1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 } 82 83 /** 84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 85 * node. 86 * @trun: the truncation node to zero out 87 */ 88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 89 { 90 memset(trun->padding, 0, 12); 91 } 92 93 /** 94 * reserve_space - reserve space in the journal. 95 * @c: UBIFS file-system description object 96 * @jhead: journal head number 97 * @len: node length 98 * 99 * This function reserves space in journal head @head. If the reservation 100 * succeeded, the journal head stays locked and later has to be unlocked using 101 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 102 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 103 * other negative error codes in case of other failures. 104 */ 105 static int reserve_space(struct ubifs_info *c, int jhead, int len) 106 { 107 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 108 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 109 110 /* 111 * Typically, the base head has smaller nodes written to it, so it is 112 * better to try to allocate space at the ends of eraseblocks. This is 113 * what the squeeze parameter does. 114 */ 115 ubifs_assert(!c->ro_media && !c->ro_mount); 116 squeeze = (jhead == BASEHD); 117 again: 118 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 119 120 if (c->ro_error) { 121 err = -EROFS; 122 goto out_unlock; 123 } 124 125 avail = c->leb_size - wbuf->offs - wbuf->used; 126 if (wbuf->lnum != -1 && avail >= len) 127 return 0; 128 129 /* 130 * Write buffer wasn't seek'ed or there is no enough space - look for an 131 * LEB with some empty space. 132 */ 133 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 134 if (lnum >= 0) 135 goto out; 136 137 err = lnum; 138 if (err != -ENOSPC) 139 goto out_unlock; 140 141 /* 142 * No free space, we have to run garbage collector to make 143 * some. But the write-buffer mutex has to be unlocked because 144 * GC also takes it. 145 */ 146 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 147 mutex_unlock(&wbuf->io_mutex); 148 149 lnum = ubifs_garbage_collect(c, 0); 150 if (lnum < 0) { 151 err = lnum; 152 if (err != -ENOSPC) 153 return err; 154 155 /* 156 * GC could not make a free LEB. But someone else may 157 * have allocated new bud for this journal head, 158 * because we dropped @wbuf->io_mutex, so try once 159 * again. 160 */ 161 dbg_jnl("GC couldn't make a free LEB for jhead %s", 162 dbg_jhead(jhead)); 163 if (retries++ < 2) { 164 dbg_jnl("retry (%d)", retries); 165 goto again; 166 } 167 168 dbg_jnl("return -ENOSPC"); 169 return err; 170 } 171 172 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 173 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 174 avail = c->leb_size - wbuf->offs - wbuf->used; 175 176 if (wbuf->lnum != -1 && avail >= len) { 177 /* 178 * Someone else has switched the journal head and we have 179 * enough space now. This happens when more than one process is 180 * trying to write to the same journal head at the same time. 181 */ 182 dbg_jnl("return LEB %d back, already have LEB %d:%d", 183 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 184 err = ubifs_return_leb(c, lnum); 185 if (err) 186 goto out_unlock; 187 return 0; 188 } 189 190 offs = 0; 191 192 out: 193 /* 194 * Make sure we synchronize the write-buffer before we add the new bud 195 * to the log. Otherwise we may have a power cut after the log 196 * reference node for the last bud (@lnum) is written but before the 197 * write-buffer data are written to the next-to-last bud 198 * (@wbuf->lnum). And the effect would be that the recovery would see 199 * that there is corruption in the next-to-last bud. 200 */ 201 err = ubifs_wbuf_sync_nolock(wbuf); 202 if (err) 203 goto out_return; 204 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 205 if (err) 206 goto out_return; 207 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); 208 if (err) 209 goto out_unlock; 210 211 return 0; 212 213 out_unlock: 214 mutex_unlock(&wbuf->io_mutex); 215 return err; 216 217 out_return: 218 /* An error occurred and the LEB has to be returned to lprops */ 219 ubifs_assert(err < 0); 220 err1 = ubifs_return_leb(c, lnum); 221 if (err1 && err == -EAGAIN) 222 /* 223 * Return original error code only if it is not %-EAGAIN, 224 * which is not really an error. Otherwise, return the error 225 * code of 'ubifs_return_leb()'. 