xref: /openbmc/linux/fs/ubifs/lprops.c (revision ca90578000afb0d8f177ea36f7259a9c3640cf49)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the functions that access LEB properties and their
25  * categories. LEBs are categorized based on the needs of UBIFS, and the
26  * categories are stored as either heaps or lists to provide a fast way of
27  * finding a LEB in a particular category. For example, UBIFS may need to find
28  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29  */
30 
31 #include "ubifs.h"
32 
33 /**
34  * get_heap_comp_val - get the LEB properties value for heap comparisons.
35  * @lprops: LEB properties
36  * @cat: LEB category
37  */
38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 	switch (cat) {
41 	case LPROPS_FREE:
42 		return lprops->free;
43 	case LPROPS_DIRTY_IDX:
44 		return lprops->free + lprops->dirty;
45 	default:
46 		return lprops->dirty;
47 	}
48 }
49 
50 /**
51  * move_up_lpt_heap - move a new heap entry up as far as possible.
52  * @c: UBIFS file-system description object
53  * @heap: LEB category heap
54  * @lprops: LEB properties to move
55  * @cat: LEB category
56  *
57  * New entries to a heap are added at the bottom and then moved up until the
58  * parent's value is greater.  In the case of LPT's category heaps, the value
59  * is either the amount of free space or the amount of dirty space, depending
60  * on the category.
61  */
62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 			     struct ubifs_lprops *lprops, int cat)
64 {
65 	int val1, val2, hpos;
66 
67 	hpos = lprops->hpos;
68 	if (!hpos)
69 		return; /* Already top of the heap */
70 	val1 = get_heap_comp_val(lprops, cat);
71 	/* Compare to parent and, if greater, move up the heap */
72 	do {
73 		int ppos = (hpos - 1) / 2;
74 
75 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 		if (val2 >= val1)
77 			return;
78 		/* Greater than parent so move up */
79 		heap->arr[ppos]->hpos = hpos;
80 		heap->arr[hpos] = heap->arr[ppos];
81 		heap->arr[ppos] = lprops;
82 		lprops->hpos = ppos;
83 		hpos = ppos;
84 	} while (hpos);
85 }
86 
87 /**
88  * adjust_lpt_heap - move a changed heap entry up or down the heap.
89  * @c: UBIFS file-system description object
90  * @heap: LEB category heap
91  * @lprops: LEB properties to move
92  * @hpos: heap position of @lprops
93  * @cat: LEB category
94  *
95  * Changed entries in a heap are moved up or down until the parent's value is
96  * greater.  In the case of LPT's category heaps, the value is either the amount
97  * of free space or the amount of dirty space, depending on the category.
98  */
99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 			    struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 	int val1, val2, val3, cpos;
103 
104 	val1 = get_heap_comp_val(lprops, cat);
105 	/* Compare to parent and, if greater than parent, move up the heap */
106 	if (hpos) {
107 		int ppos = (hpos - 1) / 2;
108 
109 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 		if (val1 > val2) {
111 			/* Greater than parent so move up */
112 			while (1) {
113 				heap->arr[ppos]->hpos = hpos;
114 				heap->arr[hpos] = heap->arr[ppos];
115 				heap->arr[ppos] = lprops;
116 				lprops->hpos = ppos;
117 				hpos = ppos;
118 				if (!hpos)
119 					return;
120 				ppos = (hpos - 1) / 2;
121 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 				if (val1 <= val2)
123 					return;
124 				/* Still greater than parent so keep going */
125 			}
126 		}
127 	}
128 
129 	/* Not greater than parent, so compare to children */
130 	while (1) {
131 		/* Compare to left child */
132 		cpos = hpos * 2 + 1;
133 		if (cpos >= heap->cnt)
134 			return;
135 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 		if (val1 < val2) {
137 			/* Less than left child, so promote biggest child */
138 			if (cpos + 1 < heap->cnt) {
139 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 							 cat);
141 				if (val3 > val2)
142 					cpos += 1; /* Right child is bigger */
143 			}
144 			heap->arr[cpos]->hpos = hpos;
145 			heap->arr[hpos] = heap->arr[cpos];
146 			heap->arr[cpos] = lprops;
147 			lprops->hpos = cpos;
148 			hpos = cpos;
149 			continue;
150 		}
151 		/* Compare to right child */
152 		cpos += 1;
153 		if (cpos >= heap->cnt)
154 			return;
155 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 		if (val1 < val3) {
157 			/* Less than right child, so promote right child */
158 			heap->arr[cpos]->hpos = hpos;
159 			heap->arr[hpos] = heap->arr[cpos];
160 			heap->arr[cpos] = lprops;
161 			lprops->hpos = cpos;
162 			hpos = cpos;
163 			continue;
164 		}
165 		return;
166 	}
167 }
168 
169 /**
170  * add_to_lpt_heap - add LEB properties to a LEB category heap.
171  * @c: UBIFS file-system description object
172  * @lprops: LEB properties to add
173  * @cat: LEB category
174  *
175  * This function returns %1 if @lprops is added to the heap for LEB category
176  * @cat, otherwise %0 is returned because the heap is full.
