1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 squeeze = (jhead == BASEHD); 126 again: 127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 128 129 if (c->ro_media) { 130 err = -EROFS; 131 goto out_unlock; 132 } 133 134 avail = c->leb_size - wbuf->offs - wbuf->used; 135 if (wbuf->lnum != -1 && avail >= len) 136 return 0; 137 138 /* 139 * Write buffer wasn't seek'ed or there is no enough space - look for an 140 * LEB with some empty space. 141 */ 142 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 143 if (lnum >= 0) { 144 /* Found an LEB, add it to the journal head */ 145 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 146 if (err) 147 goto out_return; 148 /* A new bud was successfully allocated and added to the log */ 149 goto out; 150 } 151 152 err = lnum; 153 if (err != -ENOSPC) 154 goto out_unlock; 155 156 /* 157 * No free space, we have to run garbage collector to make 158 * some. But the write-buffer mutex has to be unlocked because 159 * GC also takes it. 160 */ 161 dbg_jnl("no free space jhead %d, run GC", jhead); 162 mutex_unlock(&wbuf->io_mutex); 163 164 lnum = ubifs_garbage_collect(c, 0); 165 if (lnum < 0) { 166 err = lnum; 167 if (err != -ENOSPC) 168 return err; 169 170 /* 171 * GC could not make a free LEB. But someone else may 172 * have allocated new bud for this journal head, 173 * because we dropped @wbuf->io_mutex, so try once 174 * again. 175 */ 176 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead); 177 if (retries++ < 2) { 178 dbg_jnl("retry (%d)", retries); 179 goto again; 180 } 181 182 dbg_jnl("return -ENOSPC"); 183 return err; 184 } 185 186 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 187 dbg_jnl("got LEB %d for jhead %d", lnum, jhead); 188 avail = c->leb_size - wbuf->offs - wbuf->used; 189 190 if (wbuf->lnum != -1 && avail >= len) { 191 /* 192 * Someone else has switched the journal head and we have 193 * enough space now. This happens when more than one process is 194 * trying to write to the same journal head at the same time. 195 */ 196 dbg_jnl("return LEB %d back, already have LEB %d:%d", 197 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 198 err = ubifs_return_leb(c, lnum); 199 if (err) 200 goto out_unlock; 201 return 0; 202 } 203 204 err = ubifs_add_bud_to_log(c, jhead, lnum, 0); 205 if (err) 206 goto out_return; 207 offs = 0; 208 209 out: 210 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype); 211 if (err) 212 goto out_unlock; 213 214 return 0; 215 216 out_unlock: 217 mutex_unlock(&wbuf->io_mutex); 218 return err; 219 220 out_return: 221 /* An error occurred and the LEB has to be returned to lprops */ 222 ubifs_assert(err < 0); 223 err1 = ubifs_return_leb(c, lnum); 224 if (err1 && err == -EAGAIN) 225 /* 226 * Return original error code only if it is not %-EAGAIN, 227 * which is not really an error. Otherwise, return the error 228 * code of 'ubifs_return_leb()'. 229 */ 230 err = err1; 231 mutex_unlock(&wbuf->io_mutex); 232 return err; 233 } 234 235 /** 236 * write_node - write node to a journal head. 237 * @c: UBIFS file-system description object 238 * @jhead: journal head 239 * @node: node to write 240 * @len: node length 241 * @lnum: LEB number written is returned here 242 * @offs: offset written is returned here 243 * 244 * This function writes a node to reserved space of journal head @jhead. 245 * Returns zero in case of success and a negative error code in case of 246 * failure. 247 */ 248 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 249 int *lnum, int *offs) 250 { 251 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 252 253 ubifs_assert(jhead != GCHD); 254 255 *lnum = c->jheads[jhead].wbuf.lnum; 256 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 257 258 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 259 ubifs_prepare_node(c, node, len, 0); 260 261 return ubifs_wbuf_write_nolock(wbuf, node, len); 262 } 263 264 /** 265 * write_head - write data to a journal head. 266 * @c: UBIFS file-system description object 267 * @jhead: journal head 268 * @buf: buffer to write 269 * @len: length to write 270 * @lnum: LEB number written is returned here 271 * @offs: offset written is returned here 272 * @sync: non-zero if the write-buffer has to by synchronized 273 * 274 * This function is the same as 'write_node()' but it does not assume the 275 * buffer it is writing is a node, so it does not prepare it (which means 276 * initializing common header and calculating CRC). 277 */ 278 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 279 int *lnum, int *offs, int sync) 280 { 281 int err; 282 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 283 284 ubifs_assert(jhead != GCHD); 285 286 *lnum = c->jheads[jhead].wbuf.lnum; 287 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 288 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 289 290 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 291 if (err) 292 return err; 293 if (sync) 294 err = ubifs_wbuf_sync_nolock(wbuf); 295 return err; 296 } 297 298 /** 299 * make_reservation - reserve journal space. 