xref: /openbmc/linux/fs/ubifs/lprops.c (revision 367b8112)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the functions that access LEB properties and their
25  * categories. LEBs are categorized based on the needs of UBIFS, and the
26  * categories are stored as either heaps or lists to provide a fast way of
27  * finding a LEB in a particular category. For example, UBIFS may need to find
28  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
29  */
30 
31 #include "ubifs.h"
32 
33 /**
34  * get_heap_comp_val - get the LEB properties value for heap comparisons.
35  * @lprops: LEB properties
36  * @cat: LEB category
37  */
38 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
39 {
40 	switch (cat) {
41 	case LPROPS_FREE:
42 		return lprops->free;
43 	case LPROPS_DIRTY_IDX:
44 		return lprops->free + lprops->dirty;
45 	default:
46 		return lprops->dirty;
47 	}
48 }
49 
50 /**
51  * move_up_lpt_heap - move a new heap entry up as far as possible.
52  * @c: UBIFS file-system description object
53  * @heap: LEB category heap
54  * @lprops: LEB properties to move
55  * @cat: LEB category
56  *
57  * New entries to a heap are added at the bottom and then moved up until the
58  * parent's value is greater.  In the case of LPT's category heaps, the value
59  * is either the amount of free space or the amount of dirty space, depending
60  * on the category.
61  */
62 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
63 			     struct ubifs_lprops *lprops, int cat)
64 {
65 	int val1, val2, hpos;
66 
67 	hpos = lprops->hpos;
68 	if (!hpos)
69 		return; /* Already top of the heap */
70 	val1 = get_heap_comp_val(lprops, cat);
71 	/* Compare to parent and, if greater, move up the heap */
72 	do {
73 		int ppos = (hpos - 1) / 2;
74 
75 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
76 		if (val2 >= val1)
77 			return;
78 		/* Greater than parent so move up */
79 		heap->arr[ppos]->hpos = hpos;
80 		heap->arr[hpos] = heap->arr[ppos];
81 		heap->arr[ppos] = lprops;
82 		lprops->hpos = ppos;
83 		hpos = ppos;
84 	} while (hpos);
85 }
86 
87 /**
88  * adjust_lpt_heap - move a changed heap entry up or down the heap.
89  * @c: UBIFS file-system description object
90  * @heap: LEB category heap
91  * @lprops: LEB properties to move
92  * @hpos: heap position of @lprops
93  * @cat: LEB category
94  *
95  * Changed entries in a heap are moved up or down until the parent's value is
96  * greater.  In the case of LPT's category heaps, the value is either the amount
97  * of free space or the amount of dirty space, depending on the category.
98  */
99 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
100 			    struct ubifs_lprops *lprops, int hpos, int cat)
101 {
102 	int val1, val2, val3, cpos;
103 
104 	val1 = get_heap_comp_val(lprops, cat);
105 	/* Compare to parent and, if greater than parent, move up the heap */
106 	if (hpos) {
107 		int ppos = (hpos - 1) / 2;
108 
109 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
110 		if (val1 > val2) {
111 			/* Greater than parent so move up */
112 			while (1) {
113 				heap->arr[ppos]->hpos = hpos;
114 				heap->arr[hpos] = heap->arr[ppos];
115 				heap->arr[ppos] = lprops;
116 				lprops->hpos = ppos;
117 				hpos = ppos;
118 				if (!hpos)
119 					return;
120 				ppos = (hpos - 1) / 2;
121 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
122 				if (val1 <= val2)
123 					return;
124 				/* Still greater than parent so keep going */
125 			}
126 		}
127 	}
128 
129 	/* Not greater than parent, so compare to children */
130 	while (1) {
131 		/* Compare to left child */
132 		cpos = hpos * 2 + 1;
133 		if (cpos >= heap->cnt)
134 			return;
135 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
136 		if (val1 < val2) {
137 			/* Less than left child, so promote biggest child */
138 			if (cpos + 1 < heap->cnt) {
139 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
140 							 cat);
141 				if (val3 > val2)
142 					cpos += 1; /* Right child is bigger */
143 			}
144 			heap->arr[cpos]->hpos = hpos;
145 			heap->arr[hpos] = heap->arr[cpos];
146 			heap->arr[cpos] = lprops;
147 			lprops->hpos = cpos;
148 			hpos = cpos;
149 			continue;
150 		}
151 		/* Compare to right child */
152 		cpos += 1;
153 		if (cpos >= heap->cnt)
154 			return;
155 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
156 		if (val1 < val3) {
157 			/* Less than right child, so promote right child */
158 			heap->arr[cpos]->hpos = hpos;
159 			heap->arr[hpos] = heap->arr[cpos];
160 			heap->arr[cpos] = lprops;
161 			lprops->hpos = cpos;
162 			hpos = cpos;
163 			continue;
164 		}
165 		return;
166 	}
167 }
168 
169 /**
170  * add_to_lpt_heap - add LEB properties to a LEB category heap.
171  * @c: UBIFS file-system description object
172  * @lprops: LEB properties to add
173  * @cat: LEB category
174  *
175  * This function returns %1 if @lprops is added to the heap for LEB category
176  * @cat, otherwise %0 is returned because the heap is full.