177  */
178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 			   int cat)
180 {
181 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182 
183 	if (heap->cnt >= heap->max_cnt) {
184 		const int b = LPT_HEAP_SZ / 2 - 1;
185 		int cpos, val1, val2;
186 
187 		/* Compare to some other LEB on the bottom of heap */
188 		/* Pick a position kind of randomly */
189 		cpos = (((size_t)lprops >> 4) & b) + b;
190 		ubifs_assert(cpos >= b);
191 		ubifs_assert(cpos < LPT_HEAP_SZ);
192 		ubifs_assert(cpos < heap->cnt);
193 
194 		val1 = get_heap_comp_val(lprops, cat);
195 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 		if (val1 > val2) {
197 			struct ubifs_lprops *lp;
198 
199 			lp = heap->arr[cpos];
200 			lp->flags &= ~LPROPS_CAT_MASK;
201 			lp->flags |= LPROPS_UNCAT;
202 			list_add(&lp->list, &c->uncat_list);
203 			lprops->hpos = cpos;
204 			heap->arr[cpos] = lprops;
205 			move_up_lpt_heap(c, heap, lprops, cat);
206 			dbg_check_heap(c, heap, cat, lprops->hpos);
207 			return 1; /* Added to heap */
208 		}
209 		dbg_check_heap(c, heap, cat, -1);
210 		return 0; /* Not added to heap */
211 	} else {
212 		lprops->hpos = heap->cnt++;
213 		heap->arr[lprops->hpos] = lprops;
214 		move_up_lpt_heap(c, heap, lprops, cat);
215 		dbg_check_heap(c, heap, cat, lprops->hpos);
216 		return 1; /* Added to heap */
217 	}
218 }
219 
220 /**
221  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222  * @c: UBIFS file-system description object
223  * @lprops: LEB properties to remove
224  * @cat: LEB category
225  */
226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 				 struct ubifs_lprops *lprops, int cat)
228 {
229 	struct ubifs_lpt_heap *heap;
230 	int hpos = lprops->hpos;
231 
232 	heap = &c->lpt_heap[cat - 1];
233 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 	ubifs_assert(heap->arr[hpos] == lprops);
235 	heap->cnt -= 1;
236 	if (hpos < heap->cnt) {
237 		heap->arr[hpos] = heap->arr[heap->cnt];
238 		heap->arr[hpos]->hpos = hpos;
239 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 	}
241 	dbg_check_heap(c, heap, cat, -1);
242 }
243 
244 /**
245  * lpt_heap_replace - replace lprops in a category heap.
246  * @c: UBIFS file-system description object
247  * @new_lprops: LEB properties with which to replace
248  * @cat: LEB category
249  *
250  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
251  * and the lprops that the pnode contains.  When that happens, references in
252  * the category heaps to those lprops must be updated to point to the new
253  * lprops.  This function does that.
254  */
255 static void lpt_heap_replace(struct ubifs_info *c,
256 			     struct ubifs_lprops *new_lprops, int cat)
257 {
258 	struct ubifs_lpt_heap *heap;
259 	int hpos = new_lprops->hpos;
260 
261 	heap = &c->lpt_heap[cat - 1];
262 	heap->arr[hpos] = new_lprops;
263 }
264 
265 /**
266  * ubifs_add_to_cat - add LEB properties to a category list or heap.
267  * @c: UBIFS file-system description object
268  * @lprops: LEB properties to add
269  * @cat: LEB category to which to add
270  *
271  * LEB properties are categorized to enable fast find operations.
272  */
273 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
274 		      int cat)
275 {
276 	switch (cat) {
277 	case LPROPS_DIRTY:
278 	case LPROPS_DIRTY_IDX:
279 	case LPROPS_FREE:
280 		if (add_to_lpt_heap(c, lprops, cat))
281 			break;
282 		/* No more room on heap so make it un-categorized */
283 		cat = LPROPS_UNCAT;
284 		/* Fall through */
285 	case LPROPS_UNCAT:
286 		list_add(&lprops->list, &c->uncat_list);
287 		break;
288 	case LPROPS_EMPTY:
289 		list_add(&lprops->list, &c->empty_list);
290 		break;
291 	case LPROPS_FREEABLE:
292 		list_add(&lprops->list, &c->freeable_list);
293 		c->freeable_cnt += 1;
294 		break;
295 	case LPROPS_FRDI_IDX:
296 		list_add(&lprops->list, &c->frdi_idx_list);
297 		break;
298 	default:
299 		ubifs_assert(0);
300 	}
301 
302 	lprops->flags &= ~LPROPS_CAT_MASK;
303 	lprops->flags |= cat;
304 	c->in_a_category_cnt += 1;
305 	ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
306 }
307 
308 /**
309  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
310  * @c: UBIFS file-system description object
311  * @lprops: LEB properties to remove
312  * @cat: LEB category from which to remove
313  *
314  * LEB properties are categorized to enable fast find operations.
