1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the functions that access LEB properties and their 25 * categories. LEBs are categorized based on the needs of UBIFS, and the 26 * categories are stored as either heaps or lists to provide a fast way of 27 * finding a LEB in a particular category. For example, UBIFS may need to find 28 * an empty LEB for the journal, or a very dirty LEB for garbage collection. 29 */ 30 31 #include "ubifs.h" 32 33 /** 34 * get_heap_comp_val - get the LEB properties value for heap comparisons. 35 * @lprops: LEB properties 36 * @cat: LEB category 37 */ 38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat) 39 { 40 switch (cat) { 41 case LPROPS_FREE: 42 return lprops->free; 43 case LPROPS_DIRTY_IDX: 44 return lprops->free + lprops->dirty; 45 default: 46 return lprops->dirty; 47 } 48 } 49 50 /** 51 * move_up_lpt_heap - move a new heap entry up as far as possible. 52 * @c: UBIFS file-system description object 53 * @heap: LEB category heap 54 * @lprops: LEB properties to move 55 * @cat: LEB category 56 * 57 * New entries to a heap are added at the bottom and then moved up until the 58 * parent's value is greater. In the case of LPT's category heaps, the value 59 * is either the amount of free space or the amount of dirty space, depending 60 * on the category. 61 */ 62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 63 struct ubifs_lprops *lprops, int cat) 64 { 65 int val1, val2, hpos; 66 67 hpos = lprops->hpos; 68 if (!hpos) 69 return; /* Already top of the heap */ 70 val1 = get_heap_comp_val(lprops, cat); 71 /* Compare to parent and, if greater, move up the heap */ 72 do { 73 int ppos = (hpos - 1) / 2; 74 75 val2 = get_heap_comp_val(heap->arr[ppos], cat); 76 if (val2 >= val1) 77 return; 78 /* Greater than parent so move up */ 79 heap->arr[ppos]->hpos = hpos; 80 heap->arr[hpos] = heap->arr[ppos]; 81 heap->arr[ppos] = lprops; 82 lprops->hpos = ppos; 83 hpos = ppos; 84 } while (hpos); 85 } 86 87 /** 88 * adjust_lpt_heap - move a changed heap entry up or down the heap. 89 * @c: UBIFS file-system description object 90 * @heap: LEB category heap 91 * @lprops: LEB properties to move 92 * @hpos: heap position of @lprops 93 * @cat: LEB category 94 * 95 * Changed entries in a heap are moved up or down until the parent's value is 96 * greater. In the case of LPT's category heaps, the value is either the amount 97 * of free space or the amount of dirty space, depending on the category. 98 */ 99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, 100 struct ubifs_lprops *lprops, int hpos, int cat) 101 { 102 int val1, val2, val3, cpos; 103 104 val1 = get_heap_comp_val(lprops, cat); 105 /* Compare to parent and, if greater than parent, move up the heap */ 106 if (hpos) { 107 int ppos = (hpos - 1) / 2; 108 109 val2 = get_heap_comp_val(heap->arr[ppos], cat); 110 if (val1 > val2) { 111 /* Greater than parent so move up */ 112 while (1) { 113 heap->arr[ppos]->hpos = hpos; 114 heap->arr[hpos] = heap->arr[ppos]; 115 heap->arr[ppos] = lprops; 116 lprops->hpos = ppos; 117 hpos = ppos; 118 if (!hpos) 119 return; 120 ppos = (hpos - 1) / 2; 121 val2 = get_heap_comp_val(heap->arr[ppos], cat); 122 if (val1 <= val2) 123 return; 124 /* Still greater than parent so keep going */ 125 } 126 } 127 } 128 129 /* Not greater than parent, so compare to children */ 130 while (1) { 131 /* Compare to left child */ 132 cpos = hpos * 2 + 1; 133 if (cpos >= heap->cnt) 134 return; 135 val2 = get_heap_comp_val(heap->arr[cpos], cat); 136 if (val1 < val2) { 137 /* Less than left child, so promote biggest child */ 138 if (cpos + 1 < heap->cnt) { 139 val3 = get_heap_comp_val(heap->arr[cpos + 1], 140 cat); 141 if (val3 > val2) 142 cpos += 1; /* Right child is bigger */ 143 } 144 heap->arr[cpos]->hpos = hpos; 145 heap->arr[hpos] = heap->arr[cpos]; 146 heap->arr[cpos] = lprops; 147 lprops->hpos = cpos; 148 hpos = cpos; 149 continue; 150 } 151 /* Compare to right child */ 152 cpos += 1; 153 if (cpos >= heap->cnt) 154 return; 155 val3 = get_heap_comp_val(heap->arr[cpos], cat); 156 if (val1 < val3) { 157 /* Less than right child, so promote right child */ 158 heap->arr[cpos]->hpos = hpos; 159 heap->arr[hpos] = heap->arr[cpos]; 160 heap->arr[cpos] = lprops; 161 lprops->hpos = cpos; 162 hpos = cpos; 163 continue; 164 } 165 return; 166 } 167 } 168 169 /** 170 * add_to_lpt_heap - add LEB properties to a LEB category heap. 171 * @c: UBIFS file-system description object 172 * @lprops: LEB properties to add 173 * @cat: LEB category 174 * 175 * This function returns %1 if @lprops is added to the heap for LEB category 176 * @cat, otherwise %0 is returned because the heap is full. 177 */ 178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, 179 int cat) 180 { 181 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 182 183 if (heap->cnt >= heap->max_cnt) { 184 const int b = LPT_HEAP_SZ / 2 - 1; 185 