1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the functions that access LEB properties and their 25 * categories. LEBs are categorized based on the needs of UBIFS, and the 26 * categories are stored as either heaps or lists to provide a fast way of 27 * finding a LEB in a particular category. For example, UBIFS may need to find 28 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 29 */ 30 31 #include "ubifs.h" 32 33 /** 34 * get_heap_comp_val - get the LEB properties value for heap comparisons. 35 * @lprops: LEB properties 36 * @cat: LEB category 37 */ 38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 39 { 40 switch (cat) { 41 case LPROPS_FREE: 42 return lprops->free; 43 case LPROPS_DIRTY_IDX: 44 return lprops->free + lprops->dirty; 45 default: 46 return lprops->dirty; 47 } 48 } 49 50 /** 51 * move_up_lpt_heap - move a new heap entry up as far as possible. 52 * @c: UBIFS file-system description object 53 * @heap: LEB category heap 54 * @lprops: LEB properties to move 55 * @cat: LEB category 56 * 57 * New entries to a heap are added at the bottom and then moved up until the 58 * parent's value is greater. In the case of LPT's category heaps, the value 59 * is either the amount of free space or the amount of dirty space, depending 60 * on the category. 61 */ 62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 63 struct ubifs_lprops *lprops, int cat) 64 { 65 int val1, val2, hpos; 66 67 hpos = lprops->hpos; 68 if (!hpos) 69 return; /* Already top of the heap */ 70 val1 = get_heap_comp_val(lprops, cat); 71 /* Compare to parent and, if greater, move up the heap */ 72 do { 73 int ppos = (hpos - 1) / 2; 74 75 val2 = get_heap_comp_val(heap->arr[ppos], cat); 76 if (val2 >= val1) 77 return; 78 /* Greater than parent so move up */ 79 heap->arr[ppos]->hpos = hpos; 80 heap->arr[hpos] = heap->arr[ppos]; 81 heap->arr[ppos] = lprops; 82 lprops->hpos = ppos; 83 hpos = ppos; 84 } while (hpos); 85 } 86 87 /** 88 * adjust_lpt_heap - move a changed heap entry up or down the heap. 89 * @c: UBIFS file-system description object 90 * @heap: LEB category heap 91 * @lprops: LEB properties to move 92 * @hpos: heap position of @lprops 93 * @cat: LEB category 94 * 95 * Changed entries in a heap are moved up or down until the parent's value is 96 * greater. In the case of LPT's category heaps, the value is either the amount 97 * of free space or the amount of dirty space, depending on the category. 98 */ 99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 100 struct ubifs_lprops *lprops, int hpos, int cat) 101 { 102 int val1, val2, val3, cpos; 103 104 val1 = get_heap_comp_val(lprops, cat); 105 /* Compare to parent and, if greater than parent, move up the heap */ 106 if (hpos) { 107 int ppos = (hpos - 1) / 2; 108 109 val2 = get_heap_comp_val(heap->arr[ppos], cat); 110 if (val1 > val2) { 111 /* Greater than parent so move up */ 112 while (1) { 113 heap->arr[ppos]->hpos = hpos; 114 heap->arr[hpos] = heap->arr[ppos]; 115 heap->arr[ppos] = lprops; 116 lprops->hpos = ppos; 117 hpos = ppos; 118 if (!hpos) 119 return; 120 ppos = (hpos - 1) / 2; 121 val2 = get_heap_comp_val(heap->arr[ppos], cat); 122 if (val1 <= val2) 123 return; 124 /* Still greater than parent so keep going */ 125 } 126 } 127 } 128 129 /* Not greater than parent, so compare to children */ 130 while (1) { 131 /* Compare to left child */ 132 cpos = hpos * 2 + 1; 133 if (cpos >= heap->cnt) 134 return; 135 val2 = get_heap_comp_val(heap->arr[cpos], cat); 136 if (val1 < val2) { 137 /* Less than left child, so promote biggest child */ 138 if (cpos + 1 < heap->cnt) { 139 val3 = get_heap_comp_val(heap->arr[cpos + 1], 140 cat); 141 if (val3 > val2) 142 cpos += 1; /* Right child is bigger */ 143 } 144 heap->arr[cpos]->hpos = hpos; 145 heap->arr[hpos] = heap->arr[cpos]; 146 heap->arr[cpos] = lprops; 147 lprops->hpos = cpos; 148 hpos = cpos; 149 continue; 150 } 151 /* Compare to right child */ 152 cpos += 1; 153 if (cpos >= heap->cnt) 154 return; 155 val3 = get_heap_comp_val(heap->arr[cpos], cat); 156 if (val1 < val3) { 157 /* Less than right child, so promote right child */ 158 heap->arr[cpos]->hpos = hpos; 159 heap->arr[hpos] = heap->arr[cpos]; 160 heap->arr[cpos] = lprops; 161 lprops->hpos = cpos; 162 hpos = cpos; 163 continue; 164 } 165 return; 166 } 167 } 168 169 /** 170 * add_to_lpt_heap - add LEB properties to a LEB category heap. 171 * @c: UBIFS file-system description object 172 * @lprops: LEB properties to add 173 * @cat: LEB category 174 * 175 * This function returns %1 if @lprops is added to the heap for LEB category 176 * @cat, otherwise %0 is returned because the heap is full. 177 */ 178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 179 int cat) 180 { 181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 182 183 if (heap->cnt >= heap->max_cnt) { 