315  */
316 static void ubifs_remove_from_cat(struct ubifs_info *c,
317 				  struct ubifs_lprops *lprops, int cat)
318 {
319 	switch (cat) {
320 	case LPROPS_DIRTY:
321 	case LPROPS_DIRTY_IDX:
322 	case LPROPS_FREE:
323 		remove_from_lpt_heap(c, lprops, cat);
324 		break;
325 	case LPROPS_FREEABLE:
326 		c->freeable_cnt -= 1;
327 		ubifs_assert(c->freeable_cnt >= 0);
328 		/* Fall through */
329 	case LPROPS_UNCAT:
330 	case LPROPS_EMPTY:
331 	case LPROPS_FRDI_IDX:
332 		ubifs_assert(!list_empty(&lprops->list));
333 		list_del(&lprops->list);
334 		break;
335 	default:
336 		ubifs_assert(0);
337 	}
338 
339 	c->in_a_category_cnt -= 1;
340 	ubifs_assert(c->in_a_category_cnt >= 0);
341 }
342 
343 /**
344  * ubifs_replace_cat - replace lprops in a category list or heap.
345  * @c: UBIFS file-system description object
346  * @old_lprops: LEB properties to replace
347  * @new_lprops: LEB properties with which to replace
348  *
349  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
350  * and the lprops that the pnode contains. When that happens, references in
351  * category lists and heaps must be replaced. This function does that.
352  */
353 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
354 		       struct ubifs_lprops *new_lprops)
355 {
356 	int cat;
357 
358 	cat = new_lprops->flags & LPROPS_CAT_MASK;
359 	switch (cat) {
360 	case LPROPS_DIRTY:
361 	case LPROPS_DIRTY_IDX:
362 	case LPROPS_FREE:
363 		lpt_heap_replace(c, new_lprops, cat);
364 		break;
365 	case LPROPS_UNCAT:
366 	case LPROPS_EMPTY:
367 	case LPROPS_FREEABLE:
368 	case LPROPS_FRDI_IDX:
369 		list_replace(&old_lprops->list, &new_lprops->list);
370 		break;
371 	default:
372 		ubifs_assert(0);
373 	}
374 }
375 
376 /**
377  * ubifs_ensure_cat - ensure LEB properties are categorized.
378  * @c: UBIFS file-system description object
379  * @lprops: LEB properties
380  *
381  * A LEB may have fallen off of the bottom of a heap, and ended up as
382  * un-categorized even though it has enough space for us now. If that is the
383  * case this function will put the LEB back onto a heap.
384  */
385 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
386 {
387 	int cat = lprops->flags & LPROPS_CAT_MASK;
388 
389 	if (cat != LPROPS_UNCAT)
390 		return;
391 	cat = ubifs_categorize_lprops(c, lprops);
392 	if (cat == LPROPS_UNCAT)
393 		return;
394 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
395 	ubifs_add_to_cat(c, lprops, cat);
396 }
397 
398 /**
399  * ubifs_categorize_lprops - categorize LEB properties.
400  * @c: UBIFS file-system description object
401  * @lprops: LEB properties to categorize
402  *
403  * LEB properties are categorized to enable fast find operations. This function
404  * returns the LEB category to which the LEB properties belong. Note however
405  * that if the LEB category is stored as a heap and the heap is full, the
406  * LEB properties may have their category changed to %LPROPS_UNCAT.
407  */
408 int ubifs_categorize_lprops(const struct ubifs_info *c,
409 			    const struct ubifs_lprops *lprops)
410 {
411 	if (lprops->flags & LPROPS_TAKEN)
412 		return LPROPS_UNCAT;
413 
414 	if (lprops->free == c->leb_size) {
415 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
416 		return LPROPS_EMPTY;
417 	}
418 
419 	if (lprops->free + lprops->dirty == c->leb_size) {
420 		if (lprops->flags & LPROPS_INDEX)
421 			return LPROPS_FRDI_IDX;
422 		else
423 			return LPROPS_FREEABLE;
424 	}
425 
426 	if (lprops->flags & LPROPS_INDEX) {
427 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
428 			return LPROPS_DIRTY_IDX;
429 	} else {
430 		if (lprops->dirty >= c->dead_wm &&
431 		    lprops->dirty > lprops->free)
432 			return LPROPS_DIRTY;
433 		if (lprops->free > 0)
434 			return LPROPS_FREE;
435 	}
436 
437 	return LPROPS_UNCAT;
438 }
439 
440 /**
441  * change_category - change LEB properties category.
442  * @c: UBIFS file-system description object
443  * @lprops: LEB properties to re-categorize
444  *
445  * LEB properties are categorized to enable fast find operations. When the LEB
446  * properties change they must be re-categorized.
447  */
448 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
449 {
450 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
451 	int new_cat = ubifs_categorize_lprops(c, lprops);
452 
453 	if (old_cat == new_cat) {
454 		struct ubifs_lpt_heap *heap;
455 
456 		/* lprops on a heap now must be moved up or down */
457 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
458 			return; /* Not on a heap */
459 		heap = &c->lpt_heap[new_cat - 1];
460 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
461 	} else {
462 		ubifs_remove_from_cat(c, lprops, old_cat);
463 		ubifs_add_to_cat(c, lprops, new_cat);
464 	}
465 }
466 
467 /**
468  * ubifs_calc_dark - calculate LEB dark space size.
469  * @c: the UBIFS file-system description object
470  * @spc: amount of free and dirty space in the LEB
471  *
472  * This function calculates and returns amount of dark space in an LEB which
473  * has @spc bytes of free and dirty space.