226 */ 227 err = err1; 228 mutex_unlock(&wbuf->io_mutex); 229 return err; 230 } 231 232 /** 233 * write_node - write node to a journal head. 234 * @c: UBIFS file-system description object 235 * @jhead: journal head 236 * @node: node to write 237 * @len: node length 238 * @lnum: LEB number written is returned here 239 * @offs: offset written is returned here 240 * 241 * This function writes a node to reserved space of journal head @jhead. 242 * Returns zero in case of success and a negative error code in case of 243 * failure. 244 */ 245 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 246 int *lnum, int *offs) 247 { 248 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 249 250 ubifs_assert(jhead != GCHD); 251 252 *lnum = c->jheads[jhead].wbuf.lnum; 253 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 254 255 dbg_jnl("jhead %s, LEB %d:%d, len %d", 256 dbg_jhead(jhead), *lnum, *offs, len); 257 ubifs_prepare_node(c, node, len, 0); 258 259 return ubifs_wbuf_write_nolock(wbuf, node, len); 260 } 261 262 /** 263 * write_head - write data to a journal head. 264 * @c: UBIFS file-system description object 265 * @jhead: journal head 266 * @buf: buffer to write 267 * @len: length to write 268 * @lnum: LEB number written is returned here 269 * @offs: offset written is returned here 270 * @sync: non-zero if the write-buffer has to by synchronized 271 * 272 * This function is the same as 'write_node()' but it does not assume the 273 * buffer it is writing is a node, so it does not prepare it (which means 274 * initializing common header and calculating CRC). 275 */ 276 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 277 int *lnum, int *offs, int sync) 278 { 279 int err; 280 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 281 282 ubifs_assert(jhead != GCHD); 283 284 *lnum = c->jheads[jhead].wbuf.lnum; 285 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 286 dbg_jnl("jhead %s, LEB %d:%d, len %d", 287 dbg_jhead(jhead), *lnum, *offs, len); 288 289 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 290 if (err) 291 return err; 292 if (sync) 293 err = ubifs_wbuf_sync_nolock(wbuf); 294 return err; 295 } 296 297 /** 298 * make_reservation - reserve journal space. 299 * @c: UBIFS file-system description object 300 * @jhead: journal head 301 * @len: how many bytes to reserve 302 * 303 * This function makes space reservation in journal head @jhead. The function 304 * takes the commit lock and locks the journal head, and the caller has to 305 * unlock the head and finish the reservation with 'finish_reservation()'. 306 * Returns zero in case of success and a negative error code in case of 307 * failure. 308 * 309 * Note, the journal head may be unlocked as soon as the data is written, while 310 * the commit lock has to be released after the data has been added to the 311 * TNC. 312 */ 313 static int make_reservation(struct ubifs_info *c, int jhead, int len) 314 { 315 int err, cmt_retries = 0, nospc_retries = 0; 316 317 again: 318 down_read(&c->commit_sem); 319 err = reserve_space(c, jhead, len); 320 if (!err) 321 return 0; 322 up_read(&c->commit_sem); 323 324 if (err == -ENOSPC) { 325 /* 326 * GC could not make any progress. We should try to commit 327 * once because it could make some dirty space and GC would 328 * make progress, so make the error -EAGAIN so that the below 329 * will commit and re-try. 330 */ 331 if (nospc_retries++ < 2) { 332 dbg_jnl("no space, retry"); 333 err = -EAGAIN; 334 } 335 336 /* 337 * This means that the budgeting is incorrect. We always have 338 * to be able to write to the media, because all operations are 339 * budgeted. Deletions are not budgeted, though, but we reserve 340 * an extra LEB for them. 341 */ 342 } 343 344 if (err != -EAGAIN) 345 goto out; 346 347 /* 348 * -EAGAIN means that the journal is full or too large, or the above 349 * code wants to do one commit. Do this and re-try. 350 */ 351 if (cmt_retries > 128) { 352 /* 353 * This should not happen unless the journal size limitations 354 * are too tough. 