xref: /openbmc/linux/fs/ubifs/journal.c (revision d774a589)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 }
82 
83 /**
84  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85  *                         node.
86  * @trun: the truncation node to zero out
87  */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 	memset(trun->padding, 0, 12);
91 }
92 
93 /**
94  * reserve_space - reserve space in the journal.
95  * @c: UBIFS file-system description object
96  * @jhead: journal head number
97  * @len: node length
98  *
99  * This function reserves space in journal head @head. If the reservation
100  * succeeded, the journal head stays locked and later has to be unlocked using
101  * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
102  * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
103  * other negative error codes in case of other failures.
104  */
105 static int reserve_space(struct ubifs_info *c, int jhead, int len)
106 {
107 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
108 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
109 
110 	/*
111 	 * Typically, the base head has smaller nodes written to it, so it is
112 	 * better to try to allocate space at the ends of eraseblocks. This is
113 	 * what the squeeze parameter does.
114 	 */
115 	ubifs_assert(!c->ro_media && !c->ro_mount);
116 	squeeze = (jhead == BASEHD);
117 again:
118 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
119 
120 	if (c->ro_error) {
121 		err = -EROFS;
122 		goto out_unlock;
123 	}
124 
125 	avail = c->leb_size - wbuf->offs - wbuf->used;
126 	if (wbuf->lnum != -1 && avail >= len)
127 		return 0;
128 
129 	/*
130 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
131 	 * LEB with some empty space.
132 	 */
133 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
134 	if (lnum >= 0)
135 		goto out;
136 
137 	err = lnum;
138 	if (err != -ENOSPC)
139 		goto out_unlock;
140 
141 	/*
142 	 * No free space, we have to run garbage collector to make
143 	 * some. But the write-buffer mutex has to be unlocked because
144 	 * GC also takes it.
145 	 */
146 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
147 	mutex_unlock(&wbuf->io_mutex);
148 
149 	lnum = ubifs_garbage_collect(c, 0);
150 	if (lnum < 0) {
151 		err = lnum;
152 		if (err != -ENOSPC)
153 			return err;
154 
155 		/*
156 		 * GC could not make a free LEB. But someone else may
157 		 * have allocated new bud for this journal head,
158 		 * because we dropped @wbuf->io_mutex, so try once
159 		 * again.
160 		 */
161 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
162 			dbg_jhead(jhead));
163 		if (retries++ < 2) {
164 			dbg_jnl("retry (%d)", retries);
165 			goto again;
166 		}
167 
168 		dbg_jnl("return -ENOSPC");
169 		return err;
170 	}
171 
172 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
173 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
174 	avail = c->leb_size - wbuf->offs - wbuf->used;
175 
176 	if (wbuf->lnum != -1 && avail >= len) {
177 		/*
178 		 * Someone else has switched the journal head and we have
179 		 * enough space now. This happens when more than one process is
180 		 * trying to write to the same journal head at the same time.
181 		 */
182 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
183 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
184 		err = ubifs_return_leb(c, lnum);
185 		if (err)
186 			goto out_unlock;
187 		return 0;
188 	}
189 
190 	offs = 0;
191 
192 out:
193 	/*
194 	 * Make sure we synchronize the write-buffer before we add the new bud
195 	 * to the log. Otherwise we may have a power cut after the log
196 	 * reference node for the last bud (@lnum) is written but before the
197 	 * write-buffer data are written to the next-to-last bud
198 	 * (@wbuf->lnum). And the effect would be that the recovery would see
199 	 * that there is corruption in the next-to-last bud.
200 	 */
201 	err = ubifs_wbuf_sync_nolock(wbuf);
202 	if (err)
203 		goto out_return;
204 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
205 	if (err)
206 		goto out_return;
207 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
208 	if (err)
209 		goto out_unlock;
210 
211 	return 0;
212 
213 out_unlock:
214 	mutex_unlock(&wbuf->io_mutex);
215 	return err;
216 
217 out_return:
218 	/* An error occurred and the LEB has to be returned to lprops */
219 	ubifs_assert(err < 0);
220 	err1 = ubifs_return_leb(c, lnum);
221 	if (err1 && err == -EAGAIN)
222 		/*
223 		 * Return original error code only if it is not %-EAGAIN,
224 		 * which is not really an error. Otherwise, return the error
225 		 * code of 'ubifs_return_leb()'.
226 		 */
227 		err = err1;
228 	mutex_unlock(&wbuf->io_mutex);
229 	return err;
230 }
231 
232 /**
233  * write_node - write node to a journal head.
234  * @c: UBIFS file-system description object
235  * @jhead: journal head
236  * @node: node to write
237  * @len: node length
238  * @lnum: LEB number written is returned here
239  * @offs: offset written is returned here
240  *
241  * This function writes a node to reserved space of journal head @jhead.
242  * Returns zero in case of success and a negative error code in case of
243  * failure.
244  */
245 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
246 		      int *lnum, int *offs)
247 {
248 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
249 
250 	ubifs_assert(jhead != GCHD);
251 
252 	*lnum = c->jheads[jhead].wbuf.lnum;
253 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
254 
255 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
256 		dbg_jhead(jhead), *lnum, *offs, len);
257 	ubifs_prepare_node(c, node, len, 0);
258 
259 	return ubifs_wbuf_write_nolock(wbuf, node, len);
260 }
261 
262 /**
263  * write_head - write data to a journal head.
264  * @c: UBIFS file-system description object
265  * @jhead: journal head
266  * @buf: buffer to write
267  * @len: length to write
268  * @lnum: LEB number written is returned here
269  * @offs: offset written is returned here
270  * @sync: non-zero if the write-buffer has to by synchronized
271  *
272  * This function is the same as 'write_node()' but it does not assume the
273  * buffer it is writing is a node, so it does not prepare it (which means
274  * initializing common header and calculating CRC).
275  */
276 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
277 		      int *lnum, int *offs, int sync)
278 {
279 	int err;
280 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
281 
282 	ubifs_assert(jhead != GCHD);
283 
284 	*lnum = c->jheads[jhead].wbuf.lnum;
285 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
286 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
287 		dbg_jhead(jhead), *lnum, *offs, len);
288 
289 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
290 	if (err)
291 		return err;
292 	if (sync)
293 		err = ubifs_wbuf_sync_nolock(wbuf);
294 	return err;
295 }
296 
297 /**
298  * make_reservation - reserve journal space.
