xref: /openbmc/linux/fs/ubifs/journal.c (revision fd589a8f)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 	memset(dent->padding2, 0, 4);
82 }
83 
84 /**
85  * zero_data_node_unused - zero out unused fields of an on-flash data node.
86  * @data: the data node to zero out
87  */
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
89 {
90 	memset(data->padding, 0, 2);
91 }
92 
93 /**
94  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95  *                         node.
96  * @trun: the truncation node to zero out
97  */
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99 {
100 	memset(trun->padding, 0, 12);
101 }
102 
103 /**
104  * reserve_space - reserve space in the journal.
105  * @c: UBIFS file-system description object
106  * @jhead: journal head number
107  * @len: node length
108  *
109  * This function reserves space in journal head @head. If the reservation
110  * succeeded, the journal head stays locked and later has to be unlocked using
111  * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112  * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113  * other negative error codes in case of other failures.
114  */
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
116 {
117 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119 
120 	/*
121 	 * Typically, the base head has smaller nodes written to it, so it is
122 	 * better to try to allocate space at the ends of eraseblocks. This is
123 	 * what the squeeze parameter does.
124 	 */
125 	squeeze = (jhead == BASEHD);
126 again:
127 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
128 
129 	if (c->ro_media) {
130 		err = -EROFS;
131 		goto out_unlock;
132 	}
133 
134 	avail = c->leb_size - wbuf->offs - wbuf->used;
135 	if (wbuf->lnum != -1 && avail >= len)
136 		return 0;
137 
138 	/*
139 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 	 * LEB with some empty space.
141 	 */
142 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
143 	if (lnum >= 0) {
144 		/* Found an LEB, add it to the journal head */
145 		err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
146 		if (err)
147 			goto out_return;
148 		/* A new bud was successfully allocated and added to the log */
149 		goto out;
150 	}
151 
152 	err = lnum;
153 	if (err != -ENOSPC)
154 		goto out_unlock;
155 
156 	/*
157 	 * No free space, we have to run garbage collector to make
158 	 * some. But the write-buffer mutex has to be unlocked because
159 	 * GC also takes it.
160 	 */
161 	dbg_jnl("no free space  jhead %d, run GC", jhead);
162 	mutex_unlock(&wbuf->io_mutex);
163 
164 	lnum = ubifs_garbage_collect(c, 0);
165 	if (lnum < 0) {
166 		err = lnum;
167 		if (err != -ENOSPC)
168 			return err;
169 
170 		/*
171 		 * GC could not make a free LEB. But someone else may
172 		 * have allocated new bud for this journal head,
173 		 * because we dropped @wbuf->io_mutex, so try once
174 		 * again.
175 		 */
176 		dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
177 		if (retries++ < 2) {
178 			dbg_jnl("retry (%d)", retries);
179 			goto again;
180 		}
181 
182 		dbg_jnl("return -ENOSPC");
183 		return err;
184 	}
185 
186 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
187 	dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
188 	avail = c->leb_size - wbuf->offs - wbuf->used;
189 
190 	if (wbuf->lnum != -1 && avail >= len) {
191 		/*
192 		 * Someone else has switched the journal head and we have
193 		 * enough space now. This happens when more than one process is
194 		 * trying to write to the same journal head at the same time.
195 		 */
196 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
197 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
198 		err = ubifs_return_leb(c, lnum);
199 		if (err)
200 			goto out_unlock;
201 		return 0;
202 	}
203 
204 	err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
205 	if (err)
206 		goto out_return;
207 	offs = 0;
208 
209 out:
210 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
211 	if (err)
212 		goto out_unlock;
213 
214 	return 0;
215 
216 out_unlock:
217 	mutex_unlock(&wbuf->io_mutex);
218 	return err;
219 
220 out_return:
221 	/* An error occurred and the LEB has to be returned to lprops */
222 	ubifs_assert(err < 0);
223 	err1 = ubifs_return_leb(c, lnum);
224 	if (err1 && err == -EAGAIN)
225 		/*
226 		 * Return original error code only if it is not %-EAGAIN,
227 		 * which is not really an error. Otherwise, return the error
228 		 * code of 'ubifs_return_leb()'.
229 		 */
230 		err = err1;
231 	mutex_unlock(&wbuf->io_mutex);
232 	return err;
233 }
234 
235 /**
236  * write_node - write node to a journal head.
237  * @c: UBIFS file-system description object
238  * @jhead: journal head
239  * @node: node to write
240  * @len: node length
241  * @lnum: LEB number written is returned here
242  * @offs: offset written is returned here
243  *
244  * This function writes a node to reserved space of journal head @jhead.
245  * Returns zero in case of success and a negative error code in case of
246  * failure.
247  */
248 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
249 		      int *lnum, int *offs)
250 {
251 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
252 
253 	ubifs_assert(jhead != GCHD);
254 
255 	*lnum = c->jheads[jhead].wbuf.lnum;
256 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
257 
258 	dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
259 	ubifs_prepare_node(c, node, len, 0);
260 
261 	return ubifs_wbuf_write_nolock(wbuf, node, len);
262 }
263 
264 /**
265  * write_head - write data to a journal head.
266  * @c: UBIFS file-system description object
267  * @jhead: journal head
268  * @buf: buffer to write
269  * @len: length to write
270  * @lnum: LEB number written is returned here
271  * @offs: offset written is returned here
272  * @sync: non-zero if the write-buffer has to by synchronized
273  *
274  * This function is the same as 'write_node()' but it does not assume the
275  * buffer it is writing is a node, so it does not prepare it (which means
276  * initializing common header and calculating CRC).
