1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS journal. 13 * 14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 15 * length and position, while a bud logical eraseblock is any LEB in the main 16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 17 * contains only references to buds and some other stuff like commit 18 * start node. The idea is that when we commit the journal, we do 19 * not copy the data, the buds just become indexed. Since after the commit the 20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 22 * become leafs in the future. 23 * 24 * The journal is multi-headed because we want to write data to the journal as 25 * optimally as possible. It is nice to have nodes belonging to the same inode 26 * in one LEB, so we may write data owned by different inodes to different 27 * journal heads, although at present only one data head is used. 28 * 29 * For recovery reasons, the base head contains all inode nodes, all directory 30 * entry nodes and all truncate nodes. This means that the other heads contain 31 * only data nodes. 32 * 33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 34 * time of commit, the bud is retained to continue to be used in the journal, 35 * even though the "front" of the LEB is now indexed. In that case, the log 36 * reference contains the offset where the bud starts for the purposes of the 37 * journal. 38 * 39 * The journal size has to be limited, because the larger is the journal, the 40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 41 * takes (indexing in the TNC). 42 * 43 * All the journal write operations like 'ubifs_jnl_update()' here, which write 44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 45 * unclean reboots. Should the unclean reboot happen, the recovery code drops 46 * all the nodes. 47 */ 48 49 #include "ubifs.h" 50 51 /** 52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 53 * @ino: the inode to zero out 54 */ 55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 56 { 57 memset(ino->padding1, 0, 4); 58 memset(ino->padding2, 0, 26); 59 } 60 61 /** 62 * zero_dent_node_unused - zero out unused fields of an on-flash directory 63 * entry node. 64 * @dent: the directory entry to zero out 65 */ 66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 67 { 68 dent->padding1 = 0; 69 } 70 71 /** 72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 73 * node. 74 * @trun: the truncation node to zero out 75 */ 76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 77 { 78 memset(trun->padding, 0, 12); 79 } 80 81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum) 82 { 83 if (ubifs_authenticated(c)) 84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c)); 85 } 86 87 /** 88 * reserve_space - reserve space in the journal. 89 * @c: UBIFS file-system description object 90 * @jhead: journal head number 91 * @len: node length 92 * 93 * This function reserves space in journal head @head. If the reservation 94 * succeeded, the journal head stays locked and later has to be unlocked using 95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to 96 * be done, and other negative error codes in case of other failures. 97 */ 98 static int reserve_space(struct ubifs_info *c, int jhead, int len) 99 { 100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 102 103 /* 104 * Typically, the base head has smaller nodes written to it, so it is 105 * better to try to allocate space at the ends of eraseblocks. This is 106 * what the squeeze parameter does. 107 */ 108 ubifs_assert(c, !c->ro_media && !c->ro_mount); 109 squeeze = (jhead == BASEHD); 110 again: 111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 112 113 if (c->ro_error) { 114 err = -EROFS; 115 goto out_unlock; 116 } 117 118 avail = c->leb_size - wbuf->offs - wbuf->used; 119 if (wbuf->lnum != -1 && avail >= len) 120 return 0; 121 122 /* 123 * Write buffer wasn't seek'ed or there is no enough space - look for an 124 * LEB with some empty space. 125 */ 126 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 127 if (lnum >= 0) 128 goto out; 129 130 err = lnum; 131 if (err != -ENOSPC) 132 goto out_unlock; 133 134 /* 135 * No free space, we have to run garbage collector to make 136 * some. But the write-buffer mutex has to be unlocked because 137 * GC also takes it. 138 */ 139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 140 mutex_unlock(&wbuf->io_mutex); 141 142 lnum = ubifs_garbage_collect(c, 0); 143 if (lnum < 0) { 144 err = lnum; 145 if (err != -ENOSPC) 146 return err; 147 148 /* 149 * GC could not make a free LEB. But someone else may 150 * have allocated new bud for this journal head, 151 * because we dropped @wbuf->io_mutex, so try once 152 * again. 153 */ 154 dbg_jnl("GC couldn't make a free LEB for jhead %s", 155 dbg_jhead(jhead)); 156 if (retries++ < 2) { 157 dbg_jnl("retry (%d)", retries); 158 goto again; 159 } 160 161 dbg_jnl("return -ENOSPC"); 162 return err; 163 } 164 165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 167 avail = c->leb_size - wbuf->offs - wbuf->used; 168 169 if (wbuf->lnum != -1 && avail >= len) { 170 /* 171 * Someone else has switched the journal head and we have 172 * enough space now. This happens when more than one process is 173 * trying to write to the same journal head at the same time. 174 */ 175 dbg_jnl("return LEB %d back, already have LEB %d:%d", 176 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 177 err = ubifs_return_leb(c, lnum); 178 if (err) 179 goto out_unlock; 180 return 0; 181 } 182 183 offs = 0; 184 185 out: 186 /* 187 * Make sure we synchronize the write-buffer before we add the new bud 188 * to the log. Otherwise we may have a power cut after the log 189 * reference node for the last bud (@lnum) is written but before the 190 * write-buffer data are written to the next-to-last bud 191 * (@wbuf->lnum). And the effect would be that the recovery would see 192 * that there is corruption in the next-to-last bud. 193 */ 194 err = ubifs_wbuf_sync_nolock(wbuf); 195 if (err) 196 goto out_return; 197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 198 if (err) 199 goto out_return; 200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); 201 if (err) 202 goto out_unlock; 203 204 return 0; 205 206 out_unlock: 207 mutex_unlock(&wbuf->io_mutex); 208 return err; 209 210 out_return: 211 /* An error occurred and the LEB has to be returned to lprops */ 212 ubifs_assert(c, err < 0); 213 err1 = ubifs_return_leb(c, lnum); 214 if (err1 && err == -EAGAIN) 215 /* 216 * Return original error code only if it is not %-EAGAIN, 217 * which is not really an error. Otherwise, return the error 218 * code of 'ubifs_return_leb()'. 219 */ 220 err = err1; 221 mutex_unlock(&wbuf->io_mutex); 222 return err; 223 } 224 225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node, 226 int len, struct shash_desc *hash) 227 { 228 int auth_node_size = ubifs_auth_node_sz(c); 229 int err; 230 231 while (1) { 232 const struct ubifs_ch *ch = node; 233 int nodelen = le32_to_cpu(ch->len); 234 235 ubifs_assert(c, len >= auth_node_size); 236 237 if (len == auth_node_size) 238 break; 239 240 ubifs_assert(c, len > nodelen); 241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC)); 242 243 err = ubifs_shash_update(c, hash, (void *)node, nodelen); 244 if (err) 245 return err; 246 247 node += ALIGN(nodelen, 8); 248 len -= ALIGN(nodelen, 8); 249 } 250 251 return ubifs_prepare_auth_node(c, node, hash); 252 } 253 254 /** 255 * write_head - write data to a journal head. 256 * @c: UBIFS file-system description object 257 * @jhead: journal head 258 * @buf: buffer to write 259 * @len: length to write 260 * @lnum: LEB number written is returned here 261 * @offs: offset written is returned here 262 * @sync: non-zero if the write-buffer has to by synchronized 263 * 264 * This function writes data to the reserved space of journal head @jhead. 