1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 ubifs_assert(!c->ro_media && !c->ro_mount); 126 squeeze = (jhead == BASEHD); 127 again: 128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 129 130 if (c->ro_error) { 131 err = -EROFS; 132 goto out_unlock; 133 } 134 135 avail = c->leb_size - wbuf->offs - wbuf->used; 136 if (wbuf->lnum != -1 && avail >= len) 137 return 0; 138 139 /* 140 * Write buffer wasn't seek'ed or there is no enough space - look for an 141 * LEB with some empty space. 142 */ 143 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 144 if (lnum >= 0) { 145 /* Found an LEB, add it to the journal head */ 146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 147 if (err) 148 goto out_return; 149 /* A new bud was successfully allocated and added to the log */ 150 goto out; 151 } 152 153 err = lnum; 154 if (err != -ENOSPC) 155 goto out_unlock; 156 157 /* 158 * No free space, we have to run garbage collector to make 159 * some. But the write-buffer mutex has to be unlocked because 160 * GC also takes it. 161 */ 162 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 163 mutex_unlock(&wbuf->io_mutex); 164 165 lnum = ubifs_garbage_collect(c, 0); 166 if (lnum < 0) { 167 err = lnum; 168 if (err != -ENOSPC) 169 return err; 170 171 /* 172 * GC could not make a free LEB. But someone else may 173 * have allocated new bud for this journal head, 174 * because we dropped @wbuf->io_mutex, so try once 175 * again. 176 */ 177 dbg_jnl("GC couldn't make a free LEB for jhead %s", 178 dbg_jhead(jhead)); 179 if (retries++ < 2) { 180 dbg_jnl("retry (%d)", retries); 181 goto again; 182 } 183 184 dbg_jnl("return -ENOSPC"); 185 return err; 186 } 187 188 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 189 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 190 avail = c->leb_size - wbuf->offs - wbuf->used; 191 192 if (wbuf->lnum != -1 && avail >= len) { 193 /* 194 * Someone else has switched the journal head and we have 195 * enough space now. This happens when more than one process is 196 * trying to write to the same journal head at the same time. 197 */ 198 dbg_jnl("return LEB %d back, already have LEB %d:%d", 199 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 200 err = ubifs_return_leb(c, lnum); 201 if (err) 202 goto out_unlock; 203 return 0; 204 } 205 206 err = ubifs_add_bud_to_log(c, jhead, lnum, 0); 207 if (err) 208 goto out_return; 209 offs = 0; 210 211 out: 212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype); 213 if (err) 214 goto out_unlock; 215 216 return 0; 217 218 out_unlock: 219 mutex_unlock(&wbuf->io_mutex); 220 return err; 221 222 out_return: 223 /* An error occurred and the LEB has to be returned to lprops */ 224 ubifs_assert(err < 0); 225 err1 = ubifs_return_leb(c, lnum); 226 if (err1 && err == -EAGAIN) 227 /* 228 * Return original error code only if it is not %-EAGAIN, 229 * which is not really an error. Otherwise, return the error 230 * code of 'ubifs_return_leb()'. 231 */ 232 err = err1; 233 mutex_unlock(&wbuf->io_mutex); 234 return err; 235 } 236 237 /** 238 * write_node - write node to a journal head. 239 * @c: UBIFS file-system description object 240 * @jhead: journal head 241 * @node: node to write 242 * @len: node length 243 * @lnum: LEB number written is returned here 244 * @offs: offset written is returned here 245 * 246 * This function writes a node to reserved space of journal head @jhead. 247 * Returns zero in case of success and a negative error code in case of 248 * failure. 249 */ 250 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 251 int *lnum, int *offs) 252 { 253 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 254 255 ubifs_assert(jhead != GCHD); 256 257 *lnum = c->jheads[jhead].wbuf.lnum; 258 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 259 260 dbg_jnl("jhead %s, LEB %d:%d, len %d", 261 dbg_jhead(jhead), *lnum, *offs, len); 262 ubifs_prepare_node(c, node, len, 0); 263 264 return ubifs_wbuf_write_nolock(wbuf, node, len); 265 } 266 267 /** 268 * write_head - write data to a journal head. 269 * @c: UBIFS file-system description object 270 * @jhead: journal head 271 * @buf: buffer to write 272 * @len: length to write 273 * @lnum: LEB number written is returned here 274 * @offs: offset written is returned here 275 * @sync: non-zero if the write-buffer has to by synchronized 276 * 277 * This function is the same as 'write_node()' but it does not assume the 278 * buffer it is writing is a node, so it does not prepare it (which means 279 * initializing common header and calculating CRC). 280 */ 281 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 282 int *lnum, int *offs, int sync) 283 { 284 int err; 285 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 286 287 ubifs_assert(jhead != GCHD); 288 289 *lnum = c->jheads[jhead].wbuf.lnum; 290 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 291 dbg_jnl("jhead %s, LEB %d:%d, len %d", 292 dbg_jhead(jhead), *lnum, *offs, len); 293 294 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 295 if (err) 296 return err; 297 if (sync) 298 err = ubifs_wbuf_sync_nolock(wbuf); 299 return err; 300 } 301 302 /** 303 * make_reservation - reserve journal space. 