277  */
278 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
279 		      int *lnum, int *offs, int sync)
280 {
281 	int err;
282 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
283 
284 	ubifs_assert(jhead != GCHD);
285 
286 	*lnum = c->jheads[jhead].wbuf.lnum;
287 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
288 	dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
289 
290 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
291 	if (err)
292 		return err;
293 	if (sync)
294 		err = ubifs_wbuf_sync_nolock(wbuf);
295 	return err;
296 }
297 
298 /**
299  * make_reservation - reserve journal space.
300  * @c: UBIFS file-system description object
301  * @jhead: journal head
302  * @len: how many bytes to reserve
303  *
304  * This function makes space reservation in journal head @jhead. The function
305  * takes the commit lock and locks the journal head, and the caller has to
306  * unlock the head and finish the reservation with 'finish_reservation()'.
307  * Returns zero in case of success and a negative error code in case of
308  * failure.
309  *
310  * Note, the journal head may be unlocked as soon as the data is written, while
311  * the commit lock has to be released after the data has been added to the
312  * TNC.
313  */
314 static int make_reservation(struct ubifs_info *c, int jhead, int len)
315 {
316 	int err, cmt_retries = 0, nospc_retries = 0;
317 
318 again:
319 	down_read(&c->commit_sem);
320 	err = reserve_space(c, jhead, len);
321 	if (!err)
322 		return 0;
323 	up_read(&c->commit_sem);
324 
325 	if (err == -ENOSPC) {
326 		/*
327 		 * GC could not make any progress. We should try to commit
328 		 * once because it could make some dirty space and GC would
329 		 * make progress, so make the error -EAGAIN so that the below
330 		 * will commit and re-try.
331 		 */
332 		if (nospc_retries++ < 2) {
333 			dbg_jnl("no space, retry");
334 			err = -EAGAIN;
335 		}
336 
337 		/*
338 		 * This means that the budgeting is incorrect. We always have
339 		 * to be able to write to the media, because all operations are
340 		 * budgeted. Deletions are not budgeted, though, but we reserve
341 		 * an extra LEB for them.
342 		 */
343 	}
344 
345 	if (err != -EAGAIN)
346 		goto out;
347 
348 	/*
349 	 * -EAGAIN means that the journal is full or too large, or the above
350 	 * code wants to do one commit. Do this and re-try.
351 	 */
352 	if (cmt_retries > 128) {
353 		/*
354 		 * This should not happen unless the journal size limitations
355 		 * are too tough.
356 		 */
357 		ubifs_err("stuck in space allocation");
358 		err = -ENOSPC;
359 		goto out;
360 	} else if (cmt_retries > 32)
361 		ubifs_warn("too many space allocation re-tries (%d)",
362 			   cmt_retries);
363 
364 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
365 		cmt_retries);
366 	cmt_retries += 1;
367 
368 	err = ubifs_run_commit(c);
369 	if (err)
370 		return err;
371 	goto again;
372 
373 out:
374 	ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
375 		  len, jhead, err);
376 	if (err == -ENOSPC) {
377 		/* This are some budgeting problems, print useful information */
378 		down_write(&c->commit_sem);
379 		spin_lock(&c->space_lock);
380 		dbg_dump_stack();
381 		dbg_dump_budg(c);
382 		spin_unlock(&c->space_lock);
383 		dbg_dump_lprops(c);
384 		cmt_retries = dbg_check_lprops(c);
385 		up_write(&c->commit_sem);
386 	}
387 	return err;
388 }
389 
390 /**
391  * release_head - release a journal head.
392  * @c: UBIFS file-system description object
393  * @jhead: journal head
394  *
395  * This function releases journal head @jhead which was locked by
396  * the 'make_reservation()' function. It has to be called after each successful
397  * 'make_reservation()' invocation.
398  */
399 static inline void release_head(struct ubifs_info *c, int jhead)
400 {
401 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
402 }
403 
404 /**
405  * finish_reservation - finish a reservation.
406  * @c: UBIFS file-system description object
407  *
408  * This function finishes journal space reservation. It must be called after
409  * 'make_reservation()'.
410  */
411 static void finish_reservation(struct ubifs_info *c)
412 {
413 	up_read(&c->commit_sem);
414 }
415 
416 /**
417  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
418  * @mode: inode mode
419  */
420 static int get_dent_type(int mode)
421 {
422 	switch (mode & S_IFMT) {
423 	case S_IFREG:
424 		return UBIFS_ITYPE_REG;
425 	case S_IFDIR:
426 		return UBIFS_ITYPE_DIR;
427 	case S_IFLNK:
428 		return UBIFS_ITYPE_LNK;
429 	case S_IFBLK:
430 		return UBIFS_ITYPE_BLK;
431 	case S_IFCHR:
432 		return UBIFS_ITYPE_CHR;
433 	case S_IFIFO:
434 		return UBIFS_ITYPE_FIFO;
435 	case S_IFSOCK:
436 		return UBIFS_ITYPE_SOCK;
437 	default:
438 		BUG();
439 	}
440 	return 0;
441 }
442 
443 /**
444  * pack_inode - pack an inode node.