177  */
178 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
179 			   int cat)
180 {
181 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
182 
183 	if (heap->cnt >= heap->max_cnt) {
184 		const int b = LPT_HEAP_SZ / 2 - 1;
185 		int cpos, val1, val2;
186 
187 		/* Compare to some other LEB on the bottom of heap */
188 		/* Pick a position kind of randomly */
189 		cpos = (((size_t)lprops >> 4) & b) + b;
190 		ubifs_assert(cpos >= b);
191 		ubifs_assert(cpos < LPT_HEAP_SZ);
192 		ubifs_assert(cpos < heap->cnt);
193 
194 		val1 = get_heap_comp_val(lprops, cat);
195 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
196 		if (val1 > val2) {
197 			struct ubifs_lprops *lp;
198 
199 			lp = heap->arr[cpos];
200 			lp->flags &= ~LPROPS_CAT_MASK;
201 			lp->flags |= LPROPS_UNCAT;
202 			list_add(&lp->list, &c->uncat_list);
203 			lprops->hpos = cpos;
204 			heap->arr[cpos] = lprops;
205 			move_up_lpt_heap(c, heap, lprops, cat);
206 			dbg_check_heap(c, heap, cat, lprops->hpos);
207 			return 1; /* Added to heap */
208 		}
209 		dbg_check_heap(c, heap, cat, -1);
210 		return 0; /* Not added to heap */
211 	} else {
212 		lprops->hpos = heap->cnt++;
213 		heap->arr[lprops->hpos] = lprops;
214 		move_up_lpt_heap(c, heap, lprops, cat);
215 		dbg_check_heap(c, heap, cat, lprops->hpos);
216 		return 1; /* Added to heap */
217 	}
218 }
219 
220 /**
221  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
222  * @c: UBIFS file-system description object
223  * @lprops: LEB properties to remove
224  * @cat: LEB category
225  */
226 static void remove_from_lpt_heap(struct ubifs_info *c,
227 				 struct ubifs_lprops *lprops, int cat)
228 {
229 	struct ubifs_lpt_heap *heap;
230 	int hpos = lprops->hpos;
231 
232 	heap = &c->lpt_heap[cat - 1];
233 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
234 	ubifs_assert(heap->arr[hpos] == lprops);
235 	heap->cnt -= 1;
236 	if (hpos < heap->cnt) {
237 		heap->arr[hpos] = heap->arr[heap->cnt];
238 		heap->arr[hpos]->hpos = hpos;
239 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
240 	}
241 	dbg_check_heap(c, heap, cat, -1);
242 }
243 
244 /**
245  * lpt_heap_replace - replace lprops in a category heap.
246  * @c: UBIFS file-system description object
247  * @old_lprops: LEB properties to replace
248  * @new_lprops: LEB properties with which to replace
249  * @cat: LEB category
250  *
251  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
252  * and the lprops that the pnode contains.  When that happens, references in
253  * the category heaps to those lprops must be updated to point to the new
254  * lprops.  This function does that.
255  */
256 static void lpt_heap_replace(struct ubifs_info *c,
257 			     struct ubifs_lprops *old_lprops,
258 			     struct ubifs_lprops *new_lprops, int cat)
259 {
260 	struct ubifs_lpt_heap *heap;
261 	int hpos = new_lprops->hpos;
262 
263 	heap = &c->lpt_heap[cat - 1];
264 	heap->arr[hpos] = new_lprops;
265 }
266 
267 /**
268  * ubifs_add_to_cat - add LEB properties to a category list or heap.
269  * @c: UBIFS file-system description object
270  * @lprops: LEB properties to add
271  * @cat: LEB category to which to add
272  *
273  * LEB properties are categorized to enable fast find operations.
274  */
275 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
276 		      int cat)
277 {
278 	switch (cat) {
279 	case LPROPS_DIRTY:
280 	case LPROPS_DIRTY_IDX:
281 	case LPROPS_FREE:
282 		if (add_to_lpt_heap(c, lprops, cat))
283 			break;
284 		/* No more room on heap so make it uncategorized */
285 		cat = LPROPS_UNCAT;
286 		/* Fall through */
287 	case LPROPS_UNCAT:
288 		list_add(&lprops->list, &c->uncat_list);
289 		break;
290 	case LPROPS_EMPTY:
291 		list_add(&lprops->list, &c->empty_list);
292 		break;
293 	case LPROPS_FREEABLE:
294 		list_add(&lprops->list, &c->freeable_list);
295 		c->freeable_cnt += 1;
296 		break;
297 	case LPROPS_FRDI_IDX:
298 		list_add(&lprops->list, &c->frdi_idx_list);
299 		break;
300 	default:
301 		ubifs_assert(0);
302 	}
303 	lprops->flags &= ~LPROPS_CAT_MASK;
304 	lprops->flags |= cat;
305 }
306 
307 /**
308  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
309  * @c: UBIFS file-system description object
310  * @lprops: LEB properties to remove
311  * @cat: LEB category from which to remove
312  *
313  * LEB properties are categorized to enable fast find operations.
314  */
315 static void ubifs_remove_from_cat(struct ubifs_info *c,
316 				  struct ubifs_lprops *lprops, int cat)
317 {
318 	switch (cat) {
319 	case LPROPS_DIRTY:
320 	case LPROPS_DIRTY_IDX:
321 	case LPROPS_FREE:
322 		remove_from_lpt_heap(c, lprops, cat);
323 		break;
324 	case LPROPS_FREEABLE:
325 		c->freeable_cnt -= 1;
326 		ubifs_assert(c->freeable_cnt >= 0);
327 		/* Fall through */
328 	case LPROPS_UNCAT:
329 	case LPROPS_EMPTY:
330 	case LPROPS_FRDI_IDX:
331 		ubifs_assert(!list_empty(&lprops->list));
332 		list_del(&lprops->list);
333 		break;
334 	default:
335 		ubifs_assert(0);
336 	}
337 }
338 
339 /**
340  * ubifs_replace_cat - replace lprops in a category list or heap.