184 const int b = LPT_HEAP_SZ / 2 - 1; 185 int cpos, val1, val2; 186 187 /* Compare to some other LEB on the bottom of heap */ 188 /* Pick a position kind of randomly */ 189 cpos = (((size_t)lprops >> 4) & b) + b; 190 ubifs_assert(c, cpos >= b); 191 ubifs_assert(c, cpos < LPT_HEAP_SZ); 192 ubifs_assert(c, cpos < heap->cnt); 193 194 val1 = get_heap_comp_val(lprops, cat); 195 val2 = get_heap_comp_val(heap->arr[cpos], cat); 196 if (val1 > val2) { 197 struct ubifs_lprops *lp; 198 199 lp = heap->arr[cpos]; 200 lp->flags &= ~LPROPS_CAT_MASK; 201 lp->flags |= LPROPS_UNCAT; 202 list_add(&lp->list, &c->uncat_list); 203 lprops->hpos = cpos; 204 heap->arr[cpos] = lprops; 205 move_up_lpt_heap(c, heap, lprops, cat); 206 dbg_check_heap(c, heap, cat, lprops->hpos); 207 return 1; /* Added to heap */ 208 } 209 dbg_check_heap(c, heap, cat, -1); 210 return 0; /* Not added to heap */ 211 } else { 212 lprops->hpos = heap->cnt++; 213 heap->arr[lprops->hpos] = lprops; 214 move_up_lpt_heap(c, heap, lprops, cat); 215 dbg_check_heap(c, heap, cat, lprops->hpos); 216 return 1; /* Added to heap */ 217 } 218 } 219 220 /** 221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 222 * @c: UBIFS file-system description object 223 * @lprops: LEB properties to remove 224 * @cat: LEB category 225 */ 226 static void remove_from_lpt_heap(struct ubifs_info *c, 227 struct ubifs_lprops *lprops, int cat) 228 { 229 struct ubifs_lpt_heap *heap; 230 int hpos = lprops->hpos; 231 232 heap = &c->lpt_heap[cat - 1]; 233 ubifs_assert(c, hpos >= 0 && hpos < heap->cnt); 234 ubifs_assert(c, heap->arr[hpos] == lprops); 235 heap->cnt -= 1; 236 if (hpos < heap->cnt) { 237 heap->arr[hpos] = heap->arr[heap->cnt]; 238 heap->arr[hpos]->hpos = hpos; 239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 240 } 241 dbg_check_heap(c, heap, cat, -1); 242 } 243 244 /** 245 * lpt_heap_replace - replace lprops in a category heap. 246 * @c: UBIFS file-system description object 247 * @new_lprops: LEB properties with which to replace 248 * @cat: LEB category 249 * 250 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 251 * and the lprops that the pnode contains. When that happens, references in 252 * the category heaps to those lprops must be updated to point to the new 253 * lprops. This function does that. 254 */ 255 static void lpt_heap_replace(struct ubifs_info *c, 256 struct ubifs_lprops *new_lprops, int cat) 257 { 258 struct ubifs_lpt_heap *heap; 259 int hpos = new_lprops->hpos; 260 261 heap = &c->lpt_heap[cat - 1]; 262 heap->arr[hpos] = new_lprops; 263 } 264 265 /** 266 * ubifs_add_to_cat - add LEB properties to a category list or heap. 267 * @c: UBIFS file-system description object 268 * @lprops: LEB properties to add 269 * @cat: LEB category to which to add 270 * 271 * LEB properties are categorized to enable fast find operations. 272 */ 273 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 274 int cat) 275 { 276 switch (cat) { 277 case LPROPS_DIRTY: 278 case LPROPS_DIRTY_IDX: 279 case LPROPS_FREE: 280 if (add_to_lpt_heap(c, lprops, cat)) 281 break; 282 /* No more room on heap so make it un-categorized */ 283 cat = LPROPS_UNCAT; 284 /* Fall through */ 285 case LPROPS_UNCAT: 286 list_add(&lprops->list, &c->uncat_list); 287 break; 288 case LPROPS_EMPTY: 289 list_add(&lprops->list, &c->empty_list); 290 break; 291 case LPROPS_FREEABLE: 292 list_add(&lprops->list, &c->freeable_list); 293 c->freeable_cnt += 1; 294 break; 295 case LPROPS_FRDI_IDX: 296 list_add(&lprops->list, &c->frdi_idx_list); 297 break; 298 default: 299 ubifs_assert(c, 0); 300 } 301 302 lprops->flags &= ~LPROPS_CAT_MASK; 303 lprops->flags |= cat; 304 c->in_a_category_cnt += 1; 305 ubifs_assert(c, c->in_a_category_cnt <= c->main_lebs); 306 } 307 308 /** 309 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 310 * @c: UBIFS file-system description object 311 * @lprops: LEB properties to remove 312 * @cat: LEB category from which to remove 313 * 314 * LEB properties are categorized to enable fast find operations. 315 */ 316 static void ubifs_remove_from_cat(struct ubifs_info *c, 317 struct ubifs_lprops *lprops, int cat) 318 { 319 switch (cat) { 320 case LPROPS_DIRTY: 321 case LPROPS_DIRTY_IDX: 322 case LPROPS_FREE: 323 remove_from_lpt_heap(c, lprops, cat); 324 break; 325 case LPROPS_FREEABLE: 326 c->freeable_cnt -= 1; 327 ubifs_assert(c, c->freeable_cnt >= 0); 328 /* Fall through */ 329 case LPROPS_UNCAT: 330 case LPROPS_EMPTY: 331 case LPROPS_FRDI_IDX: 332 ubifs_assert(c, !list_empty(&lprops->list)); 333 list_del(&lprops->list); 334 break; 335 default: 336 ubifs_assert(c, 0); 337 } 338 339 c->in_a_category_cnt -= 1; 340 ubifs_assert(c, c->in_a_category_cnt >= 0); 341 } 342 343 /** 344 * ubifs_replace_cat - replace lprops in a category list or heap. 345 * @c: UBIFS file-system description object 