445  * @c: UBIFS file-system description object
446  * @ino: buffer in which to pack inode node
447  * @inode: inode to pack
448  * @last: indicates the last node of the group
449  */
450 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
451 		       const struct inode *inode, int last)
452 {
453 	int data_len = 0, last_reference = !inode->i_nlink;
454 	struct ubifs_inode *ui = ubifs_inode(inode);
455 
456 	ino->ch.node_type = UBIFS_INO_NODE;
457 	ino_key_init_flash(c, &ino->key, inode->i_ino);
458 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
459 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
460 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
461 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
462 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
463 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
464 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
465 	ino->uid   = cpu_to_le32(inode->i_uid);
466 	ino->gid   = cpu_to_le32(inode->i_gid);
467 	ino->mode  = cpu_to_le32(inode->i_mode);
468 	ino->flags = cpu_to_le32(ui->flags);
469 	ino->size  = cpu_to_le64(ui->ui_size);
470 	ino->nlink = cpu_to_le32(inode->i_nlink);
471 	ino->compr_type  = cpu_to_le16(ui->compr_type);
472 	ino->data_len    = cpu_to_le32(ui->data_len);
473 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
474 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
475 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
476 	zero_ino_node_unused(ino);
477 
478 	/*
479 	 * Drop the attached data if this is a deletion inode, the data is not
480 	 * needed anymore.
481 	 */
482 	if (!last_reference) {
483 		memcpy(ino->data, ui->data, ui->data_len);
484 		data_len = ui->data_len;
485 	}
486 
487 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
488 }
489 
490 /**
491  * mark_inode_clean - mark UBIFS inode as clean.
492  * @c: UBIFS file-system description object
493  * @ui: UBIFS inode to mark as clean
494  *
495  * This helper function marks UBIFS inode @ui as clean by cleaning the
496  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
497  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
498  * just do nothing.
499  */
500 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
501 {
502 	if (ui->dirty)
503 		ubifs_release_dirty_inode_budget(c, ui);
504 	ui->dirty = 0;
505 }
506 
507 /**
508  * ubifs_jnl_update - update inode.
509  * @c: UBIFS file-system description object
510  * @dir: parent inode or host inode in case of extended attributes
511  * @nm: directory entry name
512  * @inode: inode to update
513  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
514  * @xent: non-zero if the directory entry is an extended attribute entry
515  *
516  * This function updates an inode by writing a directory entry (or extended
517  * attribute entry), the inode itself, and the parent directory inode (or the
518  * host inode) to the journal.
519  *
520  * The function writes the host inode @dir last, which is important in case of
521  * extended attributes. Indeed, then we guarantee that if the host inode gets
522  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
523  * the extended attribute inode gets flushed too. And this is exactly what the
524  * user expects - synchronizing the host inode synchronizes its extended
525  * attributes. Similarly, this guarantees that if @dir is synchronized, its
526  * directory entry corresponding to @nm gets synchronized too.
527  *
528  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
529  * function synchronizes the write-buffer.
530  *
531  * This function marks the @dir and @inode inodes as clean and returns zero on
532  * success. In case of failure, a negative error code is returned.
533  */
534 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
535 		     const struct qstr *nm, const struct inode *inode,
536 		     int deletion, int xent)
537 {
538 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
539 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
540 	int last_reference = !!(deletion && inode->i_nlink == 0);
541 	struct ubifs_inode *ui = ubifs_inode(inode);
542 	struct ubifs_inode *dir_ui = ubifs_inode(dir);
543 	struct ubifs_dent_node *dent;
544 	struct ubifs_ino_node *ino;
545 	union ubifs_key dent_key, ino_key;
546 
547 	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
548 		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
549 	ubifs_assert(dir_ui->data_len == 0);
550 	ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
551 
552 	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
553 	ilen = UBIFS_INO_NODE_SZ;
554 
555 	/*
556 	 * If the last reference to the inode is being deleted, then there is
557 	 * no need to attach and write inode data, it is being deleted anyway.
558 	 * And if the inode is being deleted, no need to synchronize
559 	 * write-buffer even if the inode is synchronous.
560 	 */
561 	if (!last_reference) {
562 		ilen += ui->data_len;
563 		sync |= IS_SYNC(inode);
564 	}
565 
566 	aligned_dlen = ALIGN(dlen, 8);
567 	aligned_ilen = ALIGN(ilen, 8);
568 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
569 	dent = kmalloc(len, GFP_NOFS);
570 	if (!dent)
571 		return -ENOMEM;
572 
573 	/* Make reservation before allocating sequence numbers */
574 	err = make_reservation(c, BASEHD, len);
575 	if (err)
576 		goto out_free;
577 
578 	if (!xent) {
579 		dent->ch.node_type = UBIFS_DENT_NODE;
580 		dent_key_init(c, &dent_key, dir->i_ino, nm);
581 	} else {
582 		dent->ch.node_type = UBIFS_XENT_NODE;
583 		xent_key_init(c, &dent_key, dir->i_ino, nm);
584 	}
585 
586 	key_write(c, &dent_key, dent->key);
587 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
588 	dent->type = get_dent_type(inode->i_mode);
589 	dent->nlen = cpu_to_le16(nm->len);
590 	memcpy(dent->name, nm->name, nm->len);
591 	dent->name[nm->len] = '\0';
592 	zero_dent_node_unused(dent);
593 	ubifs_prep_grp_node(c, dent, dlen, 0);
594 
595 	ino = (void *)dent + aligned_dlen;
596 	pack_inode(c, ino, inode, 0);
597 	ino = (void *)ino + aligned_ilen;
598 	pack_inode(c, ino, dir, 1);
599 
600 	if (last_reference) {
601 		err = ubifs_add_orphan(c, inode->i_ino);
602 		if (err) {
603 			release_head(c, BASEHD);
604 			goto out_finish;
605 		}
606 		ui->del_cmtno = c->cmt_no;
607 	}
608 
609 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
610 	if (err)
611 		goto out_release;
612 	if (!sync) {
613 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
614 
615 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
616 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
617 	}
618 	release_head(c, BASEHD);
619 	kfree(dent);
620 
621 	if (deletion) {
622 		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
623 		if (err)
624 			goto out_ro;
625 		err = ubifs_add_dirt(c, lnum, dlen);
626 	} else
627 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
628 	if (err)
629 		goto out_ro;
630 
631 	/*
632 	 * Note, we do not remove the inode from TNC even if the last reference
633 	 * to it has just been deleted, because the inode may still be opened.