300 * @c: UBIFS file-system description object 301 * @jhead: journal head 302 * @len: how many bytes to reserve 303 * 304 * This function makes space reservation in journal head @jhead. The function 305 * takes the commit lock and locks the journal head, and the caller has to 306 * unlock the head and finish the reservation with 'finish_reservation()'. 307 * Returns zero in case of success and a negative error code in case of 308 * failure. 309 * 310 * Note, the journal head may be unlocked as soon as the data is written, while 311 * the commit lock has to be released after the data has been added to the 312 * TNC. 313 */ 314 static int make_reservation(struct ubifs_info *c, int jhead, int len) 315 { 316 int err, cmt_retries = 0, nospc_retries = 0; 317 318 again: 319 down_read(&c->commit_sem); 320 err = reserve_space(c, jhead, len); 321 if (!err) 322 return 0; 323 up_read(&c->commit_sem); 324 325 if (err == -ENOSPC) { 326 /* 327 * GC could not make any progress. We should try to commit 328 * once because it could make some dirty space and GC would 329 * make progress, so make the error -EAGAIN so that the below 330 * will commit and re-try. 331 */ 332 if (nospc_retries++ < 2) { 333 dbg_jnl("no space, retry"); 334 err = -EAGAIN; 335 } 336 337 /* 338 * This means that the budgeting is incorrect. We always have 339 * to be able to write to the media, because all operations are 340 * budgeted. Deletions are not budgeted, though, but we reserve 341 * an extra LEB for them. 342 */ 343 } 344 345 if (err != -EAGAIN) 346 goto out; 347 348 /* 349 * -EAGAIN means that the journal is full or too large, or the above 350 * code wants to do one commit. Do this and re-try. 351 */ 352 if (cmt_retries > 128) { 353 /* 354 * This should not happen unless the journal size limitations 355 * are too tough. 356 */ 357 ubifs_err("stuck in space allocation"); 358 err = -ENOSPC; 359 goto out; 360 } else if (cmt_retries > 32) 361 ubifs_warn("too many space allocation re-tries (%d)", 362 cmt_retries); 363 364 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 365 cmt_retries); 366 cmt_retries += 1; 367 368 err = ubifs_run_commit(c); 369 if (err) 370 return err; 371 goto again; 372 373 out: 374 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 375 len, jhead, err); 376 if (err == -ENOSPC) { 377 /* This are some budgeting problems, print useful information */ 378 down_write(&c->commit_sem); 379 spin_lock(&c->space_lock); 380 dbg_dump_stack(); 381 dbg_dump_budg(c); 382 spin_unlock(&c->space_lock); 383 dbg_dump_lprops(c); 384 cmt_retries = dbg_check_lprops(c); 385 up_write(&c->commit_sem); 386 } 387 return err; 388 } 389 390 /** 391 * release_head - release a journal head. 392 * @c: UBIFS file-system description object 393 * @jhead: journal head 394 * 395 * This function releases journal head @jhead which was locked by 396 * the 'make_reservation()' function. It has to be called after each successful 397 * 'make_reservation()' invocation. 398 */ 399 static inline void release_head(struct ubifs_info *c, int jhead) 400 { 401 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 402 } 403 404 /** 405 * finish_reservation - finish a reservation. 406 * @c: UBIFS file-system description object 407 * 408 * This function finishes journal space reservation. It must be called after 409 * 'make_reservation()'. 410 */ 411 static void finish_reservation(struct ubifs_info *c) 412 { 413 up_read(&c->commit_sem); 414 } 415 416 /** 417 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 418 * @mode: inode mode 419 */ 420 static int get_dent_type(int mode) 421 { 422 switch (mode & S_IFMT) { 423 case S_IFREG: 424 return UBIFS_ITYPE_REG; 425 case S_IFDIR: 426 return UBIFS_ITYPE_DIR; 427 case S_IFLNK: 428 return UBIFS_ITYPE_LNK; 429 case S_IFBLK: 430 return UBIFS_ITYPE_BLK; 431 case S_IFCHR: 432 return UBIFS_ITYPE_CHR; 433 case S_IFIFO: 434 return UBIFS_ITYPE_FIFO; 435 case S_IFSOCK: 436 return UBIFS_ITYPE_SOCK; 437 default: 438 BUG(); 439 } 440 return 0; 441 } 442 443 /** 444 * pack_inode - pack an inode node. 445 * @c: UBIFS file-system description object 446 * @ino: buffer in which to pack inode node 447 * @inode: inode to pack 448 * @last: indicates the last node of the group 449 */ 450 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 451 const struct inode *inode, int last) 452 { 453 int data_len = 0, last_reference = !inode->i_nlink; 454 struct ubifs_inode *ui = ubifs_inode(inode); 455 456 ino->ch.node_type = UBIFS_INO_NODE; 457 ino_key_init_flash(c, &ino->key, inode->i_ino); 458 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 459 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 460 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 461 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 462 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 463 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 464 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 465 ino->uid = cpu_to_le32(inode->i_uid); 466 ino->gid = cpu_to_le32(inode->i_gid); 467 ino->mode = cpu_to_le32(inode->i_mode); 468 ino->flags = cpu_to_le32(ui->flags); 469 ino->size = cpu_to_le64(ui->ui_size); 470 ino->nlink = cpu_to_le32(inode->i_nlink); 471 ino->compr_type = cpu_to_le16(ui->compr_type); 472 ino->data_len = cpu_to_le32(ui->data_len); 473 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 474 ino->xattr_size = cpu_to_le32(ui->xattr_size); 475 ino->xattr_names = cpu_to_le32(ui->xattr_names); 476 zero_ino_node_unused(ino); 477 478 /* 479 * Drop the attached data if this is a deletion inode, the data is not 480 * needed anymore. 