355 */ 356 ubifs_err(c, "stuck in space allocation"); 357 err = -ENOSPC; 358 goto out; 359 } else if (cmt_retries > 32) 360 ubifs_warn(c, "too many space allocation re-tries (%d)", 361 cmt_retries); 362 363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 364 cmt_retries); 365 cmt_retries += 1; 366 367 err = ubifs_run_commit(c); 368 if (err) 369 return err; 370 goto again; 371 372 out: 373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", 374 len, jhead, err); 375 if (err == -ENOSPC) { 376 /* This are some budgeting problems, print useful information */ 377 down_write(&c->commit_sem); 378 dump_stack(); 379 ubifs_dump_budg(c, &c->bi); 380 ubifs_dump_lprops(c); 381 cmt_retries = dbg_check_lprops(c); 382 up_write(&c->commit_sem); 383 } 384 return err; 385 } 386 387 /** 388 * release_head - release a journal head. 389 * @c: UBIFS file-system description object 390 * @jhead: journal head 391 * 392 * This function releases journal head @jhead which was locked by 393 * the 'make_reservation()' function. It has to be called after each successful 394 * 'make_reservation()' invocation. 395 */ 396 static inline void release_head(struct ubifs_info *c, int jhead) 397 { 398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 399 } 400 401 /** 402 * finish_reservation - finish a reservation. 403 * @c: UBIFS file-system description object 404 * 405 * This function finishes journal space reservation. It must be called after 406 * 'make_reservation()'. 407 */ 408 static void finish_reservation(struct ubifs_info *c) 409 { 410 up_read(&c->commit_sem); 411 } 412 413 /** 414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 415 * @mode: inode mode 416 */ 417 static int get_dent_type(int mode) 418 { 419 switch (mode & S_IFMT) { 420 case S_IFREG: 421 return UBIFS_ITYPE_REG; 422 case S_IFDIR: 423 return UBIFS_ITYPE_DIR; 424 case S_IFLNK: 425 return UBIFS_ITYPE_LNK; 426 case S_IFBLK: 427 return UBIFS_ITYPE_BLK; 428 case S_IFCHR: 429 return UBIFS_ITYPE_CHR; 430 case S_IFIFO: 431 return UBIFS_ITYPE_FIFO; 432 case S_IFSOCK: 433 return UBIFS_ITYPE_SOCK; 434 default: 435 BUG(); 436 } 437 return 0; 438 } 439 440 /** 441 * pack_inode - pack an inode node. 442 * @c: UBIFS file-system description object 443 * @ino: buffer in which to pack inode node 444 * @inode: inode to pack 445 * @last: indicates the last node of the group 446 */ 447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 448 const struct inode *inode, int last) 449 { 450 int data_len = 0, last_reference = !inode->i_nlink; 451 struct ubifs_inode *ui = ubifs_inode(inode); 452 453 ino->ch.node_type = UBIFS_INO_NODE; 454 ino_key_init_flash(c, &ino->key, inode->i_ino); 455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 462 ino->uid = cpu_to_le32(i_uid_read(inode)); 463 ino->gid = cpu_to_le32(i_gid_read(inode)); 464 ino->mode = cpu_to_le32(inode->i_mode); 465 ino->flags = cpu_to_le32(ui->flags); 466 ino->size = cpu_to_le64(ui->ui_size); 467 ino->nlink = cpu_to_le32(inode->i_nlink); 468 ino->compr_type = cpu_to_le16(ui->compr_type); 469 ino->data_len = cpu_to_le32(ui->data_len); 470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 471 ino->xattr_size = cpu_to_le32(ui->xattr_size); 472 ino->xattr_names = cpu_to_le32(ui->xattr_names); 473 zero_ino_node_unused(ino); 474 475 /* 476 * Drop the attached data if this is a deletion inode, the data is not 477 * needed anymore. 478 */ 479 if (!last_reference) { 480 memcpy(ino->data, ui->data, ui->data_len); 481 data_len = ui->data_len; 482 } 483 484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 485 } 486 487 /** 488 * mark_inode_clean - mark UBIFS inode as clean. 489 * @c: UBIFS file-system description object 490 * @ui: UBIFS inode to mark as clean 491 * 492 * This helper function marks UBIFS inode @ui as clean by cleaning the 493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 495 * just do nothing. 496 */ 497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 498 { 499 if (ui->dirty) 500 ubifs_release_dirty_inode_budget(c, ui); 501 ui->dirty = 0; 502 } 503 504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) 505 { 506 if (c->double_hash) 507 dent->cookie = prandom_u32(); 508 else 509 dent->cookie = 0; 510 } 511 512 /** 513 * ubifs_jnl_update - update inode. 