299  * @c: UBIFS file-system description object
300  * @jhead: journal head
301  * @len: how many bytes to reserve
302  *
303  * This function makes space reservation in journal head @jhead. The function
304  * takes the commit lock and locks the journal head, and the caller has to
305  * unlock the head and finish the reservation with 'finish_reservation()'.
306  * Returns zero in case of success and a negative error code in case of
307  * failure.
308  *
309  * Note, the journal head may be unlocked as soon as the data is written, while
310  * the commit lock has to be released after the data has been added to the
311  * TNC.
312  */
313 static int make_reservation(struct ubifs_info *c, int jhead, int len)
314 {
315 	int err, cmt_retries = 0, nospc_retries = 0;
316 
317 again:
318 	down_read(&c->commit_sem);
319 	err = reserve_space(c, jhead, len);
320 	if (!err)
321 		return 0;
322 	up_read(&c->commit_sem);
323 
324 	if (err == -ENOSPC) {
325 		/*
326 		 * GC could not make any progress. We should try to commit
327 		 * once because it could make some dirty space and GC would
328 		 * make progress, so make the error -EAGAIN so that the below
329 		 * will commit and re-try.
330 		 */
331 		if (nospc_retries++ < 2) {
332 			dbg_jnl("no space, retry");
333 			err = -EAGAIN;
334 		}
335 
336 		/*
337 		 * This means that the budgeting is incorrect. We always have
338 		 * to be able to write to the media, because all operations are
339 		 * budgeted. Deletions are not budgeted, though, but we reserve
340 		 * an extra LEB for them.
341 		 */
342 	}
343 
344 	if (err != -EAGAIN)
345 		goto out;
346 
347 	/*
348 	 * -EAGAIN means that the journal is full or too large, or the above
349 	 * code wants to do one commit. Do this and re-try.
350 	 */
351 	if (cmt_retries > 128) {
352 		/*
353 		 * This should not happen unless the journal size limitations
354 		 * are too tough.
355 		 */
356 		ubifs_err(c, "stuck in space allocation");
357 		err = -ENOSPC;
358 		goto out;
359 	} else if (cmt_retries > 32)
360 		ubifs_warn(c, "too many space allocation re-tries (%d)",
361 			   cmt_retries);
362 
363 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 		cmt_retries);
365 	cmt_retries += 1;
366 
367 	err = ubifs_run_commit(c);
368 	if (err)
369 		return err;
370 	goto again;
371 
372 out:
373 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 		  len, jhead, err);
375 	if (err == -ENOSPC) {
376 		/* This are some budgeting problems, print useful information */
377 		down_write(&c->commit_sem);
378 		dump_stack();
379 		ubifs_dump_budg(c, &c->bi);
380 		ubifs_dump_lprops(c);
381 		cmt_retries = dbg_check_lprops(c);
382 		up_write(&c->commit_sem);
383 	}
384 	return err;
385 }
386 
387 /**
388  * release_head - release a journal head.
389  * @c: UBIFS file-system description object
390  * @jhead: journal head
391  *
392  * This function releases journal head @jhead which was locked by
393  * the 'make_reservation()' function. It has to be called after each successful
394  * 'make_reservation()' invocation.
395  */
396 static inline void release_head(struct ubifs_info *c, int jhead)
397 {
398 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399 }
400 
401 /**
402  * finish_reservation - finish a reservation.
403  * @c: UBIFS file-system description object
404  *
405  * This function finishes journal space reservation. It must be called after
406  * 'make_reservation()'.
407  */
408 static void finish_reservation(struct ubifs_info *c)
409 {
410 	up_read(&c->commit_sem);
411 }
412 
413 /**
414  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415  * @mode: inode mode
416  */
417 static int get_dent_type(int mode)
418 {
419 	switch (mode & S_IFMT) {
420 	case S_IFREG:
421 		return UBIFS_ITYPE_REG;
422 	case S_IFDIR:
423 		return UBIFS_ITYPE_DIR;
424 	case S_IFLNK:
425 		return UBIFS_ITYPE_LNK;
426 	case S_IFBLK:
427 		return UBIFS_ITYPE_BLK;
428 	case S_IFCHR:
429 		return UBIFS_ITYPE_CHR;
430 	case S_IFIFO:
431 		return UBIFS_ITYPE_FIFO;
432 	case S_IFSOCK:
433 		return UBIFS_ITYPE_SOCK;
434 	default:
435 		BUG();
436 	}
437 	return 0;
438 }
439 
440 /**
441  * pack_inode - pack an inode node.
442  * @c: UBIFS file-system description object
443  * @ino: buffer in which to pack inode node
444  * @inode: inode to pack
445  * @last: indicates the last node of the group
446  */
447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 		       const struct inode *inode, int last)
449 {
450 	int data_len = 0, last_reference = !inode->i_nlink;
451 	struct ubifs_inode *ui = ubifs_inode(inode);
452 
453 	ino->ch.node_type = UBIFS_INO_NODE;
454 	ino_key_init_flash(c, &ino->key, inode->i_ino);
455 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
457 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
459 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
461 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 	ino->uid   = cpu_to_le32(i_uid_read(inode));
463 	ino->gid   = cpu_to_le32(i_gid_read(inode));
464 	ino->mode  = cpu_to_le32(inode->i_mode);
465 	ino->flags = cpu_to_le32(ui->flags);
466 	ino->size  = cpu_to_le64(ui->ui_size);
467 	ino->nlink = cpu_to_le32(inode->i_nlink);
468 	ino->compr_type  = cpu_to_le16(ui->compr_type);
469 	ino->data_len    = cpu_to_le32(ui->data_len);
470 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
471 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
472 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 	zero_ino_node_unused(ino);
474 
475 	/*
476 	 * Drop the attached data if this is a deletion inode, the data is not
477 	 * needed anymore.
478 	 */
479 	if (!last_reference) {
480 		memcpy(ino->data, ui->data, ui->data_len);
481 		data_len = ui->data_len;
482 	}
483 
484 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485 }
486 
487 /**
488  * mark_inode_clean - mark UBIFS inode as clean.