304 * @c: UBIFS file-system description object 305 * @jhead: journal head 306 * @len: how many bytes to reserve 307 * 308 * This function makes space reservation in journal head @jhead. The function 309 * takes the commit lock and locks the journal head, and the caller has to 310 * unlock the head and finish the reservation with 'finish_reservation()'. 311 * Returns zero in case of success and a negative error code in case of 312 * failure. 313 * 314 * Note, the journal head may be unlocked as soon as the data is written, while 315 * the commit lock has to be released after the data has been added to the 316 * TNC. 317 */ 318 static int make_reservation(struct ubifs_info *c, int jhead, int len) 319 { 320 int err, cmt_retries = 0, nospc_retries = 0; 321 322 again: 323 down_read(&c->commit_sem); 324 err = reserve_space(c, jhead, len); 325 if (!err) 326 return 0; 327 up_read(&c->commit_sem); 328 329 if (err == -ENOSPC) { 330 /* 331 * GC could not make any progress. We should try to commit 332 * once because it could make some dirty space and GC would 333 * make progress, so make the error -EAGAIN so that the below 334 * will commit and re-try. 335 */ 336 if (nospc_retries++ < 2) { 337 dbg_jnl("no space, retry"); 338 err = -EAGAIN; 339 } 340 341 /* 342 * This means that the budgeting is incorrect. We always have 343 * to be able to write to the media, because all operations are 344 * budgeted. Deletions are not budgeted, though, but we reserve 345 * an extra LEB for them. 346 */ 347 } 348 349 if (err != -EAGAIN) 350 goto out; 351 352 /* 353 * -EAGAIN means that the journal is full or too large, or the above 354 * code wants to do one commit. Do this and re-try. 355 */ 356 if (cmt_retries > 128) { 357 /* 358 * This should not happen unless the journal size limitations 359 * are too tough. 360 */ 361 ubifs_err("stuck in space allocation"); 362 err = -ENOSPC; 363 goto out; 364 } else if (cmt_retries > 32) 365 ubifs_warn("too many space allocation re-tries (%d)", 366 cmt_retries); 367 368 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 369 cmt_retries); 370 cmt_retries += 1; 371 372 err = ubifs_run_commit(c); 373 if (err) 374 return err; 375 goto again; 376 377 out: 378 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 379 len, jhead, err); 380 if (err == -ENOSPC) { 381 /* This are some budgeting problems, print useful information */ 382 down_write(&c->commit_sem); 383 spin_lock(&c->space_lock); 384 dbg_dump_stack(); 385 dbg_dump_budg(c); 386 spin_unlock(&c->space_lock); 387 dbg_dump_lprops(c); 388 cmt_retries = dbg_check_lprops(c); 389 up_write(&c->commit_sem); 390 } 391 return err; 392 } 393 394 /** 395 * release_head - release a journal head. 396 * @c: UBIFS file-system description object 397 * @jhead: journal head 398 * 399 * This function releases journal head @jhead which was locked by 400 * the 'make_reservation()' function. It has to be called after each successful 401 * 'make_reservation()' invocation. 402 */ 403 static inline void release_head(struct ubifs_info *c, int jhead) 404 { 405 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 406 } 407 408 /** 409 * finish_reservation - finish a reservation. 410 * @c: UBIFS file-system description object 411 * 412 * This function finishes journal space reservation. It must be called after 413 * 'make_reservation()'. 414 */ 415 static void finish_reservation(struct ubifs_info *c) 416 { 417 up_read(&c->commit_sem); 418 } 419 420 /** 421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 422 * @mode: inode mode 423 */ 424 static int get_dent_type(int mode) 425 { 426 switch (mode & S_IFMT) { 427 case S_IFREG: 428 return UBIFS_ITYPE_REG; 429 case S_IFDIR: 430 return UBIFS_ITYPE_DIR; 431 case S_IFLNK: 432 return UBIFS_ITYPE_LNK; 433 case S_IFBLK: 434 return UBIFS_ITYPE_BLK; 435 case S_IFCHR: 436 return UBIFS_ITYPE_CHR; 437 case S_IFIFO: 438 return UBIFS_ITYPE_FIFO; 439 case S_IFSOCK: 440 return UBIFS_ITYPE_SOCK; 441 default: 442 BUG(); 443 } 444 return 0; 445 } 446 447 /** 448 * pack_inode - pack an inode node. 449 * @c: UBIFS file-system description object 450 * @ino: buffer in which to pack inode node 451 * @inode: inode to pack 452 * @last: indicates the last node of the group 453 */ 454 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 455 const struct inode *inode, int last) 456 { 457 int data_len = 0, last_reference = !inode->i_nlink; 458 struct ubifs_inode *ui = ubifs_inode(inode); 459 460 ino->ch.node_type = UBIFS_INO_NODE; 461 ino_key_init_flash(c, &ino->key, inode->i_ino); 462 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 463 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 464 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 465 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 466 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 467 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 468 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 469 ino->uid = cpu_to_le32(inode->i_uid); 470 ino->gid = cpu_to_le32(inode->i_gid); 471 ino->mode = cpu_to_le32(inode->i_mode); 472 ino->flags = cpu_to_le32(ui->flags); 473 ino->size = cpu_to_le64(ui->ui_size); 474 ino->nlink = cpu_to_le32(inode->i_nlink); 475 ino->compr_type = cpu_to_le16(ui->compr_type); 476 ino->data_len = cpu_to_le32(ui->data_len); 477 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 478 ino->xattr_size = cpu_to_le32(ui->xattr_size); 479 ino->xattr_names = cpu_to_le32(ui->xattr_names); 480 zero_ino_node_unused(ino); 481 482 /* 483 * Drop the attached data if this is a deletion inode, the data is not 484 * needed anymore. 