346 * @old_lprops: LEB properties to replace 347 * @new_lprops: LEB properties with which to replace 348 * 349 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 350 * and the lprops that the pnode contains. When that happens, references in 351 * category lists and heaps must be replaced. This function does that. 352 */ 353 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 354 struct ubifs_lprops *new_lprops) 355 { 356 int cat; 357 358 cat = new_lprops->flags & LPROPS_CAT_MASK; 359 switch (cat) { 360 case LPROPS_DIRTY: 361 case LPROPS_DIRTY_IDX: 362 case LPROPS_FREE: 363 lpt_heap_replace(c, new_lprops, cat); 364 break; 365 case LPROPS_UNCAT: 366 case LPROPS_EMPTY: 367 case LPROPS_FREEABLE: 368 case LPROPS_FRDI_IDX: 369 list_replace(&old_lprops->list, &new_lprops->list); 370 break; 371 default: 372 ubifs_assert(c, 0); 373 } 374 } 375 376 /** 377 * ubifs_ensure_cat - ensure LEB properties are categorized. 378 * @c: UBIFS file-system description object 379 * @lprops: LEB properties 380 * 381 * A LEB may have fallen off of the bottom of a heap, and ended up as 382 * un-categorized even though it has enough space for us now. If that is the 383 * case this function will put the LEB back onto a heap. 384 */ 385 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 386 { 387 int cat = lprops->flags & LPROPS_CAT_MASK; 388 389 if (cat != LPROPS_UNCAT) 390 return; 391 cat = ubifs_categorize_lprops(c, lprops); 392 if (cat == LPROPS_UNCAT) 393 return; 394 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 395 ubifs_add_to_cat(c, lprops, cat); 396 } 397 398 /** 399 * ubifs_categorize_lprops - categorize LEB properties. 400 * @c: UBIFS file-system description object 401 * @lprops: LEB properties to categorize 402 * 403 * LEB properties are categorized to enable fast find operations. This function 404 * returns the LEB category to which the LEB properties belong. Note however 405 * that if the LEB category is stored as a heap and the heap is full, the 406 * LEB properties may have their category changed to %LPROPS_UNCAT. 407 */ 408 int ubifs_categorize_lprops(const struct ubifs_info *c, 409 const struct ubifs_lprops *lprops) 410 { 411 if (lprops->flags & LPROPS_TAKEN) 412 return LPROPS_UNCAT; 413 414 if (lprops->free == c->leb_size) { 415 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 416 return LPROPS_EMPTY; 417 } 418 419 if (lprops->free + lprops->dirty == c->leb_size) { 420 if (lprops->flags & LPROPS_INDEX) 421 return LPROPS_FRDI_IDX; 422 else 423 return LPROPS_FREEABLE; 424 } 425 426 if (lprops->flags & LPROPS_INDEX) { 427 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 428 return LPROPS_DIRTY_IDX; 429 } else { 430 if (lprops->dirty >= c->dead_wm && 431 lprops->dirty > lprops->free) 432 return LPROPS_DIRTY; 433 if (lprops->free > 0) 434 return LPROPS_FREE; 435 } 436 437 return LPROPS_UNCAT; 438 } 439 440 /** 441 * change_category - change LEB properties category. 442 * @c: UBIFS file-system description object 443 * @lprops: LEB properties to re-categorize 444 * 445 * LEB properties are categorized to enable fast find operations. When the LEB 446 * properties change they must be re-categorized. 447 */ 448 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 449 { 450 int old_cat = lprops->flags & LPROPS_CAT_MASK; 451 int new_cat = ubifs_categorize_lprops(c, lprops); 452 453 if (old_cat == new_cat) { 454 struct ubifs_lpt_heap *heap; 455 456 /* lprops on a heap now must be moved up or down */ 457 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 458 return; /* Not on a heap */ 459 heap = &c->lpt_heap[new_cat - 1]; 460 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 461 } else { 462 ubifs_remove_from_cat(c, lprops, old_cat); 463 ubifs_add_to_cat(c, lprops, new_cat); 464 } 465 } 466 467 /** 468 * ubifs_calc_dark - calculate LEB dark space size. 469 * @c: the UBIFS file-system description object 470 * @spc: amount of free and dirty space in the LEB 471 * 472 * This function calculates and returns amount of dark space in an LEB which 473 * has @spc bytes of free and dirty space. 474 * 475 * UBIFS is trying to account the space which might not be usable, and this 476 * space is called "dark space". For example, if an LEB has only %512 free 477 * bytes, it is dark space, because it cannot fit a large data node. 478 */ 479 int ubifs_calc_dark(const struct ubifs_info *c, int spc) 480 { 481 ubifs_assert(c, !(spc & 7)); 482 483 if (spc < c->dark_wm) 484 return spc; 485 486 /* 487 * If we have slightly more space then the dark space watermark, we can 488 * anyway safely assume it we'll be able to write a node of the 489 * smallest size there. 490 */ 491 if (spc - c->dark_wm < MIN_WRITE_SZ) 492 return spc - MIN_WRITE_SZ; 493 494 return c->dark_wm; 495 } 496 497 /** 498 * is_lprops_dirty - determine if LEB properties are dirty. 