474  *
475  * UBIFS is trying to account the space which might not be usable, and this
476  * space is called "dark space". For example, if an LEB has only %512 free
477  * bytes, it is dark space, because it cannot fit a large data node.
478  */
479 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
480 {
481 	ubifs_assert(!(spc & 7));
482 
483 	if (spc < c->dark_wm)
484 		return spc;
485 
486 	/*
487 	 * If we have slightly more space then the dark space watermark, we can
488 	 * anyway safely assume it we'll be able to write a node of the
489 	 * smallest size there.
490 	 */
491 	if (spc - c->dark_wm < MIN_WRITE_SZ)
492 		return spc - MIN_WRITE_SZ;
493 
494 	return c->dark_wm;
495 }
496 
497 /**
498  * is_lprops_dirty - determine if LEB properties are dirty.
499  * @c: the UBIFS file-system description object
500  * @lprops: LEB properties to test
501  */
502 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
503 {
504 	struct ubifs_pnode *pnode;
505 	int pos;
506 
507 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
508 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
509 						   struct ubifs_pnode,
510 						   lprops[0]);
511 	return !test_bit(COW_CNODE, &pnode->flags) &&
512 	       test_bit(DIRTY_CNODE, &pnode->flags);
513 }
514 
515 /**
516  * ubifs_change_lp - change LEB properties.
517  * @c: the UBIFS file-system description object
518  * @lp: LEB properties to change
519  * @free: new free space amount
520  * @dirty: new dirty space amount
521  * @flags: new flags
522  * @idx_gc_cnt: change to the count of @idx_gc list
523  *
524  * This function changes LEB properties (@free, @dirty or @flag). However, the
525  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
526  * the updated LEB properties on success and a negative error code on failure.
527  *
528  * Note, the LEB properties may have had to be copied (due to COW) and
529  * consequently the pointer returned may not be the same as the pointer
530  * passed.
531  */
532 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
533 					   const struct ubifs_lprops *lp,
534 					   int free, int dirty, int flags,
535 					   int idx_gc_cnt)
536 {
537 	/*
538 	 * This is the only function that is allowed to change lprops, so we
539 	 * discard the "const" qualifier.
540 	 */
541 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
542 
543 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
544 	       lprops->lnum, free, dirty, flags);
545 
546 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
547 	ubifs_assert(c->lst.empty_lebs >= 0 &&
548 		     c->lst.empty_lebs <= c->main_lebs);
549 	ubifs_assert(c->freeable_cnt >= 0);
550 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
551 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
552 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
553 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
554 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
555 	ubifs_assert(!(c->lst.total_used & 7));
556 	ubifs_assert(free == LPROPS_NC || free >= 0);
557 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
558 
559 	if (!is_lprops_dirty(c, lprops)) {
560 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
561 		if (IS_ERR(lprops))
562 			return lprops;
563 	} else
564 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
565 
566 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
567 
568 	spin_lock(&c->space_lock);
569 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
570 		c->lst.taken_empty_lebs -= 1;
571 
572 	if (!(lprops->flags & LPROPS_INDEX)) {
573 		int old_spc;
574 
575 		old_spc = lprops->free + lprops->dirty;
576 		if (old_spc < c->dead_wm)
577 			c->lst.total_dead -= old_spc;
578 		else
579 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
580 
581 		c->lst.total_used -= c->leb_size - old_spc;
582 	}
583 
584 	if (free != LPROPS_NC) {
585 		free = ALIGN(free, 8);
586 		c->lst.total_free += free - lprops->free;
587 
588 		/* Increase or decrease empty LEBs counter if needed */
589 		if (free == c->leb_size) {
590 			if (lprops->free != c->leb_size)
591 				c->lst.empty_lebs += 1;
592 		} else if (lprops->free == c->leb_size)
593 			c->lst.empty_lebs -= 1;
594 		lprops->free = free;
595 	}
596 
597 	if (dirty != LPROPS_NC) {
598 		dirty = ALIGN(dirty, 8);
599 		c->lst.total_dirty += dirty - lprops->dirty;
600 		lprops->dirty = dirty;
601 	}
602 
603 	if (flags != LPROPS_NC) {
604 		/* Take care about indexing LEBs counter if needed */
605 		if ((lprops->flags & LPROPS_INDEX)) {
606 			if (!(flags & LPROPS_INDEX))
607 				c->lst.idx_lebs -= 1;
608 		} else if (flags & LPROPS_INDEX)
609 			c->lst.idx_lebs += 1;
610 		lprops->flags = flags;
611 	}
612 
613 	if (!(lprops->flags & LPROPS_INDEX)) {
614 		int new_spc;
615 
616 		new_spc = lprops->free + lprops->dirty;
617 		if (new_spc < c->dead_wm)
618 			c->lst.total_dead += new_spc;
619 		else
620 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
621 
622 		c->lst.total_used += c->leb_size - new_spc;
623 	}
624 
625 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
626 		c->lst.taken_empty_lebs += 1;
627 
628 	change_category(c, lprops);
629 	c->idx_gc_cnt += idx_gc_cnt;
630 	spin_unlock(&c->space_lock);
631 	return lprops;
632 }
633 
634 /**
635  * ubifs_get_lp_stats - get lprops statistics.