489  * @c: UBIFS file-system description object
490  * @ui: UBIFS inode to mark as clean
491  *
492  * This helper function marks UBIFS inode @ui as clean by cleaning the
493  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495  * just do nothing.
496  */
497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 {
499 	if (ui->dirty)
500 		ubifs_release_dirty_inode_budget(c, ui);
501 	ui->dirty = 0;
502 }
503 
504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505 {
506 	if (c->double_hash)
507 		dent->cookie = prandom_u32();
508 	else
509 		dent->cookie = 0;
510 }
511 
512 /**
513  * ubifs_jnl_update - update inode.
514  * @c: UBIFS file-system description object
515  * @dir: parent inode or host inode in case of extended attributes
516  * @nm: directory entry name
517  * @inode: inode to update
518  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519  * @xent: non-zero if the directory entry is an extended attribute entry
520  *
521  * This function updates an inode by writing a directory entry (or extended
522  * attribute entry), the inode itself, and the parent directory inode (or the
523  * host inode) to the journal.
524  *
525  * The function writes the host inode @dir last, which is important in case of
526  * extended attributes. Indeed, then we guarantee that if the host inode gets
527  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528  * the extended attribute inode gets flushed too. And this is exactly what the
529  * user expects - synchronizing the host inode synchronizes its extended
530  * attributes. Similarly, this guarantees that if @dir is synchronized, its
531  * directory entry corresponding to @nm gets synchronized too.
532  *
533  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534  * function synchronizes the write-buffer.
535  *
536  * This function marks the @dir and @inode inodes as clean and returns zero on
537  * success. In case of failure, a negative error code is returned.
538  */
539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
540 		     const struct fscrypt_name *nm, const struct inode *inode,
541 		     int deletion, int xent)
542 {
543 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
544 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
545 	int last_reference = !!(deletion && inode->i_nlink == 0);
546 	struct ubifs_inode *ui = ubifs_inode(inode);
547 	struct ubifs_inode *host_ui = ubifs_inode(dir);
548 	struct ubifs_dent_node *dent;
549 	struct ubifs_ino_node *ino;
550 	union ubifs_key dent_key, ino_key;
551 
552 	//dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
553 	//	inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
554 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
555 
556 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 	ilen = UBIFS_INO_NODE_SZ;
558 
559 	/*
560 	 * If the last reference to the inode is being deleted, then there is
561 	 * no need to attach and write inode data, it is being deleted anyway.
562 	 * And if the inode is being deleted, no need to synchronize
563 	 * write-buffer even if the inode is synchronous.
564 	 */
565 	if (!last_reference) {
566 		ilen += ui->data_len;
567 		sync |= IS_SYNC(inode);
568 	}
569 
570 	aligned_dlen = ALIGN(dlen, 8);
571 	aligned_ilen = ALIGN(ilen, 8);
572 
573 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 	/* Make sure to also account for extended attributes */
575 	len += host_ui->data_len;
576 
577 	dent = kmalloc(len, GFP_NOFS);
578 	if (!dent)
579 		return -ENOMEM;
580 
581 	/* Make reservation before allocating sequence numbers */
582 	err = make_reservation(c, BASEHD, len);
583 	if (err)
584 		goto out_free;
585 
586 	if (!xent) {
587 		dent->ch.node_type = UBIFS_DENT_NODE;
588 		dent_key_init(c, &dent_key, dir->i_ino, nm);
589 	} else {
590 		dent->ch.node_type = UBIFS_XENT_NODE;
591 		xent_key_init(c, &dent_key, dir->i_ino, nm);
592 	}
593 
594 	key_write(c, &dent_key, dent->key);
595 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
596 	dent->type = get_dent_type(inode->i_mode);
597 	dent->nlen = cpu_to_le16(fname_len(nm));
598 	memcpy(dent->name, fname_name(nm), fname_len(nm));
599 	dent->name[fname_len(nm)] = '\0';
600 	set_dent_cookie(c, dent);
601 
602 	zero_dent_node_unused(dent);
603 	ubifs_prep_grp_node(c, dent, dlen, 0);
604 
605 	ino = (void *)dent + aligned_dlen;
606 	pack_inode(c, ino, inode, 0);
607 	ino = (void *)ino + aligned_ilen;
608 	pack_inode(c, ino, dir, 1);
609 
610 	if (last_reference) {
611 		err = ubifs_add_orphan(c, inode->i_ino);
612 		if (err) {
613 			release_head(c, BASEHD);
614 			goto out_finish;
615 		}
616 		ui->del_cmtno = c->cmt_no;
617 	}
618 
619 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
620 	if (err)
621 		goto out_release;
622 	if (!sync) {
623 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
624 
625 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
626 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
627 	}
628 	release_head(c, BASEHD);
629 	kfree(dent);
630 
631 	if (deletion) {
632 		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
633 		if (err)
634 			goto out_ro;
635 		err = ubifs_add_dirt(c, lnum, dlen);
636 	} else
637 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
638 	if (err)
639 		goto out_ro;
640 
641 	/*
642 	 * Note, we do not remove the inode from TNC even if the last reference
643 	 * to it has just been deleted, because the inode may still be opened.
644 	 * Instead, the inode has been added to orphan lists and the orphan
645 	 * subsystem will take further care about it.
646 	 */
647 	ino_key_init(c, &ino_key, inode->i_ino);
648 	ino_offs = dent_offs + aligned_dlen;
649 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
650 	if (err)
651 		goto out_ro;
652 
653 	ino_key_init(c, &ino_key, dir->i_ino);
654 	ino_offs += aligned_ilen;
655 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
656 			    UBIFS_INO_NODE_SZ + host_ui->data_len);
657 	if (err)
658 		goto out_ro;
659 
660 	finish_reservation(c);
661 	spin_lock(&ui->ui_lock);
662 	ui->synced_i_size = ui->ui_size;
663 	spin_unlock(&ui->ui_lock);
664 	mark_inode_clean(c, ui);
665 	mark_inode_clean(c, host_ui);
666 	return 0;
667 
668 out_finish:
669 	finish_reservation(c);
670 out_free:
671 	kfree(dent);
672 	return err;
673 
674 out_release:
675 	release_head(c, BASEHD);
676 	kfree(dent);
677 out_ro:
678 	ubifs_ro_mode(c, err);
679 	if (last_reference)
680 		ubifs_delete_orphan(c, inode->i_ino);
681 	finish_reservation(c);
682 	return err;
683 }
684 
685 /**
686  * ubifs_jnl_write_data - write a data node to the journal.