634 	 * Instead, the inode has been added to orphan lists and the orphan
635 	 * subsystem will take further care about it.
636 	 */
637 	ino_key_init(c, &ino_key, inode->i_ino);
638 	ino_offs = dent_offs + aligned_dlen;
639 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
640 	if (err)
641 		goto out_ro;
642 
643 	ino_key_init(c, &ino_key, dir->i_ino);
644 	ino_offs += aligned_ilen;
645 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
646 	if (err)
647 		goto out_ro;
648 
649 	finish_reservation(c);
650 	spin_lock(&ui->ui_lock);
651 	ui->synced_i_size = ui->ui_size;
652 	spin_unlock(&ui->ui_lock);
653 	mark_inode_clean(c, ui);
654 	mark_inode_clean(c, dir_ui);
655 	return 0;
656 
657 out_finish:
658 	finish_reservation(c);
659 out_free:
660 	kfree(dent);
661 	return err;
662 
663 out_release:
664 	release_head(c, BASEHD);
665 out_ro:
666 	ubifs_ro_mode(c, err);
667 	if (last_reference)
668 		ubifs_delete_orphan(c, inode->i_ino);
669 	finish_reservation(c);
670 	return err;
671 }
672 
673 /**
674  * ubifs_jnl_write_data - write a data node to the journal.
675  * @c: UBIFS file-system description object
676  * @inode: inode the data node belongs to
677  * @key: node key
678  * @buf: buffer to write
679  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
680  *
681  * This function writes a data node to the journal. Returns %0 if the data node
682  * was successfully written, and a negative error code in case of failure.
683  */
684 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
685 			 const union ubifs_key *key, const void *buf, int len)
686 {
687 	struct ubifs_data_node *data;
688 	int err, lnum, offs, compr_type, out_len;
689 	int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
690 	struct ubifs_inode *ui = ubifs_inode(inode);
691 
692 	dbg_jnl("ino %lu, blk %u, len %d, key %s",
693 		(unsigned long)key_inum(c, key), key_block(c, key), len,
694 		DBGKEY(key));
695 	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
696 
697 	data = kmalloc(dlen, GFP_NOFS);
698 	if (!data)
699 		return -ENOMEM;
700 
701 	data->ch.node_type = UBIFS_DATA_NODE;
702 	key_write(c, key, &data->key);
703 	data->size = cpu_to_le32(len);
704 	zero_data_node_unused(data);
705 
706 	if (!(ui->flags & UBIFS_COMPR_FL))
707 		/* Compression is disabled for this inode */
708 		compr_type = UBIFS_COMPR_NONE;
709 	else
710 		compr_type = ui->compr_type;
711 
712 	out_len = dlen - UBIFS_DATA_NODE_SZ;
713 	ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
714 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
715 
716 	dlen = UBIFS_DATA_NODE_SZ + out_len;
717 	data->compr_type = cpu_to_le16(compr_type);
718 
719 	/* Make reservation before allocating sequence numbers */
720 	err = make_reservation(c, DATAHD, dlen);
721 	if (err)
722 		goto out_free;
723 
724 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
725 	if (err)
726 		goto out_release;
727 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
728 	release_head(c, DATAHD);
729 
730 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
731 	if (err)
732 		goto out_ro;
733 
734 	finish_reservation(c);
735 	kfree(data);
736 	return 0;
737 
738 out_release:
739 	release_head(c, DATAHD);
740 out_ro:
741 	ubifs_ro_mode(c, err);
742 	finish_reservation(c);
743 out_free:
744 	kfree(data);
745 	return err;
746 }
747 
748 /**
749  * ubifs_jnl_write_inode - flush inode to the journal.
750  * @c: UBIFS file-system description object
751  * @inode: inode to flush
752  *
753  * This function writes inode @inode to the journal. If the inode is
754  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
755  * success and a negative error code in case of failure.
756  */
757 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
758 {
759 	int err, lnum, offs;
760 	struct ubifs_ino_node *ino;
761 	struct ubifs_inode *ui = ubifs_inode(inode);
762 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
763 
764 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
765 
766 	/*
767 	 * If the inode is being deleted, do not write the attached data. No
768 	 * need to synchronize the write-buffer either.