514 * @c: UBIFS file-system description object 515 * @dir: parent inode or host inode in case of extended attributes 516 * @nm: directory entry name 517 * @inode: inode to update 518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 519 * @xent: non-zero if the directory entry is an extended attribute entry 520 * 521 * This function updates an inode by writing a directory entry (or extended 522 * attribute entry), the inode itself, and the parent directory inode (or the 523 * host inode) to the journal. 524 * 525 * The function writes the host inode @dir last, which is important in case of 526 * extended attributes. Indeed, then we guarantee that if the host inode gets 527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 528 * the extended attribute inode gets flushed too. And this is exactly what the 529 * user expects - synchronizing the host inode synchronizes its extended 530 * attributes. Similarly, this guarantees that if @dir is synchronized, its 531 * directory entry corresponding to @nm gets synchronized too. 532 * 533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 534 * function synchronizes the write-buffer. 535 * 536 * This function marks the @dir and @inode inodes as clean and returns zero on 537 * success. In case of failure, a negative error code is returned. 538 */ 539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 540 const struct fscrypt_name *nm, const struct inode *inode, 541 int deletion, int xent) 542 { 543 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 544 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 545 int last_reference = !!(deletion && inode->i_nlink == 0); 546 struct ubifs_inode *ui = ubifs_inode(inode); 547 struct ubifs_inode *host_ui = ubifs_inode(dir); 548 struct ubifs_dent_node *dent; 549 struct ubifs_ino_node *ino; 550 union ubifs_key dent_key, ino_key; 551 552 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 553 554 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 555 ilen = UBIFS_INO_NODE_SZ; 556 557 /* 558 * If the last reference to the inode is being deleted, then there is 559 * no need to attach and write inode data, it is being deleted anyway. 560 * And if the inode is being deleted, no need to synchronize 561 * write-buffer even if the inode is synchronous. 562 */ 563 if (!last_reference) { 564 ilen += ui->data_len; 565 sync |= IS_SYNC(inode); 566 } 567 568 aligned_dlen = ALIGN(dlen, 8); 569 aligned_ilen = ALIGN(ilen, 8); 570 571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 572 /* Make sure to also account for extended attributes */ 573 len += host_ui->data_len; 574 575 dent = kzalloc(len, GFP_NOFS); 576 if (!dent) 577 return -ENOMEM; 578 579 /* Make reservation before allocating sequence numbers */ 580 err = make_reservation(c, BASEHD, len); 581 if (err) 582 goto out_free; 583 584 if (!xent) { 585 dent->ch.node_type = UBIFS_DENT_NODE; 586 if (nm->hash) 587 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); 588 else 589 dent_key_init(c, &dent_key, dir->i_ino, nm); 590 } else { 591 dent->ch.node_type = UBIFS_XENT_NODE; 592 xent_key_init(c, &dent_key, dir->i_ino, nm); 593 } 594 595 key_write(c, &dent_key, dent->key); 596 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 597 dent->type = get_dent_type(inode->i_mode); 598 dent->nlen = cpu_to_le16(fname_len(nm)); 599 memcpy(dent->name, fname_name(nm), fname_len(nm)); 600 dent->name[fname_len(nm)] = '\0'; 601 set_dent_cookie(c, dent); 602 603 zero_dent_node_unused(dent); 604 ubifs_prep_grp_node(c, dent, dlen, 0); 605 606 ino = (void *)dent + aligned_dlen; 607 pack_inode(c, ino, inode, 0); 608 ino = (void *)ino + aligned_ilen; 609 pack_inode(c, ino, dir, 1); 610 611 if (last_reference) { 612 err = ubifs_add_orphan(c, inode->i_ino); 613 if (err) { 614 release_head(c, BASEHD); 615 goto out_finish; 616 } 617 ui->del_cmtno = c->cmt_no; 618 } 619 620 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 621 if (err) 622 goto out_release; 623 if (!sync) { 624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 625 626 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 627 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 628 } 629 release_head(c, BASEHD); 630 kfree(dent); 631 632 if (deletion) { 633 if (nm->hash) 634 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); 635 else 636 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 637 if (err) 638 goto out_ro; 639 err = ubifs_add_dirt(c, lnum, dlen); 640 } else 641 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 642 if (err) 643 goto out_ro; 644 645 /* 646 * Note, we do not remove the inode from TNC even if the last reference 647 * to it has just been deleted, because the inode may still be opened. 