485 */ 486 if (!last_reference) { 487 memcpy(ino->data, ui->data, ui->data_len); 488 data_len = ui->data_len; 489 } 490 491 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 492 } 493 494 /** 495 * mark_inode_clean - mark UBIFS inode as clean. 496 * @c: UBIFS file-system description object 497 * @ui: UBIFS inode to mark as clean 498 * 499 * This helper function marks UBIFS inode @ui as clean by cleaning the 500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 502 * just do nothing. 503 */ 504 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 505 { 506 if (ui->dirty) 507 ubifs_release_dirty_inode_budget(c, ui); 508 ui->dirty = 0; 509 } 510 511 /** 512 * ubifs_jnl_update - update inode. 513 * @c: UBIFS file-system description object 514 * @dir: parent inode or host inode in case of extended attributes 515 * @nm: directory entry name 516 * @inode: inode to update 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 518 * @xent: non-zero if the directory entry is an extended attribute entry 519 * 520 * This function updates an inode by writing a directory entry (or extended 521 * attribute entry), the inode itself, and the parent directory inode (or the 522 * host inode) to the journal. 523 * 524 * The function writes the host inode @dir last, which is important in case of 525 * extended attributes. Indeed, then we guarantee that if the host inode gets 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 527 * the extended attribute inode gets flushed too. And this is exactly what the 528 * user expects - synchronizing the host inode synchronizes its extended 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its 530 * directory entry corresponding to @nm gets synchronized too. 531 * 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 533 * function synchronizes the write-buffer. 534 * 535 * This function marks the @dir and @inode inodes as clean and returns zero on 536 * success. In case of failure, a negative error code is returned. 537 */ 538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 539 const struct qstr *nm, const struct inode *inode, 540 int deletion, int xent) 541 { 542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 544 int last_reference = !!(deletion && inode->i_nlink == 0); 545 struct ubifs_inode *ui = ubifs_inode(inode); 546 struct ubifs_inode *dir_ui = ubifs_inode(dir); 547 struct ubifs_dent_node *dent; 548 struct ubifs_ino_node *ino; 549 union ubifs_key dent_key, ino_key; 550 551 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 552 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 553 ubifs_assert(dir_ui->data_len == 0); 554 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 555 556 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 557 ilen = UBIFS_INO_NODE_SZ; 558 559 /* 560 * If the last reference to the inode is being deleted, then there is 561 * no need to attach and write inode data, it is being deleted anyway. 562 * And if the inode is being deleted, no need to synchronize 563 * write-buffer even if the inode is synchronous. 564 */ 565 if (!last_reference) { 566 ilen += ui->data_len; 567 sync |= IS_SYNC(inode); 568 } 569 570 aligned_dlen = ALIGN(dlen, 8); 571 aligned_ilen = ALIGN(ilen, 8); 572 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 573 dent = kmalloc(len, GFP_NOFS); 574 if (!dent) 575 return -ENOMEM; 576 577 /* Make reservation before allocating sequence numbers */ 578 err = make_reservation(c, BASEHD, len); 579 if (err) 580 goto out_free; 581 582 if (!xent) { 583 dent->ch.node_type = UBIFS_DENT_NODE; 584 dent_key_init(c, &dent_key, dir->i_ino, nm); 585 } else { 586 dent->ch.node_type = UBIFS_XENT_NODE; 587 xent_key_init(c, &dent_key, dir->i_ino, nm); 588 } 589 590 key_write(c, &dent_key, dent->key); 591 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 592 dent->type = get_dent_type(inode->i_mode); 593 dent->nlen = cpu_to_le16(nm->len); 594 memcpy(dent->name, nm->name, nm->len); 595 dent->name[nm->len] = '\0'; 596 zero_dent_node_unused(dent); 597 ubifs_prep_grp_node(c, dent, dlen, 0); 598 599 ino = (void *)dent + aligned_dlen; 600 pack_inode(c, ino, inode, 0); 601 ino = (void *)ino + aligned_ilen; 602 pack_inode(c, ino, dir, 1); 603 604 if (last_reference) { 605 err = ubifs_add_orphan(c, inode->i_ino); 606 if (err) { 607 release_head(c, BASEHD); 608 goto out_finish; 609 } 610 ui->del_cmtno = c->cmt_no; 611 } 612 613 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 614 if (err) 615 goto out_release; 616 if (!sync) { 617 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 618 619 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 620 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 621 } 622 release_head(c, BASEHD); 623 kfree(dent); 624 625 if (deletion) { 626 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 627 if (err) 628 goto out_ro; 629 err = ubifs_add_dirt(c, lnum, dlen); 630 } else 631 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 632 if (err) 633 goto out_ro; 634 635 /* 636 * Note, we do not remove the inode from TNC even if the last reference 637 * to it has just been deleted, because the inode may still be opened. 