687  * @c: UBIFS file-system description object
688  * @inode: inode the data node belongs to
689  * @key: node key
690  * @buf: buffer to write
691  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
692  *
693  * This function writes a data node to the journal. Returns %0 if the data node
694  * was successfully written, and a negative error code in case of failure.
695  */
696 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
697 			 const union ubifs_key *key, const void *buf, int len)
698 {
699 	struct ubifs_data_node *data;
700 	int err, lnum, offs, compr_type, out_len, compr_len;
701 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
702 	struct ubifs_inode *ui = ubifs_inode(inode);
703 	bool encrypted = ubifs_crypt_is_encrypted(inode);
704 
705 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
706 		(unsigned long)key_inum(c, key), key_block(c, key), len);
707 	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
708 
709 	if (encrypted)
710 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
711 
712 	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
713 	if (!data) {
714 		/*
715 		 * Fall-back to the write reserve buffer. Note, we might be
716 		 * currently on the memory reclaim path, when the kernel is
717 		 * trying to free some memory by writing out dirty pages. The
718 		 * write reserve buffer helps us to guarantee that we are
719 		 * always able to write the data.
720 		 */
721 		allocated = 0;
722 		mutex_lock(&c->write_reserve_mutex);
723 		data = c->write_reserve_buf;
724 	}
725 
726 	data->ch.node_type = UBIFS_DATA_NODE;
727 	key_write(c, key, &data->key);
728 	data->size = cpu_to_le32(len);
729 
730 	if (!(ui->flags & UBIFS_COMPR_FL))
731 		/* Compression is disabled for this inode */
732 		compr_type = UBIFS_COMPR_NONE;
733 	else
734 		compr_type = ui->compr_type;
735 
736 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
737 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
738 	ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE);
739 
740 	if (encrypted) {
741 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
742 		if (err)
743 			goto out_free;
744 
745 	} else {
746 		data->compr_size = 0;
747 	}
748 
749 	dlen = UBIFS_DATA_NODE_SZ + out_len;
750 	data->compr_type = cpu_to_le16(compr_type);
751 
752 	/* Make reservation before allocating sequence numbers */
753 	err = make_reservation(c, DATAHD, dlen);
754 	if (err)
755 		goto out_free;
756 
757 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
758 	if (err)
759 		goto out_release;
760 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
761 	release_head(c, DATAHD);
762 
763 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
764 	if (err)
765 		goto out_ro;
766 
767 	finish_reservation(c);
768 	if (!allocated)
769 		mutex_unlock(&c->write_reserve_mutex);
770 	else
771 		kfree(data);
772 	return 0;
773 
774 out_release:
775 	release_head(c, DATAHD);
776 out_ro:
777 	ubifs_ro_mode(c, err);
778 	finish_reservation(c);
779 out_free:
780 	if (!allocated)
781 		mutex_unlock(&c->write_reserve_mutex);
782 	else
783 		kfree(data);
784 	return err;
785 }
786 
787 /**
788  * ubifs_jnl_write_inode - flush inode to the journal.
789  * @c: UBIFS file-system description object
790  * @inode: inode to flush
791  *
792  * This function writes inode @inode to the journal. If the inode is
793  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
794  * success and a negative error code in case of failure.
795  */
796 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
797 {
798 	int err, lnum, offs;
799 	struct ubifs_ino_node *ino;
800 	struct ubifs_inode *ui = ubifs_inode(inode);
801 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
802 
803 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
804 
805 	/*
806 	 * If the inode is being deleted, do not write the attached data. No
807 	 * need to synchronize the write-buffer either.
808 	 */
809 	if (!last_reference) {
810 		len += ui->data_len;
811 		sync = IS_SYNC(inode);
812 	}
813 	ino = kmalloc(len, GFP_NOFS);
814 	if (!ino)
815 		return -ENOMEM;
816 
817 	/* Make reservation before allocating sequence numbers */
818 	err = make_reservation(c, BASEHD, len);
819 	if (err)
820 		goto out_free;
821 
822 	pack_inode(c, ino, inode, 1);
823 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
824 	if (err)
825 		goto out_release;
826 	if (!sync)
827 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
828 					  inode->i_ino);
829 	release_head(c, BASEHD);
830 
831 	if (last_reference) {
832 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
833 		if (err)
834 			goto out_ro;
835 		ubifs_delete_orphan(c, inode->i_ino);
836 		err = ubifs_add_dirt(c, lnum, len);
837 	} else {
838 		union ubifs_key key;
839 
840 		ino_key_init(c, &key, inode->i_ino);
841 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
842 	}
843 	if (err)
844 		goto out_ro;
845 
846 	finish_reservation(c);
847 	spin_lock(&ui->ui_lock);
848 	ui->synced_i_size = ui->ui_size;
849 	spin_unlock(&ui->ui_lock);
850 	kfree(ino);
851 	return 0;
852 
853 out_release:
854 	release_head(c, BASEHD);
855 out_ro:
856 	ubifs_ro_mode(c, err);
857 	finish_reservation(c);
858 out_free:
859 	kfree(ino);
860 	return err;
861 }
862 
863 /**
864  * ubifs_jnl_delete_inode - delete an inode.
865  * @c: UBIFS file-system description object
866  * @inode: inode to delete
867  *
868  * This function deletes inode @inode which includes removing it from orphans,
869  * deleting it from TNC and, in some cases, writing a deletion inode to the
870  * journal.
871  *
872  * When regular file inodes are unlinked or a directory inode is removed, the
873  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
874  * direntry to the media, and adds the inode to orphans. After this, when the
875  * last reference to this inode has been dropped, this function is called. In
876  * general, it has to write one more deletion inode to the media, because if
877  * a commit happened between 'ubifs_jnl_update()' and
878  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
879  * anymore, and in fact it might not be on the flash anymore, because it might
880  * have been garbage-collected already. And for optimization reasons UBIFS does
881  * not read the orphan area if it has been unmounted cleanly, so it would have
882  * no indication in the journal that there is a deleted inode which has to be
883  * removed from TNC.