636  * @c: UBIFS file-system description object
637  * @lst: return statistics
638  */
639 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
640 {
641 	spin_lock(&c->space_lock);
642 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
643 	spin_unlock(&c->space_lock);
644 }
645 
646 /**
647  * ubifs_change_one_lp - change LEB properties.
648  * @c: the UBIFS file-system description object
649  * @lnum: LEB to change properties for
650  * @free: amount of free space
651  * @dirty: amount of dirty space
652  * @flags_set: flags to set
653  * @flags_clean: flags to clean
654  * @idx_gc_cnt: change to the count of idx_gc list
655  *
656  * This function changes properties of LEB @lnum. It is a helper wrapper over
657  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
658  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
659  * a negative error code in case of failure.
660  */
661 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
662 			int flags_set, int flags_clean, int idx_gc_cnt)
663 {
664 	int err = 0, flags;
665 	const struct ubifs_lprops *lp;
666 
667 	ubifs_get_lprops(c);
668 
669 	lp = ubifs_lpt_lookup_dirty(c, lnum);
670 	if (IS_ERR(lp)) {
671 		err = PTR_ERR(lp);
672 		goto out;
673 	}
674 
675 	flags = (lp->flags | flags_set) & ~flags_clean;
676 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
677 	if (IS_ERR(lp))
678 		err = PTR_ERR(lp);
679 
680 out:
681 	ubifs_release_lprops(c);
682 	if (err)
683 		ubifs_err(c, "cannot change properties of LEB %d, error %d",
684 			  lnum, err);
685 	return err;
686 }
687 
688 /**
689  * ubifs_update_one_lp - update LEB properties.
690  * @c: the UBIFS file-system description object
691  * @lnum: LEB to change properties for
692  * @free: amount of free space
693  * @dirty: amount of dirty space to add
694  * @flags_set: flags to set
695  * @flags_clean: flags to clean
696  *
697  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
698  * current dirty space, not substitutes it.
699  */
700 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
701 			int flags_set, int flags_clean)
702 {
703 	int err = 0, flags;
704 	const struct ubifs_lprops *lp;
705 
706 	ubifs_get_lprops(c);
707 
708 	lp = ubifs_lpt_lookup_dirty(c, lnum);
709 	if (IS_ERR(lp)) {
710 		err = PTR_ERR(lp);
711 		goto out;
712 	}
713 
714 	flags = (lp->flags | flags_set) & ~flags_clean;
715 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
716 	if (IS_ERR(lp))
717 		err = PTR_ERR(lp);
718 
719 out:
720 	ubifs_release_lprops(c);
721 	if (err)
722 		ubifs_err(c, "cannot update properties of LEB %d, error %d",
723 			  lnum, err);
724 	return err;
725 }
726 
727 /**
728  * ubifs_read_one_lp - read LEB properties.
729  * @c: the UBIFS file-system description object
730  * @lnum: LEB to read properties for
731  * @lp: where to store read properties
732  *
733  * This helper function reads properties of a LEB @lnum and stores them in @lp.
734  * Returns zero in case of success and a negative error code in case of
735  * failure.
736  */
737 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
738 {
739 	int err = 0;
740 	const struct ubifs_lprops *lpp;
741 
742 	ubifs_get_lprops(c);
743 
744 	lpp = ubifs_lpt_lookup(c, lnum);
745 	if (IS_ERR(lpp)) {
746 		err = PTR_ERR(lpp);
747 		ubifs_err(c, "cannot read properties of LEB %d, error %d",
748 			  lnum, err);
749 		goto out;
750 	}
751 
752 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
753 
754 out:
755 	ubifs_release_lprops(c);
756 	return err;
757 }
758 
759 /**
760  * ubifs_fast_find_free - try to find a LEB with free space quickly.
761  * @c: the UBIFS file-system description object
762  *
763  * This function returns LEB properties for a LEB with free space or %NULL if
764  * the function is unable to find a LEB quickly.
765  */
766 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
767 {
768 	struct ubifs_lprops *lprops;
769 	struct ubifs_lpt_heap *heap;
770 
771 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
772 
773 	heap = &c->lpt_heap[LPROPS_FREE - 1];
774 	if (heap->cnt == 0)
775 		return NULL;
776 
777 	lprops = heap->arr[0];
778 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
779 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
780 	return lprops;
781 }
782 
783 /**
784  * ubifs_fast_find_empty - try to find an empty LEB quickly.
785  * @c: the UBIFS file-system description object
786  *
787  * This function returns LEB properties for an empty LEB or %NULL if the
788  * function is unable to find an empty LEB quickly.
789  */
790 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
791 {
792 	struct ubifs_lprops *lprops;
793 
794 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
795 
796 	if (list_empty(&c->empty_list))
797 		return NULL;
798 
799 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
800 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
801 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
802 	ubifs_assert(lprops->free == c->leb_size);
803 	return lprops;
804 }
805 
806 /**
807  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
808  * @c: the UBIFS file-system description object
809  *
810  * This function returns LEB properties for a freeable LEB or %NULL if the
811  * function is unable to find a freeable LEB quickly.