769 	 */
770 	if (!last_reference) {
771 		len += ui->data_len;
772 		sync = IS_SYNC(inode);
773 	}
774 	ino = kmalloc(len, GFP_NOFS);
775 	if (!ino)
776 		return -ENOMEM;
777 
778 	/* Make reservation before allocating sequence numbers */
779 	err = make_reservation(c, BASEHD, len);
780 	if (err)
781 		goto out_free;
782 
783 	pack_inode(c, ino, inode, 1);
784 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
785 	if (err)
786 		goto out_release;
787 	if (!sync)
788 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
789 					  inode->i_ino);
790 	release_head(c, BASEHD);
791 
792 	if (last_reference) {
793 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
794 		if (err)
795 			goto out_ro;
796 		ubifs_delete_orphan(c, inode->i_ino);
797 		err = ubifs_add_dirt(c, lnum, len);
798 	} else {
799 		union ubifs_key key;
800 
801 		ino_key_init(c, &key, inode->i_ino);
802 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
803 	}
804 	if (err)
805 		goto out_ro;
806 
807 	finish_reservation(c);
808 	spin_lock(&ui->ui_lock);
809 	ui->synced_i_size = ui->ui_size;
810 	spin_unlock(&ui->ui_lock);
811 	kfree(ino);
812 	return 0;
813 
814 out_release:
815 	release_head(c, BASEHD);
816 out_ro:
817 	ubifs_ro_mode(c, err);
818 	finish_reservation(c);
819 out_free:
820 	kfree(ino);
821 	return err;
822 }
823 
824 /**
825  * ubifs_jnl_delete_inode - delete an inode.
826  * @c: UBIFS file-system description object
827  * @inode: inode to delete
828  *
829  * This function deletes inode @inode which includes removing it from orphans,
830  * deleting it from TNC and, in some cases, writing a deletion inode to the
831  * journal.
832  *
833  * When regular file inodes are unlinked or a directory inode is removed, the
834  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
835  * direntry to the media, and adds the inode to orphans. After this, when the
836  * last reference to this inode has been dropped, this function is called. In
837  * general, it has to write one more deletion inode to the media, because if
838  * a commit happened between 'ubifs_jnl_update()' and
839  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
840  * anymore, and in fact it might not be on the flash anymore, because it might
841  * have been garbage-collected already. And for optimization reasons UBIFS does
842  * not read the orphan area if it has been unmounted cleanly, so it would have
843  * no indication in the journal that there is a deleted inode which has to be
844  * removed from TNC.
845  *
846  * However, if there was no commit between 'ubifs_jnl_update()' and
847  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
848  * inode to the media for the second time. And this is quite a typical case.
849  *
850  * This function returns zero in case of success and a negative error code in
851  * case of failure.
852  */
853 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
854 {
855 	int err;
856 	struct ubifs_inode *ui = ubifs_inode(inode);
857 
858 	ubifs_assert(inode->i_nlink == 0);
859 
860 	if (ui->del_cmtno != c->cmt_no)
861 		/* A commit happened for sure */
862 		return ubifs_jnl_write_inode(c, inode);
863 
864 	down_read(&c->commit_sem);
865 	/*
866 	 * Check commit number again, because the first test has been done
867 	 * without @c->commit_sem, so a commit might have happened.
868 	 */
869 	if (ui->del_cmtno != c->cmt_no) {
870 		up_read(&c->commit_sem);
871 		return ubifs_jnl_write_inode(c, inode);
872 	}
873 
874 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
875 	if (err)
876 		ubifs_ro_mode(c, err);
877 	else
878 		ubifs_delete_orphan(c, inode->i_ino);
879 	up_read(&c->commit_sem);
880 	return err;
881 }
882 
883 /**
884  * ubifs_jnl_rename - rename a directory entry.
885  * @c: UBIFS file-system description object
886  * @old_dir: parent inode of directory entry to rename
887  * @old_dentry: directory entry to rename
888  * @new_dir: parent inode of directory entry to rename
889  * @new_dentry: new directory entry (or directory entry to replace)
890  * @sync: non-zero if the write-buffer has to be synchronized
891  *
892  * This function implements the re-name operation which may involve writing up
893  * to 3 inodes and 2 directory entries. It marks the written inodes as clean
894  * and returns zero on success. In case of failure, a negative error code is
895  * returned.