int cpos, val1, val2; 186 187 /* Compare to some other LEB on the bottom of heap */ 188 /* Pick a position kind of randomly */ 189 cpos = (((size_t)lprops >> 4) & b) + b; 190 ubifs_assert(cpos >= b); 191 ubifs_assert(cpos < LPT_HEAP_SZ); 192 ubifs_assert(cpos < heap->cnt); 193 194 val1 = get_heap_comp_val(lprops, cat); 195 val2 = get_heap_comp_val(heap->arr[cpos], cat); 196 if (val1 > val2) { 197 struct ubifs_lprops *lp; 198 199 lp = heap->arr[cpos]; 200 lp->flags &= ~LPROPS_CAT_MASK; 201 lp->flags |= LPROPS_UNCAT; 202 list_add(&lp->list, &c->uncat_list); 203 lprops->hpos = cpos; 204 heap->arr[cpos] = lprops; 205 move_up_lpt_heap(c, heap, lprops, cat); 206 dbg_check_heap(c, heap, cat, lprops->hpos); 207 return 1; /* Added to heap */ 208 } 209 dbg_check_heap(c, heap, cat, -1); 210 return 0; /* Not added to heap */ 211 } else { 212 lprops->hpos = heap->cnt++; 213 heap->arr[lprops->hpos] = lprops; 214 move_up_lpt_heap(c, heap, lprops, cat); 215 dbg_check_heap(c, heap, cat, lprops->hpos); 216 return 1; /* Added to heap */ 217 } 218 } 219 220 /** 221 * remove_from_lpt_heap - remove LEB properties from a LEB category heap. 222 * @c: UBIFS file-system description object 223 * @lprops: LEB properties to remove 224 * @cat: LEB category 225 */ 226 static void remove_from_lpt_heap(struct ubifs_info *c, 227 struct ubifs_lprops *lprops, int cat) 228 { 229 struct ubifs_lpt_heap *heap; 230 int hpos = lprops->hpos; 231 232 heap = &c->lpt_heap[cat - 1]; 233 ubifs_assert(hpos >= 0 && hpos < heap->cnt); 234 ubifs_assert(heap->arr[hpos] == lprops); 235 heap->cnt -= 1; 236 if (hpos < heap->cnt) { 237 heap->arr[hpos] = heap->arr[heap->cnt]; 238 heap->arr[hpos]->hpos = hpos; 239 adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); 240 } 241 dbg_check_heap(c, heap, cat, -1); 242 } 243 244 /** 245 * lpt_heap_replace - replace lprops in a category heap. 246 * @c: UBIFS file-system description object 247 * @old_lprops: LEB properties to replace 248 * @new_lprops: LEB properties with which to replace 249 * @cat: LEB category 250 * 251 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 252 * and the lprops that the pnode contains. When that happens, references in 253 * the category heaps to those lprops must be updated to point to the new 254 * lprops. This function does that. 255 */ 256 static void lpt_heap_replace(struct ubifs_info *c, 257 struct ubifs_lprops *old_lprops, 258 struct ubifs_lprops *new_lprops, int cat) 259 { 260 struct ubifs_lpt_heap *heap; 261 int hpos = new_lprops->hpos; 262 263 heap = &c->lpt_heap[cat - 1]; 264 heap->arr[hpos] = new_lprops; 265 } 266 267 /** 268 * ubifs_add_to_cat - add LEB properties to a category list or heap. 269 * @c: UBIFS file-system description object 270 * @lprops: LEB properties to add 271 * @cat: LEB category to which to add 272 * 273 * LEB properties are categorized to enable fast find operations. 274 */ 275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, 276 int cat) 277 { 278 switch (cat) { 279 case LPROPS_DIRTY: 280 case LPROPS_DIRTY_IDX: 281 case LPROPS_FREE: 282 if (add_to_lpt_heap(c, lprops, cat)) 283 break; 284 /* No more room on heap so make it uncategorized */ 285 cat = LPROPS_UNCAT; 286 /* Fall through */ 287 case LPROPS_UNCAT: 288 list_add(&lprops->list, &c->uncat_list); 289 break; 290 case LPROPS_EMPTY: 291 list_add(&lprops->list, &c->empty_list); 292 break; 293 case LPROPS_FREEABLE: 294 list_add(&lprops->list, &c->freeable_list); 295 c->freeable_cnt += 1; 296 break; 297 case LPROPS_FRDI_IDX: 298 list_add(&lprops->list, &c->frdi_idx_list); 299 break; 300 default: 301 ubifs_assert(0); 302 } 303 lprops->flags &= ~LPROPS_CAT_MASK; 304 lprops->flags |= cat; 305 } 306 307 /** 308 * ubifs_remove_from_cat - remove LEB properties from a category list or heap. 309 * @c: UBIFS file-system description object 310 * @lprops: LEB properties to remove 311 * @cat: LEB category from which to remove 312 * 313 * LEB properties are categorized to enable fast find operations. 314 */ 315 static void ubifs_remove_from_cat(struct ubifs_info *c, 316 struct ubifs_lprops *lprops, int cat) 317 { 318 switch (cat) { 319 case LPROPS_DIRTY: 320 case LPROPS_DIRTY_IDX: 321 case LPROPS_FREE: 322 remove_from_lpt_heap(c, lprops, cat); 323 break; 324 case LPROPS_FREEABLE: 325 c->freeable_cnt -= 1; 326 ubifs_assert(c->freeable_cnt >= 0); 327 /* Fall through */ 328 case LPROPS_UNCAT: 329 case LPROPS_EMPTY: 330 case LPROPS_FRDI_IDX: 331 ubifs_assert(!list_empty(&lprops->list)); 332 list_del(&lprops->list); 333 break; 334 default: 335 ubifs_assert(0); 336 } 337 } 338 339 /** 340 * ubifs_replace_cat - replace lprops in a category list or heap. 341 * @c: UBIFS file-system description object 342 * @old_lprops: LEB properties to replace 343 * @new_lprops: LEB properties with which to replace 344 * 345 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode) 346 * and the lprops that