884  *
885  * However, if there was no commit between 'ubifs_jnl_update()' and
886  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
887  * inode to the media for the second time. And this is quite a typical case.
888  *
889  * This function returns zero in case of success and a negative error code in
890  * case of failure.
891  */
892 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
893 {
894 	int err;
895 	struct ubifs_inode *ui = ubifs_inode(inode);
896 
897 	ubifs_assert(inode->i_nlink == 0);
898 
899 	if (ui->del_cmtno != c->cmt_no)
900 		/* A commit happened for sure */
901 		return ubifs_jnl_write_inode(c, inode);
902 
903 	down_read(&c->commit_sem);
904 	/*
905 	 * Check commit number again, because the first test has been done
906 	 * without @c->commit_sem, so a commit might have happened.
907 	 */
908 	if (ui->del_cmtno != c->cmt_no) {
909 		up_read(&c->commit_sem);
910 		return ubifs_jnl_write_inode(c, inode);
911 	}
912 
913 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
914 	if (err)
915 		ubifs_ro_mode(c, err);
916 	else
917 		ubifs_delete_orphan(c, inode->i_ino);
918 	up_read(&c->commit_sem);
919 	return err;
920 }
921 
922 /**
923  * ubifs_jnl_xrename - cross rename two directory entries.
924  * @c: UBIFS file-system description object
925  * @fst_dir: parent inode of 1st directory entry to exchange
926  * @fst_inode: 1st inode to exchange
927  * @fst_nm: name of 1st inode to exchange
928  * @snd_dir: parent inode of 2nd directory entry to exchange
929  * @snd_inode: 2nd inode to exchange
930  * @snd_nm: name of 2nd inode to exchange
931  * @sync: non-zero if the write-buffer has to be synchronized
932  *
933  * This function implements the cross rename operation which may involve
934  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
935  * and returns zero on success. In case of failure, a negative error code is
936  * returned.
937  */
938 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
939 		      const struct inode *fst_inode,
940 		      const struct fscrypt_name *fst_nm,
941 		      const struct inode *snd_dir,
942 		      const struct inode *snd_inode,
943 		      const struct fscrypt_name *snd_nm, int sync)
944 {
945 	union ubifs_key key;
946 	struct ubifs_dent_node *dent1, *dent2;
947 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
948 	int aligned_dlen1, aligned_dlen2;
949 	int twoparents = (fst_dir != snd_dir);
950 	void *p;
951 
952 	//dbg_jnl("dent '%pd' in dir ino %lu between dent '%pd' in dir ino %lu",
953 	//	fst_dentry, fst_dir->i_ino, snd_dentry, snd_dir->i_ino);
954 
955 	ubifs_assert(ubifs_inode(fst_dir)->data_len == 0);
956 	ubifs_assert(ubifs_inode(snd_dir)->data_len == 0);
957 	ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
958 	ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
959 
960 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
961 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
962 	aligned_dlen1 = ALIGN(dlen1, 8);
963 	aligned_dlen2 = ALIGN(dlen2, 8);
964 
965 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
966 	if (twoparents)
967 		len += plen;
968 
969 	dent1 = kmalloc(len, GFP_NOFS);
970 	if (!dent1)
971 		return -ENOMEM;
972 
973 	/* Make reservation before allocating sequence numbers */
974 	err = make_reservation(c, BASEHD, len);
975 	if (err)
976 		goto out_free;
977 
978 	/* Make new dent for 1st entry */
979 	dent1->ch.node_type = UBIFS_DENT_NODE;
980 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
981 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
982 	dent1->type = get_dent_type(fst_inode->i_mode);
983 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
984 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
985 	dent1->name[fname_len(snd_nm)] = '\0';
986 	zero_dent_node_unused(dent1);
987 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
988 
989 	/* Make new dent for 2nd entry */
990 	dent2 = (void *)dent1 + aligned_dlen1;
991 	dent2->ch.node_type = UBIFS_DENT_NODE;
992 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
993 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
994 	dent2->type = get_dent_type(snd_inode->i_mode);
995 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
996 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
997 	dent2->name[fname_len(fst_nm)] = '\0';
998 	zero_dent_node_unused(dent2);
999 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1000 
1001 	p = (void *)dent2 + aligned_dlen2;
1002 	if (!twoparents)
1003 		pack_inode(c, p, fst_dir, 1);
1004 	else {
1005 		pack_inode(c, p, fst_dir, 0);
1006 		p += ALIGN(plen, 8);
1007 		pack_inode(c, p, snd_dir, 1);
1008 	}
1009 
1010 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1011 	if (err)
1012 		goto out_release;
1013 	if (!sync) {
1014 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1015 
1016 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1017 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1018 	}
1019 	release_head(c, BASEHD);
1020 
1021 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1022 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1023 	if (err)
1024 		goto out_ro;
1025 
1026 	offs += aligned_dlen1;
1027 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1028 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1029 	if (err)
1030 		goto out_ro;
1031 
1032 	offs += aligned_dlen2;
1033 
1034 	ino_key_init(c, &key, fst_dir->i_ino);
1035 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1036 	if (err)
1037 		goto out_ro;
1038 
1039 	if (twoparents) {
1040 		offs += ALIGN(plen, 8);
1041 		ino_key_init(c, &key, snd_dir->i_ino);
1042 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1043 		if (err)
1044 			goto out_ro;
1045 	}
1046 
1047 	finish_reservation(c);
1048 
1049 	mark_inode_clean(c, ubifs_inode(fst_dir));
1050 	if (twoparents)
1051 		mark_inode_clean(c, ubifs_inode(snd_dir));
1052 	kfree(dent1);
1053 	return 0;
1054 
1055 out_release:
1056 	release_head(c, BASEHD);
1057 out_ro:
1058 	ubifs_ro_mode(c, err);
1059 	finish_reservation(c);
1060 out_free:
1061 	kfree(dent1);
1062 	return err;
1063 }
1064 
1065 /**
1066  * ubifs_jnl_rename - rename a directory entry.