648 * Instead, the inode has been added to orphan lists and the orphan 649 * subsystem will take further care about it. 650 */ 651 ino_key_init(c, &ino_key, inode->i_ino); 652 ino_offs = dent_offs + aligned_dlen; 653 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 654 if (err) 655 goto out_ro; 656 657 ino_key_init(c, &ino_key, dir->i_ino); 658 ino_offs += aligned_ilen; 659 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, 660 UBIFS_INO_NODE_SZ + host_ui->data_len); 661 if (err) 662 goto out_ro; 663 664 finish_reservation(c); 665 spin_lock(&ui->ui_lock); 666 ui->synced_i_size = ui->ui_size; 667 spin_unlock(&ui->ui_lock); 668 mark_inode_clean(c, ui); 669 mark_inode_clean(c, host_ui); 670 return 0; 671 672 out_finish: 673 finish_reservation(c); 674 out_free: 675 kfree(dent); 676 return err; 677 678 out_release: 679 release_head(c, BASEHD); 680 kfree(dent); 681 out_ro: 682 ubifs_ro_mode(c, err); 683 if (last_reference) 684 ubifs_delete_orphan(c, inode->i_ino); 685 finish_reservation(c); 686 return err; 687 } 688 689 /** 690 * ubifs_jnl_write_data - write a data node to the journal. 691 * @c: UBIFS file-system description object 692 * @inode: inode the data node belongs to 693 * @key: node key 694 * @buf: buffer to write 695 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 696 * 697 * This function writes a data node to the journal. Returns %0 if the data node 698 * was successfully written, and a negative error code in case of failure. 699 */ 700 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 701 const union ubifs_key *key, const void *buf, int len) 702 { 703 struct ubifs_data_node *data; 704 int err, lnum, offs, compr_type, out_len, compr_len; 705 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 706 struct ubifs_inode *ui = ubifs_inode(inode); 707 bool encrypted = ubifs_crypt_is_encrypted(inode); 708 709 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 710 (unsigned long)key_inum(c, key), key_block(c, key), len); 711 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 712 713 if (encrypted) 714 dlen += UBIFS_CIPHER_BLOCK_SIZE; 715 716 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); 717 if (!data) { 718 /* 719 * Fall-back to the write reserve buffer. Note, we might be 720 * currently on the memory reclaim path, when the kernel is 721 * trying to free some memory by writing out dirty pages. The 722 * write reserve buffer helps us to guarantee that we are 723 * always able to write the data. 724 */ 725 allocated = 0; 726 mutex_lock(&c->write_reserve_mutex); 727 data = c->write_reserve_buf; 728 } 729 730 data->ch.node_type = UBIFS_DATA_NODE; 731 key_write(c, key, &data->key); 732 data->size = cpu_to_le32(len); 733 734 if (!(ui->flags & UBIFS_COMPR_FL)) 735 /* Compression is disabled for this inode */ 736 compr_type = UBIFS_COMPR_NONE; 737 else 738 compr_type = ui->compr_type; 739 740 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; 741 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); 742 ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE); 743 744 if (encrypted) { 745 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); 746 if (err) 747 goto out_free; 748 749 } else { 750 data->compr_size = 0; 751 out_len = compr_len; 752 } 753 754 dlen = UBIFS_DATA_NODE_SZ + out_len; 755 data->compr_type = cpu_to_le16(compr_type); 756 757 /* Make reservation before allocating sequence numbers */ 758 err = make_reservation(c, DATAHD, dlen); 759 if (err) 760 goto out_free; 761 762 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 763 if (err) 764 goto out_release; 765 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 766 release_head(c, DATAHD); 767 768 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 769 if (err) 770 goto out_ro; 771 772 finish_reservation(c); 773 if (!allocated) 774 mutex_unlock(&c->write_reserve_mutex); 775 else 776 kfree(data); 777 return 0; 778 779 out_release: 780 release_head(c, DATAHD); 781 out_ro: 782 ubifs_ro_mode(c, err); 783 finish_reservation(c); 784 out_free: 785 if (!allocated) 786 mutex_unlock(&c->write_reserve_mutex); 787 else 788 kfree(data); 789 return err; 790 } 791 792 /** 793 * ubifs_jnl_write_inode - flush inode to the journal. 