341  * @c: UBIFS file-system description object
342  * @old_lprops: LEB properties to replace
343  * @new_lprops: LEB properties with which to replace
344  *
345  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
346  * and the lprops that the pnode contains. When that happens, references in
347  * category lists and heaps must be replaced. This function does that.
348  */
349 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
350 		       struct ubifs_lprops *new_lprops)
351 {
352 	int cat;
353 
354 	cat = new_lprops->flags & LPROPS_CAT_MASK;
355 	switch (cat) {
356 	case LPROPS_DIRTY:
357 	case LPROPS_DIRTY_IDX:
358 	case LPROPS_FREE:
359 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
360 		break;
361 	case LPROPS_UNCAT:
362 	case LPROPS_EMPTY:
363 	case LPROPS_FREEABLE:
364 	case LPROPS_FRDI_IDX:
365 		list_replace(&old_lprops->list, &new_lprops->list);
366 		break;
367 	default:
368 		ubifs_assert(0);
369 	}
370 }
371 
372 /**
373  * ubifs_ensure_cat - ensure LEB properties are categorized.
374  * @c: UBIFS file-system description object
375  * @lprops: LEB properties
376  *
377  * A LEB may have fallen off of the bottom of a heap, and ended up as
378  * uncategorized even though it has enough space for us now. If that is the case
379  * this function will put the LEB back onto a heap.
380  */
381 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
382 {
383 	int cat = lprops->flags & LPROPS_CAT_MASK;
384 
385 	if (cat != LPROPS_UNCAT)
386 		return;
387 	cat = ubifs_categorize_lprops(c, lprops);
388 	if (cat == LPROPS_UNCAT)
389 		return;
390 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
391 	ubifs_add_to_cat(c, lprops, cat);
392 }
393 
394 /**
395  * ubifs_categorize_lprops - categorize LEB properties.
396  * @c: UBIFS file-system description object
397  * @lprops: LEB properties to categorize
398  *
399  * LEB properties are categorized to enable fast find operations. This function
400  * returns the LEB category to which the LEB properties belong. Note however
401  * that if the LEB category is stored as a heap and the heap is full, the
402  * LEB properties may have their category changed to %LPROPS_UNCAT.
403  */
404 int ubifs_categorize_lprops(const struct ubifs_info *c,
405 			    const struct ubifs_lprops *lprops)
406 {
407 	if (lprops->flags & LPROPS_TAKEN)
408 		return LPROPS_UNCAT;
409 
410 	if (lprops->free == c->leb_size) {
411 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
412 		return LPROPS_EMPTY;
413 	}
414 
415 	if (lprops->free + lprops->dirty == c->leb_size) {
416 		if (lprops->flags & LPROPS_INDEX)
417 			return LPROPS_FRDI_IDX;
418 		else
419 			return LPROPS_FREEABLE;
420 	}
421 
422 	if (lprops->flags & LPROPS_INDEX) {
423 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
424 			return LPROPS_DIRTY_IDX;
425 	} else {
426 		if (lprops->dirty >= c->dead_wm &&
427 		    lprops->dirty > lprops->free)
428 			return LPROPS_DIRTY;
429 		if (lprops->free > 0)
430 			return LPROPS_FREE;
431 	}
432 
433 	return LPROPS_UNCAT;
434 }
435 
436 /**
437  * change_category - change LEB properties category.
438  * @c: UBIFS file-system description object
439  * @lprops: LEB properties to recategorize
440  *
441  * LEB properties are categorized to enable fast find operations. When the LEB
442  * properties change they must be recategorized.
443  */
444 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
445 {
446 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
447 	int new_cat = ubifs_categorize_lprops(c, lprops);
448 
449 	if (old_cat == new_cat) {
450 		struct ubifs_lpt_heap *heap = &c->lpt_heap[new_cat - 1];
451 
452 		/* lprops on a heap now must be moved up or down */
453 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
454 			return; /* Not on a heap */
455 		heap = &c->lpt_heap[new_cat - 1];
456 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
457 	} else {
458 		ubifs_remove_from_cat(c, lprops, old_cat);
459 		ubifs_add_to_cat(c, lprops, new_cat);
460 	}
461 }
462 
463 /**
464  * calc_dark - calculate LEB dark space size.
465  * @c: the UBIFS file-system description object
466  * @spc: amount of free and dirty space in the LEB
467  *
468  * This function calculates amount of dark space in an LEB which has @spc bytes
469  * of free and dirty space. Returns the calculations result.
470  *
471  * Dark space is the space which is not always usable - it depends on which
472  * nodes are written in which order. E.g., if an LEB has only 512 free bytes,
473  * it is dark space, because it cannot fit a large data node. So UBIFS cannot
474  * count on this LEB and treat these 512 bytes as usable because it is not true
475  * if, for example, only big chunks of uncompressible data will be written to
476  * the FS.
477  */
478 static int calc_dark(struct ubifs_info *c, int spc)
479 {
480 	ubifs_assert(!(spc & 7));
481 
482 	if (spc < c->dark_wm)
483 		return spc;
484 
485 	/*
486 	 * If we have slightly more space then the dark space watermark, we can
487 	 * anyway safely assume it we'll be able to write a node of the
488 	 * smallest size there.
489 	 */
490 	if (spc - c->dark_wm < MIN_WRITE_SZ)
491 		return spc - MIN_WRITE_SZ;
492 
493 	return c->dark_wm;
494 }
495 
496 /**
497  * is_lprops_dirty - determine if LEB properties are dirty.