1067  * @c: UBIFS file-system description object
1068  * @old_dir: parent inode of directory entry to rename
1069  * @old_dentry: directory entry to rename
1070  * @new_dir: parent inode of directory entry to rename
1071  * @new_dentry: new directory entry (or directory entry to replace)
1072  * @sync: non-zero if the write-buffer has to be synchronized
1073  *
1074  * This function implements the re-name operation which may involve writing up
1075  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1076  * and returns zero on success. In case of failure, a negative error code is
1077  * returned.
1078  */
1079 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1080 		     const struct inode *old_inode,
1081 		     const struct fscrypt_name *old_nm,
1082 		     const struct inode *new_dir,
1083 		     const struct inode *new_inode,
1084 		     const struct fscrypt_name *new_nm,
1085 		     const struct inode *whiteout, int sync)
1086 {
1087 	void *p;
1088 	union ubifs_key key;
1089 	struct ubifs_dent_node *dent, *dent2;
1090 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1091 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1092 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1093 	int move = (old_dir != new_dir);
1094 	struct ubifs_inode *uninitialized_var(new_ui);
1095 
1096 	//dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
1097 	//	old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
1098 	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
1099 	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
1100 	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1101 	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1102 
1103 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1104 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1105 	if (new_inode) {
1106 		new_ui = ubifs_inode(new_inode);
1107 		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
1108 		ilen = UBIFS_INO_NODE_SZ;
1109 		if (!last_reference)
1110 			ilen += new_ui->data_len;
1111 	} else
1112 		ilen = 0;
1113 
1114 	aligned_dlen1 = ALIGN(dlen1, 8);
1115 	aligned_dlen2 = ALIGN(dlen2, 8);
1116 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1117 	if (move)
1118 		len += plen;
1119 	dent = kmalloc(len, GFP_NOFS);
1120 	if (!dent)
1121 		return -ENOMEM;
1122 
1123 	/* Make reservation before allocating sequence numbers */
1124 	err = make_reservation(c, BASEHD, len);
1125 	if (err)
1126 		goto out_free;
1127 
1128 	/* Make new dent */
1129 	dent->ch.node_type = UBIFS_DENT_NODE;
1130 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1131 	dent->inum = cpu_to_le64(old_inode->i_ino);
1132 	dent->type = get_dent_type(old_inode->i_mode);
1133 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1134 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1135 	dent->name[fname_len(new_nm)] = '\0';
1136 	set_dent_cookie(c, dent);
1137 	zero_dent_node_unused(dent);
1138 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1139 
1140 	dent2 = (void *)dent + aligned_dlen1;
1141 	dent2->ch.node_type = UBIFS_DENT_NODE;
1142 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1143 
1144 	if (whiteout) {
1145 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1146 		dent2->type = get_dent_type(whiteout->i_mode);
1147 	} else {
1148 		/* Make deletion dent */
1149 		dent2->inum = 0;
1150 		dent2->type = DT_UNKNOWN;
1151 	}
1152 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1153 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1154 	dent2->name[fname_len(old_nm)] = '\0';
1155 	set_dent_cookie(c, dent2);
1156 	zero_dent_node_unused(dent2);
1157 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1158 
1159 	p = (void *)dent2 + aligned_dlen2;
1160 	if (new_inode) {
1161 		pack_inode(c, p, new_inode, 0);
1162 		p += ALIGN(ilen, 8);
1163 	}
1164 
1165 	if (!move)
1166 		pack_inode(c, p, old_dir, 1);
1167 	else {
1168 		pack_inode(c, p, old_dir, 0);
1169 		p += ALIGN(plen, 8);
1170 		pack_inode(c, p, new_dir, 1);
1171 	}
1172 
1173 	if (last_reference) {
1174 		err = ubifs_add_orphan(c, new_inode->i_ino);
1175 		if (err) {
1176 			release_head(c, BASEHD);
1177 			goto out_finish;
1178 		}
1179 		new_ui->del_cmtno = c->cmt_no;
1180 	}
1181 
1182 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1183 	if (err)
1184 		goto out_release;
1185 	if (!sync) {
1186 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1187 
1188 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1189 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1190 		if (new_inode)
1191 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1192 						  new_inode->i_ino);
1193 	}
1194 	release_head(c, BASEHD);
1195 
1196 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1197 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1198 	if (err)
1199 		goto out_ro;
1200 
1201 	offs += aligned_dlen1;
1202 	if (whiteout) {
1203 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1204 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1205 		if (err)
1206 			goto out_ro;
1207 
1208 		ubifs_delete_orphan(c, whiteout->i_ino);
1209 	} else {
1210 		err = ubifs_add_dirt(c, lnum, dlen2);
1211 		if (err)
1212 			goto out_ro;
1213 
1214 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1215 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1216 		if (err)
1217 			goto out_ro;
1218 	}
1219 
1220 	offs += aligned_dlen2;
1221 	if (new_inode) {
1222 		ino_key_init(c, &key, new_inode->i_ino);
1223 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1224 		if (err)
1225 			goto out_ro;
1226 		offs += ALIGN(ilen, 8);
1227 	}
1228 
1229 	ino_key_init(c, &key, old_dir->i_ino);
1230 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1231 	if (err)
1232 		goto out_ro;
1233 
1234 	if (move) {
1235 		offs += ALIGN(plen, 8);
1236 		ino_key_init(c, &key, new_dir->i_ino);
1237 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1238 		if (err)
1239 			goto out_ro;
1240 	}
1241 
1242 	finish_reservation(c);
1243 	if (new_inode) {
1244 		mark_inode_clean(c, new_ui);
1245 		spin_lock(&new_ui->ui_lock);
1246 		new_ui->synced_i_size = new_ui->ui_size;
1247 		spin_unlock(&new_ui->ui_lock);
1248 	}
1249 	mark_inode_clean(c, ubifs_inode(old_dir));
1250 	if (move)
1251 		mark_inode_clean(c, ubifs_inode(new_dir));
1252 	kfree(dent);
1253 	return 0;
1254 
1255 out_release:
1256 	release_head(c, BASEHD);
1257 out_ro:
1258 	ubifs_ro_mode(c, err);
1259 	if (last_reference)
1260 		ubifs_delete_orphan(c, new_inode->i_ino);
1261 out_finish:
1262 	finish_reservation(c);
1263 out_free:
1264 	kfree(dent);
1265 	return err;
1266 }
1267 
1268 /**
1269  * truncate_data_node - re-compress/encrypt a truncated data node.