794 * @c: UBIFS file-system description object 795 * @inode: inode to flush 796 * 797 * This function writes inode @inode to the journal. If the inode is 798 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 799 * success and a negative error code in case of failure. 800 */ 801 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 802 { 803 int err, lnum, offs; 804 struct ubifs_ino_node *ino; 805 struct ubifs_inode *ui = ubifs_inode(inode); 806 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 807 808 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 809 810 /* 811 * If the inode is being deleted, do not write the attached data. No 812 * need to synchronize the write-buffer either. 813 */ 814 if (!last_reference) { 815 len += ui->data_len; 816 sync = IS_SYNC(inode); 817 } 818 ino = kmalloc(len, GFP_NOFS); 819 if (!ino) 820 return -ENOMEM; 821 822 /* Make reservation before allocating sequence numbers */ 823 err = make_reservation(c, BASEHD, len); 824 if (err) 825 goto out_free; 826 827 pack_inode(c, ino, inode, 1); 828 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 829 if (err) 830 goto out_release; 831 if (!sync) 832 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 833 inode->i_ino); 834 release_head(c, BASEHD); 835 836 if (last_reference) { 837 err = ubifs_tnc_remove_ino(c, inode->i_ino); 838 if (err) 839 goto out_ro; 840 ubifs_delete_orphan(c, inode->i_ino); 841 err = ubifs_add_dirt(c, lnum, len); 842 } else { 843 union ubifs_key key; 844 845 ino_key_init(c, &key, inode->i_ino); 846 err = ubifs_tnc_add(c, &key, lnum, offs, len); 847 } 848 if (err) 849 goto out_ro; 850 851 finish_reservation(c); 852 spin_lock(&ui->ui_lock); 853 ui->synced_i_size = ui->ui_size; 854 spin_unlock(&ui->ui_lock); 855 kfree(ino); 856 return 0; 857 858 out_release: 859 release_head(c, BASEHD); 860 out_ro: 861 ubifs_ro_mode(c, err); 862 finish_reservation(c); 863 out_free: 864 kfree(ino); 865 return err; 866 } 867 868 /** 869 * ubifs_jnl_delete_inode - delete an inode. 870 * @c: UBIFS file-system description object 871 * @inode: inode to delete 872 * 873 * This function deletes inode @inode which includes removing it from orphans, 874 * deleting it from TNC and, in some cases, writing a deletion inode to the 875 * journal. 876 * 877 * When regular file inodes are unlinked or a directory inode is removed, the 878 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 879 * direntry to the media, and adds the inode to orphans. After this, when the 880 * last reference to this inode has been dropped, this function is called. In 881 * general, it has to write one more deletion inode to the media, because if 882 * a commit happened between 'ubifs_jnl_update()' and 883 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 884 * anymore, and in fact it might not be on the flash anymore, because it might 885 * have been garbage-collected already. And for optimization reasons UBIFS does 886 * not read the orphan area if it has been unmounted cleanly, so it would have 887 * no indication in the journal that there is a deleted inode which has to be 888 * removed from TNC. 889 * 890 * However, if there was no commit between 'ubifs_jnl_update()' and 891 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 892 * inode to the media for the second time. And this is quite a typical case. 893 * 894 * This function returns zero in case of success and a negative error code in 895 * case of failure. 896 */ 897 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 898 { 899 int err; 900 struct ubifs_inode *ui = ubifs_inode(inode); 901 902 ubifs_assert(inode->i_nlink == 0); 903 904 if (ui->del_cmtno != c->cmt_no) 905 /* A commit happened for sure */ 906 return ubifs_jnl_write_inode(c, inode); 907 908 down_read(&c->commit_sem); 909 /* 910 * Check commit number again, because the first test has been done 911 * without @c->commit_sem, so a commit might have happened. 