498  * @c: the UBIFS file-system description object
499  * @lprops: LEB properties to test
500  */
501 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
502 {
503 	struct ubifs_pnode *pnode;
504 	int pos;
505 
506 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
507 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
508 						   struct ubifs_pnode,
509 						   lprops[0]);
510 	return !test_bit(COW_ZNODE, &pnode->flags) &&
511 	       test_bit(DIRTY_CNODE, &pnode->flags);
512 }
513 
514 /**
515  * ubifs_change_lp - change LEB properties.
516  * @c: the UBIFS file-system description object
517  * @lp: LEB properties to change
518  * @free: new free space amount
519  * @dirty: new dirty space amount
520  * @flags: new flags
521  * @idx_gc_cnt: change to the count of idx_gc list
522  *
523  * This function changes LEB properties. This function does not change a LEB
524  * property (@free, @dirty or @flag) if the value passed is %LPROPS_NC.
525  *
526  * This function returns a pointer to the updated LEB properties on success
527  * and a negative error code on failure. N.B. the LEB properties may have had to
528  * be copied (due to COW) and consequently the pointer returned may not be the
529  * same as the pointer passed.
530  */
531 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
532 					   const struct ubifs_lprops *lp,
533 					   int free, int dirty, int flags,
534 					   int idx_gc_cnt)
535 {
536 	/*
537 	 * This is the only function that is allowed to change lprops, so we
538 	 * discard the const qualifier.
539 	 */
540 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
541 
542 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
543 	       lprops->lnum, free, dirty, flags);
544 
545 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
546 	ubifs_assert(c->lst.empty_lebs >= 0 &&
547 		     c->lst.empty_lebs <= c->main_lebs);
548 	ubifs_assert(c->freeable_cnt >= 0);
549 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
550 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
551 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
552 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
553 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
554 	ubifs_assert(!(c->lst.total_used & 7));
555 	ubifs_assert(free == LPROPS_NC || free >= 0);
556 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
557 
558 	if (!is_lprops_dirty(c, lprops)) {
559 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
560 		if (IS_ERR(lprops))
561 			return lprops;
562 	} else
563 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
564 
565 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
566 
567 	spin_lock(&c->space_lock);
568 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
569 		c->lst.taken_empty_lebs -= 1;
570 
571 	if (!(lprops->flags & LPROPS_INDEX)) {
572 		int old_spc;
573 
574 		old_spc = lprops->free + lprops->dirty;
575 		if (old_spc < c->dead_wm)
576 			c->lst.total_dead -= old_spc;
577 		else
578 			c->lst.total_dark -= calc_dark(c, old_spc);
579 
580 		c->lst.total_used -= c->leb_size - old_spc;
581 	}
582 
583 	if (free != LPROPS_NC) {
584 		free = ALIGN(free, 8);
585 		c->lst.total_free += free - lprops->free;
586 
587 		/* Increase or decrease empty LEBs counter if needed */
588 		if (free == c->leb_size) {
589 			if (lprops->free != c->leb_size)
590 				c->lst.empty_lebs += 1;
591 		} else if (lprops->free == c->leb_size)
592 			c->lst.empty_lebs -= 1;
593 		lprops->free = free;
594 	}
595 
596 	if (dirty != LPROPS_NC) {
597 		dirty = ALIGN(dirty, 8);
598 		c->lst.total_dirty += dirty - lprops->dirty;
599 		lprops->dirty = dirty;
600 	}
601 
602 	if (flags != LPROPS_NC) {
603 		/* Take care about indexing LEBs counter if needed */
604 		if ((lprops->flags & LPROPS_INDEX)) {
605 			if (!(flags & LPROPS_INDEX))
606 				c->lst.idx_lebs -= 1;
607 		} else if (flags & LPROPS_INDEX)
608 			c->lst.idx_lebs += 1;
609 		lprops->flags = flags;
610 	}
611 
612 	if (!(lprops->flags & LPROPS_INDEX)) {
613 		int new_spc;
614 
615 		new_spc = lprops->free + lprops->dirty;
616 		if (new_spc < c->dead_wm)
617 			c->lst.total_dead += new_spc;
618 		else
619 			c->lst.total_dark += calc_dark(c, new_spc);
620 
621 		c->lst.total_used += c->leb_size - new_spc;
622 	}
623 
624 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
625 		c->lst.taken_empty_lebs += 1;
626 
627 	change_category(c, lprops);
628 	c->idx_gc_cnt += idx_gc_cnt;
629 	spin_unlock(&c->space_lock);
630 	return lprops;
631 }
632 
633 /**
634  * ubifs_get_lp_stats - get lprops statistics.
635  * @c: UBIFS file-system description object
636  * @st: return statistics
637  */
638 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *st)
639 {
640 	spin_lock(&c->space_lock);
641 	memcpy(st, &c->lst, sizeof(struct ubifs_lp_stats));
642 	spin_unlock(&c->space_lock);
643 }
644 
645 /**
646  * ubifs_change_one_lp - change LEB properties.
647  * @c: the UBIFS file-system description object
648  * @lnum: LEB to change properties for
649  * @free: amount of free space
650  * @dirty: amount of dirty space
651  * @flags_set: flags to set
652  * @flags_clean: flags to clean
653  * @idx_gc_cnt: change to the count of idx_gc list
654  *
655  * This function changes properties of LEB @lnum. It is a helper wrapper over
656  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
657  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
658  * a negative error code in case of failure.
