead != c->lst.total_dead ||
1304 	    lst.total_dark != c->lst.total_dark) {
1305 		ubifs_err("bad dead/dark space accounting");
1306 		ubifs_err("calculated: total_dead %lld, total_dark %lld",
1307 			  lst.total_dead, lst.total_dark);
1308 		ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1309 			  c->lst.total_dead, c->lst.total_dark);
1310 		err = -EINVAL;
1311 		goto out;
1312 	}
1313 
1314 	err = dbg_check_cats(c);
1315 out:
1316 	return err;
1317 }
1318 
1319 #endif /* CONFIG_UBIFS_FS_DEBUG */
1320