265 * Returns zero in case of success and a negative error code in case of 266 * failure. 267 */ 268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 269 int *lnum, int *offs, int sync) 270 { 271 int err; 272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 273 274 ubifs_assert(c, jhead != GCHD); 275 276 *lnum = c->jheads[jhead].wbuf.lnum; 277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 278 dbg_jnl("jhead %s, LEB %d:%d, len %d", 279 dbg_jhead(jhead), *lnum, *offs, len); 280 281 if (ubifs_authenticated(c)) { 282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash); 283 if (err) 284 return err; 285 } 286 287 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 288 if (err) 289 return err; 290 if (sync) 291 err = ubifs_wbuf_sync_nolock(wbuf); 292 return err; 293 } 294 295 /** 296 * make_reservation - reserve journal space. 297 * @c: UBIFS file-system description object 298 * @jhead: journal head 299 * @len: how many bytes to reserve 300 * 301 * This function makes space reservation in journal head @jhead. The function 302 * takes the commit lock and locks the journal head, and the caller has to 303 * unlock the head and finish the reservation with 'finish_reservation()'. 304 * Returns zero in case of success and a negative error code in case of 305 * failure. 306 * 307 * Note, the journal head may be unlocked as soon as the data is written, while 308 * the commit lock has to be released after the data has been added to the 309 * TNC. 310 */ 311 static int make_reservation(struct ubifs_info *c, int jhead, int len) 312 { 313 int err, cmt_retries = 0, nospc_retries = 0; 314 315 again: 316 down_read(&c->commit_sem); 317 err = reserve_space(c, jhead, len); 318 if (!err) 319 /* c->commit_sem will get released via finish_reservation(). */ 320 return 0; 321 up_read(&c->commit_sem); 322 323 if (err == -ENOSPC) { 324 /* 325 * GC could not make any progress. We should try to commit 326 * once because it could make some dirty space and GC would 327 * make progress, so make the error -EAGAIN so that the below 328 * will commit and re-try. 329 */ 330 if (nospc_retries++ < 2) { 331 dbg_jnl("no space, retry"); 332 err = -EAGAIN; 333 } 334 335 /* 336 * This means that the budgeting is incorrect. We always have 337 * to be able to write to the media, because all operations are 338 * budgeted. Deletions are not budgeted, though, but we reserve 339 * an extra LEB for them. 340 */ 341 } 342 343 if (err != -EAGAIN) 344 goto out; 345 346 /* 347 * -EAGAIN means that the journal is full or too large, or the above 348 * code wants to do one commit. Do this and re-try. 349 */ 350 if (cmt_retries > 128) { 351 /* 352 * This should not happen unless the journal size limitations 353 * are too tough. 354 */ 355 ubifs_err(c, "stuck in space allocation"); 356 err = -ENOSPC; 357 goto out; 358 } else if (cmt_retries > 32) 359 ubifs_warn(c, "too many space allocation re-tries (%d)", 360 cmt_retries); 361 362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 363 cmt_retries); 364 cmt_retries += 1; 365 366 err = ubifs_run_commit(c); 367 if (err) 368 return err; 369 goto again; 370 371 out: 372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", 373 len, jhead, err); 374 if (err == -ENOSPC) { 375 /* This are some budgeting problems, print useful information */ 376 down_write(&c->commit_sem); 377 dump_stack(); 378 ubifs_dump_budg(c, &c->bi); 379 ubifs_dump_lprops(c); 380 cmt_retries = dbg_check_lprops(c); 381 up_write(&c->commit_sem); 382 } 383 return err; 384 } 385 386 /** 387 * release_head - release a journal head. 388 * @c: UBIFS file-system description object 389 * @jhead: journal head 390 * 391 * This function releases journal head @jhead which was locked by 392 * the 'make_reservation()' function. It has to be called after each successful 393 * 'make_reservation()' invocation. 394 */ 395 static inline void release_head(struct ubifs_info *c, int jhead) 396 { 397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 398 } 399 400 /** 401 * finish_reservation - finish a reservation. 402 * @c: UBIFS file-system description object 403 * 404 * This function finishes journal space reservation. It must be called after 405 * 'make_reservation()'. 406 */ 407 static void finish_reservation(struct ubifs_info *c) 408 { 409 up_read(&c->commit_sem); 410 } 411 412 /** 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 414 * @mode: inode mode 415 */ 416 static int get_dent_type(int mode) 417 { 418 switch (mode & S_IFMT) { 419 case S_IFREG: 420 return UBIFS_ITYPE_REG; 421 case S_IFDIR: 422 return UBIFS_ITYPE_DIR; 423 case S_IFLNK: 424 return UBIFS_ITYPE_LNK; 425 case S_IFBLK: 426 return UBIFS_ITYPE_BLK; 427 case S_IFCHR: 428 return UBIFS_ITYPE_CHR; 429 case S_IFIFO: 430 return UBIFS_ITYPE_FIFO; 431 case S_IFSOCK: 432 return UBIFS_ITYPE_SOCK; 433 default: 434 BUG(); 435 } 436 return 0; 437 } 438 439 /** 440 * pack_inode - pack an inode node. 441 * @c: UBIFS file-system description object 442 * @ino: buffer in which to pack inode node 443 * @inode: inode to pack 444 * @last: indicates the last node of the group 445 */ 446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 447 const struct inode *inode, int last) 448 { 449 int data_len = 0, last_reference = !inode->i_nlink; 450 struct ubifs_inode *ui = ubifs_inode(inode); 451 452 ino->ch.node_type = UBIFS_INO_NODE; 453 ino_key_init_flash(c, &ino->key, inode->i_ino); 454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 457 ino->ctime_sec = cpu_to_le64(inode_get_ctime(inode).tv_sec); 458 ino->ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec); 459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 461 ino->uid = cpu_to_le32(i_uid_read(inode)); 462 ino->gid = cpu_to_le32(i_gid_read(inode)); 463 ino->mode = cpu_to_le32(inode->i_mode); 464 ino->flags = cpu_to_le32(ui->flags); 465 ino->size = cpu_to_le64(ui->ui_size); 466 ino->nlink = cpu_to_le32(inode->i_nlink); 467 ino->compr_type = cpu_to_le16(ui->compr_type); 468 ino->data_len = cpu_to_le32(ui->data_len); 469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 470 ino->xattr_size = cpu_to_le32(ui->xattr_size); 471 ino->xattr_names = cpu_to_le32(ui->xattr_names); 472 zero_ino_node_unused(ino); 473 474 /* 475 * Drop the attached data if this is a deletion inode, the data is not 476 * needed anymore. 477 */ 478 if (!last_reference) { 479 memcpy(ino->data, ui->data, ui->data_len); 480 data_len = ui->data_len; 481 } 482 483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 484 } 485 486 /** 487 * mark_inode_clean - mark UBIFS inode as clean. 488 * @c: UBIFS file-system description object 489 * @ui: UBIFS inode to mark as clean 490 * 491 * This helper function marks UBIFS inode @ui as clean by cleaning the 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 494 * just do nothing. 