659  */
660 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
661 			int flags_set, int flags_clean, int idx_gc_cnt)
662 {
663 	int err = 0, flags;
664 	const struct ubifs_lprops *lp;
665 
666 	ubifs_get_lprops(c);
667 
668 	lp = ubifs_lpt_lookup_dirty(c, lnum);
669 	if (IS_ERR(lp)) {
670 		err = PTR_ERR(lp);
671 		goto out;
672 	}
673 
674 	flags = (lp->flags | flags_set) & ~flags_clean;
675 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
676 	if (IS_ERR(lp))
677 		err = PTR_ERR(lp);
678 
679 out:
680 	ubifs_release_lprops(c);
681 	return err;
682 }
683 
684 /**
685  * ubifs_update_one_lp - update LEB properties.
686  * @c: the UBIFS file-system description object
687  * @lnum: LEB to change properties for
688  * @free: amount of free space
689  * @dirty: amount of dirty space to add
690  * @flags_set: flags to set
691  * @flags_clean: flags to clean
692  *
693  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
694  * current dirty space, not substitutes it.
695  */
696 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
697 			int flags_set, int flags_clean)
698 {
699 	int err = 0, flags;
700 	const struct ubifs_lprops *lp;
701 
702 	ubifs_get_lprops(c);
703 
704 	lp = ubifs_lpt_lookup_dirty(c, lnum);
705 	if (IS_ERR(lp)) {
706 		err = PTR_ERR(lp);
707 		goto out;
708 	}
709 
710 	flags = (lp->flags | flags_set) & ~flags_clean;
711 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
712 	if (IS_ERR(lp))
713 		err = PTR_ERR(lp);
714 
715 out:
716 	ubifs_release_lprops(c);
717 	return err;
718 }
719 
720 /**
721  * ubifs_read_one_lp - read LEB properties.
722  * @c: the UBIFS file-system description object
723  * @lnum: LEB to read properties for
724  * @lp: where to store read properties
725  *
726  * This helper function reads properties of a LEB @lnum and stores them in @lp.
727  * Returns zero in case of success and a negative error code in case of
728  * failure.
729  */
730 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
731 {
732 	int err = 0;
733 	const struct ubifs_lprops *lpp;
734 
735 	ubifs_get_lprops(c);
736 
737 	lpp = ubifs_lpt_lookup(c, lnum);
738 	if (IS_ERR(lpp)) {
739 		err = PTR_ERR(lpp);
740 		goto out;
741 	}
742 
743 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
744 
745 out:
746 	ubifs_release_lprops(c);
747 	return err;
748 }
749 
750 /**
751  * ubifs_fast_find_free - try to find a LEB with free space quickly.
752  * @c: the UBIFS file-system description object
753  *
754  * This function returns LEB properties for a LEB with free space or %NULL if
755  * the function is unable to find a LEB quickly.
756  */
757 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
758 {
759 	struct ubifs_lprops *lprops;
760 	struct ubifs_lpt_heap *heap;
761 
762 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
763 
764 	heap = &c->lpt_heap[LPROPS_FREE - 1];
765 	if (heap->cnt == 0)
766 		return NULL;
767 
768 	lprops = heap->arr[0];
769 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
770 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
771 	return lprops;
772 }
773 
774 /**
775  * ubifs_fast_find_empty - try to find an empty LEB quickly.
776  * @c: the UBIFS file-system description object
777  *
778  * This function returns LEB properties for an empty LEB or %NULL if the
779  * function is unable to find an empty LEB quickly.
780  */
781 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
782 {
783 	struct ubifs_lprops *lprops;
784 
785 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
786 
787 	if (list_empty(&c->empty_list))
788 		return NULL;
789 
790 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
791 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
792 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
793 	ubifs_assert(lprops->free == c->leb_size);
794 	return lprops;
795 }
796 
797 /**
798  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
799  * @c: the UBIFS file-system description object
800  *
801  * This function returns LEB properties for a freeable LEB or %NULL if the
802  * function is unable to find a freeable LEB quickly.
803  */
804 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
805 {
806 	struct ubifs_lprops *lprops;
807 
808 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
809 
810 	if (list_empty(&c->freeable_list))
811 		return NULL;
812 
813 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
814 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
815 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
816 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
817 	ubifs_assert(c->freeable_cnt > 0);
818 	return lprops;
819 }
820 
821 /**
822  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
823  * @c: the UBIFS file-system description object
824  *
825  * This function returns LEB properties for a freeable index LEB or %NULL if the
826  * function is unable to find a freeable index LEB quickly.
827  */
828 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
829 {
830 	struct ubifs_lprops *lprops;
831 
832 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
833 
834 	if (list_empty(&c->frdi_idx_list))
835 		return NULL;
836 
837 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
838 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
839 	ubifs_assert((lprops->flags & LPROPS_INDEX));
840 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
841 	return lprops;
842 }
843 
844 #ifdef CONFIG_UBIFS_FS_DEBUG
845 
846 /**
847  * dbg_check_cats - check category heaps and lists.
848  * @c: UBIFS file-system description object
849  *
850  * This function returns %0 on success and a negative error code on failure.