the pnode contains. When that happens, references in 347 * category lists and heaps must be replaced. This function does that. 348 */ 349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, 350 struct ubifs_lprops *new_lprops) 351 { 352 int cat; 353 354 cat = new_lprops->flags & LPROPS_CAT_MASK; 355 switch (cat) { 356 case LPROPS_DIRTY: 357 case LPROPS_DIRTY_IDX: 358 case LPROPS_FREE: 359 lpt_heap_replace(c, old_lprops, new_lprops, cat); 360 break; 361 case LPROPS_UNCAT: 362 case LPROPS_EMPTY: 363 case LPROPS_FREEABLE: 364 case LPROPS_FRDI_IDX: 365 list_replace(&old_lprops->list, &new_lprops->list); 366 break; 367 default: 368 ubifs_assert(0); 369 } 370 } 371 372 /** 373 * ubifs_ensure_cat - ensure LEB properties are categorized. 374 * @c: UBIFS file-system description object 375 * @lprops: LEB properties 376 * 377 * A LEB may have fallen off of the bottom of a heap, and ended up as 378 * uncategorized even though it has enough space for us now. If that is the case 379 * this function will put the LEB back onto a heap. 380 */ 381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops) 382 { 383 int cat = lprops->flags & LPROPS_CAT_MASK; 384 385 if (cat != LPROPS_UNCAT) 386 return; 387 cat = ubifs_categorize_lprops(c, lprops); 388 if (cat == LPROPS_UNCAT) 389 return; 390 ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT); 391 ubifs_add_to_cat(c, lprops, cat); 392 } 393 394 /** 395 * ubifs_categorize_lprops - categorize LEB properties. 396 * @c: UBIFS file-system description object 397 * @lprops: LEB properties to categorize 398 * 399 * LEB properties are categorized to enable fast find operations. This function 400 * returns the LEB category to which the LEB properties belong. Note however 401 * that if the LEB category is stored as a heap and the heap is full, the 402 * LEB properties may have their category changed to %LPROPS_UNCAT. 403 */ 404 int ubifs_categorize_lprops(const struct ubifs_info *c, 405 const struct ubifs_lprops *lprops) 406 { 407 if (lprops->flags & LPROPS_TAKEN) 408 return LPROPS_UNCAT; 409 410 if (lprops->free == c->leb_size) { 411 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 412 return LPROPS_EMPTY; 413 } 414 415 if (lprops->free + lprops->dirty == c->leb_size) { 416 if (lprops->flags & LPROPS_INDEX) 417 return LPROPS_FRDI_IDX; 418 else 419 return LPROPS_FREEABLE; 420 } 421 422 if (lprops->flags & LPROPS_INDEX) { 423 if (lprops->dirty + lprops->free >= c->min_idx_node_sz) 424 return LPROPS_DIRTY_IDX; 425 } else { 426 if (lprops->dirty >= c->dead_wm && 427 lprops->dirty > lprops->free) 428 return LPROPS_DIRTY; 429 if (lprops->free > 0) 430 return LPROPS_FREE; 431 } 432 433 return LPROPS_UNCAT; 434 } 435 436 /** 437 * change_category - change LEB properties category. 438 * @c: UBIFS file-system description object 439 * @lprops: LEB properties to recategorize 440 * 441 * LEB properties are categorized to enable fast find operations. When the LEB 442 * properties change they must be recategorized. 443 */ 444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops) 445 { 446 int old_cat = lprops->flags & LPROPS_CAT_MASK; 447 int new_cat = ubifs_categorize_lprops(c, lprops); 448 449 if (old_cat == new_cat) { 450 struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1]; 451 452 /* lprops on a heap now must be moved up or down */ 453 if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT) 454 return; /* Not on a heap */ 455 heap = &c->lpt_heap[new_cat - 1]; 456 adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat); 457 } else { 458 ubifs_remove_from_cat(c, lprops, old_cat); 459 ubifs_add_to_cat(c, lprops, new_cat); 460 } 461 } 462 463 /** 464 * calc_dark - calculate LEB dark space size. 465 * @c: the UBIFS file-system description object 466 * @spc: amount of free and dirty space in the LEB 467 * 468 * This function calculates amount of dark space in an LEB which has @spc bytes 469 * of free and dirty space. Returns the calculations result. 470 * 471 * Dark space is the space which is not always usable - it depends on which 472 * nodes are written in which order. E.g., if an LEB has only 512 free bytes, 473 * it is dark space, because it cannot fit a large data node. So UBIFS cannot 474 * count on this LEB and treat these 512 bytes as usable because it is not true 475 * if, for example, only big chunks of uncompressible data will be written to 476 * the FS. 477 */ 478 static int calc_dark(struct ubifs_info *c, int spc) 479 { 480 ubifs_assert(!(spc & 7)); 481 482 if (spc < c->dark_wm) 483 return spc; 484 485 /* 486 * If we have slightly more space then the dark space watermark, we can 487 * anyway safely assume it we'll be able to write a node of the 488 * smallest size there. 489 */ 490 if (spc - c->dark_wm < MIN_WRITE_SZ) 491 return spc - MIN_WRITE_SZ; 492 493 return c->dark_wm; 494 } 495 496 /** 497 * is_lprops_dirty - determine if LEB properties are dirty. 