495 */ 496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 497 { 498 if (ui->dirty) 499 ubifs_release_dirty_inode_budget(c, ui); 500 ui->dirty = 0; 501 } 502 503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) 504 { 505 if (c->double_hash) 506 dent->cookie = (__force __le32) get_random_u32(); 507 else 508 dent->cookie = 0; 509 } 510 511 /** 512 * ubifs_jnl_update - update inode. 513 * @c: UBIFS file-system description object 514 * @dir: parent inode or host inode in case of extended attributes 515 * @nm: directory entry name 516 * @inode: inode to update 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 518 * @xent: non-zero if the directory entry is an extended attribute entry 519 * 520 * This function updates an inode by writing a directory entry (or extended 521 * attribute entry), the inode itself, and the parent directory inode (or the 522 * host inode) to the journal. 523 * 524 * The function writes the host inode @dir last, which is important in case of 525 * extended attributes. Indeed, then we guarantee that if the host inode gets 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 527 * the extended attribute inode gets flushed too. And this is exactly what the 528 * user expects - synchronizing the host inode synchronizes its extended 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its 530 * directory entry corresponding to @nm gets synchronized too. 531 * 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 533 * function synchronizes the write-buffer. 534 * 535 * This function marks the @dir and @inode inodes as clean and returns zero on 536 * success. In case of failure, a negative error code is returned. 537 */ 538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 539 const struct fscrypt_name *nm, const struct inode *inode, 540 int deletion, int xent) 541 { 542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0; 543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 544 int last_reference = !!(deletion && inode->i_nlink == 0); 545 struct ubifs_inode *ui = ubifs_inode(inode); 546 struct ubifs_inode *host_ui = ubifs_inode(dir); 547 struct ubifs_dent_node *dent; 548 struct ubifs_ino_node *ino; 549 union ubifs_key dent_key, ino_key; 550 u8 hash_dent[UBIFS_HASH_ARR_SZ]; 551 u8 hash_ino[UBIFS_HASH_ARR_SZ]; 552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ]; 553 554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 555 556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 557 ilen = UBIFS_INO_NODE_SZ; 558 559 /* 560 * If the last reference to the inode is being deleted, then there is 561 * no need to attach and write inode data, it is being deleted anyway. 562 * And if the inode is being deleted, no need to synchronize 563 * write-buffer even if the inode is synchronous. 564 */ 565 if (!last_reference) { 566 ilen += ui->data_len; 567 sync |= IS_SYNC(inode); 568 } 569 570 aligned_dlen = ALIGN(dlen, 8); 571 aligned_ilen = ALIGN(ilen, 8); 572 573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 574 /* Make sure to also account for extended attributes */ 575 if (ubifs_authenticated(c)) 576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c); 577 else 578 len += host_ui->data_len; 579 580 dent = kzalloc(len, GFP_NOFS); 581 if (!dent) 582 return -ENOMEM; 583 584 /* Make reservation before allocating sequence numbers */ 585 err = make_reservation(c, BASEHD, len); 586 if (err) 587 goto out_free; 588 589 if (!xent) { 590 dent->ch.node_type = UBIFS_DENT_NODE; 591 if (fname_name(nm) == NULL) 592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); 593 else 594 dent_key_init(c, &dent_key, dir->i_ino, nm); 595 } else { 596 dent->ch.node_type = UBIFS_XENT_NODE; 597 xent_key_init(c, &dent_key, dir->i_ino, nm); 598 } 599 600 key_write(c, &dent_key, dent->key); 601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 602 dent->type = get_dent_type(inode->i_mode); 603 dent->nlen = cpu_to_le16(fname_len(nm)); 604 memcpy(dent->name, fname_name(nm), fname_len(nm)); 605 dent->name[fname_len(nm)] = '\0'; 606 set_dent_cookie(c, dent); 607 608 zero_dent_node_unused(dent); 609 ubifs_prep_grp_node(c, dent, dlen, 0); 610 err = ubifs_node_calc_hash(c, dent, hash_dent); 611 if (err) 612 goto out_release; 613 614 ino = (void *)dent + aligned_dlen; 615 pack_inode(c, ino, inode, 0); 616 err = ubifs_node_calc_hash(c, ino, hash_ino); 617 if (err) 618 goto out_release; 619 620 ino = (void *)ino + aligned_ilen; 621 pack_inode(c, ino, dir, 1); 622 err = ubifs_node_calc_hash(c, ino, hash_ino_host); 623 if (err) 624 goto out_release; 625 626 if (last_reference) { 627 err = ubifs_add_orphan(c, inode->i_ino); 628 if (err) { 629 release_head(c, BASEHD); 630 goto out_finish; 631 } 632 ui->del_cmtno = c->cmt_no; 633 orphan_added = 1; 634 } 635 636 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 637 if (err) 638 goto out_release; 639 if (!sync) { 640 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 641 642 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 643 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 644 } 645 release_head(c, BASEHD); 646 kfree(dent); 647 ubifs_add_auth_dirt(c, lnum); 648 649 if (deletion) { 650 if (fname_name(nm) == NULL) 651 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); 652 else 653 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 654 if (err) 655 goto out_ro; 656 err = ubifs_add_dirt(c, lnum, dlen); 657 } else 658 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, 659 hash_dent, nm); 660 if (err) 661 goto out_ro; 662 663 /* 664 * Note, we do not remove the inode from TNC even if the last reference 665 * to it has just been deleted, because the inode may still be opened. 666 * Instead, the inode has been added to orphan lists and the orphan 667 * subsystem will take further care about it. 668 */ 669 ino_key_init(c, &ino_key, inode->i_ino); 670 ino_offs = dent_offs + aligned_dlen; 671 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino); 672 if (err) 673 goto out_ro; 674 675 ino_key_init(c, &ino_key, dir->i_ino); 676 ino_offs += aligned_ilen; 677 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, 678 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host); 679 if (err) 680 goto out_ro; 681 682 finish_reservation(c); 683 spin_lock(&ui->ui_lock); 684 ui->synced_i_size = ui->ui_size; 685 spin_unlock(&ui->ui_lock); 686 if (xent) { 687 spin_lock(&host_ui->ui_lock); 688 host_ui->synced_i_size = host_ui->ui_size; 689 spin_unlock(&host_ui->ui_lock); 690 } 691 mark_inode_clean(c, ui); 692 mark_inode_clean(c, host_ui); 693 return 0; 694 695 out_finish: 696 finish_reservation(c); 697 out_free: 698 kfree(dent); 699 return err; 700 701 out_release: 702 release_head(c, BASEHD); 703 kfree(dent); 704 out_ro: 705 ubifs_ro_mode(c, err); 706 if (orphan_added) 707 ubifs_delete_orphan(c, inode->i_ino); 708 finish_reservation(c); 709 return err; 710 } 711 712 /** 713 * ubifs_jnl_write_data - write a data node to the journal. 714 * @c: UBIFS file-system description object 715 * @inode: inode the data node belongs to 716 * @key: node key 717 * @buf: buffer to write 718 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 719 * 720 * This function writes a data node to the journal. Returns %0 if the data node 721 * was successfully written, and a negative error code in case of failure. 