912 */ 913 if (ui->del_cmtno != c->cmt_no) { 914 up_read(&c->commit_sem); 915 return ubifs_jnl_write_inode(c, inode); 916 } 917 918 err = ubifs_tnc_remove_ino(c, inode->i_ino); 919 if (err) 920 ubifs_ro_mode(c, err); 921 else 922 ubifs_delete_orphan(c, inode->i_ino); 923 up_read(&c->commit_sem); 924 return err; 925 } 926 927 /** 928 * ubifs_jnl_xrename - cross rename two directory entries. 929 * @c: UBIFS file-system description object 930 * @fst_dir: parent inode of 1st directory entry to exchange 931 * @fst_inode: 1st inode to exchange 932 * @fst_nm: name of 1st inode to exchange 933 * @snd_dir: parent inode of 2nd directory entry to exchange 934 * @snd_inode: 2nd inode to exchange 935 * @snd_nm: name of 2nd inode to exchange 936 * @sync: non-zero if the write-buffer has to be synchronized 937 * 938 * This function implements the cross rename operation which may involve 939 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean 940 * and returns zero on success. In case of failure, a negative error code is 941 * returned. 942 */ 943 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 944 const struct inode *fst_inode, 945 const struct fscrypt_name *fst_nm, 946 const struct inode *snd_dir, 947 const struct inode *snd_inode, 948 const struct fscrypt_name *snd_nm, int sync) 949 { 950 union ubifs_key key; 951 struct ubifs_dent_node *dent1, *dent2; 952 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; 953 int aligned_dlen1, aligned_dlen2; 954 int twoparents = (fst_dir != snd_dir); 955 void *p; 956 957 ubifs_assert(ubifs_inode(fst_dir)->data_len == 0); 958 ubifs_assert(ubifs_inode(snd_dir)->data_len == 0); 959 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); 960 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); 961 962 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; 963 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; 964 aligned_dlen1 = ALIGN(dlen1, 8); 965 aligned_dlen2 = ALIGN(dlen2, 8); 966 967 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); 968 if (twoparents) 969 len += plen; 970 971 dent1 = kzalloc(len, GFP_NOFS); 972 if (!dent1) 973 return -ENOMEM; 974 975 /* Make reservation before allocating sequence numbers */ 976 err = make_reservation(c, BASEHD, len); 977 if (err) 978 goto out_free; 979 980 /* Make new dent for 1st entry */ 981 dent1->ch.node_type = UBIFS_DENT_NODE; 982 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); 983 dent1->inum = cpu_to_le64(fst_inode->i_ino); 984 dent1->type = get_dent_type(fst_inode->i_mode); 985 dent1->nlen = cpu_to_le16(fname_len(snd_nm)); 986 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); 987 dent1->name[fname_len(snd_nm)] = '\0'; 988 set_dent_cookie(c, dent1); 989 zero_dent_node_unused(dent1); 990 ubifs_prep_grp_node(c, dent1, dlen1, 0); 991 992 /* Make new dent for 2nd entry */ 993 dent2 = (void *)dent1 + aligned_dlen1; 994 dent2->ch.node_type = UBIFS_DENT_NODE; 995 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); 996 dent2->inum = cpu_to_le64(snd_inode->i_ino); 997 dent2->type = get_dent_type(snd_inode->i_mode); 998 dent2->nlen = cpu_to_le16(fname_len(fst_nm)); 999 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); 1000 dent2->name[fname_len(fst_nm)] = '\0'; 1001 set_dent_cookie(c, dent2); 1002 zero_dent_node_unused(dent2); 1003 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1004 1005 p = (void *)dent2 + aligned_dlen2; 1006 if (!twoparents) 1007 pack_inode(c, p, fst_dir, 1); 1008 else { 1009 pack_inode(c, p, fst_dir, 0); 1010 p += ALIGN(plen, 8); 1011 pack_inode(c, p, snd_dir, 1); 1012 } 1013 1014 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); 1015 if (err) 1016 goto out_release; 1017 if (!sync) { 1018 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1019 1020 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); 1021 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); 1022 } 1023 release_head(c, BASEHD); 1024 1025 dent_key_init(c, &key, snd_dir->i_ino, snd_nm); 1026 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm); 1027 if (err) 1028 goto out_ro; 1029 1030 offs += aligned_dlen1; 1031 dent_key_init(c, &key, fst_dir->i_ino, fst_nm); 1032 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm); 1033 if (err) 1034 goto out_ro; 1035 1036 offs += aligned_dlen2; 1037 1038 ino_key_init(c, &key, fst_dir->i_ino); 1039 