498 * @c: the UBIFS file-system description object 499 * @lprops: LEB properties to test 500 */ 501 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops) 502 { 503 struct ubifs_pnode *pnode; 504 int pos; 505 506 pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1); 507 pnode = (struct ubifs_pnode *)container_of(lprops - pos, 508 struct ubifs_pnode, 509 lprops[0]); 510 return !test_bit(COW_ZNODE, &pnode->flags) && 511 test_bit(DIRTY_CNODE, &pnode->flags); 512 } 513 514 /** 515 * ubifs_change_lp - change LEB properties. 516 * @c: the UBIFS file-system description object 517 * @lp: LEB properties to change 518 * @free: new free space amount 519 * @dirty: new dirty space amount 520 * @flags: new flags 521 * @idx_gc_cnt: change to the count of idx_gc list 522 * 523 * This function changes LEB properties. This function does not change a LEB 524 * property (@free, @dirty or @flag) if the value passed is %LPROPS_NC. 525 * 526 * This function returns a pointer to the updated LEB properties on success 527 * and a negative error code on failure. N.B. the LEB properties may have had to 528 * be copied (due to COW) and consequently the pointer returned may not be the 529 * same as the pointer passed. 530 */ 531 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, 532 const struct ubifs_lprops *lp, 533 int free, int dirty, int flags, 534 int idx_gc_cnt) 535 { 536 /* 537 * This is the only function that is allowed to change lprops, so we 538 * discard the const qualifier. 539 */ 540 struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp; 541 542 dbg_lp("LEB %d, free %d, dirty %d, flags %d", 543 lprops->lnum, free, dirty, flags); 544 545 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 546 ubifs_assert(c->lst.empty_lebs >= 0 && 547 c->lst.empty_lebs <= c->main_lebs); 548 ubifs_assert(c->freeable_cnt >= 0); 549 ubifs_assert(c->freeable_cnt <= c->main_lebs); 550 ubifs_assert(c->lst.taken_empty_lebs >= 0); 551 ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs); 552 ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7)); 553 ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7)); 554 ubifs_assert(!(c->lst.total_used & 7)); 555 ubifs_assert(free == LPROPS_NC || free >= 0); 556 ubifs_assert(dirty == LPROPS_NC || dirty >= 0); 557 558 if (!is_lprops_dirty(c, lprops)) { 559 lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum); 560 if (IS_ERR(lprops)) 561 return lprops; 562 } else 563 ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum)); 564 565 ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7)); 566 567 spin_lock(&c->space_lock); 568 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 569 c->lst.taken_empty_lebs -= 1; 570 571 if (!(lprops->flags & LPROPS_INDEX)) { 572 int old_spc; 573 574 old_spc = lprops->free + lprops->dirty; 575 if (old_spc < c->dead_wm) 576 c->lst.total_dead -= old_spc; 577 else 578 c->lst.total_dark -= calc_dark(c, old_spc); 579 580 c->lst.total_used -= c->leb_size - old_spc; 581 } 582 583 if (free != LPROPS_NC) { 584 free = ALIGN(free, 8); 585 c->lst.total_free += free - lprops->free; 586 587 /* Increase or decrease empty LEBs counter if needed */ 588 if (free == c->leb_size) { 589 if (lprops->free != c->leb_size) 590 c->lst.empty_lebs += 1; 591 } else if (lprops->free == c->leb_size) 592 c->lst.empty_lebs -= 1; 593 lprops->free = free; 594 } 595 596 if (dirty != LPROPS_NC) { 597 dirty = ALIGN(dirty, 8); 598 c->lst.total_dirty += dirty - lprops->dirty; 599 lprops->dirty = dirty; 600 } 601 602 if (flags != LPROPS_NC) { 603 /* Take care about indexing LEBs counter if needed */ 604 if ((lprops->flags & LPROPS_INDEX)) { 605 if (!(flags & LPROPS_INDEX)) 606 c->lst.idx_lebs -= 1; 607 } else if (flags & LPROPS_INDEX) 608 c->lst.idx_lebs += 1; 609 lprops->flags = flags; 610 } 611 612 if (!(lprops->flags & LPROPS_INDEX)) { 613 int new_spc; 614 615 new_spc = lprops->free + lprops->dirty; 616 if (new_spc < c->dead_wm) 617 c->lst.total_dead += new_spc; 618 else 619 c->lst.total_dark += calc_dark(c, new_spc); 620 621 c->lst.total_used += c->leb_size - new_spc; 622 } 623 624 if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size) 625 c->lst.taken_empty_lebs += 1; 626 627 change_category(c, lprops); 628 c->idx_gc_cnt += idx_gc_cnt; 629 spin_unlock(&c->space_lock); 630 return lprops; 631 } 632 633 /** 634 * ubifs_get_lp_stats - get lprops statistics. 635 * @c: UBIFS file-system description object 636 * @st: return statistics 637 */ 638 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *st) 639 { 640 spin_lock(&c->space_lock); 641 memcpy(st, &c->lst, sizeof(struct ubifs_lp_stats)); 642 spin_unlock(&c->space_lock); 643 } 644 645 /** 646 * ubifs_change_one_lp - change LEB properties. 