896  */
897 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
898 		     const struct dentry *old_dentry,
899 		     const struct inode *new_dir,
900 		     const struct dentry *new_dentry, int sync)
901 {
902 	void *p;
903 	union ubifs_key key;
904 	struct ubifs_dent_node *dent, *dent2;
905 	int err, dlen1, dlen2, ilen, lnum, offs, len;
906 	const struct inode *old_inode = old_dentry->d_inode;
907 	const struct inode *new_inode = new_dentry->d_inode;
908 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
909 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
910 	int move = (old_dir != new_dir);
911 	struct ubifs_inode *uninitialized_var(new_ui);
912 
913 	dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
914 		old_dentry->d_name.len, old_dentry->d_name.name,
915 		old_dir->i_ino, new_dentry->d_name.len,
916 		new_dentry->d_name.name, new_dir->i_ino);
917 	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
918 	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
919 	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
920 	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
921 
922 	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
923 	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
924 	if (new_inode) {
925 		new_ui = ubifs_inode(new_inode);
926 		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
927 		ilen = UBIFS_INO_NODE_SZ;
928 		if (!last_reference)
929 			ilen += new_ui->data_len;
930 	} else
931 		ilen = 0;
932 
933 	aligned_dlen1 = ALIGN(dlen1, 8);
934 	aligned_dlen2 = ALIGN(dlen2, 8);
935 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
936 	if (old_dir != new_dir)
937 		len += plen;
938 	dent = kmalloc(len, GFP_NOFS);
939 	if (!dent)
940 		return -ENOMEM;
941 
942 	/* Make reservation before allocating sequence numbers */
943 	err = make_reservation(c, BASEHD, len);
944 	if (err)
945 		goto out_free;
946 
947 	/* Make new dent */
948 	dent->ch.node_type = UBIFS_DENT_NODE;
949 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
950 	dent->inum = cpu_to_le64(old_inode->i_ino);
951 	dent->type = get_dent_type(old_inode->i_mode);
952 	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
953 	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
954 	dent->name[new_dentry->d_name.len] = '\0';
955 	zero_dent_node_unused(dent);
956 	ubifs_prep_grp_node(c, dent, dlen1, 0);
957 
958 	/* Make deletion dent */
959 	dent2 = (void *)dent + aligned_dlen1;
960 	dent2->ch.node_type = UBIFS_DENT_NODE;
961 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
962 			    &old_dentry->d_name);
963 	dent2->inum = 0;
964 	dent2->type = DT_UNKNOWN;
965 	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
966 	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
967 	dent2->name[old_dentry->d_name.len] = '\0';
968 	zero_dent_node_unused(dent2);
969 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
970 
971 	p = (void *)dent2 + aligned_dlen2;
972 	if (new_inode) {
973 		pack_inode(c, p, new_inode, 0);
974 		p += ALIGN(ilen, 8);
975 	}
976 
977 	if (!move)
978 		pack_inode(c, p, old_dir, 1);
979 	else {
980 		pack_inode(c, p, old_dir, 0);
981 		p += ALIGN(plen, 8);
982 		pack_inode(c, p, new_dir, 1);
983 	}
984 
985 	if (last_reference) {
986 		err = ubifs_add_orphan(c, new_inode->i_ino);
987 		if (err) {
988 			release_head(c, BASEHD);
989 			goto out_finish;
990 		}
991 		new_ui->del_cmtno = c->cmt_no;
992 	}
993 
994 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
995 	if (err)
996 		goto out_release;
997 	if (!sync) {
998 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
999 
1000 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1001 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1002 		if (new_inode)
1003 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1004 						  new_inode->i_ino);
1005 	}
1006 	release_head(c, BASEHD);
1007 
1008 	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1009 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1010 	if (err)
1011 		goto out_ro;
1012 
1013 	err = ubifs_add_dirt(c, lnum, dlen2);
1014 	if (err)
1015 		goto out_ro;
1016 
1017 	dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1018 	err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1019 	if (err)
1020 		goto out_ro;
1021 
1022 	offs += aligned_dlen1 + aligned_dlen2;
1023 	if (new_inode) {
1024 		ino_key_init(c, &key, new_inode->i_ino);
1025 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1026 		if (err)
1027 			goto out_ro;
1028 		offs += ALIGN(ilen, 8);
1029 	}
1030 
1031 	ino_key_init(c, &key, old_dir->i_ino);
1032 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1033 	if (err)
1034 		goto out_ro;
1035 
1036 	if (old_dir != new_dir) {
1037 		offs += ALIGN(plen, 8);
1038 		ino_key_init(c, &key, new_dir->i_ino);
1039 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1040 		if (err)
1041 			goto out_ro;
1042 	}
1043 
1044 	finish_reservation(c);
1045 	if (new_inode) {
1046 		mark_inode_clean(c, new_ui);
1047 		spin_lock(&new_ui->ui_lock);
1048 		new_ui->synced_i_size = new_ui->ui_size;
1049 		spin_unlock(&new_ui->ui_lock);
1050 	}
1051 	mark_inode_clean(c, ubifs_inode(old_dir));
1052 	if (move)
1053 		mark_inode_clean(c, ubifs_inode(new_dir));
1054 	kfree(dent);
1055 	return 0;
1056 
1057 out_release:
1058 	release_head(c, BASEHD);
1059 out_ro:
1060 	ubifs_ro_mode(c, err);
1061 	if (last_reference)
1062 		ubifs_delete_orphan(c, new_inode->i_ino);
1063 out_finish:
1064 	finish_reservation(c);
1065 out_free:
1066 	kfree(dent);
1067 	return err;
1068 }
1069 
1070 /**
1071  * recomp_data_node - re-compress a truncated data node.
1072  * @dn: data node to re-compress
1073  * @new_len: new length
1074  *
1075  * This function is used when an inode is truncated and the last data node of
1076  * the inode has to be re-compressed and re-written.
1077  */
1078 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1079 {
1080 	void *buf;
1081 	int err, len, compr_type, out_len;
1082 
1083 	out_len = le32_to_cpu(dn->size);
1084 	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1085 	if (!buf)
1086 		return -ENOMEM;
1087 
1088 	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1089 	compr_type = le16_to_cpu(dn->compr_type);
1090 	err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1091 	if (err)
1092 		goto out;
1093 
1094 	ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1095 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1096 	dn->compr_type = cpu_to_le16(compr_type);
1097 	dn->size = cpu_to_le32(*new_len);
1098 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1099 out:
1100 	kfree(buf);
1101 	return err;
1102 }
1103 
1104 /**
1105  * ubifs_jnl_truncate - update the journal for a truncation.
1106  * @c: UBIFS file-system description object
1107  * @inode: inode to truncate
1108  * @old_size: old size
1109  * @new_size: new size
1110  *
1111  * When the size of a file decreases due to truncation, a truncation node is
1112  * written, the journal tree is updated, and the last data block is re-written
1113  * if it has been affected. The inode is also updated in order to synchronize
1114  * the new inode size.