722 */ 723 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 724 const union ubifs_key *key, const void *buf, int len) 725 { 726 struct ubifs_data_node *data; 727 int err, lnum, offs, compr_type, out_len, compr_len, auth_len; 728 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 729 int write_len; 730 struct ubifs_inode *ui = ubifs_inode(inode); 731 bool encrypted = IS_ENCRYPTED(inode); 732 u8 hash[UBIFS_HASH_ARR_SZ]; 733 734 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 735 (unsigned long)key_inum(c, key), key_block(c, key), len); 736 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE); 737 738 if (encrypted) 739 dlen += UBIFS_CIPHER_BLOCK_SIZE; 740 741 auth_len = ubifs_auth_node_sz(c); 742 743 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN); 744 if (!data) { 745 /* 746 * Fall-back to the write reserve buffer. Note, we might be 747 * currently on the memory reclaim path, when the kernel is 748 * trying to free some memory by writing out dirty pages. The 749 * write reserve buffer helps us to guarantee that we are 750 * always able to write the data. 751 */ 752 allocated = 0; 753 mutex_lock(&c->write_reserve_mutex); 754 data = c->write_reserve_buf; 755 } 756 757 data->ch.node_type = UBIFS_DATA_NODE; 758 key_write(c, key, &data->key); 759 data->size = cpu_to_le32(len); 760 761 if (!(ui->flags & UBIFS_COMPR_FL)) 762 /* Compression is disabled for this inode */ 763 compr_type = UBIFS_COMPR_NONE; 764 else 765 compr_type = ui->compr_type; 766 767 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; 768 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); 769 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE); 770 771 if (encrypted) { 772 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); 773 if (err) 774 goto out_free; 775 776 } else { 777 data->compr_size = 0; 778 out_len = compr_len; 779 } 780 781 dlen = UBIFS_DATA_NODE_SZ + out_len; 782 if (ubifs_authenticated(c)) 783 write_len = ALIGN(dlen, 8) + auth_len; 784 else 785 write_len = dlen; 786 787 data->compr_type = cpu_to_le16(compr_type); 788 789 /* Make reservation before allocating sequence numbers */ 790 err = make_reservation(c, DATAHD, write_len); 791 if (err) 792 goto out_free; 793 794 ubifs_prepare_node(c, data, dlen, 0); 795 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0); 796 if (err) 797 goto out_release; 798 799 err = ubifs_node_calc_hash(c, data, hash); 800 if (err) 801 goto out_release; 802 803 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 804 release_head(c, DATAHD); 805 806 ubifs_add_auth_dirt(c, lnum); 807 808 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash); 809 if (err) 810 goto out_ro; 811 812 finish_reservation(c); 813 if (!allocated) 814 mutex_unlock(&c->write_reserve_mutex); 815 else 816 kfree(data); 817 return 0; 818 819 out_release: 820 release_head(c, DATAHD); 821 out_ro: 822 ubifs_ro_mode(c, err); 823 finish_reservation(c); 824 out_free: 825 if (!allocated) 826 mutex_unlock(&c->write_reserve_mutex); 827 else 828 kfree(data); 829 return err; 830 } 831 832 /** 833 * ubifs_jnl_write_inode - flush inode to the journal. 834 * @c: UBIFS file-system description object 835 * @inode: inode to flush 836 * 837 * This function writes inode @inode to the journal. If the inode is 838 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 839 * success and a negative error code in case of failure. 840 */ 841 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 842 { 843 int err, lnum, offs; 844 struct ubifs_ino_node *ino, *ino_start; 845 struct ubifs_inode *ui = ubifs_inode(inode); 846 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ; 847 int last_reference = !inode->i_nlink; 848 int kill_xattrs = ui->xattr_cnt && last_reference; 849 u8 hash[UBIFS_HASH_ARR_SZ]; 850 851 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 852 853 /* 854 * If the inode is being deleted, do not write the attached data. No 855 * need to synchronize the write-buffer either. 856 */ 857 if (!last_reference) { 858 ilen += ui->data_len; 859 sync = IS_SYNC(inode); 860 } else if (kill_xattrs) { 861 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt; 862 } 863 864 if (ubifs_authenticated(c)) 865 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c); 866 else 867 write_len += ilen; 868 869 ino_start = ino = kmalloc(write_len, GFP_NOFS); 870 if (!ino) 871 return -ENOMEM; 872 873 /* Make reservation before allocating sequence numbers */ 874 err = make_reservation(c, BASEHD, write_len); 875 if (err) 876 goto out_free; 877 878 if (kill_xattrs) { 879 union ubifs_key key; 880 struct fscrypt_name nm = {0}; 881 struct inode *xino; 882 struct ubifs_dent_node *xent, *pxent = NULL; 883 884 if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) { 885 err = -EPERM; 886 ubifs_err(c, "Cannot delete inode, it has too much xattrs!"); 887 goto out_release; 888 } 889 890 lowest_xent_key(c, &key, inode->i_ino); 891 while (1) { 892 xent = ubifs_tnc_next_ent(c, &key, &nm); 893 if (IS_ERR(xent)) { 894 err = PTR_ERR(xent); 895 if (err == -ENOENT) 896 break; 897 898 kfree(pxent); 899 goto out_release; 900 } 901 902 fname_name(&nm) = xent->name; 903 fname_len(&nm) = le16_to_cpu(xent->nlen); 904 905 xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum)); 906 if (IS_ERR(xino)) { 907 err = PTR_ERR(xino); 908 ubifs_err(c, "dead directory entry '%s', error %d", 909 xent->name, err); 910 ubifs_ro_mode(c, err); 911 kfree(pxent); 912 kfree(xent); 913 goto out_release; 914 } 915 ubifs_assert(c, ubifs_inode(xino)->xattr); 916 917 clear_nlink(xino); 918 pack_inode(c, ino, xino, 0); 919 ino = (void *)ino + UBIFS_INO_NODE_SZ; 920 iput(xino); 921 922 kfree(pxent); 923 pxent = xent; 924 key_read(c, &xent->key, &key); 925 } 926 kfree(pxent); 927 } 928 929 pack_inode(c, ino, inode, 1); 930 err = ubifs_node_calc_hash(c, ino, hash); 931 if (err) 932 goto out_release; 933 934 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync); 935 if (err) 936 goto out_release; 937 if (!sync) 938 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 939 inode->i_ino); 940 release_head(c, BASEHD); 941 942 if (last_reference) { 943 err = ubifs_tnc_remove_ino(c, inode->i_ino); 944 if (err) 945 goto out_ro; 946 ubifs_delete_orphan(c, inode->i_ino); 947 err = ubifs_add_dirt(c, lnum, write_len); 948 } else { 949 union ubifs_key key; 950 951 ubifs_add_auth_dirt(c, lnum); 952 953 ino_key_init(c, &key, inode->i_ino); 954 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash); 955 } 956 if (err) 957 goto out_ro; 958 959 finish_reservation(c); 960 spin_lock(&ui->ui_lock); 961 ui->synced_i_size = ui->ui_size; 962 spin_unlock(&ui->ui_lock); 963 kfree(ino_start); 964 return 0; 965 966 out_release: 967 release_head(c, BASEHD); 968 out_ro: 969 ubifs_ro_mode(c, err); 970 finish_reservation(c); 971 out_free: 972 kfree(ino_start); 973 return err; 974 } 975 976 /** 977 * ubifs_jnl_delete_inode - delete an inode. 978 * @c: UBIFS file-system description object 979 * @inode: inode to delete 980 * 981 * This function deletes inode @inode which includes removing it from orphans, 982 * deleting it from TNC and, in some cases, writing a deletion inode to the 983 * journal. 