638 * Instead, the inode has been added to orphan lists and the orphan 639 * subsystem will take further care about it. 640 */ 641 ino_key_init(c, &ino_key, inode->i_ino); 642 ino_offs = dent_offs + aligned_dlen; 643 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 644 if (err) 645 goto out_ro; 646 647 ino_key_init(c, &ino_key, dir->i_ino); 648 ino_offs += aligned_ilen; 649 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 650 if (err) 651 goto out_ro; 652 653 finish_reservation(c); 654 spin_lock(&ui->ui_lock); 655 ui->synced_i_size = ui->ui_size; 656 spin_unlock(&ui->ui_lock); 657 mark_inode_clean(c, ui); 658 mark_inode_clean(c, dir_ui); 659 return 0; 660 661 out_finish: 662 finish_reservation(c); 663 out_free: 664 kfree(dent); 665 return err; 666 667 out_release: 668 release_head(c, BASEHD); 669 out_ro: 670 ubifs_ro_mode(c, err); 671 if (last_reference) 672 ubifs_delete_orphan(c, inode->i_ino); 673 finish_reservation(c); 674 return err; 675 } 676 677 /** 678 * ubifs_jnl_write_data - write a data node to the journal. 679 * @c: UBIFS file-system description object 680 * @inode: inode the data node belongs to 681 * @key: node key 682 * @buf: buffer to write 683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 684 * 685 * This function writes a data node to the journal. Returns %0 if the data node 686 * was successfully written, and a negative error code in case of failure. 687 */ 688 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 689 const union ubifs_key *key, const void *buf, int len) 690 { 691 struct ubifs_data_node *data; 692 int err, lnum, offs, compr_type, out_len; 693 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; 694 struct ubifs_inode *ui = ubifs_inode(inode); 695 696 dbg_jnl("ino %lu, blk %u, len %d, key %s", 697 (unsigned long)key_inum(c, key), key_block(c, key), len, 698 DBGKEY(key)); 699 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 700 701 data = kmalloc(dlen, GFP_NOFS); 702 if (!data) 703 return -ENOMEM; 704 705 data->ch.node_type = UBIFS_DATA_NODE; 706 key_write(c, key, &data->key); 707 data->size = cpu_to_le32(len); 708 zero_data_node_unused(data); 709 710 if (!(ui->flags & UBIFS_COMPR_FL)) 711 /* Compression is disabled for this inode */ 712 compr_type = UBIFS_COMPR_NONE; 713 else 714 compr_type = ui->compr_type; 715 716 out_len = dlen - UBIFS_DATA_NODE_SZ; 717 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 718 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 719 720 dlen = UBIFS_DATA_NODE_SZ + out_len; 721 data->compr_type = cpu_to_le16(compr_type); 722 723 /* Make reservation before allocating sequence numbers */ 724 err = make_reservation(c, DATAHD, dlen); 725 if (err) 726 goto out_free; 727 728 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 729 if (err) 730 goto out_release; 731 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 732 release_head(c, DATAHD); 733 734 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 735 if (err) 736 goto out_ro; 737 738 finish_reservation(c); 739 kfree(data); 740 return 0; 741 742 out_release: 743 release_head(c, DATAHD); 744 out_ro: 745 ubifs_ro_mode(c, err); 746 finish_reservation(c); 747 out_free: 748 kfree(data); 749 return err; 750 } 751 752 /** 753 * ubifs_jnl_write_inode - flush inode to the journal. 754 * @c: UBIFS file-system description object 755 * @inode: inode to flush 756 * 757 * This function writes inode @inode to the journal. If the inode is 758 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 759 * success and a negative error code in case of failure. 760 */ 761 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 762 { 763 int err, lnum, offs; 764 struct ubifs_ino_node *ino; 765 struct ubifs_inode *ui = ubifs_inode(inode); 766 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 767 768 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 769 770 /* 771 * If the inode is being deleted, do not write the attached data. No 772 * need to synchronize the write-buffer either. 773 */ 774 if (!last_reference) { 775 len += ui->data_len; 776 sync = IS_SYNC(inode); 777 } 778 ino = kmalloc(len, GFP_NOFS); 779 if (!ino) 780 return -ENOMEM; 781 782 /* Make reservation before allocating sequence numbers */ 783 err = make_reservation(c, BASEHD, len); 784 if (err) 785 goto out_free; 786 787 pack_inode(c, ino, inode, 1); 788 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 789 if (err) 790 goto out_release; 791 if (!sync) 792 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 793 inode->i_ino); 794 release_head(c, BASEHD); 795 796 if (last_reference) { 797 err = ubifs_tnc_remove_ino(c, inode->i_ino); 798 if (err) 799 goto out_ro; 800 ubifs_delete_orphan(c, inode->i_ino); 801 err = ubifs_add_dirt(c, lnum, len); 802 } else { 803 union ubifs_key key; 804 805 ino_key_init(c, &key, inode->i_ino); 806 err = ubifs_tnc_add(c, &key, lnum, offs, len); 807 } 808 if (err) 809 goto out_ro; 810 811 finish_reservation(c); 812 spin_lock(&ui->ui_lock); 813 ui->synced_i_size = ui->ui_size; 814 spin_unlock(&ui->ui_lock); 815 kfree(ino); 816 return 0; 817 818 out_release: 819 release_head(c, BASEHD); 820 out_ro: 821 ubifs_ro_mode(c, err); 822 finish_reservation(c); 823 out_free: 824 kfree(ino); 825 return err; 826 } 827 828 /** 829 * ubifs_jnl_delete_inode - delete an inode. 