481 */ 482 if (!last_reference) { 483 memcpy(ino->data, ui->data, ui->data_len); 484 data_len = ui->data_len; 485 } 486 487 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 488 } 489 490 /** 491 * mark_inode_clean - mark UBIFS inode as clean. 492 * @c: UBIFS file-system description object 493 * @ui: UBIFS inode to mark as clean 494 * 495 * This helper function marks UBIFS inode @ui as clean by cleaning the 496 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 497 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 498 * just do nothing. 499 */ 500 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 501 { 502 if (ui->dirty) 503 ubifs_release_dirty_inode_budget(c, ui); 504 ui->dirty = 0; 505 } 506 507 /** 508 * ubifs_jnl_update - update inode. 509 * @c: UBIFS file-system description object 510 * @dir: parent inode or host inode in case of extended attributes 511 * @nm: directory entry name 512 * @inode: inode to update 513 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 514 * @xent: non-zero if the directory entry is an extended attribute entry 515 * 516 * This function updates an inode by writing a directory entry (or extended 517 * attribute entry), the inode itself, and the parent directory inode (or the 518 * host inode) to the journal. 519 * 520 * The function writes the host inode @dir last, which is important in case of 521 * extended attributes. Indeed, then we guarantee that if the host inode gets 522 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 523 * the extended attribute inode gets flushed too. And this is exactly what the 524 * user expects - synchronizing the host inode synchronizes its extended 525 * attributes. Similarly, this guarantees that if @dir is synchronized, its 526 * directory entry corresponding to @nm gets synchronized too. 527 * 528 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 529 * function synchronizes the write-buffer. 530 * 531 * This function marks the @dir and @inode inodes as clean and returns zero on 532 * success. In case of failure, a negative error code is returned. 533 */ 534 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 535 const struct qstr *nm, const struct inode *inode, 536 int deletion, int xent) 537 { 538 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 539 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 540 int last_reference = !!(deletion && inode->i_nlink == 0); 541 struct ubifs_inode *ui = ubifs_inode(inode); 542 struct ubifs_inode *dir_ui = ubifs_inode(dir); 543 struct ubifs_dent_node *dent; 544 struct ubifs_ino_node *ino; 545 union ubifs_key dent_key, ino_key; 546 547 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 548 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 549 ubifs_assert(dir_ui->data_len == 0); 550 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 551 552 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 553 ilen = UBIFS_INO_NODE_SZ; 554 555 /* 556 * If the last reference to the inode is being deleted, then there is 557 * no need to attach and write inode data, it is being deleted anyway. 558 * And if the inode is being deleted, no need to synchronize 559 * write-buffer even if the inode is synchronous. 560 */ 561 if (!last_reference) { 562 ilen += ui->data_len; 563 sync |= IS_SYNC(inode); 564 } 565 566 aligned_dlen = ALIGN(dlen, 8); 567 aligned_ilen = ALIGN(ilen, 8); 568 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 569 dent = kmalloc(len, GFP_NOFS); 570 if (!dent) 571 return -ENOMEM; 572 573 /* Make reservation before allocating sequence numbers */ 574 err = make_reservation(c, BASEHD, len); 575 if (err) 576 goto out_free; 577 578 if (!xent) { 579 dent->ch.node_type = UBIFS_DENT_NODE; 580 dent_key_init(c, &dent_key, dir->i_ino, nm); 581 } else { 582 dent->ch.node_type = UBIFS_XENT_NODE; 583 xent_key_init(c, &dent_key, dir->i_ino, nm); 584 } 585 586 key_write(c, &dent_key, dent->key); 587 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 588 dent->type = get_dent_type(inode->i_mode); 589 dent->nlen = cpu_to_le16(nm->len); 590 memcpy(dent->name, nm->name, nm->len); 591 dent->name[nm->len] = '\0'; 592 zero_dent_node_unused(dent); 593 ubifs_prep_grp_node(c, dent, dlen, 0); 594 595 ino = (void *)dent + aligned_dlen; 596 pack_inode(c, ino, inode, 0); 597 ino = (void *)ino + aligned_ilen; 598 pack_inode(c, ino, dir, 1); 599 600 if (last_reference) { 601 err = ubifs_add_orphan(c, inode->i_ino); 602 if (err) { 603 release_head(c, BASEHD); 604 goto out_finish; 605 } 606 ui->del_cmtno = c->cmt_no; 607 } 608 609 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 610 if (err) 611 goto out_release; 612 if (!sync) { 613 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 614 615 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 616 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 617 } 618 release_head(c, BASEHD); 619 kfree(dent); 620 621 if (deletion) { 622 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 623 if (err) 624 goto out_ro; 625 err = ubifs_add_dirt(c, lnum, dlen); 626 } else 627 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 628 if (err) 629 goto out_ro; 630 631 /* 632 * Note, we do not remove the inode from TNC even if the last reference 633 * to it has just been deleted, because the inode may still be opened. 