984 * 985 * When regular file inodes are unlinked or a directory inode is removed, the 986 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 987 * direntry to the media, and adds the inode to orphans. After this, when the 988 * last reference to this inode has been dropped, this function is called. In 989 * general, it has to write one more deletion inode to the media, because if 990 * a commit happened between 'ubifs_jnl_update()' and 991 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 992 * anymore, and in fact it might not be on the flash anymore, because it might 993 * have been garbage-collected already. And for optimization reasons UBIFS does 994 * not read the orphan area if it has been unmounted cleanly, so it would have 995 * no indication in the journal that there is a deleted inode which has to be 996 * removed from TNC. 997 * 998 * However, if there was no commit between 'ubifs_jnl_update()' and 999 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 1000 * inode to the media for the second time. And this is quite a typical case. 1001 * 1002 * This function returns zero in case of success and a negative error code in 1003 * case of failure. 1004 */ 1005 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 1006 { 1007 int err; 1008 struct ubifs_inode *ui = ubifs_inode(inode); 1009 1010 ubifs_assert(c, inode->i_nlink == 0); 1011 1012 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no) 1013 /* A commit happened for sure or inode hosts xattrs */ 1014 return ubifs_jnl_write_inode(c, inode); 1015 1016 down_read(&c->commit_sem); 1017 /* 1018 * Check commit number again, because the first test has been done 1019 * without @c->commit_sem, so a commit might have happened. 1020 */ 1021 if (ui->del_cmtno != c->cmt_no) { 1022 up_read(&c->commit_sem); 1023 return ubifs_jnl_write_inode(c, inode); 1024 } 1025 1026 err = ubifs_tnc_remove_ino(c, inode->i_ino); 1027 if (err) 1028 ubifs_ro_mode(c, err); 1029 else 1030 ubifs_delete_orphan(c, inode->i_ino); 1031 up_read(&c->commit_sem); 1032 return err; 1033 } 1034 1035 /** 1036 * ubifs_jnl_xrename - cross rename two directory entries. 1037 * @c: UBIFS file-system description object 1038 * @fst_dir: parent inode of 1st directory entry to exchange 1039 * @fst_inode: 1st inode to exchange 1040 * @fst_nm: name of 1st inode to exchange 1041 * @snd_dir: parent inode of 2nd directory entry to exchange 1042 * @snd_inode: 2nd inode to exchange 1043 * @snd_nm: name of 2nd inode to exchange 1044 * @sync: non-zero if the write-buffer has to be synchronized 1045 * 1046 * This function implements the cross rename operation which may involve 1047 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean 1048 * and returns zero on success. In case of failure, a negative error code is 1049 * returned. 1050 */ 1051 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 1052 const struct inode *fst_inode, 1053 const struct fscrypt_name *fst_nm, 1054 const struct inode *snd_dir, 1055 const struct inode *snd_inode, 1056 const struct fscrypt_name *snd_nm, int sync) 1057 { 1058 union ubifs_key key; 1059 struct ubifs_dent_node *dent1, *dent2; 1060 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; 1061 int aligned_dlen1, aligned_dlen2; 1062 int twoparents = (fst_dir != snd_dir); 1063 void *p; 1064 u8 hash_dent1[UBIFS_HASH_ARR_SZ]; 1065 u8 hash_dent2[UBIFS_HASH_ARR_SZ]; 1066 u8 hash_p1[UBIFS_HASH_ARR_SZ]; 1067 u8 hash_p2[UBIFS_HASH_ARR_SZ]; 1068 1069 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0); 1070 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0); 1071 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); 1072 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); 1073 1074 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; 1075 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; 1076 aligned_dlen1 = ALIGN(dlen1, 8); 1077 aligned_dlen2 = ALIGN(dlen2, 8); 1078 1079 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); 1080 if (twoparents) 1081 len += plen; 1082 1083 len += ubifs_auth_node_sz(c); 1084 1085 dent1 = kzalloc(len, GFP_NOFS); 1086 if (!dent1) 1087 return -ENOMEM; 1088 1089 /* Make reservation before allocating sequence numbers */ 1090 err = make_reservation(c, BASEHD, len); 1091 if (err) 1092 goto out_free; 1093 1094 /* Make new dent for 1st entry */ 1095 dent1->ch.node_type = UBIFS_DENT_NODE; 1096 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); 1097 dent1->inum = cpu_to_le64(fst_inode->i_ino); 1098 dent1->type = get_dent_type(fst_inode->i_mode); 1099 dent1->nlen = cpu_to_le16(fname_len(snd_nm)); 1100 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); 1101 dent1->name[fname_len(snd_nm)] = '\0'; 1102 set_dent_cookie(c, dent1); 1103 zero_dent_node_unused(dent1); 1104 ubifs_prep_grp_node(c, dent1, dlen1, 0); 1105 err = ubifs_node_calc_hash(c, dent1, hash_dent1); 1106 if (err) 1107 goto out_release; 1108 1109 /* Make new dent for 2nd entry */ 1110 dent2 = (void *)dent1 + aligned_dlen1; 1111 dent2->ch.node_type = UBIFS_DENT_NODE; 1112 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); 1113 dent2->inum = cpu_to_le64(snd_inode->i_ino); 1114 dent2->type = get_dent_type(snd_inode->i_mode); 1115 dent2->nlen = cpu_to_le16(fname_len(fst_nm)); 1116 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); 1117 dent2->name[fname_len(fst_nm)] = '\0'; 1118 set_dent_cookie(c, dent2); 1119 zero_dent_node_unused(dent2); 1120 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1121 err = ubifs_node_calc_hash(c, dent2, hash_dent2); 1122 if (err) 1123 goto out_release; 1124 1125 p = (void *)dent2 + aligned_dlen2; 1126 if (!twoparents) { 1127 pack_inode(c, p, fst_dir, 1); 1128 err = ubifs_node_calc_hash(c, p, hash_p1); 1129 if (err) 1130 goto out_release; 1131 } else { 1132 pack_inode(c, p, fst_dir, 0); 1133 err = ubifs_node_calc_hash(c, p, hash_p1); 1134 if (err) 1135 goto out_release; 1136 p += ALIGN(plen, 8); 1137 pack_inode(c, p, snd_dir, 1); 1138 err = ubifs_node_calc_hash(c, p, hash_p2); 1139 if (err) 1140 goto out_release; 1141 } 1142 1143 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); 1144 if (err) 1145 goto out_release; 1146 if (!sync) { 1147 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1148 1149 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); 1150 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); 1151 } 1152 release_head(c, BASEHD); 1153 1154 ubifs_add_auth_dirt(c, lnum); 1155 1156 dent_key_init(c, &key, snd_dir->i_ino, snd_nm); 1157 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm); 1158 if (err) 1159 goto out_ro; 1160 1161 offs += aligned_dlen1; 1162 dent_key_init(c, &key, fst_dir->i_ino, fst_nm); 1163 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm); 1164 if (err) 1165 goto out_ro; 1166 1167 offs += aligned_dlen2; 1168 1169 ino_key_init(c, &key, fst_dir->i_ino); 1170 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1); 1171 if (err) 1172 goto out_ro; 1173 1174 if (twoparents) { 1175 offs += ALIGN(plen, 8); 1176 ino_key_init(c, &key, snd_dir->i_ino); 1177 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2); 1178 if (err) 1179 goto out_ro; 1180 } 1181 1182 finish_reservation(c); 1183 1184 mark_inode_clean(c, ubifs_inode(fst_dir)); 1185 if (twoparents) 1186 mark_inode_clean(c, ubifs_inode(snd_dir)); 1187 kfree(dent1); 1188 return 0; 1189 1190 out_release: 1191 release_head(c, BASEHD); 1192 out_ro: 1193 ubifs_ro_mode(c, err); 1194 finish_reservation(c); 1195 out_free: 1196 kfree(dent1); 1197 return err; 1198 } 1199 1200 /** 1201 * ubifs_jnl_rename - rename a directory entry. 