499 * @c: the UBIFS file-system description object 500 * @lprops: LEB properties to test 501 */ 502 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 503 { 504 struct ubifs_pnode *pnode; 505 int pos; 506 507 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 508 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 509 struct ubifs_pnode, 510 lprops[0]); 511 return !test_bit(COW_CNODE, &pnode->flags) && 512 test_bit(DIRTY_CNODE, &pnode->flags); 513 } 514 515 /** 516 * ubifs_change_lp - change LEB properties. 517 * @c: the UBIFS file-system description object 518 * @lp: LEB properties to change 519 * @free: new free space amount 520 * @dirty: new dirty space amount 521 * @flags: new flags 522 * @idx_gc_cnt: change to the count of @idx_gc list 523 * 524 * This function changes LEB properties (@free, @dirty or @flag). However, the 525 * property which has the %LPROPS_NC value is not changed. Returns a pointer to 526 * the updated LEB properties on success and a negative error code on failure. 527 * 528 * Note, the LEB properties may have had to be copied (due to COW) and 529 * consequently the pointer returned may not be the same as the pointer 530 * passed. 531 */ 532 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 533 const struct ubifs_lprops *lp, 534 int free, int dirty, int flags, 535 int idx_gc_cnt) 536 { 537 /* 538 * This is the only function that is allowed to change lprops, so we 539 * discard the "const" qualifier. 540 */ 541 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 542 543 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 544 lprops->lnum, free, dirty, flags); 545 546 ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); 547 ubifs_assert(c, c->lst.empty_lebs >= 0 && 548 c->lst.empty_lebs <= c->main_lebs); 549 ubifs_assert(c, c->freeable_cnt >= 0); 550 ubifs_assert(c, c->freeable_cnt <= c->main_lebs); 551 ubifs_assert(c, c->lst.taken_empty_lebs >= 0); 552 ubifs_assert(c, c->lst.taken_empty_lebs <= c->lst.empty_lebs); 553 ubifs_assert(c, !(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 554 ubifs_assert(c, !(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 555 ubifs_assert(c, !(c->lst.total_used & 7)); 556 ubifs_assert(c, free == LPROPS_NC || free >= 0); 557 ubifs_assert(c, dirty == LPROPS_NC || dirty >= 0); 558 559 if (!is_lprops_dirty(c, lprops)) { 560 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 561 if (IS_ERR(lprops)) 562 return lprops; 563 } else 564 ubifs_assert(c, lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 565 566 ubifs_assert(c, !(lprops->free & 7) && !(lprops->dirty & 7)); 567 568 spin_lock(&c->space_lock); 569 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 570 c->lst.taken_empty_lebs -= 1; 571 572 if (!(lprops->flags & LPROPS_INDEX)) { 573 int old_spc; 574 575 old_spc = lprops->free + lprops->dirty; 576 if (old_spc < c->dead_wm) 577 c->lst.total_dead -= old_spc; 578 else 579 c->lst.total_dark -= ubifs_calc_dark(c, old_spc); 580 581 c->lst.total_used -= c->leb_size - old_spc; 582 } 583 584 if (free != LPROPS_NC) { 585 free = ALIGN(free, 8); 586 c->lst.total_free += free - lprops->free; 587 588 /* Increase or decrease empty LEBs counter if needed */ 589 if (free == c->leb_size) { 590 if (lprops->free != c->leb_size) 591 c->lst.empty_lebs += 1; 592 } else if (lprops->free == c->leb_size) 593 c->lst.empty_lebs -= 1; 594 lprops->free = free; 595 } 596 597 if (dirty != LPROPS_NC) { 598 dirty = ALIGN(dirty, 8); 599 c->lst.total_dirty += dirty - lprops->dirty; 600 lprops->dirty = dirty; 601 } 602 603 if (flags != LPROPS_NC) { 604 /* Take care about indexing LEBs counter if needed */ 605 if ((lprops->flags & LPROPS_INDEX)) { 606 if (!(flags & LPROPS_INDEX)) 607 c->lst.idx_lebs -= 1; 608 } else if (flags & LPROPS_INDEX) 609 c->lst.idx_lebs += 1; 610 lprops->flags = flags; 611 } 612 613 if (!(lprops->flags & LPROPS_INDEX)) { 614 int new_spc; 615 616 new_spc = lprops->free + lprops->dirty; 617 if (new_spc < c->dead_wm) 618 c->lst.total_dead += new_spc; 619 else 620 c->lst.total_dark += ubifs_calc_dark(c, new_spc); 621 622 c->lst.total_used += c->leb_size - new_spc; 623 } 624 625 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 626 c->lst.taken_empty_lebs += 1; 627 628 change_category(c, lprops); 629 c->idx_gc_cnt += idx_gc_cnt; 630 spin_unlock(&c->space_lock); 631 return lprops; 632 } 633 634 /** 635 * ubifs_get_lp_stats - get lprops statistics. 636 * @c: UBIFS file-system description object 637 * @lst: return statistics 638 */ 639 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst) 640 { 641 spin_lock(&c->space_lock); 642 memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats)); 643 spin_unlock(&c->space_lock); 644 } 645 646 /** 647 * ubifs_change_one_lp - change LEB properties. 