xref: /openbmc/linux/fs/ubifs/journal.c (revision f220d3eb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 }
82 
83 /**
84  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85  *                         node.
86  * @trun: the truncation node to zero out
87  */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 	memset(trun->padding, 0, 12);
91 }
92 
93 /**
94  * reserve_space - reserve space in the journal.
95  * @c: UBIFS file-system description object
96  * @jhead: journal head number
97  * @len: node length
98  *
99  * This function reserves space in journal head @head. If the reservation
100  * succeeded, the journal head stays locked and later has to be unlocked using
101  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
102  * be done, and other negative error codes in case of other failures.
103  */
104 static int reserve_space(struct ubifs_info *c, int jhead, int len)
105 {
106 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
107 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
108 
109 	/*
110 	 * Typically, the base head has smaller nodes written to it, so it is
111 	 * better to try to allocate space at the ends of eraseblocks. This is
112 	 * what the squeeze parameter does.
113 	 */
114 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
115 	squeeze = (jhead == BASEHD);
116 again:
117 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
118 
119 	if (c->ro_error) {
120 		err = -EROFS;
121 		goto out_unlock;
122 	}
123 
124 	avail = c->leb_size - wbuf->offs - wbuf->used;
125 	if (wbuf->lnum != -1 && avail >= len)
126 		return 0;
127 
128 	/*
129 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
130 	 * LEB with some empty space.
131 	 */
132 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
133 	if (lnum >= 0)
134 		goto out;
135 
136 	err = lnum;
137 	if (err != -ENOSPC)
138 		goto out_unlock;
139 
140 	/*
141 	 * No free space, we have to run garbage collector to make
142 	 * some. But the write-buffer mutex has to be unlocked because
143 	 * GC also takes it.
144 	 */
145 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
146 	mutex_unlock(&wbuf->io_mutex);
147 
148 	lnum = ubifs_garbage_collect(c, 0);
149 	if (lnum < 0) {
150 		err = lnum;
151 		if (err != -ENOSPC)
152 			return err;
153 
154 		/*
155 		 * GC could not make a free LEB. But someone else may
156 		 * have allocated new bud for this journal head,
157 		 * because we dropped @wbuf->io_mutex, so try once
158 		 * again.
159 		 */
160 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
161 			dbg_jhead(jhead));
162 		if (retries++ < 2) {
163 			dbg_jnl("retry (%d)", retries);
164 			goto again;
165 		}
166 
167 		dbg_jnl("return -ENOSPC");
168 		return err;
169 	}
170 
171 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
172 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
173 	avail = c->leb_size - wbuf->offs - wbuf->used;
174 
175 	if (wbuf->lnum != -1 && avail >= len) {
176 		/*
177 		 * Someone else has switched the journal head and we have
178 		 * enough space now. This happens when more than one process is
179 		 * trying to write to the same journal head at the same time.
180 		 */
181 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
182 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
183 		err = ubifs_return_leb(c, lnum);
184 		if (err)
185 			goto out_unlock;
186 		return 0;
187 	}
188 
189 	offs = 0;
190 
191 out:
192 	/*
193 	 * Make sure we synchronize the write-buffer before we add the new bud
194 	 * to the log. Otherwise we may have a power cut after the log
195 	 * reference node for the last bud (@lnum) is written but before the
196 	 * write-buffer data are written to the next-to-last bud
197 	 * (@wbuf->lnum). And the effect would be that the recovery would see
198 	 * that there is corruption in the next-to-last bud.
199 	 */
200 	err = ubifs_wbuf_sync_nolock(wbuf);
201 	if (err)
202 		goto out_return;
203 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
204 	if (err)
205 		goto out_return;
206 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
207 	if (err)
208 		goto out_unlock;
209 
210 	return 0;
211 
212 out_unlock:
213 	mutex_unlock(&wbuf->io_mutex);
214 	return err;
215 
216 out_return:
217 	/* An error occurred and the LEB has to be returned to lprops */
218 	ubifs_assert(c, err < 0);
219 	err1 = ubifs_return_leb(c, lnum);
220 	if (err1 && err == -EAGAIN)
221 		/*
222 		 * Return original error code only if it is not %-EAGAIN,
223 		 * which is not really an error. Otherwise, return the error
224 		 * code of 'ubifs_return_leb()'.
225 		 */
226 		err = err1;
227 	mutex_unlock(&wbuf->io_mutex);
228 	return err;
229 }
230 
231 /**
232  * write_node - write node to a journal head.
233  * @c: UBIFS file-system description object
234  * @jhead: journal head
235  * @node: node to write
236  * @len: node length
237  * @lnum: LEB number written is returned here
238  * @offs: offset written is returned here
239  *
240  * This function writes a node to reserved space of journal head @jhead.
241  * Returns zero in case of success and a negative error code in case of
242  * failure.
243  */
244 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
245 		      int *lnum, int *offs)
246 {
247 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
248 
249 	ubifs_assert(c, jhead != GCHD);
250 
251 	*lnum = c->jheads[jhead].wbuf.lnum;
252 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
253 
254 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
255 		dbg_jhead(jhead), *lnum, *offs, len);
256 	ubifs_prepare_node(c, node, len, 0);
257 
258 	return ubifs_wbuf_write_nolock(wbuf, node, len);
259 }
260 
261 /**
262  * write_head - write data to a journal head.
263  * @c: UBIFS file-system description object
264  * @jhead: journal head
265  * @buf: buffer to write
266  * @len: length to write
267  * @lnum: LEB number written is returned here
268  * @offs: offset written is returned here
269  * @sync: non-zero if the write-buffer has to by synchronized
270  *
271  * This function is the same as 'write_node()' but it does not assume the
272  * buffer it is writing is a node, so it does not prepare it (which means
273  * initializing common header and calculating CRC).
274  */
275 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
276 		      int *lnum, int *offs, int sync)
277 {
278 	int err;
279 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
280 
281 	ubifs_assert(c, jhead != GCHD);
282 
283 	*lnum = c->jheads[jhead].wbuf.lnum;
284 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
285 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
286 		dbg_jhead(jhead), *lnum, *offs, len);
287 
288 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
289 	if (err)
290 		return err;
291 	if (sync)
292 		err = ubifs_wbuf_sync_nolock(wbuf);
293 	return err;
294 }
295 
296 /**
297  * make_reservation - reserve journal space.