851  */
852 int dbg_check_cats(struct ubifs_info *c)
853 {
854 	struct ubifs_lprops *lprops;
855 	struct list_head *pos;
856 	int i, cat;
857 
858 	if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
859 		return 0;
860 
861 	list_for_each_entry(lprops, &c->empty_list, list) {
862 		if (lprops->free != c->leb_size) {
863 			ubifs_err("non-empty LEB %d on empty list "
864 				  "(free %d dirty %d flags %d)", lprops->lnum,
865 				  lprops->free, lprops->dirty, lprops->flags);
866 			return -EINVAL;
867 		}
868 		if (lprops->flags & LPROPS_TAKEN) {
869 			ubifs_err("taken LEB %d on empty list "
870 				  "(free %d dirty %d flags %d)", lprops->lnum,
871 				  lprops->free, lprops->dirty, lprops->flags);
872 			return -EINVAL;
873 		}
874 	}
875 
876 	i = 0;
877 	list_for_each_entry(lprops, &c->freeable_list, list) {
878 		if (lprops->free + lprops->dirty != c->leb_size) {
879 			ubifs_err("non-freeable LEB %d on freeable list "
880 				  "(free %d dirty %d flags %d)", lprops->lnum,
881 				  lprops->free, lprops->dirty, lprops->flags);
882 			return -EINVAL;
883 		}
884 		if (lprops->flags & LPROPS_TAKEN) {
885 			ubifs_err("taken LEB %d on freeable list "
886 				  "(free %d dirty %d flags %d)", lprops->lnum,
887 				  lprops->free, lprops->dirty, lprops->flags);
888 			return -EINVAL;
889 		}
890 		i += 1;
891 	}
892 	if (i != c->freeable_cnt) {
893 		ubifs_err("freeable list count %d expected %d", i,
894 			  c->freeable_cnt);
895 		return -EINVAL;
896 	}
897 
898 	i = 0;
899 	list_for_each(pos, &c->idx_gc)
900 		i += 1;
901 	if (i != c->idx_gc_cnt) {
902 		ubifs_err("idx_gc list count %d expected %d", i,
903 			  c->idx_gc_cnt);
904 		return -EINVAL;
905 	}
906 
907 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
908 		if (lprops->free + lprops->dirty != c->leb_size) {
909 			ubifs_err("non-freeable LEB %d on frdi_idx list "
910 				  "(free %d dirty %d flags %d)", lprops->lnum,
911 				  lprops->free, lprops->dirty, lprops->flags);
912 			return -EINVAL;
913 		}
914 		if (lprops->flags & LPROPS_TAKEN) {
915 			ubifs_err("taken LEB %d on frdi_idx list "
916 				  "(free %d dirty %d flags %d)", lprops->lnum,
917 				  lprops->free, lprops->dirty, lprops->flags);
918 			return -EINVAL;
919 		}
920 		if (!(lprops->flags & LPROPS_INDEX)) {
921 			ubifs_err("non-index LEB %d on frdi_idx list "
922 				  "(free %d dirty %d flags %d)", lprops->lnum,
923 				  lprops->free, lprops->dirty, lprops->flags);
924 			return -EINVAL;
925 		}
926 	}
927 
928 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
929 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
930 
931 		for (i = 0; i < heap->cnt; i++) {
932 			lprops = heap->arr[i];
933 			if (!lprops) {
934 				ubifs_err("null ptr in LPT heap cat %d", cat);
935 				return -EINVAL;
936 			}
937 			if (lprops->hpos != i) {
938 				ubifs_err("bad ptr in LPT heap cat %d", cat);
939 				return -EINVAL;
940 			}
941 			if (lprops->flags & LPROPS_TAKEN) {
942 				ubifs_err("taken LEB in LPT heap cat %d", cat);
943 				return -EINVAL;
944 			}
945 		}
946 	}
947 
948 	return 0;
949 }
950 
951 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
952 		    int add_pos)
953 {
954 	int i = 0, j, err = 0;
955 
956 	if (!(ubifs_chk_flags & (UBIFS_CHK_GEN | UBIFS_CHK_LPROPS)))
957 		return;
958 
959 	for (i = 0; i < heap->cnt; i++) {
960 		struct ubifs_lprops *lprops = heap->arr[i];
961 		struct ubifs_lprops *lp;
962 
963 		if (i != add_pos)
964 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
965 				err = 1;
966 				goto out;
967 			}
968 		if (lprops->hpos != i) {
969 			err = 2;
970 			goto out;
971 		}
972 		lp = ubifs_lpt_lookup(c, lprops->lnum);
973 		if (IS_ERR(lp)) {
974 			err = 3;
975 			goto out;
976 		}
977 		if (lprops != lp) {
978 			dbg_msg("lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
979 				(size_t)lprops, (size_t)lp, lprops->lnum,
980 				lp->lnum);
981 			err = 4;
982 			goto out;
983 		}
984 		for (j = 0; j < i; j++) {
985 			lp = heap->arr[j];
986 			if (lp == lprops) {
987 				err = 5;
988 				goto out;
989 			}
990 			if (lp->lnum == lprops->lnum) {
991 				err = 6;
992 				goto out;
993 			}
994 		}
995 	}
996 out:
997 	if (err) {
998 		dbg_msg("failed cat %d hpos %d err %d", cat, i, err);
999 		dbg_dump_stack();
1000 		dbg_dump_heap(c, heap, cat);
1001 	}
1002 }
1003 
1004 /**
1005  * struct scan_check_data - data provided to scan callback function.
1006  * @lst: LEB properties statistics
1007  * @err: error code
1008  */
1009 struct scan_check_data {
1010 	struct ubifs_lp_stats lst;
1011 	int err;
1012 };
1013 
1014 /**
1015  * scan_check_cb - scan callback.