812  */
813 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
814 {
815 	struct ubifs_lprops *lprops;
816 
817 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
818 
819 	if (list_empty(&c->freeable_list))
820 		return NULL;
821 
822 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
823 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
824 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
825 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
826 	ubifs_assert(c->freeable_cnt > 0);
827 	return lprops;
828 }
829 
830 /**
831  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
832  * @c: the UBIFS file-system description object
833  *
834  * This function returns LEB properties for a freeable index LEB or %NULL if the
835  * function is unable to find a freeable index LEB quickly.
836  */
837 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
838 {
839 	struct ubifs_lprops *lprops;
840 
841 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
842 
843 	if (list_empty(&c->frdi_idx_list))
844 		return NULL;
845 
846 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
847 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
848 	ubifs_assert((lprops->flags & LPROPS_INDEX));
849 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
850 	return lprops;
851 }
852 
853 /*
854  * Everything below is related to debugging.
855  */
856 
857 /**
858  * dbg_check_cats - check category heaps and lists.
859  * @c: UBIFS file-system description object
860  *
861  * This function returns %0 on success and a negative error code on failure.
862  */
863 int dbg_check_cats(struct ubifs_info *c)
864 {
865 	struct ubifs_lprops *lprops;
866 	struct list_head *pos;
867 	int i, cat;
868 
869 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
870 		return 0;
871 
872 	list_for_each_entry(lprops, &c->empty_list, list) {
873 		if (lprops->free != c->leb_size) {
874 			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
875 				  lprops->lnum, lprops->free, lprops->dirty,
876 				  lprops->flags);
877 			return -EINVAL;
878 		}
879 		if (lprops->flags & LPROPS_TAKEN) {
880 			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
881 				  lprops->lnum, lprops->free, lprops->dirty,
882 				  lprops->flags);
883 			return -EINVAL;
884 		}
885 	}
886 
887 	i = 0;
888 	list_for_each_entry(lprops, &c->freeable_list, list) {
889 		if (lprops->free + lprops->dirty != c->leb_size) {
890 			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
891 				  lprops->lnum, lprops->free, lprops->dirty,
892 				  lprops->flags);
893 			return -EINVAL;
894 		}
895 		if (lprops->flags & LPROPS_TAKEN) {
896 			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
897 				  lprops->lnum, lprops->free, lprops->dirty,
898 				  lprops->flags);
899 			return -EINVAL;
900 		}
901 		i += 1;
902 	}
903 	if (i != c->freeable_cnt) {
904 		ubifs_err(c, "freeable list count %d expected %d", i,
905 			  c->freeable_cnt);
906 		return -EINVAL;
907 	}
908 
909 	i = 0;
910 	list_for_each(pos, &c->idx_gc)
911 		i += 1;
912 	if (i != c->idx_gc_cnt) {
913 		ubifs_err(c, "idx_gc list count %d expected %d", i,
914 			  c->idx_gc_cnt);
915 		return -EINVAL;
916 	}
917 
918 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
919 		if (lprops->free + lprops->dirty != c->leb_size) {
920 			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
921 				  lprops->lnum, lprops->free, lprops->dirty,
922 				  lprops->flags);
923 			return -EINVAL;
924 		}
925 		if (lprops->flags & LPROPS_TAKEN) {
926 			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
927 				  lprops->lnum, lprops->free, lprops->dirty,
928 				  lprops->flags);
929 			return -EINVAL;
930 		}
931 		if (!(lprops->flags & LPROPS_INDEX)) {
932 			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
933 				  lprops->lnum, lprops->free, lprops->dirty,
934 				  lprops->flags);
935 			return -EINVAL;
936 		}
937 	}
938 
939 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
940 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
941 
942 		for (i = 0; i < heap->cnt; i++) {
943 			lprops = heap->arr[i];
944 			if (!lprops) {
945 				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
946 				return -EINVAL;
947 			}
948 			if (lprops->hpos != i) {
949 				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
950 				return -EINVAL;
951 			}
952 			if (lprops->flags & LPROPS_TAKEN) {
953 				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
954 				return -EINVAL;
955 			}
956 		}
957 	}
958 
959 	return 0;
960 }
961 
962 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
963 		    int add_pos)
964 {
965 	int i = 0, j, err = 0;
966 
967 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
968 		return;
969 
970 	for (i = 0; i < heap->cnt; i++) {
971 		struct ubifs_lprops *lprops = heap->arr[i];
972 		struct ubifs_lprops *lp;
973 
974 		if (i != add_pos)
975 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
976 				err = 1;
977 				goto out;
978 			}
979 		if (lprops->hpos != i) {
980 			err = 2;
981 			goto out;
982 		}
983 		lp = ubifs_lpt_lookup(c, lprops->lnum);
984 		if (IS_ERR(lp)) {
985 			err = 3;
986 			goto out;
987 		}
988 		if (lprops != lp) {
989 			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
990 				  (size_t)lprops, (size_t)lp, lprops->lnum,
991 				  lp->lnum);
992 			err = 4;
993 			goto out;
994 		}
995 		for (j = 0; j < i; j++) {
996 			lp = heap->arr[j];
997 			if (lp == lprops) {
998 				err = 5;
999 				goto out;
1000 			}
1001 			if (lp->lnum == lprops->lnum) {
1002 				err = 6;
1003 				goto out;
1004 			}
1005 		}
1006 	}
1007 out:
1008 	if (err) {
1009 		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1010 		dump_stack();
1011 		ubifs_dump_heap(c, heap, cat);
1012 	}
1013 }
1014 
1015 /**
1016  * scan_check_cb - scan callback.