298  * @c: UBIFS file-system description object
299  * @jhead: journal head
300  * @len: how many bytes to reserve
301  *
302  * This function makes space reservation in journal head @jhead. The function
303  * takes the commit lock and locks the journal head, and the caller has to
304  * unlock the head and finish the reservation with 'finish_reservation()'.
305  * Returns zero in case of success and a negative error code in case of
306  * failure.
307  *
308  * Note, the journal head may be unlocked as soon as the data is written, while
309  * the commit lock has to be released after the data has been added to the
310  * TNC.
311  */
312 static int make_reservation(struct ubifs_info *c, int jhead, int len)
313 {
314 	int err, cmt_retries = 0, nospc_retries = 0;
315 
316 again:
317 	down_read(&c->commit_sem);
318 	err = reserve_space(c, jhead, len);
319 	if (!err)
320 		/* c->commit_sem will get released via finish_reservation(). */
321 		return 0;
322 	up_read(&c->commit_sem);
323 
324 	if (err == -ENOSPC) {
325 		/*
326 		 * GC could not make any progress. We should try to commit
327 		 * once because it could make some dirty space and GC would
328 		 * make progress, so make the error -EAGAIN so that the below
329 		 * will commit and re-try.
330 		 */
331 		if (nospc_retries++ < 2) {
332 			dbg_jnl("no space, retry");
333 			err = -EAGAIN;
334 		}
335 
336 		/*
337 		 * This means that the budgeting is incorrect. We always have
338 		 * to be able to write to the media, because all operations are
339 		 * budgeted. Deletions are not budgeted, though, but we reserve
340 		 * an extra LEB for them.
341 		 */
342 	}
343 
344 	if (err != -EAGAIN)
345 		goto out;
346 
347 	/*
348 	 * -EAGAIN means that the journal is full or too large, or the above
349 	 * code wants to do one commit. Do this and re-try.
350 	 */
351 	if (cmt_retries > 128) {
352 		/*
353 		 * This should not happen unless the journal size limitations
354 		 * are too tough.
355 		 */
356 		ubifs_err(c, "stuck in space allocation");
357 		err = -ENOSPC;
358 		goto out;
359 	} else if (cmt_retries > 32)
360 		ubifs_warn(c, "too many space allocation re-tries (%d)",
361 			   cmt_retries);
362 
363 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 		cmt_retries);
365 	cmt_retries += 1;
366 
367 	err = ubifs_run_commit(c);
368 	if (err)
369 		return err;
370 	goto again;
371 
372 out:
373 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 		  len, jhead, err);
375 	if (err == -ENOSPC) {
376 		/* This are some budgeting problems, print useful information */
377 		down_write(&c->commit_sem);
378 		dump_stack();
379 		ubifs_dump_budg(c, &c->bi);
380 		ubifs_dump_lprops(c);
381 		cmt_retries = dbg_check_lprops(c);
382 		up_write(&c->commit_sem);
383 	}
384 	return err;
385 }
386 
387 /**
388  * release_head - release a journal head.
389  * @c: UBIFS file-system description object
390  * @jhead: journal head
391  *
392  * This function releases journal head @jhead which was locked by
393  * the 'make_reservation()' function. It has to be called after each successful
394  * 'make_reservation()' invocation.
395  */
396 static inline void release_head(struct ubifs_info *c, int jhead)
397 {
398 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399 }
400 
401 /**
402  * finish_reservation - finish a reservation.
403  * @c: UBIFS file-system description object
404  *
405  * This function finishes journal space reservation. It must be called after
406  * 'make_reservation()'.
407  */
408 static void finish_reservation(struct ubifs_info *c)
409 {
410 	up_read(&c->commit_sem);
411 }
412 
413 /**
414  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415  * @mode: inode mode
416  */
417 static int get_dent_type(int mode)
418 {
419 	switch (mode & S_IFMT) {
420 	case S_IFREG:
421 		return UBIFS_ITYPE_REG;
422 	case S_IFDIR:
423 		return UBIFS_ITYPE_DIR;
424 	case S_IFLNK:
425 		return UBIFS_ITYPE_LNK;
426 	case S_IFBLK:
427 		return UBIFS_ITYPE_BLK;
428 	case S_IFCHR:
429 		return UBIFS_ITYPE_CHR;
430 	case S_IFIFO:
431 		return UBIFS_ITYPE_FIFO;
432 	case S_IFSOCK:
433 		return UBIFS_ITYPE_SOCK;
434 	default:
435 		BUG();
436 	}
437 	return 0;
438 }
439 
440 /**
441  * pack_inode - pack an inode node.
442  * @c: UBIFS file-system description object
443  * @ino: buffer in which to pack inode node
444  * @inode: inode to pack
445  * @last: indicates the last node of the group
446  */
447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 		       const struct inode *inode, int last)
449 {
450 	int data_len = 0, last_reference = !inode->i_nlink;
451 	struct ubifs_inode *ui = ubifs_inode(inode);
452 
453 	ino->ch.node_type = UBIFS_INO_NODE;
454 	ino_key_init_flash(c, &ino->key, inode->i_ino);
455 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
457 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
459 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
461 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 	ino->uid   = cpu_to_le32(i_uid_read(inode));
463 	ino->gid   = cpu_to_le32(i_gid_read(inode));
464 	ino->mode  = cpu_to_le32(inode->i_mode);
465 	ino->flags = cpu_to_le32(ui->flags);
466 	ino->size  = cpu_to_le64(ui->ui_size);
467 	ino->nlink = cpu_to_le32(inode->i_nlink);
468 	ino->compr_type  = cpu_to_le16(ui->compr_type);
469 	ino->data_len    = cpu_to_le32(ui->data_len);
470 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
471 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
472 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 	zero_ino_node_unused(ino);
474 
475 	/*
476 	 * Drop the attached data if this is a deletion inode, the data is not
477 	 * needed anymore.
478 	 */
479 	if (!last_reference) {
480 		memcpy(ino->data, ui->data, ui->data_len);
481 		data_len = ui->data_len;
482 	}
483 
484 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485 }
486 
487 /**
488  * mark_inode_clean - mark UBIFS inode as clean.