1115  *
1116  * This function marks the inode as clean and returns zero on success. In case
1117  * of failure, a negative error code is returned.
1118  */
1119 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1120 		       loff_t old_size, loff_t new_size)
1121 {
1122 	union ubifs_key key, to_key;
1123 	struct ubifs_ino_node *ino;
1124 	struct ubifs_trun_node *trun;
1125 	struct ubifs_data_node *uninitialized_var(dn);
1126 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1127 	struct ubifs_inode *ui = ubifs_inode(inode);
1128 	ino_t inum = inode->i_ino;
1129 	unsigned int blk;
1130 
1131 	dbg_jnl("ino %lu, size %lld -> %lld",
1132 		(unsigned long)inum, old_size, new_size);
1133 	ubifs_assert(!ui->data_len);
1134 	ubifs_assert(S_ISREG(inode->i_mode));
1135 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1136 
1137 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1138 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1139 	ino = kmalloc(sz, GFP_NOFS);
1140 	if (!ino)
1141 		return -ENOMEM;
1142 
1143 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1144 	trun->ch.node_type = UBIFS_TRUN_NODE;
1145 	trun->inum = cpu_to_le32(inum);
1146 	trun->old_size = cpu_to_le64(old_size);
1147 	trun->new_size = cpu_to_le64(new_size);
1148 	zero_trun_node_unused(trun);
1149 
1150 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1151 	if (dlen) {
1152 		/* Get last data block so it can be truncated */
1153 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1154 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1155 		data_key_init(c, &key, inum, blk);
1156 		dbg_jnl("last block key %s", DBGKEY(&key));
1157 		err = ubifs_tnc_lookup(c, &key, dn);
1158 		if (err == -ENOENT)
1159 			dlen = 0; /* Not found (so it is a hole) */
1160 		else if (err)
1161 			goto out_free;
1162 		else {
1163 			if (le32_to_cpu(dn->size) <= dlen)
1164 				dlen = 0; /* Nothing to do */
1165 			else {
1166 				int compr_type = le16_to_cpu(dn->compr_type);
1167 
1168 				if (compr_type != UBIFS_COMPR_NONE) {
1169 					err = recomp_data_node(dn, &dlen);
1170 					if (err)
1171 						goto out_free;
1172 				} else {
1173 					dn->size = cpu_to_le32(dlen);
1174 					dlen += UBIFS_DATA_NODE_SZ;
1175 				}
1176 				zero_data_node_unused(dn);
1177 			}
1178 		}
1179 	}
1180 
1181 	/* Must make reservation before allocating sequence numbers */
1182 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1183 	if (dlen)
1184 		len += dlen;
1185 	err = make_reservation(c, BASEHD, len);
1186 	if (err)
1187 		goto out_free;
1188 
1189 	pack_inode(c, ino, inode, 0);
1190 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1191 	if (dlen)
1192 		ubifs_prep_grp_node(c, dn, dlen, 1);
1193 
1194 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1195 	if (err)
1196 		goto out_release;
1197 	if (!sync)
1198 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1199 	release_head(c, BASEHD);
1200 
1201 	if (dlen) {
1202 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1203 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1204 		if (err)
1205 			goto out_ro;
1206 	}
1207 
1208 	ino_key_init(c, &key, inum);
1209 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1210 	if (err)
1211 		goto out_ro;
1212 
1213 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1214 	if (err)
1215 		goto out_ro;
1216 
1217 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1218 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1219 	data_key_init(c, &key, inum, blk);
1220 
1221 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1222 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1223 	data_key_init(c, &to_key, inum, blk);
1224 
1225 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1226 	if (err)
1227 		goto out_ro;
1228 
1229 	finish_reservation(c);
1230 	spin_lock(&ui->ui_lock);
1231 	ui->synced_i_size = ui->ui_size;
1232 	spin_unlock(&ui->ui_lock);
1233 	mark_inode_clean(c, ui);
1234 	kfree(ino);
1235 	return 0;
1236 
1237 out_release:
1238 	release_head(c, BASEHD);
1239 out_ro:
1240 	ubifs_ro_mode(c, err);
1241 	finish_reservation(c);
1242 out_free:
1243 	kfree(ino);
1244 	return err;
1245 }
1246 
1247 #ifdef CONFIG_UBIFS_FS_XATTR
1248 
1249 /**
1250  * ubifs_jnl_delete_xattr - delete an extended attribute.
1251  * @c: UBIFS file-system description object
1252  * @host: host inode
1253  * @inode: extended attribute inode
1254  * @nm: extended attribute entry name
1255  *
1256  * This function delete an extended attribute which is very similar to
1257  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1258  * updates the target inode. Returns zero in case of success and a negative
1259  * error code in case of failure.