1270  * @c: UBIFS file-system description object
1271  * @inode: inode which referes to the data node
1272  * @block: data block number
1273  * @dn: data node to re-compress
1274  * @new_len: new length
1275  *
1276  * This function is used when an inode is truncated and the last data node of
1277  * the inode has to be re-compressed/encrypted and re-written.
1278  */
1279 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1280 			      unsigned int block, struct ubifs_data_node *dn,
1281 			      int *new_len)
1282 {
1283 	void *buf;
1284 	int err, dlen, compr_type, out_len, old_dlen;
1285 
1286 	out_len = le32_to_cpu(dn->size);
1287 	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1288 	if (!buf)
1289 		return -ENOMEM;
1290 
1291 	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1292 	compr_type = le16_to_cpu(dn->compr_type);
1293 
1294 	if (ubifs_crypt_is_encrypted(inode)) {
1295 		err = ubifs_decrypt(inode, dn, &dlen, block);
1296 		if (err)
1297 			goto out;
1298 	}
1299 
1300 	if (compr_type != UBIFS_COMPR_NONE) {
1301 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1302 		if (err)
1303 			goto out;
1304 
1305 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1306 	}
1307 
1308 	if (ubifs_crypt_is_encrypted(inode)) {
1309 		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1310 		if (err)
1311 			goto out;
1312 
1313 		out_len = old_dlen;
1314 	} else {
1315 		dn->compr_size = 0;
1316 	}
1317 
1318 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1319 	dn->compr_type = cpu_to_le16(compr_type);
1320 	dn->size = cpu_to_le32(*new_len);
1321 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1322 out:
1323 	kfree(buf);
1324 	return err;
1325 }
1326 
1327 /**
1328  * ubifs_jnl_truncate - update the journal for a truncation.
1329  * @c: UBIFS file-system description object
1330  * @inode: inode to truncate
1331  * @old_size: old size
1332  * @new_size: new size
1333  *
1334  * When the size of a file decreases due to truncation, a truncation node is
1335  * written, the journal tree is updated, and the last data block is re-written
1336  * if it has been affected. The inode is also updated in order to synchronize
1337  * the new inode size.
1338  *
1339  * This function marks the inode as clean and returns zero on success. In case
1340  * of failure, a negative error code is returned.
1341  */
1342 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1343 		       loff_t old_size, loff_t new_size)
1344 {
1345 	union ubifs_key key, to_key;
1346 	struct ubifs_ino_node *ino;
1347 	struct ubifs_trun_node *trun;
1348 	struct ubifs_data_node *uninitialized_var(dn);
1349 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1350 	struct ubifs_inode *ui = ubifs_inode(inode);
1351 	ino_t inum = inode->i_ino;
1352 	unsigned int blk;
1353 
1354 	dbg_jnl("ino %lu, size %lld -> %lld",
1355 		(unsigned long)inum, old_size, new_size);
1356 	ubifs_assert(!ui->data_len);
1357 	ubifs_assert(S_ISREG(inode->i_mode));
1358 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1359 
1360 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1361 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1362 	ino = kmalloc(sz, GFP_NOFS);
1363 	if (!ino)
1364 		return -ENOMEM;
1365 
1366 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1367 	trun->ch.node_type = UBIFS_TRUN_NODE;
1368 	trun->inum = cpu_to_le32(inum);
1369 	trun->old_size = cpu_to_le64(old_size);
1370 	trun->new_size = cpu_to_le64(new_size);
1371 	zero_trun_node_unused(trun);
1372 
1373 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1374 	if (dlen) {
1375 		/* Get last data block so it can be truncated */
1376 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1377 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1378 		data_key_init(c, &key, inum, blk);
1379 		dbg_jnlk(&key, "last block key ");
1380 		err = ubifs_tnc_lookup(c, &key, dn);
1381 		if (err == -ENOENT)
1382 			dlen = 0; /* Not found (so it is a hole) */
1383 		else if (err)
1384 			goto out_free;
1385 		else {
1386 			if (le32_to_cpu(dn->size) <= dlen)
1387 				dlen = 0; /* Nothing to do */
1388 			else {
1389 				err = truncate_data_node(c, inode, blk, dn, &dlen);
1390 				if (err)
1391 					goto out_free;
1392 			}
1393 		}
1394 	}
1395 
1396 	/* Must make reservation before allocating sequence numbers */
1397 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1398 	if (dlen)
1399 		len += dlen;
1400 	err = make_reservation(c, BASEHD, len);
1401 	if (err)
1402 		goto out_free;
1403 
1404 	pack_inode(c, ino, inode, 0);
1405 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1406 	if (dlen)
1407 		ubifs_prep_grp_node(c, dn, dlen, 1);
1408 
1409 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1410 	if (err)
1411 		goto out_release;
1412 	if (!sync)
1413 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1414 	release_head(c, BASEHD);
1415 
1416 	if (dlen) {
1417 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1418 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1419 		if (err)
1420 			goto out_ro;
1421 	}
1422 
1423 	ino_key_init(c, &key, inum);
1424 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1425 	if (err)
1426 		goto out_ro;
1427 
1428 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1429 	if (err)
1430 		goto out_ro;
1431 
1432 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1433 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1434 	data_key_init(c, &key, inum, blk);
1435 
1436 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1437 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1438 	data_key_init(c, &to_key, inum, blk);
1439 
1440 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1441 	if (err)
1442 		goto out_ro;
1443 
1444 	finish_reservation(c);
1445 	spin_lock(&ui->ui_lock);
1446 	ui->synced_i_size = ui->ui_size;
1447 	spin_unlock(&ui->ui_lock);
1448 	mark_inode_clean(c, ui);
1449 	kfree(ino);
1450 	return 0;
1451 
1452 out_release:
1453 	release_head(c, BASEHD);
1454 out_ro:
1455 	ubifs_ro_mode(c, err);
1456 	finish_reservation(c);
1457 out_free:
1458 	kfree(ino);
1459 	return err;
1460 }
1461 
1462 
1463 /**
1464  * ubifs_jnl_delete_xattr - delete an extended attribute.