489  * @c: UBIFS file-system description object
490  * @ui: UBIFS inode to mark as clean
491  *
492  * This helper function marks UBIFS inode @ui as clean by cleaning the
493  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495  * just do nothing.
496  */
497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 {
499 	if (ui->dirty)
500 		ubifs_release_dirty_inode_budget(c, ui);
501 	ui->dirty = 0;
502 }
503 
504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505 {
506 	if (c->double_hash)
507 		dent->cookie = prandom_u32();
508 	else
509 		dent->cookie = 0;
510 }
511 
512 /**
513  * ubifs_jnl_update - update inode.
514  * @c: UBIFS file-system description object
515  * @dir: parent inode or host inode in case of extended attributes
516  * @nm: directory entry name
517  * @inode: inode to update
518  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519  * @xent: non-zero if the directory entry is an extended attribute entry
520  *
521  * This function updates an inode by writing a directory entry (or extended
522  * attribute entry), the inode itself, and the parent directory inode (or the
523  * host inode) to the journal.
524  *
525  * The function writes the host inode @dir last, which is important in case of
526  * extended attributes. Indeed, then we guarantee that if the host inode gets
527  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528  * the extended attribute inode gets flushed too. And this is exactly what the
529  * user expects - synchronizing the host inode synchronizes its extended
530  * attributes. Similarly, this guarantees that if @dir is synchronized, its
531  * directory entry corresponding to @nm gets synchronized too.
532  *
533  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534  * function synchronizes the write-buffer.
535  *
536  * This function marks the @dir and @inode inodes as clean and returns zero on
537  * success. In case of failure, a negative error code is returned.
538  */
539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
540 		     const struct fscrypt_name *nm, const struct inode *inode,
541 		     int deletion, int xent)
542 {
543 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
544 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
545 	int last_reference = !!(deletion && inode->i_nlink == 0);
546 	struct ubifs_inode *ui = ubifs_inode(inode);
547 	struct ubifs_inode *host_ui = ubifs_inode(dir);
548 	struct ubifs_dent_node *dent;
549 	struct ubifs_ino_node *ino;
550 	union ubifs_key dent_key, ino_key;
551 
552 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
553 
554 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
555 	ilen = UBIFS_INO_NODE_SZ;
556 
557 	/*
558 	 * If the last reference to the inode is being deleted, then there is
559 	 * no need to attach and write inode data, it is being deleted anyway.
560 	 * And if the inode is being deleted, no need to synchronize
561 	 * write-buffer even if the inode is synchronous.
562 	 */
563 	if (!last_reference) {
564 		ilen += ui->data_len;
565 		sync |= IS_SYNC(inode);
566 	}
567 
568 	aligned_dlen = ALIGN(dlen, 8);
569 	aligned_ilen = ALIGN(ilen, 8);
570 
571 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 	/* Make sure to also account for extended attributes */
573 	len += host_ui->data_len;
574 
575 	dent = kzalloc(len, GFP_NOFS);
576 	if (!dent)
577 		return -ENOMEM;
578 
579 	/* Make reservation before allocating sequence numbers */
580 	err = make_reservation(c, BASEHD, len);
581 	if (err)
582 		goto out_free;
583 
584 	if (!xent) {
585 		dent->ch.node_type = UBIFS_DENT_NODE;
586 		if (nm->hash)
587 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
588 		else
589 			dent_key_init(c, &dent_key, dir->i_ino, nm);
590 	} else {
591 		dent->ch.node_type = UBIFS_XENT_NODE;
592 		xent_key_init(c, &dent_key, dir->i_ino, nm);
593 	}
594 
595 	key_write(c, &dent_key, dent->key);
596 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
597 	dent->type = get_dent_type(inode->i_mode);
598 	dent->nlen = cpu_to_le16(fname_len(nm));
599 	memcpy(dent->name, fname_name(nm), fname_len(nm));
600 	dent->name[fname_len(nm)] = '\0';
601 	set_dent_cookie(c, dent);
602 
603 	zero_dent_node_unused(dent);
604 	ubifs_prep_grp_node(c, dent, dlen, 0);
605 
606 	ino = (void *)dent + aligned_dlen;
607 	pack_inode(c, ino, inode, 0);
608 	ino = (void *)ino + aligned_ilen;
609 	pack_inode(c, ino, dir, 1);
610 
611 	if (last_reference) {
612 		err = ubifs_add_orphan(c, inode->i_ino);
613 		if (err) {
614 			release_head(c, BASEHD);
615 			goto out_finish;
616 		}
617 		ui->del_cmtno = c->cmt_no;
618 	}
619 
620 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
621 	if (err)
622 		goto out_release;
623 	if (!sync) {
624 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
625 
626 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
627 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
628 	}
629 	release_head(c, BASEHD);
630 	kfree(dent);
631 
632 	if (deletion) {
633 		if (nm->hash)
634 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
635 		else
636 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
637 		if (err)
638 			goto out_ro;
639 		err = ubifs_add_dirt(c, lnum, dlen);
640 	} else
641 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
642 	if (err)
643 		goto out_ro;
644 
645 	/*
646 	 * Note, we do not remove the inode from TNC even if the last reference
647 	 * to it has just been deleted, because the inode may still be opened.
648 	 * Instead, the inode has been added to orphan lists and the orphan
649 	 * subsystem will take further care about it.
650 	 */
651 	ino_key_init(c, &ino_key, inode->i_ino);
652 	ino_offs = dent_offs + aligned_dlen;
653 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
654 	if (err)
655 		goto out_ro;
656 
657 	ino_key_init(c, &ino_key, dir->i_ino);
658 	ino_offs += aligned_ilen;
659 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
660 			    UBIFS_INO_NODE_SZ + host_ui->data_len);
661 	if (err)
662 		goto out_ro;
663 
664 	finish_reservation(c);
665 	spin_lock(&ui->ui_lock);
666 	ui->synced_i_size = ui->ui_size;
667 	spin_unlock(&ui->ui_lock);
668 	if (xent) {
669 		spin_lock(&host_ui->ui_lock);
670 		host_ui->synced_i_size = host_ui->ui_size;
671 		spin_unlock(&host_ui->ui_lock);
672 	}
673 	mark_inode_clean(c, ui);
674 	mark_inode_clean(c, host_ui);
675 	return 0;
676 
677 out_finish:
678 	finish_reservation(c);
679 out_free:
680 	kfree(dent);
681 	return err;
682 
683 out_release:
684 	release_head(c, BASEHD);
685 	kfree(dent);
686 out_ro:
687 	ubifs_ro_mode(c, err);
688 	if (last_reference)
689 		ubifs_delete_orphan(c, inode->i_ino);
690 	finish_reservation(c);
691 	return err;
692 }
693 
694 /**
695  * ubifs_jnl_write_data - write a data node to the journal.