634 * Instead, the inode has been added to orphan lists and the orphan 635 * subsystem will take further care about it. 636 */ 637 ino_key_init(c, &ino_key, inode->i_ino); 638 ino_offs = dent_offs + aligned_dlen; 639 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 640 if (err) 641 goto out_ro; 642 643 ino_key_init(c, &ino_key, dir->i_ino); 644 ino_offs += aligned_ilen; 645 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 646 if (err) 647 goto out_ro; 648 649 finish_reservation(c); 650 spin_lock(&ui->ui_lock); 651 ui->synced_i_size = ui->ui_size; 652 spin_unlock(&ui->ui_lock); 653 mark_inode_clean(c, ui); 654 mark_inode_clean(c, dir_ui); 655 return 0; 656 657 out_finish: 658 finish_reservation(c); 659 out_free: 660 kfree(dent); 661 return err; 662 663 out_release: 664 release_head(c, BASEHD); 665 out_ro: 666 ubifs_ro_mode(c, err); 667 if (last_reference) 668 ubifs_delete_orphan(c, inode->i_ino); 669 finish_reservation(c); 670 return err; 671 } 672 673 /** 674 * ubifs_jnl_write_data - write a data node to the journal. 675 * @c: UBIFS file-system description object 676 * @inode: inode the data node belongs to 677 * @key: node key 678 * @buf: buffer to write 679 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 680 * 681 * This function writes a data node to the journal. Returns %0 if the data node 682 * was successfully written, and a negative error code in case of failure. 683 */ 684 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 685 const union ubifs_key *key, const void *buf, int len) 686 { 687 struct ubifs_data_node *data; 688 int err, lnum, offs, compr_type, out_len; 689 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; 690 struct ubifs_inode *ui = ubifs_inode(inode); 691 692 dbg_jnl("ino %lu, blk %u, len %d, key %s", 693 (unsigned long)key_inum(c, key), key_block(c, key), len, 694 DBGKEY(key)); 695 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 696 697 data = kmalloc(dlen, GFP_NOFS); 698 if (!data) 699 return -ENOMEM; 700 701 data->ch.node_type = UBIFS_DATA_NODE; 702 key_write(c, key, &data->key); 703 data->size = cpu_to_le32(len); 704 zero_data_node_unused(data); 705 706 if (!(ui->flags & UBIFS_COMPR_FL)) 707 /* Compression is disabled for this inode */ 708 compr_type = UBIFS_COMPR_NONE; 709 else 710 compr_type = ui->compr_type; 711 712 out_len = dlen - UBIFS_DATA_NODE_SZ; 713 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 714 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 715 716 dlen = UBIFS_DATA_NODE_SZ + out_len; 717 data->compr_type = cpu_to_le16(compr_type); 718 719 /* Make reservation before allocating sequence numbers */ 720 err = make_reservation(c, DATAHD, dlen); 721 if (err) 722 goto out_free; 723 724 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 725 if (err) 726 goto out_release; 727 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 728 release_head(c, DATAHD); 729 730 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 731 if (err) 732 goto out_ro; 733 734 finish_reservation(c); 735 kfree(data); 736 return 0; 737 738 out_release: 739 release_head(c, DATAHD); 740 out_ro: 741 ubifs_ro_mode(c, err); 742 finish_reservation(c); 743 out_free: 744 kfree(data); 745 return err; 746 } 747 748 /** 749 * ubifs_jnl_write_inode - flush inode to the journal. 750 * @c: UBIFS file-system description object 751 * @inode: inode to flush 752 * 753 * This function writes inode @inode to the journal. If the inode is 754 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 755 * success and a negative error code in case of failure. 756 */ 757 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 758 { 759 int err, lnum, offs; 760 struct ubifs_ino_node *ino; 761 struct ubifs_inode *ui = ubifs_inode(inode); 762 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 763 764 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 765 766 /* 767 * If the inode is being deleted, do not write the attached data. No 768 * need to synchronize the write-buffer either. 769 */ 770 if (!last_reference) { 771 len += ui->data_len; 772 sync = IS_SYNC(inode); 773 } 774 ino = kmalloc(len, GFP_NOFS); 775 if (!ino) 776 return -ENOMEM; 777 778 /* Make reservation before allocating sequence numbers */ 779 err = make_reservation(c, BASEHD, len); 780 if (err) 781 goto out_free; 782 783 pack_inode(c, ino, inode, 1); 784 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 785 if (err) 786 goto out_release; 787 if (!sync) 788 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 789 inode->i_ino); 790 release_head(c, BASEHD); 791 792 if (last_reference) { 793 err = ubifs_tnc_remove_ino(c, inode->i_ino); 794 if (err) 795 goto out_ro; 796 ubifs_delete_orphan(c, inode->i_ino); 797 err = ubifs_add_dirt(c, lnum, len); 798 } else { 799 union ubifs_key key; 800 801 ino_key_init(c, &key, inode->i_ino); 802 err = ubifs_tnc_add(c, &key, lnum, offs, len); 803 } 804 if (err) 805 goto out_ro; 806 807 finish_reservation(c); 808 spin_lock(&ui->ui_lock); 809 ui->synced_i_size = ui->ui_size; 810 spin_unlock(&ui->ui_lock); 811 kfree(ino); 812 return 0; 813 814 out_release: 815 release_head(c, BASEHD); 816 out_ro: 817 ubifs_ro_mode(c, err); 818 finish_reservation(c); 819 out_free: 820 kfree(ino); 821 return err; 822 } 823 824 /** 825 * ubifs_jnl_delete_inode - delete an inode. 