648 * @c: the UBIFS file-system description object 649 * @lnum: LEB to change properties for 650 * @free: amount of free space 651 * @dirty: amount of dirty space 652 * @flags_set: flags to set 653 * @flags_clean: flags to clean 654 * @idx_gc_cnt: change to the count of idx_gc list 655 * 656 * This function changes properties of LEB @lnum. It is a helper wrapper over 657 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 658 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 659 * a negative error code in case of failure. 660 */ 661 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 662 int flags_set, int flags_clean, int idx_gc_cnt) 663 { 664 int err = 0, flags; 665 const struct ubifs_lprops *lp; 666 667 ubifs_get_lprops(c); 668 669 lp = ubifs_lpt_lookup_dirty(c, lnum); 670 if (IS_ERR(lp)) { 671 err = PTR_ERR(lp); 672 goto out; 673 } 674 675 flags = (lp->flags | flags_set) & ~flags_clean; 676 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 677 if (IS_ERR(lp)) 678 err = PTR_ERR(lp); 679 680 out: 681 ubifs_release_lprops(c); 682 if (err) 683 ubifs_err(c, "cannot change properties of LEB %d, error %d", 684 lnum, err); 685 return err; 686 } 687 688 /** 689 * ubifs_update_one_lp - update LEB properties. 690 * @c: the UBIFS file-system description object 691 * @lnum: LEB to change properties for 692 * @free: amount of free space 693 * @dirty: amount of dirty space to add 694 * @flags_set: flags to set 695 * @flags_clean: flags to clean 696 * 697 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 698 * current dirty space, not substitutes it. 699 */ 700 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 701 int flags_set, int flags_clean) 702 { 703 int err = 0, flags; 704 const struct ubifs_lprops *lp; 705 706 ubifs_get_lprops(c); 707 708 lp = ubifs_lpt_lookup_dirty(c, lnum); 709 if (IS_ERR(lp)) { 710 err = PTR_ERR(lp); 711 goto out; 712 } 713 714 flags = (lp->flags | flags_set) & ~flags_clean; 715 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 716 if (IS_ERR(lp)) 717 err = PTR_ERR(lp); 718 719 out: 720 ubifs_release_lprops(c); 721 if (err) 722 ubifs_err(c, "cannot update properties of LEB %d, error %d", 723 lnum, err); 724 return err; 725 } 726 727 /** 728 * ubifs_read_one_lp - read LEB properties. 729 * @c: the UBIFS file-system description object 730 * @lnum: LEB to read properties for 731 * @lp: where to store read properties 732 * 733 * This helper function reads properties of a LEB @lnum and stores them in @lp. 734 * Returns zero in case of success and a negative error code in case of 735 * failure. 736 */ 737 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 738 { 739 int err = 0; 740 const struct ubifs_lprops *lpp; 741 742 ubifs_get_lprops(c); 743 744 lpp = ubifs_lpt_lookup(c, lnum); 745 if (IS_ERR(lpp)) { 746 err = PTR_ERR(lpp); 747 ubifs_err(c, "cannot read properties of LEB %d, error %d", 748 lnum, err); 749 goto out; 750 } 751 752 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 753 754 out: 755 ubifs_release_lprops(c); 756 return err; 757 } 758 759 /** 760 * ubifs_fast_find_free - try to find a LEB with free space quickly. 761 * @c: the UBIFS file-system description object 762 * 763 * This function returns LEB properties for a LEB with free space or %NULL if 764 * the function is unable to find a LEB quickly. 765 */ 766 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 767 { 768 struct ubifs_lprops *lprops; 769 struct ubifs_lpt_heap *heap; 770 771 ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); 772 773 heap = &c->lpt_heap[LPROPS_FREE - 1]; 774 if (heap->cnt == 0) 775 return NULL; 776 777 lprops = heap->arr[0]; 778 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 779 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 780 return lprops; 781 } 782 783 /** 784 * ubifs_fast_find_empty - try to find an empty LEB quickly. 785 * @c: the UBIFS file-system description object 786 * 787 * This function returns LEB properties for an empty LEB or %NULL if the 788 * function is unable to find an empty LEB quickly. 789 */ 790 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 791 { 792 struct ubifs_lprops *lprops; 793 794 ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); 795 796 if (list_empty(&c->empty_list)) 797 return NULL; 798 799 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 800 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 801 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 802 ubifs_assert(c, lprops->free == c->leb_size); 803 return lprops; 804 } 805 806 /** 807 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 808 * @c: the UBIFS file-system description object 809 * 810 * This function returns LEB properties for a freeable LEB or %NULL if the 811 * function is unable to find a freeable LEB quickly. 