830 * @c: UBIFS file-system description object 831 * @inode: inode to delete 832 * 833 * This function deletes inode @inode which includes removing it from orphans, 834 * deleting it from TNC and, in some cases, writing a deletion inode to the 835 * journal. 836 * 837 * When regular file inodes are unlinked or a directory inode is removed, the 838 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 839 * direntry to the media, and adds the inode to orphans. After this, when the 840 * last reference to this inode has been dropped, this function is called. In 841 * general, it has to write one more deletion inode to the media, because if 842 * a commit happened between 'ubifs_jnl_update()' and 843 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 844 * anymore, and in fact it might not be on the flash anymore, because it might 845 * have been garbage-collected already. And for optimization reasons UBIFS does 846 * not read the orphan area if it has been unmounted cleanly, so it would have 847 * no indication in the journal that there is a deleted inode which has to be 848 * removed from TNC. 849 * 850 * However, if there was no commit between 'ubifs_jnl_update()' and 851 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 852 * inode to the media for the second time. And this is quite a typical case. 853 * 854 * This function returns zero in case of success and a negative error code in 855 * case of failure. 856 */ 857 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 858 { 859 int err; 860 struct ubifs_inode *ui = ubifs_inode(inode); 861 862 ubifs_assert(inode->i_nlink == 0); 863 864 if (ui->del_cmtno != c->cmt_no) 865 /* A commit happened for sure */ 866 return ubifs_jnl_write_inode(c, inode); 867 868 down_read(&c->commit_sem); 869 /* 870 * Check commit number again, because the first test has been done 871 * without @c->commit_sem, so a commit might have happened. 872 */ 873 if (ui->del_cmtno != c->cmt_no) { 874 up_read(&c->commit_sem); 875 return ubifs_jnl_write_inode(c, inode); 876 } 877 878 err = ubifs_tnc_remove_ino(c, inode->i_ino); 879 if (err) 880 ubifs_ro_mode(c, err); 881 else 882 ubifs_delete_orphan(c, inode->i_ino); 883 up_read(&c->commit_sem); 884 return err; 885 } 886 887 /** 888 * ubifs_jnl_rename - rename a directory entry. 889 * @c: UBIFS file-system description object 890 * @old_dir: parent inode of directory entry to rename 891 * @old_dentry: directory entry to rename 892 * @new_dir: parent inode of directory entry to rename 893 * @new_dentry: new directory entry (or directory entry to replace) 894 * @sync: non-zero if the write-buffer has to be synchronized 895 * 896 * This function implements the re-name operation which may involve writing up 897 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 898 * and returns zero on success. In case of failure, a negative error code is 899 * returned. 900 */ 901 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 902 const struct dentry *old_dentry, 903 const struct inode *new_dir, 904 const struct dentry *new_dentry, int sync) 905 { 906 void *p; 907 union ubifs_key key; 908 struct ubifs_dent_node *dent, *dent2; 909 int err, dlen1, dlen2, ilen, lnum, offs, len; 910 const struct inode *old_inode = old_dentry->d_inode; 911 const struct inode *new_inode = new_dentry->d_inode; 912 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 913 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 914 int move = (old_dir != new_dir); 915 struct ubifs_inode *uninitialized_var(new_ui); 916 917 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 918 old_dentry->d_name.len, old_dentry->d_name.name, 919 old_dir->i_ino, new_dentry->d_name.len, 920 new_dentry->d_name.name, new_dir->i_ino); 921 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 922 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 923 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 924 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 925 926 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 927 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 928 if (new_inode) { 929 new_ui = ubifs_inode(new_inode); 930 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 931 ilen = UBIFS_INO_NODE_SZ; 932 if (!last_reference) 933 ilen += new_ui->data_len; 934 } else 935 ilen = 0; 936 937 aligned_dlen1 = ALIGN(dlen1, 8); 938 aligned_dlen2 = ALIGN(dlen2, 8); 939 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 940 if (old_dir != new_dir) 941 len += plen; 942 dent = kmalloc(len, GFP_NOFS); 943 if (!dent) 944 return -ENOMEM; 945 946 /* Make reservation before allocating sequence numbers */ 947 err = make_reservation(c, BASEHD, len); 948 if (err) 949 goto out_free; 950 951 /* Make new dent */ 952 dent->ch.node_type = UBIFS_DENT_NODE; 953 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 954 dent->inum = cpu_to_le64(old_inode->i_ino); 955 dent->type = get_dent_type(old_inode->i_mode); 956 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 957 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 958 dent->name[new_dentry->d_name.len] = '\0'; 959 zero_dent_node_unused(dent); 960 ubifs_prep_grp_node(c, dent, dlen1, 0); 961 962 /* Make deletion dent */ 963 dent2 = (void *)dent + aligned_dlen1; 964 dent2->ch.node_type = UBIFS_DENT_NODE; 965 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 966 &old_dentry->d_name); 967 dent2->inum = 0; 968 dent2->type = DT_UNKNOWN; 969 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 970 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 971 dent2->name[old_dentry->d_name.len] = '\0'; 972 zero_dent_node_unused(dent2); 973 ubifs_prep_grp_node(c, dent2, dlen2, 0); 974 975 p = (void *)dent2 + aligned_dlen2; 976 if (new_inode) { 977 pack_inode(c, p, new_inode, 0); 978 p += ALIGN(ilen, 8); 979 } 980 981 if (!move) 982 pack_inode(c, p, old_dir, 1); 983 else { 984 pack_inode(c, p, old_dir, 0); 985 p += ALIGN(plen, 8); 986 pack_inode(c, p, new_dir, 1); 987 } 988 989 if (last_reference) { 990 err = ubifs_add_orphan(c, new_inode->i_ino); 991 if (err) { 992 release_head(c, BASEHD); 993 goto out_finish; 994 } 995 new_ui->del_cmtno = c->cmt_no; 996 } 997 998 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 999 if (err) 1000 goto out_release; 1001 if (!sync) { 1002 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1003 1004 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1005 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1006 if (new_inode) 1007 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1008 new_inode->i_ino); 1009 } 1010 release_head(c, BASEHD); 1011 1012 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 1013 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 1014 if (err) 1015 goto out_ro; 1016 1017 err = ubifs_add_dirt(c, lnum, dlen2); 1018 if (err) 1019 goto out_ro; 1020 1021 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 1022 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 1023 if (err) 1024 goto out_ro; 1025 1026 offs += aligned_dlen1 + aligned_dlen2; 1027 if (new_inode) { 1028 ino_key_init(c, &key, new_inode->i_ino); 1029 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1030 if (err) 1031 goto out_ro; 1032 offs += ALIGN(ilen, 8); 1033 } 1034 1035 ino_key_init(c, &key, old_dir->i_ino); 1036 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1037 if (err) 1038 goto out_ro; 1039 1040 if (old_dir != new_dir) { 1041 offs += ALIGN(plen, 8); 1042 ino_key_init(c, &key, new_dir->i_ino); 1043 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1044 if (err) 1045 goto out_ro; 1046 } 1047 1048 finish_reservation(c); 1049 if (new_inode) { 1050 mark_inode_clean(c, new_ui); 1051 spin_lock(&new_ui->ui_lock); 1052 new_ui->synced_i_size = new_ui->ui_size; 1053 spin_unlock(&new_ui->ui_lock); 1054 } 1055 mark_inode_clean(c, ubifs_inode(old_dir)); 1056 if (move) 1057 mark_inode_clean(c, ubifs_inode(new_dir)); 1058 kfree(dent); 1059 return 0; 1060 1061 out_release: 1062 release_head(c, BASEHD); 1063 out_ro: 1064 ubifs_ro_mode(c, err); 1065 if (last_reference) 1066 ubifs_delete_orphan(c, new_inode->i_ino); 1067 out_finish: 1068 finish_reservation(c); 1069 out_free: 1070 kfree(dent); 1071 return err; 1072 } 1073 1074 /** 1075 * recomp_data_node - re-compress a truncated data node. 1076 * @dn: data node to re-compress 1077 * @new_len: new length 1078 * 1079 * This function is used when an inode is truncated and the last data node of 1080 * the inode has to be re-compressed and re-written. 1081 */ 1082 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1083 { 1084 void *buf; 1085 int err, len, compr_type, out_len; 1086 1087 out_len = le32_to_cpu(dn->size); 1088 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1089 if (!buf) 1090 return -ENOMEM; 1091 1092 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1093 compr_type = le16_to_cpu(dn->compr_type); 1094 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1095 if (err) 1096 goto out; 1097 1098 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1099 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1100 dn->compr_type = cpu_to_le16(compr_type); 1101 dn->size = cpu_to_le32(*new_len); 1102 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1103 out: 1104 kfree(buf); 1105 return err; 1106 } 1107 1108 /** 1109 * ubifs_jnl_truncate - update the journal for a truncation. 1110 * @c: UBIFS file-system description object 1111 * @inode: inode to truncate 1112 * @old_size: old size 1113 * @new_size: new size 1114 * 1115 * When the size of a file decreases due to truncation, a truncation node is 1116 * written, the journal tree is updated, and the last data block is re-written 1117 * if it has been affected. The inode is also updated in order to synchronize 1118 * the new inode size. 1119 * 1120 * This function marks the inode as clean and returns zero on success. In case 1121 * of failure, a negative error code is returned. 