696  * @c: UBIFS file-system description object
697  * @inode: inode the data node belongs to
698  * @key: node key
699  * @buf: buffer to write
700  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
701  *
702  * This function writes a data node to the journal. Returns %0 if the data node
703  * was successfully written, and a negative error code in case of failure.
704  */
705 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
706 			 const union ubifs_key *key, const void *buf, int len)
707 {
708 	struct ubifs_data_node *data;
709 	int err, lnum, offs, compr_type, out_len, compr_len;
710 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
711 	struct ubifs_inode *ui = ubifs_inode(inode);
712 	bool encrypted = ubifs_crypt_is_encrypted(inode);
713 
714 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
715 		(unsigned long)key_inum(c, key), key_block(c, key), len);
716 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
717 
718 	if (encrypted)
719 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
720 
721 	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
722 	if (!data) {
723 		/*
724 		 * Fall-back to the write reserve buffer. Note, we might be
725 		 * currently on the memory reclaim path, when the kernel is
726 		 * trying to free some memory by writing out dirty pages. The
727 		 * write reserve buffer helps us to guarantee that we are
728 		 * always able to write the data.
729 		 */
730 		allocated = 0;
731 		mutex_lock(&c->write_reserve_mutex);
732 		data = c->write_reserve_buf;
733 	}
734 
735 	data->ch.node_type = UBIFS_DATA_NODE;
736 	key_write(c, key, &data->key);
737 	data->size = cpu_to_le32(len);
738 
739 	if (!(ui->flags & UBIFS_COMPR_FL))
740 		/* Compression is disabled for this inode */
741 		compr_type = UBIFS_COMPR_NONE;
742 	else
743 		compr_type = ui->compr_type;
744 
745 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
746 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
747 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
748 
749 	if (encrypted) {
750 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
751 		if (err)
752 			goto out_free;
753 
754 	} else {
755 		data->compr_size = 0;
756 		out_len = compr_len;
757 	}
758 
759 	dlen = UBIFS_DATA_NODE_SZ + out_len;
760 	data->compr_type = cpu_to_le16(compr_type);
761 
762 	/* Make reservation before allocating sequence numbers */
763 	err = make_reservation(c, DATAHD, dlen);
764 	if (err)
765 		goto out_free;
766 
767 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
768 	if (err)
769 		goto out_release;
770 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
771 	release_head(c, DATAHD);
772 
773 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
774 	if (err)
775 		goto out_ro;
776 
777 	finish_reservation(c);
778 	if (!allocated)
779 		mutex_unlock(&c->write_reserve_mutex);
780 	else
781 		kfree(data);
782 	return 0;
783 
784 out_release:
785 	release_head(c, DATAHD);
786 out_ro:
787 	ubifs_ro_mode(c, err);
788 	finish_reservation(c);
789 out_free:
790 	if (!allocated)
791 		mutex_unlock(&c->write_reserve_mutex);
792 	else
793 		kfree(data);
794 	return err;
795 }
796 
797 /**
798  * ubifs_jnl_write_inode - flush inode to the journal.
799  * @c: UBIFS file-system description object
800  * @inode: inode to flush
801  *
802  * This function writes inode @inode to the journal. If the inode is
803  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
804  * success and a negative error code in case of failure.
805  */
806 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
807 {
808 	int err, lnum, offs;
809 	struct ubifs_ino_node *ino;
810 	struct ubifs_inode *ui = ubifs_inode(inode);
811 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
812 
813 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
814 
815 	/*
816 	 * If the inode is being deleted, do not write the attached data. No
817 	 * need to synchronize the write-buffer either.
818 	 */
819 	if (!last_reference) {
820 		len += ui->data_len;
821 		sync = IS_SYNC(inode);
822 	}
823 	ino = kmalloc(len, GFP_NOFS);
824 	if (!ino)
825 		return -ENOMEM;
826 
827 	/* Make reservation before allocating sequence numbers */
828 	err = make_reservation(c, BASEHD, len);
829 	if (err)
830 		goto out_free;
831 
832 	pack_inode(c, ino, inode, 1);
833 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
834 	if (err)
835 		goto out_release;
836 	if (!sync)
837 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
838 					  inode->i_ino);
839 	release_head(c, BASEHD);
840 
841 	if (last_reference) {
842 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
843 		if (err)
844 			goto out_ro;
845 		ubifs_delete_orphan(c, inode->i_ino);
846 		err = ubifs_add_dirt(c, lnum, len);
847 	} else {
848 		union ubifs_key key;
849 
850 		ino_key_init(c, &key, inode->i_ino);
851 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
852 	}
853 	if (err)
854 		goto out_ro;
855 
856 	finish_reservation(c);
857 	spin_lock(&ui->ui_lock);
858 	ui->synced_i_size = ui->ui_size;
859 	spin_unlock(&ui->ui_lock);
860 	kfree(ino);
861 	return 0;
862 
863 out_release:
864 	release_head(c, BASEHD);
865 out_ro:
866 	ubifs_ro_mode(c, err);
867 	finish_reservation(c);
868 out_free:
869 	kfree(ino);
870 	return err;
871 }
872 
873 /**
874  * ubifs_jnl_delete_inode - delete an inode.
875  * @c: UBIFS file-system description object
876  * @inode: inode to delete
877  *
878  * This function deletes inode @inode which includes removing it from orphans,
879  * deleting it from TNC and, in some cases, writing a deletion inode to the
880  * journal.