1017  * @c: the UBIFS file-system description object
1018  * @lp: LEB properties to scan
1019  * @in_tree: whether the LEB properties are in main memory
1020  * @lst: lprops statistics to update
1021  *
1022  * This function returns a code that indicates whether the scan should continue
1023  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1024  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1025  * (%LPT_SCAN_STOP).
1026  */
1027 static int scan_check_cb(struct ubifs_info *c,
1028 			 const struct ubifs_lprops *lp, int in_tree,
1029 			 struct ubifs_lp_stats *lst)
1030 {
1031 	struct ubifs_scan_leb *sleb;
1032 	struct ubifs_scan_node *snod;
1033 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1034 	void *buf = NULL;
1035 
1036 	cat = lp->flags & LPROPS_CAT_MASK;
1037 	if (cat != LPROPS_UNCAT) {
1038 		cat = ubifs_categorize_lprops(c, lp);
1039 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1040 			ubifs_err(c, "bad LEB category %d expected %d",
1041 				  (lp->flags & LPROPS_CAT_MASK), cat);
1042 			return -EINVAL;
1043 		}
1044 	}
1045 
1046 	/* Check lp is on its category list (if it has one) */
1047 	if (in_tree) {
1048 		struct list_head *list = NULL;
1049 
1050 		switch (cat) {
1051 		case LPROPS_EMPTY:
1052 			list = &c->empty_list;
1053 			break;
1054 		case LPROPS_FREEABLE:
1055 			list = &c->freeable_list;
1056 			break;
1057 		case LPROPS_FRDI_IDX:
1058 			list = &c->frdi_idx_list;
1059 			break;
1060 		case LPROPS_UNCAT:
1061 			list = &c->uncat_list;
1062 			break;
1063 		}
1064 		if (list) {
1065 			struct ubifs_lprops *lprops;
1066 			int found = 0;
1067 
1068 			list_for_each_entry(lprops, list, list) {
1069 				if (lprops == lp) {
1070 					found = 1;
1071 					break;
1072 				}
1073 			}
1074 			if (!found) {
1075 				ubifs_err(c, "bad LPT list (category %d)", cat);
1076 				return -EINVAL;
1077 			}
1078 		}
1079 	}
1080 
1081 	/* Check lp is on its category heap (if it has one) */
1082 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1083 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1084 
1085 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1086 		    lp != heap->arr[lp->hpos]) {
1087 			ubifs_err(c, "bad LPT heap (category %d)", cat);
1088 			return -EINVAL;
1089 		}
1090 	}
1091 
1092 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1093 	if (!buf)
1094 		return -ENOMEM;
1095 
1096 	/*
1097 	 * After an unclean unmount, empty and freeable LEBs
1098 	 * may contain garbage - do not scan them.
1099 	 */
1100 	if (lp->free == c->leb_size) {
1101 		lst->empty_lebs += 1;
1102 		lst->total_free += c->leb_size;
1103 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1104 		return LPT_SCAN_CONTINUE;
1105 	}
1106 	if (lp->free + lp->dirty == c->leb_size &&
1107 	    !(lp->flags & LPROPS_INDEX)) {
1108 		lst->total_free  += lp->free;
1109 		lst->total_dirty += lp->dirty;
1110 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1111 		return LPT_SCAN_CONTINUE;
1112 	}
1113 
1114 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1115 	if (IS_ERR(sleb)) {
1116 		ret = PTR_ERR(sleb);
1117 		if (ret == -EUCLEAN) {
1118 			ubifs_dump_lprops(c);
1119 			ubifs_dump_budg(c, &c->bi);
1120 		}
1121 		goto out;
1122 	}
1123 
1124 	is_idx = -1;
1125 	list_for_each_entry(snod, &sleb->nodes, list) {
1126 		int found, level = 0;
1127 
1128 		cond_resched();
1129 
1130 		if (is_idx == -1)
1131 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1132 
1133 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1134 			ubifs_err(c, "indexing node in data LEB %d:%d",
1135 				  lnum, snod->offs);
1136 			goto out_destroy;
1137 		}
1138 
1139 		if (snod->type == UBIFS_IDX_NODE) {
1140 			struct ubifs_idx_node *idx = snod->node;
1141 
1142 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1143 			level = le16_to_cpu(idx->level);
1144 		}
1145 
1146 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1147 					   snod->offs, is_idx);
1148 		if (found) {
1149 			if (found < 0)
1150 				goto out_destroy;
1151 			used += ALIGN(snod->len, 8);
1152 		}
1153 	}
1154 
1155 	free = c->leb_size - sleb->endpt;
1156 	dirty = sleb->endpt - used;
1157 
1158 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1159 	    dirty < 0) {
1160 		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1161 			  lnum, free, dirty);
1162 		goto out_destroy;
1163 	}
1164 
1165 	if (lp->free + lp->dirty == c->leb_size &&
1166 	    free + dirty == c->leb_size)
1167 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1168 		    (!is_idx && free == c->leb_size) ||
1169 		    lp->free == c->leb_size) {
1170 			/*
1171 			 * Empty or freeable LEBs could contain index
1172 			 * nodes from an uncompleted commit due to an
1173 			 * unclean unmount. Or they could be empty for
1174 			 * the same reason. Or it may simply not have been
1175 			 * unmapped.