647 * @c: the UBIFS file-system description object 648 * @lnum: LEB to change properties for 649 * @free: amount of free space 650 * @dirty: amount of dirty space 651 * @flags_set: flags to set 652 * @flags_clean: flags to clean 653 * @idx_gc_cnt: change to the count of idx_gc list 654 * 655 * This function changes properties of LEB @lnum. It is a helper wrapper over 656 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the 657 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and 658 * a negative error code in case of failure. 659 */ 660 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 661 int flags_set, int flags_clean, int idx_gc_cnt) 662 { 663 int err = 0, flags; 664 const struct ubifs_lprops *lp; 665 666 ubifs_get_lprops(c); 667 668 lp = ubifs_lpt_lookup_dirty(c, lnum); 669 if (IS_ERR(lp)) { 670 err = PTR_ERR(lp); 671 goto out; 672 } 673 674 flags = (lp->flags | flags_set) & ~flags_clean; 675 lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt); 676 if (IS_ERR(lp)) 677 err = PTR_ERR(lp); 678 679 out: 680 ubifs_release_lprops(c); 681 return err; 682 } 683 684 /** 685 * ubifs_update_one_lp - update LEB properties. 686 * @c: the UBIFS file-system description object 687 * @lnum: LEB to change properties for 688 * @free: amount of free space 689 * @dirty: amount of dirty space to add 690 * @flags_set: flags to set 691 * @flags_clean: flags to clean 692 * 693 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to 694 * current dirty space, not substitutes it. 695 */ 696 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, 697 int flags_set, int flags_clean) 698 { 699 int err = 0, flags; 700 const struct ubifs_lprops *lp; 701 702 ubifs_get_lprops(c); 703 704 lp = ubifs_lpt_lookup_dirty(c, lnum); 705 if (IS_ERR(lp)) { 706 err = PTR_ERR(lp); 707 goto out; 708 } 709 710 flags = (lp->flags | flags_set) & ~flags_clean; 711 lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0); 712 if (IS_ERR(lp)) 713 err = PTR_ERR(lp); 714 715 out: 716 ubifs_release_lprops(c); 717 return err; 718 } 719 720 /** 721 * ubifs_read_one_lp - read LEB properties. 722 * @c: the UBIFS file-system description object 723 * @lnum: LEB to read properties for 724 * @lp: where to store read properties 725 * 726 * This helper function reads properties of a LEB @lnum and stores them in @lp. 727 * Returns zero in case of success and a negative error code in case of 728 * failure. 729 */ 730 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp) 731 { 732 int err = 0; 733 const struct ubifs_lprops *lpp; 734 735 ubifs_get_lprops(c); 736 737 lpp = ubifs_lpt_lookup(c, lnum); 738 if (IS_ERR(lpp)) { 739 err = PTR_ERR(lpp); 740 goto out; 741 } 742 743 memcpy(lp, lpp, sizeof(struct ubifs_lprops)); 744 745 out: 746 ubifs_release_lprops(c); 747 return err; 748 } 749 750 /** 751 * ubifs_fast_find_free - try to find a LEB with free space quickly. 752 * @c: the UBIFS file-system description object 753 * 754 * This function returns LEB properties for a LEB with free space or %NULL if 755 * the function is unable to find a LEB quickly. 756 */ 757 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c) 758 { 759 struct ubifs_lprops *lprops; 760 struct ubifs_lpt_heap *heap; 761 762 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 763 764 heap = &c->lpt_heap[LPROPS_FREE - 1]; 765 if (heap->cnt == 0) 766 return NULL; 767 768 lprops = heap->arr[0]; 769 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 770 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 771 return lprops; 772 } 773 774 /** 775 * ubifs_fast_find_empty - try to find an empty LEB quickly. 776 * @c: the UBIFS file-system description object 777 * 778 * This function returns LEB properties for an empty LEB or %NULL if the 779 * function is unable to find an empty LEB quickly. 780 */ 781 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) 782 { 783 struct ubifs_lprops *lprops; 784 785 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 786 787 if (list_empty(&c->empty_list)) 788 return NULL; 789 790 lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); 791 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 792 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 793 ubifs_assert(lprops->free == c->leb_size); 794 return lprops; 795 } 796 797 /** 798 * ubifs_fast_find_freeable - try to find a freeable LEB quickly. 799 * @c: the UBIFS file-system description object 800 * 801 * This function returns LEB properties for a freeable LEB or %NULL if the 802 * function is unable to find a freeable LEB quickly. 803 */ 804 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c) 805 { 806 struct ubifs_lprops *lprops; 807 808 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 809 810 if (list_empty(&c->freeable_list)) 811 return NULL; 812 813 lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list); 814 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 815 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 816 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 817 ubifs_assert(c->freeable_cnt > 0); 818 return lprops; 819 } 820 821 /** 822 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly. 823 * @c: the UBIFS file-system description object 824 * 825 * This function returns LEB properties for a freeable index LEB or %NULL if the 826 * function is unable to find a freeable index LEB quickly. 