1016  * @c: the UBIFS file-system description object
1017  * @lp: LEB properties to scan
1018  * @in_tree: whether the LEB properties are in main memory
1019  * @data: information passed to and from the caller of the scan
1020  *
1021  * This function returns a code that indicates whether the scan should continue
1022  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1023  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1024  * (%LPT_SCAN_STOP).
1025  */
1026 static int scan_check_cb(struct ubifs_info *c,
1027 			 const struct ubifs_lprops *lp, int in_tree,
1028 			 struct scan_check_data *data)
1029 {
1030 	struct ubifs_scan_leb *sleb;
1031 	struct ubifs_scan_node *snod;
1032 	struct ubifs_lp_stats *lst = &data->lst;
1033 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty;
1034 
1035 	cat = lp->flags & LPROPS_CAT_MASK;
1036 	if (cat != LPROPS_UNCAT) {
1037 		cat = ubifs_categorize_lprops(c, lp);
1038 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1039 			ubifs_err("bad LEB category %d expected %d",
1040 				  (lp->flags & LPROPS_CAT_MASK), cat);
1041 			goto out;
1042 		}
1043 	}
1044 
1045 	/* Check lp is on its category list (if it has one) */
1046 	if (in_tree) {
1047 		struct list_head *list = NULL;
1048 
1049 		switch (cat) {
1050 		case LPROPS_EMPTY:
1051 			list = &c->empty_list;
1052 			break;
1053 		case LPROPS_FREEABLE:
1054 			list = &c->freeable_list;
1055 			break;
1056 		case LPROPS_FRDI_IDX:
1057 			list = &c->frdi_idx_list;
1058 			break;
1059 		case LPROPS_UNCAT:
1060 			list = &c->uncat_list;
1061 			break;
1062 		}
1063 		if (list) {
1064 			struct ubifs_lprops *lprops;
1065 			int found = 0;
1066 
1067 			list_for_each_entry(lprops, list, list) {
1068 				if (lprops == lp) {
1069 					found = 1;
1070 					break;
1071 				}
1072 			}
1073 			if (!found) {
1074 				ubifs_err("bad LPT list (category %d)", cat);
1075 				goto out;
1076 			}
1077 		}
1078 	}
1079 
1080 	/* Check lp is on its category heap (if it has one) */
1081 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1082 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1083 
1084 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1085 		    lp != heap->arr[lp->hpos]) {
1086 			ubifs_err("bad LPT heap (category %d)", cat);
1087 			goto out;
1088 		}
1089 	}
1090 
1091 	sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
1092 	if (IS_ERR(sleb)) {
1093 		/*
1094 		 * After an unclean unmount, empty and freeable LEBs
1095 		 * may contain garbage.
1096 		 */
1097 		if (lp->free == c->leb_size) {
1098 			ubifs_err("scan errors were in empty LEB "
1099 				  "- continuing checking");
1100 			lst->empty_lebs += 1;
1101 			lst->total_free += c->leb_size;
1102 			lst->total_dark += calc_dark(c, c->leb_size);
1103 			return LPT_SCAN_CONTINUE;
1104 		}
1105 
1106 		if (lp->free + lp->dirty == c->leb_size &&
1107 		    !(lp->flags & LPROPS_INDEX)) {
1108 			ubifs_err("scan errors were in freeable LEB "
1109 				  "- continuing checking");
1110 			lst->total_free  += lp->free;
1111 			lst->total_dirty += lp->dirty;
1112 			lst->total_dark  +=  calc_dark(c, c->leb_size);
1113 			return LPT_SCAN_CONTINUE;
1114 		}
1115 		data->err = PTR_ERR(sleb);
1116 		return LPT_SCAN_STOP;
1117 	}
1118 
1119 	is_idx = -1;
1120 	list_for_each_entry(snod, &sleb->nodes, list) {
1121 		int found, level = 0;
1122 
1123 		cond_resched();
1124 
1125 		if (is_idx == -1)
1126 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1127 
1128 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1129 			ubifs_err("indexing node in data LEB %d:%d",
1130 				  lnum, snod->offs);
1131 			goto out_destroy;
1132 		}
1133 
1134 		if (snod->type == UBIFS_IDX_NODE) {
1135 			struct ubifs_idx_node *idx = snod->node;
1136 
1137 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1138 			level = le16_to_cpu(idx->level);
1139 		}
1140 
1141 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1142 					   snod->offs, is_idx);
1143 		if (found) {
1144 			if (found < 0)
1145 				goto out_destroy;
1146 			used += ALIGN(snod->len, 8);
1147 		}
1148 	}
1149 
1150 	free = c->leb_size - sleb->endpt;
1151 	dirty = sleb->endpt - used;
1152 
1153 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1154 	    dirty < 0) {
1155 		ubifs_err("bad calculated accounting for LEB %d: "
1156 			  "free %d, dirty %d", lnum, free, dirty);
1157 		goto out_destroy;
1158 	}
1159 
1160 	if (lp->free + lp->dirty == c->leb_size &&
1161 	    free + dirty == c->leb_size)
1162 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1163 		    (!is_idx && free == c->leb_size) ||
1164 		    lp->free == c->leb_size) {
1165 			/*
1166 			 * Empty or freeable LEBs could contain index
1167 			 * nodes from an uncompleted commit due to an
1168 			 * unclean unmount. Or they could be empty for
1169 			 * the same reason. Or it may simply not have been
1170 			 * unmapped.