826 * @c: UBIFS file-system description object 827 * @inode: inode to delete 828 * 829 * This function deletes inode @inode which includes removing it from orphans, 830 * deleting it from TNC and, in some cases, writing a deletion inode to the 831 * journal. 832 * 833 * When regular file inodes are unlinked or a directory inode is removed, the 834 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 835 * direntry to the media, and adds the inode to orphans. After this, when the 836 * last reference to this inode has been dropped, this function is called. In 837 * general, it has to write one more deletion inode to the media, because if 838 * a commit happened between 'ubifs_jnl_update()' and 839 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 840 * anymore, and in fact it might not be on the flash anymore, because it might 841 * have been garbage-collected already. And for optimization reasons UBIFS does 842 * not read the orphan area if it has been unmounted cleanly, so it would have 843 * no indication in the journal that there is a deleted inode which has to be 844 * removed from TNC. 845 * 846 * However, if there was no commit between 'ubifs_jnl_update()' and 847 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 848 * inode to the media for the second time. And this is quite a typical case. 849 * 850 * This function returns zero in case of success and a negative error code in 851 * case of failure. 852 */ 853 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 854 { 855 int err; 856 struct ubifs_inode *ui = ubifs_inode(inode); 857 858 ubifs_assert(inode->i_nlink == 0); 859 860 if (ui->del_cmtno != c->cmt_no) 861 /* A commit happened for sure */ 862 return ubifs_jnl_write_inode(c, inode); 863 864 down_read(&c->commit_sem); 865 /* 866 * Check commit number again, because the first test has been done 867 * without @c->commit_sem, so a commit might have happened. 868 */ 869 if (ui->del_cmtno != c->cmt_no) { 870 up_read(&c->commit_sem); 871 return ubifs_jnl_write_inode(c, inode); 872 } 873 874 err = ubifs_tnc_remove_ino(c, inode->i_ino); 875 if (err) 876 ubifs_ro_mode(c, err); 877 else 878 ubifs_delete_orphan(c, inode->i_ino); 879 up_read(&c->commit_sem); 880 return err; 881 } 882 883 /** 884 * ubifs_jnl_rename - rename a directory entry. 885 * @c: UBIFS file-system description object 886 * @old_dir: parent inode of directory entry to rename 887 * @old_dentry: directory entry to rename 888 * @new_dir: parent inode of directory entry to rename 889 * @new_dentry: new directory entry (or directory entry to replace) 890 * @sync: non-zero if the write-buffer has to be synchronized 891 * 892 * This function implements the re-name operation which may involve writing up 893 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 894 * and returns zero on success. In case of failure, a negative error code is 895 * returned. 896 */ 897 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 898 const struct dentry *old_dentry, 899 const struct inode *new_dir, 900 const struct dentry *new_dentry, int sync) 901 { 902 void *p; 903 union ubifs_key key; 904 struct ubifs_dent_node *dent, *dent2; 905 int err, dlen1, dlen2, ilen, lnum, offs, len; 906 const struct inode *old_inode = old_dentry->d_inode; 907 const struct inode *new_inode = new_dentry->d_inode; 908 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 909 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 910 int move = (old_dir != new_dir); 911 struct ubifs_inode *uninitialized_var(new_ui); 912 913 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 914 old_dentry->d_name.len, old_dentry->d_name.name, 915 old_dir->i_ino, new_dentry->d_name.len, 916 new_dentry->d_name.name, new_dir->i_ino); 917 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 918 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 919 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 920 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 921 922 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 923 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 924 if (new_inode) { 925 new_ui = ubifs_inode(new_inode); 926 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 927 ilen = UBIFS_INO_NODE_SZ; 928 if (!last_reference) 929 ilen += new_ui->data_len; 930 } else 931 ilen = 0; 932 933 aligned_dlen1 = ALIGN(dlen1, 8); 934 aligned_dlen2 = ALIGN(dlen2, 8); 935 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 936 if (old_dir != new_dir) 937 len += plen; 938 dent = kmalloc(len, GFP_NOFS); 939 if (!dent) 940 return -ENOMEM; 941 942 /* Make reservation before allocating sequence numbers */ 