1202 * @c: UBIFS file-system description object 1203 * @old_dir: parent inode of directory entry to rename 1204 * @old_inode: directory entry's inode to rename 1205 * @old_nm: name of the old directory entry to rename 1206 * @new_dir: parent inode of directory entry to rename 1207 * @new_inode: new directory entry's inode (or directory entry's inode to 1208 * replace) 1209 * @new_nm: new name of the new directory entry 1210 * @whiteout: whiteout inode 1211 * @sync: non-zero if the write-buffer has to be synchronized 1212 * 1213 * This function implements the re-name operation which may involve writing up 1214 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes) 1215 * and 2 directory entries. It marks the written inodes as clean and returns 1216 * zero on success. In case of failure, a negative error code is returned. 1217 */ 1218 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1219 const struct inode *old_inode, 1220 const struct fscrypt_name *old_nm, 1221 const struct inode *new_dir, 1222 const struct inode *new_inode, 1223 const struct fscrypt_name *new_nm, 1224 const struct inode *whiteout, int sync) 1225 { 1226 void *p; 1227 union ubifs_key key; 1228 struct ubifs_dent_node *dent, *dent2; 1229 int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0; 1230 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 1231 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 1232 int move = (old_dir != new_dir); 1233 struct ubifs_inode *new_ui, *whiteout_ui; 1234 u8 hash_old_dir[UBIFS_HASH_ARR_SZ]; 1235 u8 hash_new_dir[UBIFS_HASH_ARR_SZ]; 1236 u8 hash_new_inode[UBIFS_HASH_ARR_SZ]; 1237 u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ]; 1238 u8 hash_dent1[UBIFS_HASH_ARR_SZ]; 1239 u8 hash_dent2[UBIFS_HASH_ARR_SZ]; 1240 1241 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0); 1242 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0); 1243 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 1244 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 1245 1246 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; 1247 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; 1248 if (new_inode) { 1249 new_ui = ubifs_inode(new_inode); 1250 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex)); 1251 ilen = UBIFS_INO_NODE_SZ; 1252 if (!last_reference) 1253 ilen += new_ui->data_len; 1254 } else 1255 ilen = 0; 1256 1257 if (whiteout) { 1258 whiteout_ui = ubifs_inode(whiteout); 1259 ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex)); 1260 ubifs_assert(c, whiteout->i_nlink == 1); 1261 ubifs_assert(c, !whiteout_ui->dirty); 1262 wlen = UBIFS_INO_NODE_SZ; 1263 wlen += whiteout_ui->data_len; 1264 } else 1265 wlen = 0; 1266 1267 aligned_dlen1 = ALIGN(dlen1, 8); 1268 aligned_dlen2 = ALIGN(dlen2, 8); 1269 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + 1270 ALIGN(wlen, 8) + ALIGN(plen, 8); 1271 if (move) 1272 len += plen; 1273 1274 len += ubifs_auth_node_sz(c); 1275 1276 dent = kzalloc(len, GFP_NOFS); 1277 if (!dent) 1278 return -ENOMEM; 1279 1280 /* Make reservation before allocating sequence numbers */ 1281 err = make_reservation(c, BASEHD, len); 1282 if (err) 1283 goto out_free; 1284 1285 /* Make new dent */ 1286 dent->ch.node_type = UBIFS_DENT_NODE; 1287 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); 1288 dent->inum = cpu_to_le64(old_inode->i_ino); 1289 dent->type = get_dent_type(old_inode->i_mode); 1290 dent->nlen = cpu_to_le16(fname_len(new_nm)); 1291 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); 1292 dent->name[fname_len(new_nm)] = '\0'; 1293 set_dent_cookie(c, dent); 1294 zero_dent_node_unused(dent); 1295 ubifs_prep_grp_node(c, dent, dlen1, 0); 1296 err = ubifs_node_calc_hash(c, dent, hash_dent1); 1297 if (err) 1298 goto out_release; 1299 1300 dent2 = (void *)dent + aligned_dlen1; 1301 dent2->ch.node_type = UBIFS_DENT_NODE; 1302 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); 1303 1304 if (whiteout) { 1305 dent2->inum = cpu_to_le64(whiteout->i_ino); 1306 dent2->type = get_dent_type(whiteout->i_mode); 1307 } else { 1308 /* Make deletion dent */ 1309 dent2->inum = 0; 1310 dent2->type = DT_UNKNOWN; 1311 } 1312 dent2->nlen = cpu_to_le16(fname_len(old_nm)); 1313 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); 1314 dent2->name[fname_len(old_nm)] = '\0'; 1315 set_dent_cookie(c, dent2); 1316 zero_dent_node_unused(dent2); 1317 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1318 err = ubifs_node_calc_hash(c, dent2, hash_dent2); 1319 if (err) 1320 goto out_release; 1321 1322 p = (void *)dent2 + aligned_dlen2; 1323 if (new_inode) { 1324 pack_inode(c, p, new_inode, 0); 1325 err = ubifs_node_calc_hash(c, p, hash_new_inode); 1326 if (err) 1327 goto out_release; 1328 1329 p += ALIGN(ilen, 8); 1330 } 1331 1332 if (whiteout) { 1333 pack_inode(c, p, whiteout, 0); 1334 err = ubifs_node_calc_hash(c, p, hash_whiteout_inode); 1335 if (err) 1336 goto out_release; 1337 1338 p += ALIGN(wlen, 8); 1339 } 1340 1341 if (!move) { 1342 pack_inode(c, p, old_dir, 1); 1343 err = ubifs_node_calc_hash(c, p, hash_old_dir); 1344 if (err) 1345 goto out_release; 1346 } else { 1347 pack_inode(c, p, old_dir, 0); 1348 err = ubifs_node_calc_hash(c, p, hash_old_dir); 1349 if (err) 1350 goto out_release; 1351 1352 p += ALIGN(plen, 8); 1353 pack_inode(c, p, new_dir, 1); 1354 err = ubifs_node_calc_hash(c, p, hash_new_dir); 1355 if (err) 1356 goto out_release; 1357 } 1358 1359 if (last_reference) { 1360 err = ubifs_add_orphan(c, new_inode->i_ino); 1361 if (err) { 1362 release_head(c, BASEHD); 1363 goto out_finish; 1364 } 1365 new_ui->del_cmtno = c->cmt_no; 1366 orphan_added = 1; 1367 } 1368 1369 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1370 if (err) 1371 goto out_release; 1372 if (!sync) { 1373 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1374 1375 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1376 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1377 if (new_inode) 1378 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1379 new_inode->i_ino); 1380 if (whiteout) 1381 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1382 whiteout->i_ino); 1383 } 1384 release_head(c, BASEHD); 1385 1386 ubifs_add_auth_dirt(c, lnum); 1387 1388 dent_key_init(c, &key, new_dir->i_ino, new_nm); 1389 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm); 1390 if (err) 1391 goto out_ro; 1392 1393 offs += aligned_dlen1; 1394 if (whiteout) { 1395 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1396 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm); 1397 if (err) 1398 goto out_ro; 1399 } else { 1400 err = ubifs_add_dirt(c, lnum, dlen2); 1401 if (err) 1402 goto out_ro; 1403 1404 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1405 err = ubifs_tnc_remove_nm(c, &key, old_nm); 1406 if (err) 1407 goto out_ro; 1408 } 1409 1410 offs += aligned_dlen2; 1411 if (new_inode) { 1412 ino_key_init(c, &key, new_inode->i_ino); 1413 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode); 1414 if (err) 1415 goto out_ro; 1416 offs += ALIGN(ilen, 8); 1417 } 1418 1419 if (whiteout) { 1420 ino_key_init(c, &key, whiteout->i_ino); 1421 err = ubifs_tnc_add(c, &key, lnum, offs, wlen, 1422 hash_whiteout_inode); 1423 if (err) 1424 goto out_ro; 1425 offs += ALIGN(wlen, 8); 1426 } 1427 1428 ino_key_init(c, &key, old_dir->i_ino); 1429 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir); 1430 if (err) 1431 goto out_ro; 1432 1433 if (move) { 1434 offs += ALIGN(plen, 8); 1435 ino_key_init(c, &key, new_dir->i_ino); 1436 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir); 1437 if (err) 1438 goto out_ro; 1439 } 1440 1441 finish_reservation(c); 1442 if (new_inode) { 1443 mark_inode_clean(c, new_ui); 1444 spin_lock(&new_ui->ui_lock); 1445 new_ui->synced_i_size = new_ui->ui_size; 1446 spin_unlock(&new_ui->ui_lock); 1447 } 1448 /* 1449 * No need to mark whiteout inode clean. 