1171 			 */
1172 			free = lp->free;
1173 			dirty = lp->dirty;
1174 			is_idx = 0;
1175 		    }
1176 
1177 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1178 	    lnum != c->ihead_lnum) {
1179 		/*
1180 		 * After an unclean unmount, an index LEB could have a different
1181 		 * amount of free space than the value recorded by lprops. That
1182 		 * is because the in-the-gaps method may use free space or
1183 		 * create free space (as a side-effect of using ubi_leb_change
1184 		 * and not writing the whole LEB). The incorrect free space
1185 		 * value is not a problem because the index is only ever
1186 		 * allocated empty LEBs, so there will never be an attempt to
1187 		 * write to the free space at the end of an index LEB - except
1188 		 * by the in-the-gaps method for which it is not a problem.
1189 		 */
1190 		free = lp->free;
1191 		dirty = lp->dirty;
1192 	}
1193 
1194 	if (lp->free != free || lp->dirty != dirty)
1195 		goto out_print;
1196 
1197 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1198 		if (free == c->leb_size)
1199 			/* Free but not unmapped LEB, it's fine */
1200 			is_idx = 0;
1201 		else {
1202 			ubifs_err("indexing node without indexing "
1203 				  "flag");
1204 			goto out_print;
1205 		}
1206 	}
1207 
1208 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1209 		ubifs_err("data node with indexing flag");
1210 		goto out_print;
1211 	}
1212 
1213 	if (free == c->leb_size)
1214 		lst->empty_lebs += 1;
1215 
1216 	if (is_idx)
1217 		lst->idx_lebs += 1;
1218 
1219 	if (!(lp->flags & LPROPS_INDEX))
1220 		lst->total_used += c->leb_size - free - dirty;
1221 	lst->total_free += free;
1222 	lst->total_dirty += dirty;
1223 
1224 	if (!(lp->flags & LPROPS_INDEX)) {
1225 		int spc = free + dirty;
1226 
1227 		if (spc < c->dead_wm)
1228 			lst->total_dead += spc;
1229 		else
1230 			lst->total_dark += calc_dark(c, spc);
1231 	}
1232 
1233 	ubifs_scan_destroy(sleb);
1234 	return LPT_SCAN_CONTINUE;
1235 
1236 out_print:
1237 	ubifs_err("bad accounting of LEB %d: free %d, dirty %d flags %#x, "
1238 		  "should be free %d, dirty %d",
1239 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1240 	dbg_dump_leb(c, lnum);
1241 out_destroy:
1242 	ubifs_scan_destroy(sleb);
1243 out:
1244 	data->err = -EINVAL;
1245 	return LPT_SCAN_STOP;
1246 }
1247 
1248 /**
1249  * dbg_check_lprops - check all LEB properties.
1250  * @c: UBIFS file-system description object
1251  *
1252  * This function checks all LEB properties and makes sure they are all correct.
1253  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1254  * and other negative error codes in case of other errors. This function is
1255  * called while the file system is locked (because of commit start), so no
1256  * additional locking is required. Note that locking the LPT mutex would cause
1257  * a circular lock dependency with the TNC mutex.
1258  */
1259 int dbg_check_lprops(struct ubifs_info *c)
1260 {
1261 	int i, err;
1262 	struct scan_check_data data;
1263 	struct ubifs_lp_stats *lst = &data.lst;
1264 
1265 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1266 		return 0;
1267 
1268 	/*
1269 	 * As we are going to scan the media, the write buffers have to be
1270 	 * synchronized.
1271 	 */
1272 	for (i = 0; i < c->jhead_cnt; i++) {
1273 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1274 		if (err)
1275 			return err;
1276 	}
1277 
1278 	memset(lst, 0, sizeof(struct ubifs_lp_stats));
1279 
1280 	data.err = 0;
1281 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1282 				    (ubifs_lpt_scan_callback)scan_check_cb,
1283 				    &data);
1284 	if (err && err != -ENOSPC)
1285 		goto out;
1286 	if (data.err) {
1287 		err = data.err;
1288 		goto out;
1289 	}
1290 
1291 	if (lst->empty_lebs != c->lst.empty_lebs ||
1292 	    lst->idx_lebs != c->lst.idx_lebs ||
1293 	    lst->total_free != c->lst.total_free ||
1294 	    lst->total_dirty != c->lst.total_dirty ||
1295 	    lst->total_used != c->lst.total_used) {
1296 		ubifs_err("bad overall accounting");
1297 		ubifs_err("calculated: empty_lebs %d, idx_lebs %d, "
1298 			  "total_free %lld, total_dirty %lld, total_used %lld",
1299 			  lst->empty_lebs, lst->idx_lebs, lst->total_free,
1300 			  lst->total_dirty, lst->total_used);
1301 		ubifs_err("read from lprops: empty_lebs %d, idx_lebs %d, "
1302 			  "total_free %lld, total_dirty %lld, total_used %lld",
1303 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1304 			  c->lst.total_dirty, c->lst.total_used);
1305 		err = -EINVAL;
1306 		goto out;
1307 	}
1308 
1309 	if (lst->total_dead != c->lst.total_dead ||
1310 	    lst->total_dark != c->lst.total_dark) {
1311 		ubifs_err("bad dead/dark space accounting");
1312 		ubifs_err("calculated: total_dead %lld, total_dark %lld",
1313 			  lst->total_dead, lst->total_dark);
1314 		ubifs_err("read from lprops: total_dead %lld, total_dark %lld",
1315 			  c->lst.total_dead, c->lst.total_dark);
1316 		err = -EINVAL;
1317 		goto out;
1318 	}
1319 
1320 	err = dbg_check_cats(c);
1321 out:
1322 	return err;
1323 }
1324 
1325 #endif /* CONFIG_UBIFS_FS_DEBUG */
1326