827 */ 828 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c) 829 { 830 struct ubifs_lprops *lprops; 831 832 ubifs_assert(mutex_is_locked(&c->lp_mutex)); 833 834 if (list_empty(&c->frdi_idx_list)) 835 return NULL; 836 837 lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list); 838 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 839 ubifs_assert((lprops->flags & LPROPS_INDEX)); 840 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 841 return lprops; 842 } 843 844 #ifdef CONFIG_UBIFS_FS_DEBUG 845 846 /** 847 * dbg_check_cats - check category heaps and lists. 848 * @c: UBIFS file-system description object 849 * 850 * This function returns %0 on success and a negative error code on failure. 851 */ 852 int dbg_check_cats(struct ubifs_info *c) 853 { 854 struct ubifs_lprops *lprops; 855 struct list_head *pos; 856 int i, cat; 857 858 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) 859 return 0; 860 861 list_for_each_entry(lprops, &c->empty_list, list) { 862 if (lprops->free != c->leb_size) { 863 ubifs_err("non-empty LEB %d on empty list " 864 "(free %d dirty %d flags %d)", lprops->lnum, 865 lprops->free, lprops->dirty, lprops->flags); 866 return -EINVAL; 867 } 868 if (lprops->flags & LPROPS_TAKEN) { 869 ubifs_err("taken LEB %d on empty list " 870 "(free %d dirty %d flags %d)", lprops->lnum, 871 lprops->free, lprops->dirty, lprops->flags); 872 return -EINVAL; 873 } 874 } 875 876 i = 0; 877 list_for_each_entry(lprops, &c->freeable_list, list) { 878 if (lprops->free + lprops->dirty != c->leb_size) { 879 ubifs_err("non-freeable LEB %d on freeable list " 880 "(free %d dirty %d flags %d)", lprops->lnum, 881 lprops->free, lprops->dirty, lprops->flags); 882 return -EINVAL; 883 } 884 if (lprops->flags & LPROPS_TAKEN) { 885 ubifs_err("taken LEB %d on freeable list " 886 "(free %d dirty %d flags %d)", lprops->lnum, 887 lprops->free, lprops->dirty, lprops->flags); 888 return -EINVAL; 889 } 890 i += 1; 891 } 892 if (i != c->freeable_cnt) { 893 ubifs_err("freeable list count %d expected %d", i, 894 c->freeable_cnt); 895 return -EINVAL; 896 } 897 898 i = 0; 899 list_for_each(pos, &c->idx_gc) 900 i += 1; 901 if (i != c->idx_gc_cnt) { 902 ubifs_err("idx_gc list count %d expected %d", i, 903 c->idx_gc_cnt); 904 return -EINVAL; 905 } 906 907 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 908 if (lprops->free + lprops->dirty != c->leb_size) { 909 ubifs_err("non-freeable LEB %d on frdi_idx list " 910 "(free %d dirty %d flags %d)", lprops->lnum, 911 lprops->free, lprops->dirty, lprops->flags); 912 return -EINVAL; 913 } 914 if (lprops->flags & LPROPS_TAKEN) { 915 ubifs_err("taken LEB %d on frdi_idx list " 916 "(free %d dirty %d flags %d)", lprops->lnum, 917 lprops->free, lprops->dirty, lprops->flags); 918 return -EINVAL; 919 } 920 if (!(lprops->flags & LPROPS_INDEX)) { 921 ubifs_err("non-index LEB %d on frdi_idx list " 922 "(free %d dirty %d flags %d)", lprops->lnum, 923 lprops->free, lprops->dirty, lprops->flags); 924 return -EINVAL; 925 } 926 } 927 928 for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) { 929 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 930 931 for (i = 0; i < heap->cnt; i++) { 932 lprops = heap->arr[i]; 933 if (!lprops) { 934 ubifs_err("null ptr in LPT heap cat %d", cat); 935 return -EINVAL; 936 } 937 if (lprops->hpos != i) { 938 ubifs_err("bad ptr in LPT heap cat %d", cat); 939 return -EINVAL; 940 } 941 if (lprops->flags & LPROPS_TAKEN) { 942 ubifs_err("taken LEB in LPT heap cat %d", cat); 943 return -EINVAL; 944 } 945 } 946 } 947 948 return 0; 949 } 950 951 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat, 952 int add_pos) 953 { 954 int i = 0, j, err = 0; 955 956 if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS))) 957 return; 958 959 for (i = 0; i < heap->cnt; i++) { 960 struct ubifs_lprops *lprops = heap->arr[i]; 961 struct ubifs_lprops *lp; 962 963 if (i != add_pos) 964 if ((lprops->flags & LPROPS_CAT_MASK) != cat) { 965 err = 1; 966 goto out; 967 } 968 if (lprops->hpos != i) { 969 err = 2; 970 goto out; 971 } 972 lp = ubifs_lpt_lookup(c, lprops->lnum); 973 if (IS_ERR(lp)) { 974 err = 3; 975 goto out; 976 } 977 if (lprops != lp) { 978 dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d", 979 (size_t)lprops, (size_t)lp, lprops->lnum, 980 lp->lnum); 981 err = 4; 982 goto out; 983 } 984 for (j = 0; j < i; j++) { 985 lp = heap->arr[j]; 986 if (lp == lprops) { 987 err = 5; 988 goto out; 989 } 990 if (lp->lnum == lprops->lnum) { 991 err = 6; 992 goto out; 993 } 994 } 995 } 996 out: 997 if (err) { 998 dbg_msg("failed cat %d hpos %d err %d", cat, i, err); 999 dbg_dump_stack(); 1000 dbg_dump_heap(c, heap, cat); 1001 } 1002 } 1003 1004 /** 1005 * struct scan_check_data - data provided to scan callback function. 