1450 * Whiteout doesn't have non-zero size, no need to update 1451 * synced_i_size for whiteout_ui. 1452 */ 1453 mark_inode_clean(c, ubifs_inode(old_dir)); 1454 if (move) 1455 mark_inode_clean(c, ubifs_inode(new_dir)); 1456 kfree(dent); 1457 return 0; 1458 1459 out_release: 1460 release_head(c, BASEHD); 1461 out_ro: 1462 ubifs_ro_mode(c, err); 1463 if (orphan_added) 1464 ubifs_delete_orphan(c, new_inode->i_ino); 1465 out_finish: 1466 finish_reservation(c); 1467 out_free: 1468 kfree(dent); 1469 return err; 1470 } 1471 1472 /** 1473 * truncate_data_node - re-compress/encrypt a truncated data node. 1474 * @c: UBIFS file-system description object 1475 * @inode: inode which refers to the data node 1476 * @block: data block number 1477 * @dn: data node to re-compress 1478 * @new_len: new length 1479 * @dn_size: size of the data node @dn in memory 1480 * 1481 * This function is used when an inode is truncated and the last data node of 1482 * the inode has to be re-compressed/encrypted and re-written. 1483 */ 1484 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, 1485 unsigned int block, struct ubifs_data_node *dn, 1486 int *new_len, int dn_size) 1487 { 1488 void *buf; 1489 int err, dlen, compr_type, out_len, data_size; 1490 1491 out_len = le32_to_cpu(dn->size); 1492 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS); 1493 if (!buf) 1494 return -ENOMEM; 1495 1496 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1497 data_size = dn_size - UBIFS_DATA_NODE_SZ; 1498 compr_type = le16_to_cpu(dn->compr_type); 1499 1500 if (IS_ENCRYPTED(inode)) { 1501 err = ubifs_decrypt(inode, dn, &dlen, block); 1502 if (err) 1503 goto out; 1504 } 1505 1506 if (compr_type == UBIFS_COMPR_NONE) { 1507 out_len = *new_len; 1508 } else { 1509 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); 1510 if (err) 1511 goto out; 1512 1513 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); 1514 } 1515 1516 if (IS_ENCRYPTED(inode)) { 1517 err = ubifs_encrypt(inode, dn, out_len, &data_size, block); 1518 if (err) 1519 goto out; 1520 1521 out_len = data_size; 1522 } else { 1523 dn->compr_size = 0; 1524 } 1525 1526 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE); 1527 dn->compr_type = cpu_to_le16(compr_type); 1528 dn->size = cpu_to_le32(*new_len); 1529 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1530 err = 0; 1531 out: 1532 kfree(buf); 1533 return err; 1534 } 1535 1536 /** 1537 * ubifs_jnl_truncate - update the journal for a truncation. 1538 * @c: UBIFS file-system description object 1539 * @inode: inode to truncate 1540 * @old_size: old size 1541 * @new_size: new size 1542 * 1543 * When the size of a file decreases due to truncation, a truncation node is 1544 * written, the journal tree is updated, and the last data block is re-written 1545 * if it has been affected. The inode is also updated in order to synchronize 1546 * the new inode size. 1547 * 1548 * This function marks the inode as clean and returns zero on success. In case 1549 * of failure, a negative error code is returned. 1550 */ 1551 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1552 loff_t old_size, loff_t new_size) 1553 { 1554 union ubifs_key key, to_key; 1555 struct ubifs_ino_node *ino; 1556 struct ubifs_trun_node *trun; 1557 struct ubifs_data_node *dn; 1558 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1559 int dn_size; 1560 struct ubifs_inode *ui = ubifs_inode(inode); 1561 ino_t inum = inode->i_ino; 1562 unsigned int blk; 1563 u8 hash_ino[UBIFS_HASH_ARR_SZ]; 1564 u8 hash_dn[UBIFS_HASH_ARR_SZ]; 1565 1566 dbg_jnl("ino %lu, size %lld -> %lld", 1567 (unsigned long)inum, old_size, new_size); 1568 ubifs_assert(c, !ui->data_len); 1569 ubifs_assert(c, S_ISREG(inode->i_mode)); 1570 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 1571 1572 dn_size = COMPRESSED_DATA_NODE_BUF_SZ; 1573 1574 if (IS_ENCRYPTED(inode)) 1575 dn_size += UBIFS_CIPHER_BLOCK_SIZE; 1576 1577 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1578 dn_size + ubifs_auth_node_sz(c); 1579 1580 ino = kmalloc(sz, GFP_NOFS); 1581 if (!ino) 1582 return -ENOMEM; 1583 1584 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1585 trun->ch.node_type = UBIFS_TRUN_NODE; 1586 trun->inum = cpu_to_le32(inum); 1587 trun->old_size = cpu_to_le64(old_size); 1588 trun->new_size = cpu_to_le64(new_size); 1589 zero_trun_node_unused(trun); 1590 1591 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1592 if (dlen) { 1593 /* Get last data block so it can be truncated */ 1594 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1595 blk = new_size >> UBIFS_BLOCK_SHIFT; 1596 data_key_init(c, &key, inum, blk); 1597 dbg_jnlk(&key, "last block key "); 1598 err = ubifs_tnc_lookup(c, &key, dn); 1599 if (err == -ENOENT) 1600 dlen = 0; /* Not found (so it is a hole) */ 1601 else if (err) 1602 goto out_free; 1603 else { 1604 int dn_len = le32_to_cpu(dn->size); 1605 1606 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) { 1607 ubifs_err(c, "bad data node (block %u, inode %lu)", 1608 blk, inode->i_ino); 1609 ubifs_dump_node(c, dn, dn_size); 1610 goto out_free; 1611 } 1612 1613 if (dn_len <= dlen) 1614 dlen = 0; /* Nothing to do */ 1615 else { 1616 err = truncate_data_node(c, inode, blk, dn, 1617 &dlen, dn_size); 1618 if (err) 1619 goto out_free; 1620 } 1621 } 1622 } 1623 1624 /* Must make reservation before allocating sequence numbers */ 1625 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1626 1627 if (ubifs_authenticated(c)) 1628 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c); 1629 else 1630 len += dlen; 1631 1632 err = make_reservation(c, BASEHD, len); 1633 if (err) 1634 goto out_free; 1635 1636 pack_inode(c, ino, inode, 0); 1637 err = ubifs_node_calc_hash(c, ino, hash_ino); 1638 if (err) 1639 goto out_release; 1640 1641 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1642 if (dlen) { 1643 ubifs_prep_grp_node(c, dn, dlen, 1); 1644 err = ubifs_node_calc_hash(c, dn, hash_dn); 1645 if (err) 1646 goto out_release; 1647 } 1648 1649 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1650 if (err) 1651 goto out_release; 1652 if (!sync) 1653 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1654 release_head(c, BASEHD); 1655 1656 ubifs_add_auth_dirt(c, lnum); 1657 1658 if (dlen) { 1659 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1660 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn); 1661 if (err) 1662 goto out_ro; 1663 } 1664 1665 ino_key_init(c, &key, inum); 1666 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino); 1667 if (err) 1668 goto out_ro; 1669 1670 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1671 if (err) 1672 goto out_ro; 1673 1674 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1675 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1676 data_key_init(c, &key, inum, blk); 1677 1678 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1679 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1680 data_key_init(c, &to_key, inum, blk); 1681 1682 err = ubifs_tnc_remove_range(c, &key, &to_key); 1683 if (err) 1684 goto out_ro; 1685 1686 finish_reservation(c); 1687 spin_lock(&ui->ui_lock); 1688 ui->synced_i_size = ui->ui_size; 1689 spin_unlock(&ui->ui_lock); 1690 mark_inode_clean(c, ui); 1691 kfree(ino); 1692 return 0; 1693 1694 out_release: 1695 release_head(c, BASEHD); 1696 out_ro: 1697 ubifs_ro_mode(c, err); 1698 finish_reservation(c); 1699 out_free: 1700 kfree(ino); 1701 return err; 1702 } 1703 1704 1705 /** 1706 * ubifs_jnl_delete_xattr - delete an extended attribute. 