1465  * @c: UBIFS file-system description object
1466  * @host: host inode
1467  * @inode: extended attribute inode
1468  * @nm: extended attribute entry name
1469  *
1470  * This function delete an extended attribute which is very similar to
1471  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1472  * updates the target inode. Returns zero in case of success and a negative
1473  * error code in case of failure.
1474  */
1475 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1476 			   const struct inode *inode,
1477 			   const struct fscrypt_name *nm)
1478 {
1479 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1480 	struct ubifs_dent_node *xent;
1481 	struct ubifs_ino_node *ino;
1482 	union ubifs_key xent_key, key1, key2;
1483 	int sync = IS_DIRSYNC(host);
1484 	struct ubifs_inode *host_ui = ubifs_inode(host);
1485 
1486 	//dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1487 	//	host->i_ino, inode->i_ino, nm->name,
1488 	//	ubifs_inode(inode)->data_len);
1489 	ubifs_assert(inode->i_nlink == 0);
1490 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1491 
1492 	/*
1493 	 * Since we are deleting the inode, we do not bother to attach any data
1494 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1495 	 */
1496 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1497 	aligned_xlen = ALIGN(xlen, 8);
1498 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1499 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1500 
1501 	xent = kmalloc(len, GFP_NOFS);
1502 	if (!xent)
1503 		return -ENOMEM;
1504 
1505 	/* Make reservation before allocating sequence numbers */
1506 	err = make_reservation(c, BASEHD, len);
1507 	if (err) {
1508 		kfree(xent);
1509 		return err;
1510 	}
1511 
1512 	xent->ch.node_type = UBIFS_XENT_NODE;
1513 	xent_key_init(c, &xent_key, host->i_ino, nm);
1514 	key_write(c, &xent_key, xent->key);
1515 	xent->inum = 0;
1516 	xent->type = get_dent_type(inode->i_mode);
1517 	xent->nlen = cpu_to_le16(fname_len(nm));
1518 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1519 	xent->name[fname_len(nm)] = '\0';
1520 	zero_dent_node_unused(xent);
1521 	ubifs_prep_grp_node(c, xent, xlen, 0);
1522 
1523 	ino = (void *)xent + aligned_xlen;
1524 	pack_inode(c, ino, inode, 0);
1525 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1526 	pack_inode(c, ino, host, 1);
1527 
1528 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1529 	if (!sync && !err)
1530 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1531 	release_head(c, BASEHD);
1532 	kfree(xent);
1533 	if (err)
1534 		goto out_ro;
1535 
1536 	/* Remove the extended attribute entry from TNC */
1537 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1538 	if (err)
1539 		goto out_ro;
1540 	err = ubifs_add_dirt(c, lnum, xlen);
1541 	if (err)
1542 		goto out_ro;
1543 
1544 	/*
1545 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1546 	 * Well, there actually must be only one node - the inode itself.
1547 	 */
1548 	lowest_ino_key(c, &key1, inode->i_ino);
1549 	highest_ino_key(c, &key2, inode->i_ino);
1550 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1551 	if (err)
1552 		goto out_ro;
1553 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1554 	if (err)
1555 		goto out_ro;
1556 
1557 	/* And update TNC with the new host inode position */
1558 	ino_key_init(c, &key1, host->i_ino);
1559 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1560 	if (err)
1561 		goto out_ro;
1562 
1563 	finish_reservation(c);
1564 	spin_lock(&host_ui->ui_lock);
1565 	host_ui->synced_i_size = host_ui->ui_size;
1566 	spin_unlock(&host_ui->ui_lock);
1567 	mark_inode_clean(c, host_ui);
1568 	return 0;
1569 
1570 out_ro:
1571 	ubifs_ro_mode(c, err);
1572 	finish_reservation(c);
1573 	return err;
1574 }
1575 
1576 /**
1577  * ubifs_jnl_change_xattr - change an extended attribute.
1578  * @c: UBIFS file-system description object
1579  * @inode: extended attribute inode
1580  * @host: host inode
1581  *
1582  * This function writes the updated version of an extended attribute inode and
1583  * the host inode to the journal (to the base head). The host inode is written
1584  * after the extended attribute inode in order to guarantee that the extended
1585  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1586  * consequently, the write-buffer is synchronized. This function returns zero
1587  * in case of success and a negative error code in case of failure.
1588  */
1589 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1590 			   const struct inode *host)
1591 {
1592 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1593 	struct ubifs_inode *host_ui = ubifs_inode(host);
1594 	struct ubifs_ino_node *ino;
1595 	union ubifs_key key;
1596 	int sync = IS_DIRSYNC(host);
1597 
1598 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1599 	ubifs_assert(host->i_nlink > 0);
1600 	ubifs_assert(inode->i_nlink > 0);
1601 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1602 
1603 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1604 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1605 	aligned_len1 = ALIGN(len1, 8);
1606 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1607 
1608 	ino = kmalloc(aligned_len, GFP_NOFS);
1609 	if (!ino)
1610 		return -ENOMEM;
1611 
1612 	/* Make reservation before allocating sequence numbers */
1613 	err = make_reservation(c, BASEHD, aligned_len);
1614 	if (err)
1615 		goto out_free;
1616 
1617 	pack_inode(c, ino, host, 0);
1618 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1619 
1620 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1621 	if (!sync && !err) {
1622 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1623 
1624 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1625 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1626 	}
1627 	release_head(c, BASEHD);
1628 	if (err)
1629 		goto out_ro;
1630 
1631 	ino_key_init(c, &key, host->i_ino);
1632 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1633 	if (err)
1634 		goto out_ro;
1635 
1636 	ino_key_init(c, &key, inode->i_ino);
1637 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1638 	if (err)
1639 		goto out_ro;
1640 
1641 	finish_reservation(c);
1642 	spin_lock(&host_ui->ui_lock);
1643 	host_ui->synced_i_size = host_ui->ui_size;
1644 	spin_unlock(&host_ui->ui_lock);
1645 	mark_inode_clean(c, host_ui);
1646 	kfree(ino);
1647 	return 0;
1648 
1649 out_ro:
1650 	ubifs_ro_mode(c, err);
1651 	finish_reservation(c);
1652 out_free:
1653 	kfree(ino);
1654 	return err;
1655 }
1656 
1657