1122 */ 1123 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1124 loff_t old_size, loff_t new_size) 1125 { 1126 union ubifs_key key, to_key; 1127 struct ubifs_ino_node *ino; 1128 struct ubifs_trun_node *trun; 1129 struct ubifs_data_node *uninitialized_var(dn); 1130 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1131 struct ubifs_inode *ui = ubifs_inode(inode); 1132 ino_t inum = inode->i_ino; 1133 unsigned int blk; 1134 1135 dbg_jnl("ino %lu, size %lld -> %lld", 1136 (unsigned long)inum, old_size, new_size); 1137 ubifs_assert(!ui->data_len); 1138 ubifs_assert(S_ISREG(inode->i_mode)); 1139 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1140 1141 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1142 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1143 ino = kmalloc(sz, GFP_NOFS); 1144 if (!ino) 1145 return -ENOMEM; 1146 1147 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1148 trun->ch.node_type = UBIFS_TRUN_NODE; 1149 trun->inum = cpu_to_le32(inum); 1150 trun->old_size = cpu_to_le64(old_size); 1151 trun->new_size = cpu_to_le64(new_size); 1152 zero_trun_node_unused(trun); 1153 1154 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1155 if (dlen) { 1156 /* Get last data block so it can be truncated */ 1157 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1158 blk = new_size >> UBIFS_BLOCK_SHIFT; 1159 data_key_init(c, &key, inum, blk); 1160 dbg_jnl("last block key %s", DBGKEY(&key)); 1161 err = ubifs_tnc_lookup(c, &key, dn); 1162 if (err == -ENOENT) 1163 dlen = 0; /* Not found (so it is a hole) */ 1164 else if (err) 1165 goto out_free; 1166 else { 1167 if (le32_to_cpu(dn->size) <= dlen) 1168 dlen = 0; /* Nothing to do */ 1169 else { 1170 int compr_type = le16_to_cpu(dn->compr_type); 1171 1172 if (compr_type != UBIFS_COMPR_NONE) { 1173 err = recomp_data_node(dn, &dlen); 1174 if (err) 1175 goto out_free; 1176 } else { 1177 dn->size = cpu_to_le32(dlen); 1178 dlen += UBIFS_DATA_NODE_SZ; 1179 } 1180 zero_data_node_unused(dn); 1181 } 1182 } 1183 } 1184 1185 /* Must make reservation before allocating sequence numbers */ 1186 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1187 if (dlen) 1188 len += dlen; 1189 err = make_reservation(c, BASEHD, len); 1190 if (err) 1191 goto out_free; 1192 1193 pack_inode(c, ino, inode, 0); 1194 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1195 if (dlen) 1196 ubifs_prep_grp_node(c, dn, dlen, 1); 1197 1198 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1199 if (err) 1200 goto out_release; 1201 if (!sync) 1202 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1203 release_head(c, BASEHD); 1204 1205 if (dlen) { 1206 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1207 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1208 if (err) 1209 goto out_ro; 1210 } 1211 1212 ino_key_init(c, &key, inum); 1213 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1214 if (err) 1215 goto out_ro; 1216 1217 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1218 if (err) 1219 goto out_ro; 1220 1221 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1222 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1223 data_key_init(c, &key, inum, blk); 1224 1225 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1226 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1227 data_key_init(c, &to_key, inum, blk); 1228 1229 err = ubifs_tnc_remove_range(c, &key, &to_key); 1230 if (err) 1231 goto out_ro; 1232 1233 finish_reservation(c); 1234 spin_lock(&ui->ui_lock); 1235 ui->synced_i_size = ui->ui_size; 1236 spin_unlock(&ui->ui_lock); 1237 mark_inode_clean(c, ui); 1238 kfree(ino); 1239 return 0; 1240 1241 out_release: 1242 release_head(c, BASEHD); 1243 out_ro: 1244 ubifs_ro_mode(c, err); 1245 finish_reservation(c); 1246 out_free: 1247 kfree(ino); 1248 return err; 1249 } 1250 1251 #ifdef CONFIG_UBIFS_FS_XATTR 1252 1253 /** 1254 * ubifs_jnl_delete_xattr - delete an extended attribute. 1255 * @c: UBIFS file-system description object 1256 * @host: host inode 1257 * @inode: extended attribute inode 1258 * @nm: extended attribute entry name 1259 * 1260 * This function delete an extended attribute which is very similar to 1261 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1262 * updates the target inode. Returns zero in case of success and a negative 1263 * error code in case of failure. 