943 err = make_reservation(c, BASEHD, len); 944 if (err) 945 goto out_free; 946 947 /* Make new dent */ 948 dent->ch.node_type = UBIFS_DENT_NODE; 949 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 950 dent->inum = cpu_to_le64(old_inode->i_ino); 951 dent->type = get_dent_type(old_inode->i_mode); 952 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 953 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 954 dent->name[new_dentry->d_name.len] = '\0'; 955 zero_dent_node_unused(dent); 956 ubifs_prep_grp_node(c, dent, dlen1, 0); 957 958 /* Make deletion dent */ 959 dent2 = (void *)dent + aligned_dlen1; 960 dent2->ch.node_type = UBIFS_DENT_NODE; 961 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 962 &old_dentry->d_name); 963 dent2->inum = 0; 964 dent2->type = DT_UNKNOWN; 965 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 966 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 967 dent2->name[old_dentry->d_name.len] = '\0'; 968 zero_dent_node_unused(dent2); 969 ubifs_prep_grp_node(c, dent2, dlen2, 0); 970 971 p = (void *)dent2 + aligned_dlen2; 972 if (new_inode) { 973 pack_inode(c, p, new_inode, 0); 974 p += ALIGN(ilen, 8); 975 } 976 977 if (!move) 978 pack_inode(c, p, old_dir, 1); 979 else { 980 pack_inode(c, p, old_dir, 0); 981 p += ALIGN(plen, 8); 982 pack_inode(c, p, new_dir, 1); 983 } 984 985 if (last_reference) { 986 err = ubifs_add_orphan(c, new_inode->i_ino); 987 if (err) { 988 release_head(c, BASEHD); 989 goto out_finish; 990 } 991 new_ui->del_cmtno = c->cmt_no; 992 } 993 994 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 995 if (err) 996 goto out_release; 997 if (!sync) { 998 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 999 1000 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1001 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1002 if (new_inode) 1003 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1004 new_inode->i_ino); 1005 } 1006 release_head(c, BASEHD); 1007 1008 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 1009 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 1010 if (err) 1011 goto out_ro; 1012 1013 err = ubifs_add_dirt(c, lnum, dlen2); 1014 if (err) 1015 goto out_ro; 1016 1017 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 1018 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 1019 if (err) 1020 goto out_ro; 1021 1022 offs += aligned_dlen1 + aligned_dlen2; 1023 if (new_inode) { 1024 ino_key_init(c, &key, new_inode->i_ino); 1025 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1026 if (err) 1027 goto out_ro; 1028 offs += ALIGN(ilen, 8); 1029 } 1030 1031 ino_key_init(c, &key, old_dir->i_ino); 1032 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1033 if (err) 1034 goto out_ro; 1035 1036 if (old_dir != new_dir) { 1037 offs += ALIGN(plen, 8); 1038 ino_key_init(c, &key, new_dir->i_ino); 1039 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1040 if (err) 1041 goto out_ro; 1042 } 1043 1044 finish_reservation(c); 1045 if (new_inode) { 1046 mark_inode_clean(c, new_ui); 1047 spin_lock(&new_ui->ui_lock); 1048 new_ui->synced_i_size = new_ui->ui_size; 1049 spin_unlock(&new_ui->ui_lock); 1050 } 1051 mark_inode_clean(c, ubifs_inode(old_dir)); 1052 if (move) 1053 mark_inode_clean(c, ubifs_inode(new_dir)); 1054 kfree(dent); 1055 return 0; 1056 1057 out_release: 1058 release_head(c, BASEHD); 1059 out_ro: 1060 ubifs_ro_mode(c, err); 1061 if (last_reference) 1062 ubifs_delete_orphan(c, new_inode->i_ino); 1063 out_finish: 1064 finish_reservation(c); 1065 out_free: 1066 kfree(dent); 1067 return err; 1068 } 1069 1070 /** 1071 * recomp_data_node - re-compress a truncated data node. 1072 * @dn: data node to re-compress 1073 * @new_len: new length 1074 * 1075 * This function is used when an inode is truncated and the last data node of 1076 * the inode has to be re-compressed and re-written. 1077 */ 1078 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1079 { 1080 void *buf; 1081 int err, len, compr_type, out_len; 1082 1083 out_len = le32_to_cpu(dn->size); 1084 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1085 if (!buf) 1086 return -ENOMEM; 1087 1088 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1089 compr_type = le16_to_cpu(dn->compr_type); 1090 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1091 if (err) 1092 goto out; 1093 1094 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1095 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1096 dn->compr_type = cpu_to_le16(compr_type); 1097 dn->size = cpu_to_le32(*new_len); 1098 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1099 out: 1100 kfree(buf); 1101 return err; 1102 } 1103 1104 /** 1105 * ubifs_jnl_truncate - update the journal for a truncation. 1106 * @c: UBIFS file-system description object 1107 * @inode: inode to truncate 1108 * @old_size: old size 1109 * @new_size: new size 1110 * 1111 * When the size of a file decreases due to truncation, a truncation node is 1112 * written, the journal tree is updated, and the last data block is re-written 1113 * if it has been affected. The inode is also updated in order to synchronize 1114 * the new inode size. 1115 * 1116 * This function marks the inode as clean and returns zero on success. In case 1117 * of failure, a negative error code is returned. 