881  *
882  * When regular file inodes are unlinked or a directory inode is removed, the
883  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
884  * direntry to the media, and adds the inode to orphans. After this, when the
885  * last reference to this inode has been dropped, this function is called. In
886  * general, it has to write one more deletion inode to the media, because if
887  * a commit happened between 'ubifs_jnl_update()' and
888  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
889  * anymore, and in fact it might not be on the flash anymore, because it might
890  * have been garbage-collected already. And for optimization reasons UBIFS does
891  * not read the orphan area if it has been unmounted cleanly, so it would have
892  * no indication in the journal that there is a deleted inode which has to be
893  * removed from TNC.
894  *
895  * However, if there was no commit between 'ubifs_jnl_update()' and
896  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
897  * inode to the media for the second time. And this is quite a typical case.
898  *
899  * This function returns zero in case of success and a negative error code in
900  * case of failure.
901  */
902 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
903 {
904 	int err;
905 	struct ubifs_inode *ui = ubifs_inode(inode);
906 
907 	ubifs_assert(c, inode->i_nlink == 0);
908 
909 	if (ui->del_cmtno != c->cmt_no)
910 		/* A commit happened for sure */
911 		return ubifs_jnl_write_inode(c, inode);
912 
913 	down_read(&c->commit_sem);
914 	/*
915 	 * Check commit number again, because the first test has been done
916 	 * without @c->commit_sem, so a commit might have happened.
917 	 */
918 	if (ui->del_cmtno != c->cmt_no) {
919 		up_read(&c->commit_sem);
920 		return ubifs_jnl_write_inode(c, inode);
921 	}
922 
923 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
924 	if (err)
925 		ubifs_ro_mode(c, err);
926 	else
927 		ubifs_delete_orphan(c, inode->i_ino);
928 	up_read(&c->commit_sem);
929 	return err;
930 }
931 
932 /**
933  * ubifs_jnl_xrename - cross rename two directory entries.
934  * @c: UBIFS file-system description object
935  * @fst_dir: parent inode of 1st directory entry to exchange
936  * @fst_inode: 1st inode to exchange
937  * @fst_nm: name of 1st inode to exchange
938  * @snd_dir: parent inode of 2nd directory entry to exchange
939  * @snd_inode: 2nd inode to exchange
940  * @snd_nm: name of 2nd inode to exchange
941  * @sync: non-zero if the write-buffer has to be synchronized
942  *
943  * This function implements the cross rename operation which may involve
944  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
945  * and returns zero on success. In case of failure, a negative error code is
946  * returned.
947  */
948 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
949 		      const struct inode *fst_inode,
950 		      const struct fscrypt_name *fst_nm,
951 		      const struct inode *snd_dir,
952 		      const struct inode *snd_inode,
953 		      const struct fscrypt_name *snd_nm, int sync)
954 {
955 	union ubifs_key key;
956 	struct ubifs_dent_node *dent1, *dent2;
957 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
958 	int aligned_dlen1, aligned_dlen2;
959 	int twoparents = (fst_dir != snd_dir);
960 	void *p;
961 
962 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
963 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
964 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
965 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
966 
967 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
968 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
969 	aligned_dlen1 = ALIGN(dlen1, 8);
970 	aligned_dlen2 = ALIGN(dlen2, 8);
971 
972 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
973 	if (twoparents)
974 		len += plen;
975 
976 	dent1 = kzalloc(len, GFP_NOFS);
977 	if (!dent1)
978 		return -ENOMEM;
979 
980 	/* Make reservation before allocating sequence numbers */
981 	err = make_reservation(c, BASEHD, len);
982 	if (err)
983 		goto out_free;
984 
985 	/* Make new dent for 1st entry */
986 	dent1->ch.node_type = UBIFS_DENT_NODE;
987 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
988 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
989 	dent1->type = get_dent_type(fst_inode->i_mode);
990 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
991 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
992 	dent1->name[fname_len(snd_nm)] = '\0';
993 	set_dent_cookie(c, dent1);
994 	zero_dent_node_unused(dent1);
995 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
996 
997 	/* Make new dent for 2nd entry */
998 	dent2 = (void *)dent1 + aligned_dlen1;
999 	dent2->ch.node_type = UBIFS_DENT_NODE;
1000 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1001 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1002 	dent2->type = get_dent_type(snd_inode->i_mode);
1003 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1004 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1005 	dent2->name[fname_len(fst_nm)] = '\0';
1006 	set_dent_cookie(c, dent2);
1007 	zero_dent_node_unused(dent2);
1008 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1009 
1010 	p = (void *)dent2 + aligned_dlen2;
1011 	if (!twoparents)
1012 		pack_inode(c, p, fst_dir, 1);
1013 	else {
1014 		pack_inode(c, p, fst_dir, 0);
1015 		p += ALIGN(plen, 8);
1016 		pack_inode(c, p, snd_dir, 1);
1017 	}
1018 
1019 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1020 	if (err)
1021 		goto out_release;
1022 	if (!sync) {
1023 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024 
1025 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1026 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1027 	}
1028 	release_head(c, BASEHD);
1029 
1030 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1031 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1032 	if (err)
1033 		goto out_ro;
1034 
1035 	offs += aligned_dlen1;
1036 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1037 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1038 	if (err)
1039 		goto out_ro;
1040 
1041 	offs += aligned_dlen2;
1042 
1043 	ino_key_init(c, &key, fst_dir->i_ino);
1044 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1045 	if (err)
1046 		goto out_ro;
1047 
1048 	if (twoparents) {
1049 		offs += ALIGN(plen, 8);
1050 		ino_key_init(c, &key, snd_dir->i_ino);
1051 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1052 		if (err)
1053 			goto out_ro;
1054 	}
1055 
1056 	finish_reservation(c);
1057 
1058 	mark_inode_clean(c, ubifs_inode(fst_dir));
1059 	if (twoparents)
1060 		mark_inode_clean(c, ubifs_inode(snd_dir));
1061 	kfree(dent1);
1062 	return 0;
1063 
1064 out_release:
1065 	release_head(c, BASEHD);
1066 out_ro:
1067 	ubifs_ro_mode(c, err);
1068 	finish_reservation(c);
1069 out_free:
1070 	kfree(dent1);
1071 	return err;
1072 }
1073 
1074 /**
1075  * ubifs_jnl_rename - rename a directory entry.