812 */ 813 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 814 { 815 struct ubifs_lprops *lprops; 816 817 ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); 818 819 if (list_empty(&c->freeable_list)) 820 return NULL; 821 822 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 823 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 824 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 825 ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size); 826 ubifs_assert(c, c->freeable_cnt > 0); 827 return lprops; 828 } 829 830 /** 831 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 832 * @c: the UBIFS file-system description object 833 * 834 * This function returns LEB properties for a freeable index LEB or %NULL if the 835 * function is unable to find a freeable index LEB quickly. 836 */ 837 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 838 { 839 struct ubifs_lprops *lprops; 840 841 ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); 842 843 if (list_empty(&c->frdi_idx_list)) 844 return NULL; 845 846 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 847 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 848 ubifs_assert(c, (lprops->flags & LPROPS_INDEX)); 849 ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size); 850 return lprops; 851 } 852 853 /* 854 * Everything below is related to debugging. 855 */ 856 857 /** 858 * dbg_check_cats - check category heaps and lists. 859 * @c: UBIFS file-system description object 860 * 861 * This function returns %0 on success and a negative error code on failure. 862 */ 863 int dbg_check_cats(struct ubifs_info *c) 864 { 865 struct ubifs_lprops *lprops; 866 struct list_head *pos; 867 int i, cat; 868 869 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 870 return 0; 871 872 list_for_each_entry(lprops, &c->empty_list, list) { 873 if (lprops->free != c->leb_size) { 874 ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)", 875 lprops->lnum, lprops->free, lprops->dirty, 876 lprops->flags); 877 return -EINVAL; 878 } 879 if (lprops->flags & LPROPS_TAKEN) { 880 ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)", 881 lprops->lnum, lprops->free, lprops->dirty, 882 lprops->flags); 883 return -EINVAL; 884 } 885 } 886 887 i = 0; 888 list_for_each_entry(lprops, &c->freeable_list, list) { 889 if (lprops->free + lprops->dirty != c->leb_size) { 890 ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)", 891 lprops->lnum, lprops->free, lprops->dirty, 892 lprops->flags); 893 return -EINVAL; 894 } 895 if (lprops->flags & LPROPS_TAKEN) { 896 ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)", 897 lprops->lnum, lprops->free, lprops->dirty, 898 lprops->flags); 899 return -EINVAL; 900 } 901 i += 1; 902 } 903 if (i != c->freeable_cnt) { 904 ubifs_err(c, "freeable list count %d expected %d", i, 905 c->freeable_cnt); 906 return -EINVAL; 907 } 908 909 i = 0; 910 list_for_each(pos, &c->idx_gc) 911 i += 1; 912 if (i != c->idx_gc_cnt) { 913 ubifs_err(c, "idx_gc list count %d expected %d", i, 914 c->idx_gc_cnt); 915 return -EINVAL; 916 } 917 918 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 919 if (lprops->free + lprops->dirty != c->leb_size) { 920 ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)", 921 lprops->lnum, lprops->free, lprops->dirty, 922 lprops->flags); 923 return -EINVAL; 924 } 925 if (lprops->flags & LPROPS_TAKEN) { 926 ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)", 927 lprops->lnum, lprops->free, lprops->dirty, 928 lprops->flags); 929 return -EINVAL; 930 } 931 if (!(lprops->flags & LPROPS_INDEX)) { 932 ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)", 933 lprops->lnum, lprops->free, lprops->dirty, 934 lprops->flags); 935 return -EINVAL; 936 } 937 } 938 939 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 940 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 941 942 for (i = 0; i < heap->cnt; i++) { 943 lprops = heap->arr[i]; 944 if (!lprops) { 945 ubifs_err(c, "null ptr in LPT heap cat %d", cat); 946 return -EINVAL; 947 } 948 if (lprops->hpos != i) { 949 ubifs_err(c, "bad ptr in LPT heap cat %d", cat); 950 return -EINVAL; 951 } 952 if (lprops->flags & LPROPS_TAKEN) { 953 ubifs_err(c, "taken LEB in LPT heap cat %d", cat); 954 return -EINVAL; 955 } 956 } 957 } 958 959 return 0; 960 } 961 962 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 963 int add_pos) 964 { 965 int i = 0, j, err = 0; 966 967 if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c)) 968 return; 969 970 for (i = 0; i < heap->cnt; i++) { 971 struct ubifs_lprops *lprops = heap->arr[i]; 972 struct ubifs_lprops *lp; 973 974 if (i != add_pos) 975 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 976 err = 1; 977 goto out; 978 } 979 if (lprops->hpos != i) { 980 err = 2; 981 goto out; 982 } 983 lp = ubifs_lpt_lookup(c, lprops->lnum); 984 if (IS_ERR(lp)) { 985 err = 3; 986 goto out; 987 } 988 if (lprops != lp) { 989 ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 990 (size_t)lprops, (size_t)lp, lprops->lnum, 991 lp->lnum); 992 err = 4; 993 goto out; 994 } 995 for (j = 0; j < i; j++) { 996 lp = heap->arr[j]; 997 if (lp == lprops) { 998 err = 5; 999 goto out; 1000 } 1001 if (lp->lnum == lprops->lnum) { 1002 err = 6; 1003 goto out; 1004 } 1005 } 1006 } 1007 out: 1008 if (err) { 1009 ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err); 1010 dump_stack(); 1011 ubifs_dump_heap(c, heap, cat); 1012 } 1013 } 1014 1015 /** 1016 * scan_check_cb - scan callback. 