1006 * @lst: LEB properties statistics 1007 * @err: error code 1008 */ 1009 struct scan_check_data { 1010 struct ubifs_lp_stats lst; 1011 int err; 1012 }; 1013 1014 /** 1015 * scan_check_cb - scan callback. 1016 * @c: the UBIFS file-system description object 1017 * @lp: LEB properties to scan 1018 * @in_tree: whether the LEB properties are in main memory 1019 * @data: information passed to and from the caller of the scan 1020 * 1021 * This function returns a code that indicates whether the scan should continue 1022 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 1023 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 1024 * (%LPT_SCAN_STOP). 1025 */ 1026 static int scan_check_cb(struct ubifs_info *c, 1027 const struct ubifs_lprops *lp, int in_tree, 1028 struct scan_check_data *data) 1029 { 1030 struct ubifs_scan_leb *sleb; 1031 struct ubifs_scan_node *snod; 1032 struct ubifs_lp_stats *lst = &data->lst; 1033 int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty; 1034 1035 cat = lp->flags & LPROPS_CAT_MASK; 1036 if (cat != LPROPS_UNCAT) { 1037 cat = ubifs_categorize_lprops(c, lp); 1038 if (cat != (lp->flags & LPROPS_CAT_MASK)) { 1039 ubifs_err("bad LEB category %d expected %d", 1040 (lp->flags & LPROPS_CAT_MASK), cat); 1041 goto out; 1042 } 1043 } 1044 1045 /* Check lp is on its category list (if it has one) */ 1046 if (in_tree) { 1047 struct list_head *list = NULL; 1048 1049 switch (cat) { 1050 case LPROPS_EMPTY: 1051 list = &c->empty_list; 1052 break; 1053 case LPROPS_FREEABLE: 1054 list = &c->freeable_list; 1055 break; 1056 case LPROPS_FRDI_IDX: 1057 list = &c->frdi_idx_list; 1058 break; 1059 case LPROPS_UNCAT: 1060 list = &c->uncat_list; 1061 break; 1062 } 1063 if (list) { 1064 struct ubifs_lprops *lprops; 1065 int found = 0; 1066 1067 list_for_each_entry(lprops, list, list) { 1068 if (lprops == lp) { 1069 found = 1; 1070 break; 1071 } 1072 } 1073 if (!found) { 1074 ubifs_err("bad LPT list (category %d)", cat); 1075 goto out; 1076 } 1077 } 1078 } 1079 1080 /* Check lp is on its category heap (if it has one) */ 1081 if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) { 1082 struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1]; 1083 1084 if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) || 1085 lp != heap->arr[lp->hpos]) { 1086 ubifs_err("bad LPT heap (category %d)", cat); 1087 goto out; 1088 } 1089 } 1090 1091 sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); 1092 if (IS_ERR(sleb)) { 1093 /* 1094 * After an unclean unmount, empty and freeable LEBs 1095 * may contain garbage. 1096 */ 1097 if (lp->free == c->leb_size) { 1098 ubifs_err("scan errors were in empty LEB " 1099 "- continuing checking"); 1100 lst->empty_lebs += 1; 1101 lst->total_free += c->leb_size; 1102 lst->total_dark += calc_dark(c, c->leb_size); 1103 return LPT_SCAN_CONTINUE; 1104 } 1105 1106 if (lp->free + lp->dirty == c->leb_size && 1107 !(lp->flags & LPROPS_INDEX)) { 1108 ubifs_err("scan errors were in freeable LEB " 1109 "- continuing checking"); 1110 lst->total_free += lp->free; 1111 lst->total_dirty += lp->dirty; 1112 lst->total_dark += calc_dark(c, c->leb_size); 1113 return LPT_SCAN_CONTINUE; 1114 } 1115 data->err = PTR_ERR(sleb); 1116 return LPT_SCAN_STOP; 1117 } 1118 1119 is_idx = -1; 1120 list_for_each_entry(snod, &sleb->nodes, list) { 1121 int found, level = 0; 1122 1123 cond_resched(); 1124 1125 if (is_idx == -1) 1126 is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0; 1127 1128 if (is_idx && snod->type != UBIFS_IDX_NODE) { 1129 ubifs_err("indexing node in data LEB %d:%d", 1130 lnum, snod->offs); 1131 goto out_destroy; 1132 } 1133 1134 if (snod->type == UBIFS_IDX_NODE) { 1135 struct ubifs_idx_node *idx = snod->node; 1136 1137 key_read(c, ubifs_idx_key(c, idx), &snod->key); 1138 level = le16_to_cpu(idx->level); 1139 } 1140 1141 found = ubifs_tnc_has_node(c, &snod->key, level, lnum, 1142 snod->offs, is_idx); 1143 if (found) { 1144 if (found < 0) 1145 goto out_destroy; 1146 used += ALIGN(snod->len, 8); 1147 } 1148 } 1149 1150 free = c->leb_size - sleb->endpt; 1151 dirty = sleb->endpt - used; 1152 1153 if (free > c->leb_size || free < 0 || dirty > c->leb_size || 1154 dirty < 0) { 1155 ubifs_err("bad calculated accounting for LEB %d: " 1156 "free %d, dirty %d", lnum, free, dirty); 1157 goto out_destroy; 1158 } 1159 1160 if (lp->free + lp->dirty == c->leb_size && 1161 free + dirty == c->leb_size) 1162 if ((is_idx && !(lp->flags & LPROPS_INDEX)) || 1163 (!is_idx && free == c->leb_size) || 1164 lp->free == c->leb_size) { 1165 /* 1166 * Empty or freeable LEBs could contain index 1167 * nodes from an uncompleted commit due to an 1168 * unclean unmount. Or they could be empty for 1169 * the same reason. Or it may simply not have been 1170 * unmapped. 