1076  * @c: UBIFS file-system description object
1077  * @old_dir: parent inode of directory entry to rename
1078  * @old_dentry: directory entry to rename
1079  * @new_dir: parent inode of directory entry to rename
1080  * @new_dentry: new directory entry (or directory entry to replace)
1081  * @sync: non-zero if the write-buffer has to be synchronized
1082  *
1083  * This function implements the re-name operation which may involve writing up
1084  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1085  * and returns zero on success. In case of failure, a negative error code is
1086  * returned.
1087  */
1088 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1089 		     const struct inode *old_inode,
1090 		     const struct fscrypt_name *old_nm,
1091 		     const struct inode *new_dir,
1092 		     const struct inode *new_inode,
1093 		     const struct fscrypt_name *new_nm,
1094 		     const struct inode *whiteout, int sync)
1095 {
1096 	void *p;
1097 	union ubifs_key key;
1098 	struct ubifs_dent_node *dent, *dent2;
1099 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1100 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1101 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1102 	int move = (old_dir != new_dir);
1103 	struct ubifs_inode *uninitialized_var(new_ui);
1104 
1105 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1106 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1107 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1108 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1109 
1110 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1111 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1112 	if (new_inode) {
1113 		new_ui = ubifs_inode(new_inode);
1114 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1115 		ilen = UBIFS_INO_NODE_SZ;
1116 		if (!last_reference)
1117 			ilen += new_ui->data_len;
1118 	} else
1119 		ilen = 0;
1120 
1121 	aligned_dlen1 = ALIGN(dlen1, 8);
1122 	aligned_dlen2 = ALIGN(dlen2, 8);
1123 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1124 	if (move)
1125 		len += plen;
1126 	dent = kzalloc(len, GFP_NOFS);
1127 	if (!dent)
1128 		return -ENOMEM;
1129 
1130 	/* Make reservation before allocating sequence numbers */
1131 	err = make_reservation(c, BASEHD, len);
1132 	if (err)
1133 		goto out_free;
1134 
1135 	/* Make new dent */
1136 	dent->ch.node_type = UBIFS_DENT_NODE;
1137 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1138 	dent->inum = cpu_to_le64(old_inode->i_ino);
1139 	dent->type = get_dent_type(old_inode->i_mode);
1140 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1141 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1142 	dent->name[fname_len(new_nm)] = '\0';
1143 	set_dent_cookie(c, dent);
1144 	zero_dent_node_unused(dent);
1145 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1146 
1147 	dent2 = (void *)dent + aligned_dlen1;
1148 	dent2->ch.node_type = UBIFS_DENT_NODE;
1149 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1150 
1151 	if (whiteout) {
1152 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1153 		dent2->type = get_dent_type(whiteout->i_mode);
1154 	} else {
1155 		/* Make deletion dent */
1156 		dent2->inum = 0;
1157 		dent2->type = DT_UNKNOWN;
1158 	}
1159 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1160 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1161 	dent2->name[fname_len(old_nm)] = '\0';
1162 	set_dent_cookie(c, dent2);
1163 	zero_dent_node_unused(dent2);
1164 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1165 
1166 	p = (void *)dent2 + aligned_dlen2;
1167 	if (new_inode) {
1168 		pack_inode(c, p, new_inode, 0);
1169 		p += ALIGN(ilen, 8);
1170 	}
1171 
1172 	if (!move)
1173 		pack_inode(c, p, old_dir, 1);
1174 	else {
1175 		pack_inode(c, p, old_dir, 0);
1176 		p += ALIGN(plen, 8);
1177 		pack_inode(c, p, new_dir, 1);
1178 	}
1179 
1180 	if (last_reference) {
1181 		err = ubifs_add_orphan(c, new_inode->i_ino);
1182 		if (err) {
1183 			release_head(c, BASEHD);
1184 			goto out_finish;
1185 		}
1186 		new_ui->del_cmtno = c->cmt_no;
1187 	}
1188 
1189 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1190 	if (err)
1191 		goto out_release;
1192 	if (!sync) {
1193 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1194 
1195 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1196 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1197 		if (new_inode)
1198 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1199 						  new_inode->i_ino);
1200 	}
1201 	release_head(c, BASEHD);
1202 
1203 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1204 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1205 	if (err)
1206 		goto out_ro;
1207 
1208 	offs += aligned_dlen1;
1209 	if (whiteout) {
1210 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1211 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1212 		if (err)
1213 			goto out_ro;
1214 
1215 		ubifs_delete_orphan(c, whiteout->i_ino);
1216 	} else {
1217 		err = ubifs_add_dirt(c, lnum, dlen2);
1218 		if (err)
1219 			goto out_ro;
1220 
1221 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1222 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1223 		if (err)
1224 			goto out_ro;
1225 	}
1226 
1227 	offs += aligned_dlen2;
1228 	if (new_inode) {
1229 		ino_key_init(c, &key, new_inode->i_ino);
1230 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1231 		if (err)
1232 			goto out_ro;
1233 		offs += ALIGN(ilen, 8);
1234 	}
1235 
1236 	ino_key_init(c, &key, old_dir->i_ino);
1237 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1238 	if (err)
1239 		goto out_ro;
1240 
1241 	if (move) {
1242 		offs += ALIGN(plen, 8);
1243 		ino_key_init(c, &key, new_dir->i_ino);
1244 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1245 		if (err)
1246 			goto out_ro;
1247 	}
1248 
1249 	finish_reservation(c);
1250 	if (new_inode) {
1251 		mark_inode_clean(c, new_ui);
1252 		spin_lock(&new_ui->ui_lock);
1253 		new_ui->synced_i_size = new_ui->ui_size;
1254 		spin_unlock(&new_ui->ui_lock);
1255 	}
1256 	mark_inode_clean(c, ubifs_inode(old_dir));
1257 	if (move)
1258 		mark_inode_clean(c, ubifs_inode(new_dir));
1259 	kfree(dent);
1260 	return 0;
1261 
1262 out_release:
1263 	release_head(c, BASEHD);
1264 out_ro:
1265 	ubifs_ro_mode(c, err);
1266 	if (last_reference)
1267 		ubifs_delete_orphan(c, new_inode->i_ino);
1268 out_finish:
1269 	finish_reservation(c);
1270 out_free:
1271 	kfree(dent);
1272 	return err;
1273 }
1274 
1275 /**
1276  * truncate_data_node - re-compress/encrypt a truncated data node.