1707 * @c: UBIFS file-system description object 1708 * @host: host inode 1709 * @inode: extended attribute inode 1710 * @nm: extended attribute entry name 1711 * 1712 * This function delete an extended attribute which is very similar to 1713 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1714 * updates the target inode. Returns zero in case of success and a negative 1715 * error code in case of failure. 1716 */ 1717 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1718 const struct inode *inode, 1719 const struct fscrypt_name *nm) 1720 { 1721 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len; 1722 struct ubifs_dent_node *xent; 1723 struct ubifs_ino_node *ino; 1724 union ubifs_key xent_key, key1, key2; 1725 int sync = IS_DIRSYNC(host); 1726 struct ubifs_inode *host_ui = ubifs_inode(host); 1727 u8 hash[UBIFS_HASH_ARR_SZ]; 1728 1729 ubifs_assert(c, inode->i_nlink == 0); 1730 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1731 1732 /* 1733 * Since we are deleting the inode, we do not bother to attach any data 1734 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1735 */ 1736 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 1737 aligned_xlen = ALIGN(xlen, 8); 1738 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1739 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1740 1741 write_len = len + ubifs_auth_node_sz(c); 1742 1743 xent = kzalloc(write_len, GFP_NOFS); 1744 if (!xent) 1745 return -ENOMEM; 1746 1747 /* Make reservation before allocating sequence numbers */ 1748 err = make_reservation(c, BASEHD, write_len); 1749 if (err) { 1750 kfree(xent); 1751 return err; 1752 } 1753 1754 xent->ch.node_type = UBIFS_XENT_NODE; 1755 xent_key_init(c, &xent_key, host->i_ino, nm); 1756 key_write(c, &xent_key, xent->key); 1757 xent->inum = 0; 1758 xent->type = get_dent_type(inode->i_mode); 1759 xent->nlen = cpu_to_le16(fname_len(nm)); 1760 memcpy(xent->name, fname_name(nm), fname_len(nm)); 1761 xent->name[fname_len(nm)] = '\0'; 1762 zero_dent_node_unused(xent); 1763 ubifs_prep_grp_node(c, xent, xlen, 0); 1764 1765 ino = (void *)xent + aligned_xlen; 1766 pack_inode(c, ino, inode, 0); 1767 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1768 pack_inode(c, ino, host, 1); 1769 err = ubifs_node_calc_hash(c, ino, hash); 1770 if (err) 1771 goto out_release; 1772 1773 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync); 1774 if (!sync && !err) 1775 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1776 release_head(c, BASEHD); 1777 1778 ubifs_add_auth_dirt(c, lnum); 1779 kfree(xent); 1780 if (err) 1781 goto out_ro; 1782 1783 /* Remove the extended attribute entry from TNC */ 1784 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1785 if (err) 1786 goto out_ro; 1787 err = ubifs_add_dirt(c, lnum, xlen); 1788 if (err) 1789 goto out_ro; 1790 1791 /* 1792 * Remove all nodes belonging to the extended attribute inode from TNC. 1793 * Well, there actually must be only one node - the inode itself. 1794 */ 1795 lowest_ino_key(c, &key1, inode->i_ino); 1796 highest_ino_key(c, &key2, inode->i_ino); 1797 err = ubifs_tnc_remove_range(c, &key1, &key2); 1798 if (err) 1799 goto out_ro; 1800 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1801 if (err) 1802 goto out_ro; 1803 1804 /* And update TNC with the new host inode position */ 1805 ino_key_init(c, &key1, host->i_ino); 1806 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash); 1807 if (err) 1808 goto out_ro; 1809 1810 finish_reservation(c); 1811 spin_lock(&host_ui->ui_lock); 1812 host_ui->synced_i_size = host_ui->ui_size; 1813 spin_unlock(&host_ui->ui_lock); 1814 mark_inode_clean(c, host_ui); 1815 return 0; 1816 1817 out_release: 1818 kfree(xent); 1819 release_head(c, BASEHD); 1820 out_ro: 1821 ubifs_ro_mode(c, err); 1822 finish_reservation(c); 1823 return err; 1824 } 1825 1826 /** 1827 * ubifs_jnl_change_xattr - change an extended attribute. 1828 * @c: UBIFS file-system description object 1829 * @inode: extended attribute inode 1830 * @host: host inode 1831 * 1832 * This function writes the updated version of an extended attribute inode and 1833 * the host inode to the journal (to the base head). The host inode is written 1834 * after the extended attribute inode in order to guarantee that the extended 1835 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1836 * consequently, the write-buffer is synchronized. This function returns zero 1837 * in case of success and a negative error code in case of failure. 1838 */ 1839 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1840 const struct inode *host) 1841 { 1842 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1843 struct ubifs_inode *host_ui = ubifs_inode(host); 1844 struct ubifs_ino_node *ino; 1845 union ubifs_key key; 1846 int sync = IS_DIRSYNC(host); 1847 u8 hash_host[UBIFS_HASH_ARR_SZ]; 1848 u8 hash[UBIFS_HASH_ARR_SZ]; 1849 1850 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1851 ubifs_assert(c, inode->i_nlink > 0); 1852 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1853 1854 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1855 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1856 aligned_len1 = ALIGN(len1, 8); 1857 aligned_len = aligned_len1 + ALIGN(len2, 8); 1858 1859 aligned_len += ubifs_auth_node_sz(c); 1860 1861 ino = kzalloc(aligned_len, GFP_NOFS); 1862 if (!ino) 1863 return -ENOMEM; 1864 1865 /* Make reservation before allocating sequence numbers */ 1866 err = make_reservation(c, BASEHD, aligned_len); 1867 if (err) 1868 goto out_free; 1869 1870 pack_inode(c, ino, host, 0); 1871 err = ubifs_node_calc_hash(c, ino, hash_host); 1872 if (err) 1873 goto out_release; 1874 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1875 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash); 1876 if (err) 1877 goto out_release; 1878 1879 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1880 if (!sync && !err) { 1881 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1882 1883 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1884 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1885 } 1886 release_head(c, BASEHD); 1887 if (err) 1888 goto out_ro; 1889 1890 ubifs_add_auth_dirt(c, lnum); 1891 1892 ino_key_init(c, &key, host->i_ino); 1893 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host); 1894 if (err) 1895 goto out_ro; 1896 1897 ino_key_init(c, &key, inode->i_ino); 1898 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash); 1899 if (err) 1900 goto out_ro; 1901 1902 finish_reservation(c); 1903 spin_lock(&host_ui->ui_lock); 1904 host_ui->synced_i_size = host_ui->ui_size; 1905 spin_unlock(&host_ui->ui_lock); 1906 mark_inode_clean(c, host_ui); 1907 kfree(ino); 1908 return 0; 1909 1910 out_release: 1911 release_head(c, BASEHD); 1912 out_ro: 1913 ubifs_ro_mode(c, err); 1914 finish_reservation(c); 1915 out_free: 1916 kfree(ino); 1917 return err; 1918 } 1919 1920