1176 			 */
1177 			free = lp->free;
1178 			dirty = lp->dirty;
1179 			is_idx = 0;
1180 		    }
1181 
1182 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1183 	    lnum != c->ihead_lnum) {
1184 		/*
1185 		 * After an unclean unmount, an index LEB could have a different
1186 		 * amount of free space than the value recorded by lprops. That
1187 		 * is because the in-the-gaps method may use free space or
1188 		 * create free space (as a side-effect of using ubi_leb_change
1189 		 * and not writing the whole LEB). The incorrect free space
1190 		 * value is not a problem because the index is only ever
1191 		 * allocated empty LEBs, so there will never be an attempt to
1192 		 * write to the free space at the end of an index LEB - except
1193 		 * by the in-the-gaps method for which it is not a problem.
1194 		 */
1195 		free = lp->free;
1196 		dirty = lp->dirty;
1197 	}
1198 
1199 	if (lp->free != free || lp->dirty != dirty)
1200 		goto out_print;
1201 
1202 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1203 		if (free == c->leb_size)
1204 			/* Free but not unmapped LEB, it's fine */
1205 			is_idx = 0;
1206 		else {
1207 			ubifs_err(c, "indexing node without indexing flag");
1208 			goto out_print;
1209 		}
1210 	}
1211 
1212 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1213 		ubifs_err(c, "data node with indexing flag");
1214 		goto out_print;
1215 	}
1216 
1217 	if (free == c->leb_size)
1218 		lst->empty_lebs += 1;
1219 
1220 	if (is_idx)
1221 		lst->idx_lebs += 1;
1222 
1223 	if (!(lp->flags & LPROPS_INDEX))
1224 		lst->total_used += c->leb_size - free - dirty;
1225 	lst->total_free += free;
1226 	lst->total_dirty += dirty;
1227 
1228 	if (!(lp->flags & LPROPS_INDEX)) {
1229 		int spc = free + dirty;
1230 
1231 		if (spc < c->dead_wm)
1232 			lst->total_dead += spc;
1233 		else
1234 			lst->total_dark += ubifs_calc_dark(c, spc);
1235 	}
1236 
1237 	ubifs_scan_destroy(sleb);
1238 	vfree(buf);
1239 	return LPT_SCAN_CONTINUE;
1240 
1241 out_print:
1242 	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1243 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1244 	ubifs_dump_leb(c, lnum);
1245 out_destroy:
1246 	ubifs_scan_destroy(sleb);
1247 	ret = -EINVAL;
1248 out:
1249 	vfree(buf);
1250 	return ret;
1251 }
1252 
1253 /**
1254  * dbg_check_lprops - check all LEB properties.
1255  * @c: UBIFS file-system description object
1256  *
1257  * This function checks all LEB properties and makes sure they are all correct.
1258  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1259  * and other negative error codes in case of other errors. This function is
1260  * called while the file system is locked (because of commit start), so no
1261  * additional locking is required. Note that locking the LPT mutex would cause
1262  * a circular lock dependency with the TNC mutex.
1263  */
1264 int dbg_check_lprops(struct ubifs_info *c)
1265 {
1266 	int i, err;
1267 	struct ubifs_lp_stats lst;
1268 
1269 	if (!dbg_is_chk_lprops(c))
1270 		return 0;
1271 
1272 	/*
1273 	 * As we are going to scan the media, the write buffers have to be
1274 	 * synchronized.
1275 	 */
1276 	for (i = 0; i < c->jhead_cnt; i++) {
1277 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1278 		if (err)
1279 			return err;
1280 	}
1281 
1282 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1283 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1284 				    (ubifs_lpt_scan_callback)scan_check_cb,
1285 				    &lst);
1286 	if (err && err != -ENOSPC)
1287 		goto out;
1288 
1289 	if (lst.empty_lebs != c->lst.empty_lebs ||
1290 	    lst.idx_lebs != c->lst.idx_lebs ||
1291 	    lst.total_free != c->lst.total_free ||
1292 	    lst.total_dirty != c->lst.total_dirty ||
1293 	    lst.total_used != c->lst.total_used) {
1294 		ubifs_err(c, "bad overall accounting");
1295 		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1296 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1297 			  lst.total_dirty, lst.total_used);
1298 		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1299 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1300 			  c->lst.total_dirty, c->lst.total_used);
1301 		err = -EINVAL;
1302 		goto out;
1303 	}
1304 
1305 	if (lst.total_dead != c->lst.total_dead ||
1306 	    lst.total_dark != c->lst.total_dark) {
1307 		ubifs_err(c, "bad dead/dark space accounting");
1308 		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1309 			  lst.total_dead, lst.total_dark);
1310 		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1311 			  c->lst.total_dead, c->lst.total_dark);
1312 		err = -EINVAL;
1313 		goto out;
1314 	}
1315 
1316 	err = dbg_check_cats(c);
1317 out:
1318 	return err;
1319 }
1320