1017 * @c: the UBIFS file-system description object 1018 * @lp: LEB properties to scan 1019 * @in_tree: whether the LEB properties are in main memory 1020 * @lst: lprops statistics to update 1021 * 1022 * This function returns a code that indicates whether the scan should continue 1023 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1024 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1025 * (%LPT_SCAN_STOP). 1026 */ 1027 static int scan_check_cb(struct ubifs_info *c, 1028 const struct ubifs_lprops *lp, int in_tree, 1029 struct ubifs_lp_stats *lst) 1030 { 1031 struct ubifs_scan_leb *sleb; 1032 struct ubifs_scan_node *snod; 1033 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret; 1034 void *buf = NULL; 1035 1036 cat = lp->flags & LPROPS_CAT_MASK; 1037 if (cat != LPROPS_UNCAT) { 1038 cat = ubifs_categorize_lprops(c, lp); 1039 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1040 ubifs_err(c, "bad LEB category %d expected %d", 1041 (lp->flags & LPROPS_CAT_MASK), cat); 1042 return -EINVAL; 1043 } 1044 } 1045 1046 /* Check lp is on its category list (if it has one) */ 1047 if (in_tree) { 1048 struct list_head *list = NULL; 1049 1050 switch (cat) { 1051 case LPROPS_EMPTY: 1052 list = &c->empty_list; 1053 break; 1054 case LPROPS_FREEABLE: 1055 list = &c->freeable_list; 1056 break; 1057 case LPROPS_FRDI_IDX: 1058 list = &c->frdi_idx_list; 1059 break; 1060 case LPROPS_UNCAT: 1061 list = &c->uncat_list; 1062 break; 1063 } 1064 if (list) { 1065 struct ubifs_lprops *lprops; 1066 int found = 0; 1067 1068 list_for_each_entry(lprops, list, list) { 1069 if (lprops == lp) { 1070 found = 1; 1071 break; 1072 } 1073 } 1074 if (!found) { 1075 ubifs_err(c, "bad LPT list (category %d)", cat); 1076 return -EINVAL; 1077 } 1078 } 1079 } 1080 1081 /* Check lp is on its category heap (if it has one) */ 1082 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1083 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1084 1085 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1086 lp != heap->arr[lp->hpos]) { 1087 ubifs_err(c, "bad LPT heap (category %d)", cat); 1088 return -EINVAL; 1089 } 1090 } 1091 1092 /* 1093 * After an unclean unmount, empty and freeable LEBs 1094 * may contain garbage - do not scan them. 1095 */ 1096 if (lp->free == c->leb_size) { 1097 lst->empty_lebs += 1; 1098 lst->total_free += c->leb_size; 1099 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1100 return LPT_SCAN_CONTINUE; 1101 } 1102 if (lp->free + lp->dirty == c->leb_size && 1103 !(lp->flags & LPROPS_INDEX)) { 1104 lst->total_free += lp->free; 1105 lst->total_dirty += lp->dirty; 1106 lst->total_dark += ubifs_calc_dark(c, c->leb_size); 1107 return LPT_SCAN_CONTINUE; 1108 } 1109 1110 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 1111 if (!buf) 1112 return -ENOMEM; 1113 1114 sleb = ubifs_scan(c, lnum, 0, buf, 0); 1115 if (IS_ERR(sleb)) { 1116 ret = PTR_ERR(sleb); 1117 if (ret == -EUCLEAN) { 1118 ubifs_dump_lprops(c); 1119 ubifs_dump_budg(c, &c->bi); 1120 } 1121 goto out; 1122 } 1123 1124 is_idx = -1; 1125 list_for_each_entry(snod, &sleb->nodes, list) { 1126 int found, level = 0; 1127 1128 cond_resched(); 1129 1130 if (is_idx == -1) 1131 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1132 1133 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1134 ubifs_err(c, "indexing node in data LEB %d:%d", 1135 lnum, snod->offs); 1136 goto out_destroy; 1137 } 1138 1139 if (snod->type == UBIFS_IDX_NODE) { 1140 struct ubifs_idx_node *idx = snod->node; 1141 1142 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1143 level = le16_to_cpu(idx->level); 1144 } 1145 1146 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1147 snod->offs, is_idx); 1148 if (found) { 1149 if (found < 0) 1150 goto out_destroy; 1151 used += ALIGN(snod->len, 8); 1152 } 1153 } 1154 1155 free = c->leb_size - sleb->endpt; 1156 dirty = sleb->endpt - used; 1157 1158 if (free > c->leb_size || free < 0 || dirty > c->leb_size || 1159 dirty < 0) { 1160 ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d", 1161 lnum, free, dirty); 1162 goto out_destroy; 1163 } 1164 1165 if (lp->free + lp->dirty == c->leb_size && 1166 free + dirty == c->leb_size) 1167 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1168 (!is_idx && free == c->leb_size) || 1169 lp->free == c->leb_size) { 1170 /* 1171 * Empty or freeable LEBs could contain index 1172 * nodes from an uncompleted commit due to an 1173 * unclean unmount. Or they could be empty for 1174 * the same reason. Or it may simply not have been 1175 * unmapped. 