1171 */ 1172 free = lp->free; 1173 dirty = lp->dirty; 1174 is_idx = 0; 1175 } 1176 1177 if (is_idx && lp->free + lp->dirty == free + dirty && 1178 lnum != c->ihead_lnum) { 1179 /* 1180 * After an unclean unmount, an index LEB could have a different 1181 * amount of free space than the value recorded by lprops. That 1182 * is because the in-the-gaps method may use free space or 1183 * create free space (as a side-effect of using ubi_leb_change 1184 * and not writing the whole LEB). The incorrect free space 1185 * value is not a problem because the index is only ever 1186 * allocated empty LEBs, so there will never be an attempt to 1187 * write to the free space at the end of an index LEB - except 1188 * by the in-the-gaps method for which it is not a problem. 1189 */ 1190 free = lp->free; 1191 dirty = lp->dirty; 1192 } 1193 1194 if (lp->free != free || lp->dirty != dirty) 1195 goto out_print; 1196 1197 if (is_idx && !(lp->flags & LPROPS_INDEX)) { 1198 if (free == c->leb_size) 1199 /* Free but not unmapped LEB, it's fine */ 1200 is_idx = 0; 1201 else { 1202 ubifs_err("indexing node without indexing " 1203 "flag"); 1204 goto out_print; 1205 } 1206 } 1207 1208 if (!is_idx && (lp->flags & LPROPS_INDEX)) { 1209 ubifs_err("data node with indexing flag"); 1210 goto out_print; 1211 } 1212 1213 if (free == c->leb_size) 1214 lst->empty_lebs += 1; 1215 1216 if (is_idx) 1217 lst->idx_lebs += 1; 1218 1219 if (!(lp->flags & LPROPS_INDEX)) 1220 lst->total_used += c->leb_size - free - dirty; 1221 lst->total_free += free; 1222 lst->total_dirty += dirty; 1223 1224 if (!(lp->flags & LPROPS_INDEX)) { 1225 int spc = free + dirty; 1226 1227 if (spc < c->dead_wm) 1228 lst->total_dead += spc; 1229 else 1230 lst->total_dark += calc_dark(c, spc); 1231 } 1232 1233 ubifs_scan_destroy(sleb); 1234 return LPT_SCAN_CONTINUE; 1235 1236 out_print: 1237 ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, " 1238 "should be free %d, dirty %d", 1239 lnum, lp->free, lp->dirty, lp->flags, free, dirty); 1240 dbg_dump_leb(c, lnum); 1241 out_destroy: 1242 ubifs_scan_destroy(sleb); 1243 out: 1244 data->err = -EINVAL; 1245 return LPT_SCAN_STOP; 1246 } 1247 1248 /** 1249 * dbg_check_lprops - check all LEB properties. 1250 * @c: UBIFS file-system description object 1251 * 1252 * This function checks all LEB properties and makes sure they are all correct. 1253 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency 1254 * and other negative error codes in case of other errors. This function is 1255 * called while the file system is locked (because of commit start), so no 1256 * additional locking is required. Note that locking the LPT mutex would cause 1257 * a circular lock dependency with the TNC mutex. 1258 */ 1259 int dbg_check_lprops(struct ubifs_info *c) 1260 { 1261 int i, err; 1262 struct scan_check_data data; 1263 struct ubifs_lp_stats *lst = &data.lst; 1264 1265 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) 1266 return 0; 1267 1268 /* 1269 * As we are going to scan the media, the write buffers have to be 1270 * synchronized. 1271 */ 1272 for (i = 0; i < c->jhead_cnt; i++) { 1273 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1274 if (err) 1275 return err; 1276 } 1277 1278 memset(lst, 0, sizeof(struct ubifs_lp_stats)); 1279 1280 data.err = 0; 1281 err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1, 1282 (ubifs_lpt_scan_callback)scan_check_cb, 1283 &data); 1284 if (err && err != -ENOSPC) 1285 goto out; 1286 if (data.err) { 1287 err = data.err; 1288 goto out; 1289 } 1290 1291 if (lst->empty_lebs != c->lst.empty_lebs || 1292 lst->idx_lebs != c->lst.idx_lebs || 1293 lst->total_free != c->lst.total_free || 1294 lst->total_dirty != c->lst.total_dirty || 1295 lst->total_used != c->lst.total_used) { 1296 ubifs_err("bad overall accounting"); 1297 ubifs_err("calculated: empty_lebs %d, idx_lebs %d, " 1298 "total_free %lld, total_dirty %lld, total_used %lld", 1299 lst->empty_lebs, lst->idx_lebs, lst->total_free, 1300 lst->total_dirty, lst->total_used); 1301 ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, " 1302 "total_free %lld, total_dirty %lld, total_used %lld", 1303 c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free, 1304 c->lst.total_dirty, c->lst.total_used); 1305 err = -EINVAL; 1306 goto out; 1307 } 1308 1309 if (lst->total_dead != c->lst.total_dead || 1310 lst->total_dark != c->lst.total_dark) { 1311 ubifs_err("bad dead/dark space accounting"); 1312 ubifs_err("calculated: total_dead %lld, total_dark %lld", 1313 lst->total_dead, lst->total_dark); 1314 ubifs_err("read from lprops: total_dead %lld, total_dark %lld", 1315 c->lst.total_dead, c->lst.total_dark); 1316 err = -EINVAL; 1317 goto out; 1318 } 1319 1320 err = dbg_check_cats(c); 1321 out: 1322 return err; 1323 } 1324 1325 #endif /* CONFIG_UBIFS_FS_DEBUG */ 1326