1264 */ 1265 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1266 const struct inode *inode, const struct qstr *nm) 1267 { 1268 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1269 struct ubifs_dent_node *xent; 1270 struct ubifs_ino_node *ino; 1271 union ubifs_key xent_key, key1, key2; 1272 int sync = IS_DIRSYNC(host); 1273 struct ubifs_inode *host_ui = ubifs_inode(host); 1274 1275 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1276 host->i_ino, inode->i_ino, nm->name, 1277 ubifs_inode(inode)->data_len); 1278 ubifs_assert(inode->i_nlink == 0); 1279 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1280 1281 /* 1282 * Since we are deleting the inode, we do not bother to attach any data 1283 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1284 */ 1285 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1286 aligned_xlen = ALIGN(xlen, 8); 1287 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1288 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1289 1290 xent = kmalloc(len, GFP_NOFS); 1291 if (!xent) 1292 return -ENOMEM; 1293 1294 /* Make reservation before allocating sequence numbers */ 1295 err = make_reservation(c, BASEHD, len); 1296 if (err) { 1297 kfree(xent); 1298 return err; 1299 } 1300 1301 xent->ch.node_type = UBIFS_XENT_NODE; 1302 xent_key_init(c, &xent_key, host->i_ino, nm); 1303 key_write(c, &xent_key, xent->key); 1304 xent->inum = 0; 1305 xent->type = get_dent_type(inode->i_mode); 1306 xent->nlen = cpu_to_le16(nm->len); 1307 memcpy(xent->name, nm->name, nm->len); 1308 xent->name[nm->len] = '\0'; 1309 zero_dent_node_unused(xent); 1310 ubifs_prep_grp_node(c, xent, xlen, 0); 1311 1312 ino = (void *)xent + aligned_xlen; 1313 pack_inode(c, ino, inode, 0); 1314 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1315 pack_inode(c, ino, host, 1); 1316 1317 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1318 if (!sync && !err) 1319 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1320 release_head(c, BASEHD); 1321 kfree(xent); 1322 if (err) 1323 goto out_ro; 1324 1325 /* Remove the extended attribute entry from TNC */ 1326 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1327 if (err) 1328 goto out_ro; 1329 err = ubifs_add_dirt(c, lnum, xlen); 1330 if (err) 1331 goto out_ro; 1332 1333 /* 1334 * Remove all nodes belonging to the extended attribute inode from TNC. 1335 * Well, there actually must be only one node - the inode itself. 1336 */ 1337 lowest_ino_key(c, &key1, inode->i_ino); 1338 highest_ino_key(c, &key2, inode->i_ino); 1339 err = ubifs_tnc_remove_range(c, &key1, &key2); 1340 if (err) 1341 goto out_ro; 1342 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1343 if (err) 1344 goto out_ro; 1345 1346 /* And update TNC with the new host inode position */ 1347 ino_key_init(c, &key1, host->i_ino); 1348 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1349 if (err) 1350 goto out_ro; 1351 1352 finish_reservation(c); 1353 spin_lock(&host_ui->ui_lock); 1354 host_ui->synced_i_size = host_ui->ui_size; 1355 spin_unlock(&host_ui->ui_lock); 1356 mark_inode_clean(c, host_ui); 1357 return 0; 1358 1359 out_ro: 1360 ubifs_ro_mode(c, err); 1361 finish_reservation(c); 1362 return err; 1363 } 1364 1365 /** 1366 * ubifs_jnl_change_xattr - change an extended attribute. 1367 * @c: UBIFS file-system description object 1368 * @inode: extended attribute inode 1369 * @host: host inode 1370 * 1371 * This function writes the updated version of an extended attribute inode and 1372 * the host inode to the journal (to the base head). The host inode is written 1373 * after the extended attribute inode in order to guarantee that the extended 1374 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1375 * consequently, the write-buffer is synchronized. This function returns zero 1376 * in case of success and a negative error code in case of failure. 1377 */ 1378 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1379 const struct inode *host) 1380 { 1381 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1382 struct ubifs_inode *host_ui = ubifs_inode(host); 1383 struct ubifs_ino_node *ino; 1384 union ubifs_key key; 1385 int sync = IS_DIRSYNC(host); 1386 1387 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1388 ubifs_assert(host->i_nlink > 0); 1389 ubifs_assert(inode->i_nlink > 0); 1390 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1391 1392 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1393 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1394 aligned_len1 = ALIGN(len1, 8); 1395 aligned_len = aligned_len1 + ALIGN(len2, 8); 1396 1397 ino = kmalloc(aligned_len, GFP_NOFS); 1398 if (!ino) 1399 return -ENOMEM; 1400 1401 /* Make reservation before allocating sequence numbers */ 1402 err = make_reservation(c, BASEHD, aligned_len); 1403 if (err) 1404 goto out_free; 1405 1406 pack_inode(c, ino, host, 0); 1407 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1408 1409 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1410 if (!sync && !err) { 1411 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1412 1413 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1414 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1415 } 1416 release_head(c, BASEHD); 1417 if (err) 1418 goto out_ro; 1419 1420 ino_key_init(c, &key, host->i_ino); 1421 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1422 if (err) 1423 goto out_ro; 1424 1425 ino_key_init(c, &key, inode->i_ino); 1426 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1427 if (err) 1428 goto out_ro; 1429 1430 finish_reservation(c); 1431 spin_lock(&host_ui->ui_lock); 1432 host_ui->synced_i_size = host_ui->ui_size; 1433 spin_unlock(&host_ui->ui_lock); 1434 mark_inode_clean(c, host_ui); 1435 kfree(ino); 1436 return 0; 1437 1438 out_ro: 1439 ubifs_ro_mode(c, err); 1440 finish_reservation(c); 1441 out_free: 1442 kfree(ino); 1443 return err; 1444 } 1445 1446 #endif /* CONFIG_UBIFS_FS_XATTR */ 1447