1176 */ 1177 free = lp->free; 1178 dirty = lp->dirty; 1179 is_idx = 0; 1180 } 1181 1182 if (is_idx && lp->free + lp->dirty == free + dirty && 1183 lnum != c->ihead_lnum) { 1184 /* 1185 * After an unclean unmount, an index LEB could have a different 1186 * amount of free space than the value recorded by lprops. That 1187 * is because the in-the-gaps method may use free space or 1188 * create free space (as a side-effect of using ubi_leb_change 1189 * and not writing the whole LEB). The incorrect free space 1190 * value is not a problem because the index is only ever 1191 * allocated empty LEBs, so there will never be an attempt to 1192 * write to the free space at the end of an index LEB - except 1193 * by the in-the-gaps method for which it is not a problem. 1194 */ 1195 free = lp->free; 1196 dirty = lp->dirty; 1197 } 1198 1199 if (lp->free != free || lp->dirty != dirty) 1200 goto out_print; 1201 1202 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1203 if (free == c->leb_size) 1204 /* Free but not unmapped LEB, it's fine */ 1205 is_idx = 0; 1206 else { 1207 ubifs_err(c, "indexing node without indexing flag"); 1208 goto out_print; 1209 } 1210 } 1211 1212 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1213 ubifs_err(c, "data node with indexing flag"); 1214 goto out_print; 1215 } 1216 1217 if (free == c->leb_size) 1218 lst->empty_lebs += 1; 1219 1220 if (is_idx) 1221 lst->idx_lebs += 1; 1222 1223 if (!(lp->flags & LPROPS_INDEX)) 1224 lst->total_used += c->leb_size - free - dirty; 1225 lst->total_free += free; 1226 lst->total_dirty += dirty; 1227 1228 if (!(lp->flags & LPROPS_INDEX)) { 1229 int spc = free + dirty; 1230 1231 if (spc < c->dead_wm) 1232 lst->total_dead += spc; 1233 else 1234 lst->total_dark += ubifs_calc_dark(c, spc); 1235 } 1236 1237 ubifs_scan_destroy(sleb); 1238 vfree(buf); 1239 return LPT_SCAN_CONTINUE; 1240 1241 out_print: 1242 ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d", 1243 lnum, lp->free, lp->dirty, lp->flags, free, dirty); 1244 ubifs_dump_leb(c, lnum); 1245 out_destroy: 1246 ubifs_scan_destroy(sleb); 1247 ret = -EINVAL; 1248 out: 1249 vfree(buf); 1250 return ret; 1251 } 1252 1253 /** 1254 * dbg_check_lprops - check all LEB properties. 1255 * @c: UBIFS file-system description object 1256 * 1257 * This function checks all LEB properties and makes sure they are all correct. 1258 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1259 * and other negative error codes in case of other errors. This function is 1260 * called while the file system is locked (because of commit start), so no 1261 * additional locking is required. Note that locking the LPT mutex would cause 1262 * a circular lock dependency with the TNC mutex. 1263 */ 1264 int dbg_check_lprops(struct ubifs_info *c) 1265 { 1266 int i, err; 1267 struct ubifs_lp_stats lst; 1268 1269 if (!dbg_is_chk_lprops(c)) 1270 return 0; 1271 1272 /* 1273 * As we are going to scan the media, the write buffers have to be 1274 * synchronized. 1275 */ 1276 for (i = 0; i < c->jhead_cnt; i++) { 1277 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1278 if (err) 1279 return err; 1280 } 1281 1282 memset(&lst, 0, sizeof(struct ubifs_lp_stats)); 1283 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1284 (ubifs_lpt_scan_callback)scan_check_cb, 1285 &lst); 1286 if (err && err != -ENOSPC) 1287 goto out; 1288 1289 if (lst.empty_lebs != c->lst.empty_lebs || 1290 lst.idx_lebs != c->lst.idx_lebs || 1291 lst.total_free != c->lst.total_free || 1292 lst.total_dirty != c->lst.total_dirty || 1293 lst.total_used != c->lst.total_used) { 1294 ubifs_err(c, "bad overall accounting"); 1295 ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1296 lst.empty_lebs, lst.idx_lebs, lst.total_free, 1297 lst.total_dirty, lst.total_used); 1298 ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld", 1299 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1300 c->lst.total_dirty, c->lst.total_used); 1301 err = -EINVAL; 1302 goto out; 1303 } 1304 1305 if (lst.total_dead != c->lst.total_dead || 1306 lst.total_dark != c->lst.total_dark) { 1307 ubifs_err(c, "bad dead/dark space accounting"); 1308 ubifs_err(c, "calculated: total_dead %lld, total_dark %lld", 1309 lst.total_dead, lst.total_dark); 1310 ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld", 1311 c->lst.total_dead, c->lst.total_dark); 1312 err = -EINVAL; 1313 goto out; 1314 } 1315 1316 err = dbg_check_cats(c); 1317 out: 1318 return err; 1319 } 1320