1118 */ 1119 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1120 loff_t old_size, loff_t new_size) 1121 { 1122 union ubifs_key key, to_key; 1123 struct ubifs_ino_node *ino; 1124 struct ubifs_trun_node *trun; 1125 struct ubifs_data_node *uninitialized_var(dn); 1126 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1127 struct ubifs_inode *ui = ubifs_inode(inode); 1128 ino_t inum = inode->i_ino; 1129 unsigned int blk; 1130 1131 dbg_jnl("ino %lu, size %lld -> %lld", 1132 (unsigned long)inum, old_size, new_size); 1133 ubifs_assert(!ui->data_len); 1134 ubifs_assert(S_ISREG(inode->i_mode)); 1135 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1136 1137 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1138 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1139 ino = kmalloc(sz, GFP_NOFS); 1140 if (!ino) 1141 return -ENOMEM; 1142 1143 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1144 trun->ch.node_type = UBIFS_TRUN_NODE; 1145 trun->inum = cpu_to_le32(inum); 1146 trun->old_size = cpu_to_le64(old_size); 1147 trun->new_size = cpu_to_le64(new_size); 1148 zero_trun_node_unused(trun); 1149 1150 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1151 if (dlen) { 1152 /* Get last data block so it can be truncated */ 1153 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1154 blk = new_size >> UBIFS_BLOCK_SHIFT; 1155 data_key_init(c, &key, inum, blk); 1156 dbg_jnl("last block key %s", DBGKEY(&key)); 1157 err = ubifs_tnc_lookup(c, &key, dn); 1158 if (err == -ENOENT) 1159 dlen = 0; /* Not found (so it is a hole) */ 1160 else if (err) 1161 goto out_free; 1162 else { 1163 if (le32_to_cpu(dn->size) <= dlen) 1164 dlen = 0; /* Nothing to do */ 1165 else { 1166 int compr_type = le16_to_cpu(dn->compr_type); 1167 1168 if (compr_type != UBIFS_COMPR_NONE) { 1169 err = recomp_data_node(dn, &dlen); 1170 if (err) 1171 goto out_free; 1172 } else { 1173 dn->size = cpu_to_le32(dlen); 1174 dlen += UBIFS_DATA_NODE_SZ; 1175 } 1176 zero_data_node_unused(dn); 1177 } 1178 } 1179 } 1180 1181 /* Must make reservation before allocating sequence numbers */ 1182 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1183 if (dlen) 1184 len += dlen; 1185 err = make_reservation(c, BASEHD, len); 1186 if (err) 1187 goto out_free; 1188 1189 pack_inode(c, ino, inode, 0); 1190 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1191 if (dlen) 1192 ubifs_prep_grp_node(c, dn, dlen, 1); 1193 1194 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1195 if (err) 1196 goto out_release; 1197 if (!sync) 1198 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1199 release_head(c, BASEHD); 1200 1201 if (dlen) { 1202 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1203 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1204 if (err) 1205 goto out_ro; 1206 } 1207 1208 ino_key_init(c, &key, inum); 1209 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1210 if (err) 1211 goto out_ro; 1212 1213 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1214 if (err) 1215 goto out_ro; 1216 1217 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1218 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1219 data_key_init(c, &key, inum, blk); 1220 1221 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1222 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1223 data_key_init(c, &to_key, inum, blk); 1224 1225 err = ubifs_tnc_remove_range(c, &key, &to_key); 1226 if (err) 1227 goto out_ro; 1228 1229 finish_reservation(c); 1230 spin_lock(&ui->ui_lock); 1231 ui->synced_i_size = ui->ui_size; 1232 spin_unlock(&ui->ui_lock); 1233 mark_inode_clean(c, ui); 1234 kfree(ino); 1235 return 0; 1236 1237 out_release: 1238 release_head(c, BASEHD); 1239 out_ro: 1240 ubifs_ro_mode(c, err); 1241 finish_reservation(c); 1242 out_free: 1243 kfree(ino); 1244 return err; 1245 } 1246 1247 #ifdef CONFIG_UBIFS_FS_XATTR 1248 1249 /** 1250 * ubifs_jnl_delete_xattr - delete an extended attribute. 1251 * @c: UBIFS file-system description object 1252 * @host: host inode 1253 * @inode: extended attribute inode 1254 * @nm: extended attribute entry name 1255 * 1256 * This function delete an extended attribute which is very similar to 1257 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1258 * updates the target inode. Returns zero in case of success and a negative 1259 * error code in case of failure. 