1260  */
1261 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1262 			   const struct inode *inode, const struct qstr *nm)
1263 {
1264 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1265 	struct ubifs_dent_node *xent;
1266 	struct ubifs_ino_node *ino;
1267 	union ubifs_key xent_key, key1, key2;
1268 	int sync = IS_DIRSYNC(host);
1269 	struct ubifs_inode *host_ui = ubifs_inode(host);
1270 
1271 	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1272 		host->i_ino, inode->i_ino, nm->name,
1273 		ubifs_inode(inode)->data_len);
1274 	ubifs_assert(inode->i_nlink == 0);
1275 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1276 
1277 	/*
1278 	 * Since we are deleting the inode, we do not bother to attach any data
1279 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1280 	 */
1281 	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1282 	aligned_xlen = ALIGN(xlen, 8);
1283 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1284 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1285 
1286 	xent = kmalloc(len, GFP_NOFS);
1287 	if (!xent)
1288 		return -ENOMEM;
1289 
1290 	/* Make reservation before allocating sequence numbers */
1291 	err = make_reservation(c, BASEHD, len);
1292 	if (err) {
1293 		kfree(xent);
1294 		return err;
1295 	}
1296 
1297 	xent->ch.node_type = UBIFS_XENT_NODE;
1298 	xent_key_init(c, &xent_key, host->i_ino, nm);
1299 	key_write(c, &xent_key, xent->key);
1300 	xent->inum = 0;
1301 	xent->type = get_dent_type(inode->i_mode);
1302 	xent->nlen = cpu_to_le16(nm->len);
1303 	memcpy(xent->name, nm->name, nm->len);
1304 	xent->name[nm->len] = '\0';
1305 	zero_dent_node_unused(xent);
1306 	ubifs_prep_grp_node(c, xent, xlen, 0);
1307 
1308 	ino = (void *)xent + aligned_xlen;
1309 	pack_inode(c, ino, inode, 0);
1310 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1311 	pack_inode(c, ino, host, 1);
1312 
1313 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1314 	if (!sync && !err)
1315 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1316 	release_head(c, BASEHD);
1317 	kfree(xent);
1318 	if (err)
1319 		goto out_ro;
1320 
1321 	/* Remove the extended attribute entry from TNC */
1322 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1323 	if (err)
1324 		goto out_ro;
1325 	err = ubifs_add_dirt(c, lnum, xlen);
1326 	if (err)
1327 		goto out_ro;
1328 
1329 	/*
1330 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1331 	 * Well, there actually must be only one node - the inode itself.
1332 	 */
1333 	lowest_ino_key(c, &key1, inode->i_ino);
1334 	highest_ino_key(c, &key2, inode->i_ino);
1335 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1336 	if (err)
1337 		goto out_ro;
1338 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1339 	if (err)
1340 		goto out_ro;
1341 
1342 	/* And update TNC with the new host inode position */
1343 	ino_key_init(c, &key1, host->i_ino);
1344 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1345 	if (err)
1346 		goto out_ro;
1347 
1348 	finish_reservation(c);
1349 	spin_lock(&host_ui->ui_lock);
1350 	host_ui->synced_i_size = host_ui->ui_size;
1351 	spin_unlock(&host_ui->ui_lock);
1352 	mark_inode_clean(c, host_ui);
1353 	return 0;
1354 
1355 out_ro:
1356 	ubifs_ro_mode(c, err);
1357 	finish_reservation(c);
1358 	return err;
1359 }
1360 
1361 /**
1362  * ubifs_jnl_change_xattr - change an extended attribute.
1363  * @c: UBIFS file-system description object
1364  * @inode: extended attribute inode
1365  * @host: host inode
1366  *
1367  * This function writes the updated version of an extended attribute inode and
1368  * the host inode to the journal (to the base head). The host inode is written
1369  * after the extended attribute inode in order to guarantee that the extended
1370  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1371  * consequently, the write-buffer is synchronized. This function returns zero
1372  * in case of success and a negative error code in case of failure.
1373  */
1374 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1375 			   const struct inode *host)
1376 {
1377 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1378 	struct ubifs_inode *host_ui = ubifs_inode(host);
1379 	struct ubifs_ino_node *ino;
1380 	union ubifs_key key;
1381 	int sync = IS_DIRSYNC(host);
1382 
1383 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1384 	ubifs_assert(host->i_nlink > 0);
1385 	ubifs_assert(inode->i_nlink > 0);
1386 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1387 
1388 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1389 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1390 	aligned_len1 = ALIGN(len1, 8);
1391 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1392 
1393 	ino = kmalloc(aligned_len, GFP_NOFS);
1394 	if (!ino)
1395 		return -ENOMEM;
1396 
1397 	/* Make reservation before allocating sequence numbers */
1398 	err = make_reservation(c, BASEHD, aligned_len);
1399 	if (err)
1400 		goto out_free;
1401 
1402 	pack_inode(c, ino, host, 0);
1403 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1404 
1405 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1406 	if (!sync && !err) {
1407 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1408 
1409 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1410 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1411 	}
1412 	release_head(c, BASEHD);
1413 	if (err)
1414 		goto out_ro;
1415 
1416 	ino_key_init(c, &key, host->i_ino);
1417 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1418 	if (err)
1419 		goto out_ro;
1420 
1421 	ino_key_init(c, &key, inode->i_ino);
1422 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1423 	if (err)
1424 		goto out_ro;
1425 
1426 	finish_reservation(c);
1427 	spin_lock(&host_ui->ui_lock);
1428 	host_ui->synced_i_size = host_ui->ui_size;
1429 	spin_unlock(&host_ui->ui_lock);
1430 	mark_inode_clean(c, host_ui);
1431 	kfree(ino);
1432 	return 0;
1433 
1434 out_ro:
1435 	ubifs_ro_mode(c, err);
1436 	finish_reservation(c);
1437 out_free:
1438 	kfree(ino);
1439 	return err;
1440 }
1441 
1442 #endif /* CONFIG_UBIFS_FS_XATTR */
1443