1277  * @c: UBIFS file-system description object
1278  * @inode: inode which referes to the data node
1279  * @block: data block number
1280  * @dn: data node to re-compress
1281  * @new_len: new length
1282  *
1283  * This function is used when an inode is truncated and the last data node of
1284  * the inode has to be re-compressed/encrypted and re-written.
1285  */
1286 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1287 			      unsigned int block, struct ubifs_data_node *dn,
1288 			      int *new_len)
1289 {
1290 	void *buf;
1291 	int err, dlen, compr_type, out_len, old_dlen;
1292 
1293 	out_len = le32_to_cpu(dn->size);
1294 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1295 	if (!buf)
1296 		return -ENOMEM;
1297 
1298 	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1299 	compr_type = le16_to_cpu(dn->compr_type);
1300 
1301 	if (ubifs_crypt_is_encrypted(inode)) {
1302 		err = ubifs_decrypt(inode, dn, &dlen, block);
1303 		if (err)
1304 			goto out;
1305 	}
1306 
1307 	if (compr_type == UBIFS_COMPR_NONE) {
1308 		out_len = *new_len;
1309 	} else {
1310 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1311 		if (err)
1312 			goto out;
1313 
1314 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1315 	}
1316 
1317 	if (ubifs_crypt_is_encrypted(inode)) {
1318 		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1319 		if (err)
1320 			goto out;
1321 
1322 		out_len = old_dlen;
1323 	} else {
1324 		dn->compr_size = 0;
1325 	}
1326 
1327 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1328 	dn->compr_type = cpu_to_le16(compr_type);
1329 	dn->size = cpu_to_le32(*new_len);
1330 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1331 	err = 0;
1332 out:
1333 	kfree(buf);
1334 	return err;
1335 }
1336 
1337 /**
1338  * ubifs_jnl_truncate - update the journal for a truncation.
1339  * @c: UBIFS file-system description object
1340  * @inode: inode to truncate
1341  * @old_size: old size
1342  * @new_size: new size
1343  *
1344  * When the size of a file decreases due to truncation, a truncation node is
1345  * written, the journal tree is updated, and the last data block is re-written
1346  * if it has been affected. The inode is also updated in order to synchronize
1347  * the new inode size.
1348  *
1349  * This function marks the inode as clean and returns zero on success. In case
1350  * of failure, a negative error code is returned.
1351  */
1352 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1353 		       loff_t old_size, loff_t new_size)
1354 {
1355 	union ubifs_key key, to_key;
1356 	struct ubifs_ino_node *ino;
1357 	struct ubifs_trun_node *trun;
1358 	struct ubifs_data_node *uninitialized_var(dn);
1359 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1360 	struct ubifs_inode *ui = ubifs_inode(inode);
1361 	ino_t inum = inode->i_ino;
1362 	unsigned int blk;
1363 
1364 	dbg_jnl("ino %lu, size %lld -> %lld",
1365 		(unsigned long)inum, old_size, new_size);
1366 	ubifs_assert(c, !ui->data_len);
1367 	ubifs_assert(c, S_ISREG(inode->i_mode));
1368 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1369 
1370 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1371 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1372 	ino = kmalloc(sz, GFP_NOFS);
1373 	if (!ino)
1374 		return -ENOMEM;
1375 
1376 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1377 	trun->ch.node_type = UBIFS_TRUN_NODE;
1378 	trun->inum = cpu_to_le32(inum);
1379 	trun->old_size = cpu_to_le64(old_size);
1380 	trun->new_size = cpu_to_le64(new_size);
1381 	zero_trun_node_unused(trun);
1382 
1383 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1384 	if (dlen) {
1385 		/* Get last data block so it can be truncated */
1386 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1387 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1388 		data_key_init(c, &key, inum, blk);
1389 		dbg_jnlk(&key, "last block key ");
1390 		err = ubifs_tnc_lookup(c, &key, dn);
1391 		if (err == -ENOENT)
1392 			dlen = 0; /* Not found (so it is a hole) */
1393 		else if (err)
1394 			goto out_free;
1395 		else {
1396 			int dn_len = le32_to_cpu(dn->size);
1397 
1398 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1399 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1400 					  blk, inode->i_ino);
1401 				ubifs_dump_node(c, dn);
1402 				goto out_free;
1403 			}
1404 
1405 			if (dn_len <= dlen)
1406 				dlen = 0; /* Nothing to do */
1407 			else {
1408 				err = truncate_data_node(c, inode, blk, dn, &dlen);
1409 				if (err)
1410 					goto out_free;
1411 			}
1412 		}
1413 	}
1414 
1415 	/* Must make reservation before allocating sequence numbers */
1416 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1417 	if (dlen)
1418 		len += dlen;
1419 	err = make_reservation(c, BASEHD, len);
1420 	if (err)
1421 		goto out_free;
1422 
1423 	pack_inode(c, ino, inode, 0);
1424 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1425 	if (dlen)
1426 		ubifs_prep_grp_node(c, dn, dlen, 1);
1427 
1428 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1429 	if (err)
1430 		goto out_release;
1431 	if (!sync)
1432 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1433 	release_head(c, BASEHD);
1434 
1435 	if (dlen) {
1436 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1437 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1438 		if (err)
1439 			goto out_ro;
1440 	}
1441 
1442 	ino_key_init(c, &key, inum);
1443 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1444 	if (err)
1445 		goto out_ro;
1446 
1447 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1448 	if (err)
1449 		goto out_ro;
1450 
1451 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1452 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1453 	data_key_init(c, &key, inum, blk);
1454 
1455 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1456 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1457 	data_key_init(c, &to_key, inum, blk);
1458 
1459 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1460 	if (err)
1461 		goto out_ro;
1462 
1463 	finish_reservation(c);
1464 	spin_lock(&ui->ui_lock);
1465 	ui->synced_i_size = ui->ui_size;
1466 	spin_unlock(&ui->ui_lock);
1467 	mark_inode_clean(c, ui);
1468 	kfree(ino);
1469 	return 0;
1470 
1471 out_release:
1472 	release_head(c, BASEHD);
1473 out_ro:
1474 	ubifs_ro_mode(c, err);
1475 	finish_reservation(c);
1476 out_free:
1477 	kfree(ino);
1478 	return err;
1479 }
1480 
1481 
1482 /**
1483  * ubifs_jnl_delete_xattr - delete an extended attribute.