1260 */ 1261 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1262 const struct inode *inode, const struct qstr *nm) 1263 { 1264 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1265 struct ubifs_dent_node *xent; 1266 struct ubifs_ino_node *ino; 1267 union ubifs_key xent_key, key1, key2; 1268 int sync = IS_DIRSYNC(host); 1269 struct ubifs_inode *host_ui = ubifs_inode(host); 1270 1271 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1272 host->i_ino, inode->i_ino, nm->name, 1273 ubifs_inode(inode)->data_len); 1274 ubifs_assert(inode->i_nlink == 0); 1275 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1276 1277 /* 1278 * Since we are deleting the inode, we do not bother to attach any data 1279 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1280 */ 1281 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1282 aligned_xlen = ALIGN(xlen, 8); 1283 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1284 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1285 1286 xent = kmalloc(len, GFP_NOFS); 1287 if (!xent) 1288 return -ENOMEM; 1289 1290 /* Make reservation before allocating sequence numbers */ 1291 err = make_reservation(c, BASEHD, len); 1292 if (err) { 1293 kfree(xent); 1294 return err; 1295 } 1296 1297 xent->ch.node_type = UBIFS_XENT_NODE; 1298 xent_key_init(c, &xent_key, host->i_ino, nm); 1299 key_write(c, &xent_key, xent->key); 1300 xent->inum = 0; 1301 xent->type = get_dent_type(inode->i_mode); 1302 xent->nlen = cpu_to_le16(nm->len); 1303 memcpy(xent->name, nm->name, nm->len); 1304 xent->name[nm->len] = '\0'; 1305 zero_dent_node_unused(xent); 1306 ubifs_prep_grp_node(c, xent, xlen, 0); 1307 1308 ino = (void *)xent + aligned_xlen; 1309 pack_inode(c, ino, inode, 0); 1310 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1311 pack_inode(c, ino, host, 1); 1312 1313 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1314 if (!sync && !err) 1315 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1316 release_head(c, BASEHD); 1317 kfree(xent); 1318 if (err) 1319 goto out_ro; 1320 1321 /* Remove the extended attribute entry from TNC */ 1322 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1323 if (err) 1324 goto out_ro; 1325 err = ubifs_add_dirt(c, lnum, xlen); 1326 if (err) 1327 goto out_ro; 1328 1329 /* 1330 * Remove all nodes belonging to the extended attribute inode from TNC. 1331 * Well, there actually must be only one node - the inode itself. 1332 */ 1333 lowest_ino_key(c, &key1, inode->i_ino); 1334 highest_ino_key(c, &key2, inode->i_ino); 1335 err = ubifs_tnc_remove_range(c, &key1, &key2); 1336 if (err) 1337 goto out_ro; 1338 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1339 if (err) 1340 goto out_ro; 1341 1342 /* And update TNC with the new host inode position */ 1343 ino_key_init(c, &key1, host->i_ino); 1344 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1345 if (err) 1346 goto out_ro; 1347 1348 finish_reservation(c); 1349 spin_lock(&host_ui->ui_lock); 1350 host_ui->synced_i_size = host_ui->ui_size; 1351 spin_unlock(&host_ui->ui_lock); 1352 mark_inode_clean(c, host_ui); 1353 return 0; 1354 1355 out_ro: 1356 ubifs_ro_mode(c, err); 1357 finish_reservation(c); 1358 return err; 1359 } 1360 1361 /** 1362 * ubifs_jnl_change_xattr - change an extended attribute. 1363 * @c: UBIFS file-system description object 1364 * @inode: extended attribute inode 1365 * @host: host inode 1366 * 1367 * This function writes the updated version of an extended attribute inode and 1368 * the host inode to the journal (to the base head). The host inode is written 1369 * after the extended attribute inode in order to guarantee that the extended 1370 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1371 * consequently, the write-buffer is synchronized. This function returns zero 1372 * in case of success and a negative error code in case of failure. 1373 */ 1374 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1375 const struct inode *host) 1376 { 1377 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1378 struct ubifs_inode *host_ui = ubifs_inode(host); 1379 struct ubifs_ino_node *ino; 1380 union ubifs_key key; 1381 int sync = IS_DIRSYNC(host); 1382 1383 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1384 ubifs_assert(host->i_nlink > 0); 1385 ubifs_assert(inode->i_nlink > 0); 1386 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1387 1388 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1389 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1390 aligned_len1 = ALIGN(len1, 8); 1391 aligned_len = aligned_len1 + ALIGN(len2, 8); 1392 1393 ino = kmalloc(aligned_len, GFP_NOFS); 1394 if (!ino) 1395 return -ENOMEM; 1396 1397 /* Make reservation before allocating sequence numbers */ 1398 err = make_reservation(c, BASEHD, aligned_len); 1399 if (err) 1400 goto out_free; 1401 1402 pack_inode(c, ino, host, 0); 1403 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1404 1405 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1406 if (!sync && !err) { 1407 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1408 1409 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1410 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1411 } 1412 release_head(c, BASEHD); 1413 if (err) 1414 goto out_ro; 1415 1416 ino_key_init(c, &key, host->i_ino); 1417 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1418 if (err) 1419 goto out_ro; 1420 1421 ino_key_init(c, &key, inode->i_ino); 1422 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1423 if (err) 1424 goto out_ro; 1425 1426 finish_reservation(c); 1427 spin_lock(&host_ui->ui_lock); 1428 host_ui->synced_i_size = host_ui->ui_size; 1429 spin_unlock(&host_ui->ui_lock); 1430 mark_inode_clean(c, host_ui); 1431 kfree(ino); 1432 return 0; 1433 1434 out_ro: 1435 ubifs_ro_mode(c, err); 1436 finish_reservation(c); 1437 out_free: 1438 kfree(ino); 1439 return err; 1440 } 1441 1442 #endif /* CONFIG_UBIFS_FS_XATTR */ 1443