1484  * @c: UBIFS file-system description object
1485  * @host: host inode
1486  * @inode: extended attribute inode
1487  * @nm: extended attribute entry name
1488  *
1489  * This function delete an extended attribute which is very similar to
1490  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1491  * updates the target inode. Returns zero in case of success and a negative
1492  * error code in case of failure.
1493  */
1494 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1495 			   const struct inode *inode,
1496 			   const struct fscrypt_name *nm)
1497 {
1498 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1499 	struct ubifs_dent_node *xent;
1500 	struct ubifs_ino_node *ino;
1501 	union ubifs_key xent_key, key1, key2;
1502 	int sync = IS_DIRSYNC(host);
1503 	struct ubifs_inode *host_ui = ubifs_inode(host);
1504 
1505 	ubifs_assert(c, inode->i_nlink == 0);
1506 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1507 
1508 	/*
1509 	 * Since we are deleting the inode, we do not bother to attach any data
1510 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1511 	 */
1512 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1513 	aligned_xlen = ALIGN(xlen, 8);
1514 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1515 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1516 
1517 	xent = kzalloc(len, GFP_NOFS);
1518 	if (!xent)
1519 		return -ENOMEM;
1520 
1521 	/* Make reservation before allocating sequence numbers */
1522 	err = make_reservation(c, BASEHD, len);
1523 	if (err) {
1524 		kfree(xent);
1525 		return err;
1526 	}
1527 
1528 	xent->ch.node_type = UBIFS_XENT_NODE;
1529 	xent_key_init(c, &xent_key, host->i_ino, nm);
1530 	key_write(c, &xent_key, xent->key);
1531 	xent->inum = 0;
1532 	xent->type = get_dent_type(inode->i_mode);
1533 	xent->nlen = cpu_to_le16(fname_len(nm));
1534 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1535 	xent->name[fname_len(nm)] = '\0';
1536 	zero_dent_node_unused(xent);
1537 	ubifs_prep_grp_node(c, xent, xlen, 0);
1538 
1539 	ino = (void *)xent + aligned_xlen;
1540 	pack_inode(c, ino, inode, 0);
1541 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1542 	pack_inode(c, ino, host, 1);
1543 
1544 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1545 	if (!sync && !err)
1546 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1547 	release_head(c, BASEHD);
1548 	kfree(xent);
1549 	if (err)
1550 		goto out_ro;
1551 
1552 	/* Remove the extended attribute entry from TNC */
1553 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1554 	if (err)
1555 		goto out_ro;
1556 	err = ubifs_add_dirt(c, lnum, xlen);
1557 	if (err)
1558 		goto out_ro;
1559 
1560 	/*
1561 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1562 	 * Well, there actually must be only one node - the inode itself.
1563 	 */
1564 	lowest_ino_key(c, &key1, inode->i_ino);
1565 	highest_ino_key(c, &key2, inode->i_ino);
1566 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1567 	if (err)
1568 		goto out_ro;
1569 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1570 	if (err)
1571 		goto out_ro;
1572 
1573 	/* And update TNC with the new host inode position */
1574 	ino_key_init(c, &key1, host->i_ino);
1575 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1576 	if (err)
1577 		goto out_ro;
1578 
1579 	finish_reservation(c);
1580 	spin_lock(&host_ui->ui_lock);
1581 	host_ui->synced_i_size = host_ui->ui_size;
1582 	spin_unlock(&host_ui->ui_lock);
1583 	mark_inode_clean(c, host_ui);
1584 	return 0;
1585 
1586 out_ro:
1587 	ubifs_ro_mode(c, err);
1588 	finish_reservation(c);
1589 	return err;
1590 }
1591 
1592 /**
1593  * ubifs_jnl_change_xattr - change an extended attribute.
1594  * @c: UBIFS file-system description object
1595  * @inode: extended attribute inode
1596  * @host: host inode
1597  *
1598  * This function writes the updated version of an extended attribute inode and
1599  * the host inode to the journal (to the base head). The host inode is written
1600  * after the extended attribute inode in order to guarantee that the extended
1601  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1602  * consequently, the write-buffer is synchronized. This function returns zero
1603  * in case of success and a negative error code in case of failure.
1604  */
1605 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1606 			   const struct inode *host)
1607 {
1608 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1609 	struct ubifs_inode *host_ui = ubifs_inode(host);
1610 	struct ubifs_ino_node *ino;
1611 	union ubifs_key key;
1612 	int sync = IS_DIRSYNC(host);
1613 
1614 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1615 	ubifs_assert(c, host->i_nlink > 0);
1616 	ubifs_assert(c, inode->i_nlink > 0);
1617 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1618 
1619 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1620 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1621 	aligned_len1 = ALIGN(len1, 8);
1622 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1623 
1624 	ino = kzalloc(aligned_len, GFP_NOFS);
1625 	if (!ino)
1626 		return -ENOMEM;
1627 
1628 	/* Make reservation before allocating sequence numbers */
1629 	err = make_reservation(c, BASEHD, aligned_len);
1630 	if (err)
1631 		goto out_free;
1632 
1633 	pack_inode(c, ino, host, 0);
1634 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1635 
1636 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1637 	if (!sync && !err) {
1638 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1639 
1640 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1641 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1642 	}
1643 	release_head(c, BASEHD);
1644 	if (err)
1645 		goto out_ro;
1646 
1647 	ino_key_init(c, &key, host->i_ino);
1648 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1649 	if (err)
1650 		goto out_ro;
1651 
1652 	ino_key_init(c, &key, inode->i_ino);
1653 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1654 	if (err)
1655 		goto out_ro;
1656 
1657 	finish_reservation(c);
1658 	spin_lock(&host_ui->ui_lock);
1659 	host_ui->synced_i_size = host_ui->ui_size;
1660 	spin_unlock(&host_ui->ui_lock);
1661 	mark_inode_clean(c, host_ui);
1662 	kfree(ino);
1663 	return 0;
1664 
1665 out_ro:
1666 	ubifs_ro_mode(c, err);
1667 	finish_reservation(c);
1668 out_free:
1669 	kfree(ino);
1670 	return err;
1671 }
1672 
1673