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1040 if (err) 1041 goto out_ro; 1042 1043 if (twoparents) { 1044 offs += ALIGN(plen, 8); 1045 ino_key_init(c, &key, snd_dir->i_ino); 1046 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1047 if (err) 1048 goto out_ro; 1049 } 1050 1051 finish_reservation(c); 1052 1053 mark_inode_clean(c, ubifs_inode(fst_dir)); 1054 if (twoparents) 1055 mark_inode_clean(c, ubifs_inode(snd_dir)); 1056 kfree(dent1); 1057 return 0; 1058 1059 out_release: 1060 release_head(c, BASEHD); 1061 out_ro: 1062 ubifs_ro_mode(c, err); 1063 finish_reservation(c); 1064 out_free: 1065 kfree(dent1); 1066 return err; 1067 } 1068 1069 /** 1070 * ubifs_jnl_rename - rename a directory entry. 1071 * @c: UBIFS file-system description object 1072 * @old_dir: parent inode of directory entry to rename 1073 * @old_dentry: directory entry to rename 1074 * @new_dir: parent inode of directory entry to rename 1075 * @new_dentry: new directory entry (or directory entry to replace) 1076 * @sync: non-zero if the write-buffer has to be synchronized 1077 * 1078 * This function implements the re-name operation which may involve writing up 1079 * to 4 inodes and 2 directory entries. It marks the written inodes as clean 1080 * and returns zero on success. In case of failure, a negative error code is 1081 * returned. 1082 */ 1083 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1084 const struct inode *old_inode, 1085 const struct fscrypt_name *old_nm, 1086 const struct inode *new_dir, 1087 const struct inode *new_inode, 1088 const struct fscrypt_name *new_nm, 1089 const struct inode *whiteout, int sync) 1090 { 1091 void *p; 1092 union ubifs_key key; 1093 struct ubifs_dent_node *dent, *dent2; 1094 int err, dlen1, dlen2, ilen, lnum, offs, len; 1095 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 1096 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 1097 int move = (old_dir != new_dir); 1098 struct ubifs_inode *uninitialized_var(new_ui); 1099 1100 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 1101 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 1102 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 1103 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 1104 1105 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; 1106 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; 1107 if (new_inode) { 1108 new_ui = ubifs_inode(new_inode); 1109 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 1110 ilen = UBIFS_INO_NODE_SZ; 1111 if (!last_reference) 1112 ilen += new_ui->data_len; 1113 } else 1114 ilen = 0; 1115 1116 aligned_dlen1 = ALIGN(dlen1, 8); 1117 aligned_dlen2 = ALIGN(dlen2, 8); 1118 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 1119 if (move) 1120 len += plen; 1121 dent = kzalloc(len, GFP_NOFS); 1122 if (!dent) 1123 return -ENOMEM; 1124 1125 /* Make reservation before allocating sequence numbers */ 1126 err = make_reservation(c, BASEHD, len); 1127 if (err) 1128 goto out_free; 1129 1130 /* Make new dent */ 1131 dent->ch.node_type = UBIFS_DENT_NODE; 1132 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); 1133 dent->inum = cpu_to_le64(old_inode->i_ino); 1134 dent->type = get_dent_type(old_inode->i_mode); 1135 dent->nlen = cpu_to_le16(fname_len(new_nm)); 1136 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); 1137 dent->name[fname_len(new_nm)] = '\0'; 1138 set_dent_cookie(c, dent); 1139 zero_dent_node_unused(dent); 1140 ubifs_prep_grp_node(c, dent, dlen1, 0); 1141 1142 dent2 = (void *)dent + aligned_dlen1; 1143 dent2->ch.node_type = UBIFS_DENT_NODE; 1144 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); 1145 1146 if (whiteout) { 1147 dent2->inum = cpu_to_le64(whiteout->i_ino); 1148 dent2->type = get_dent_type(whiteout->i_mode); 1149 } else { 1150 /* Make deletion dent */ 1151 dent2->inum = 0; 1152 dent2->type = DT_UNKNOWN; 1153 } 1154 dent2->nlen = cpu_to_le16(fname_len(old_nm)); 1155 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); 1156 dent2->name[fname_len(old_nm)] = '\0'; 1157 set_dent_cookie(c, dent2); 1158 zero_dent_node_unused(dent2); 1159 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1160 1161 p = (void *)dent2 + aligned_dlen2; 1162 if (new_inode) { 1163 pack_inode(c, p, new_inode, 0); 1164 p += ALIGN(ilen, 8); 1165 } 1166 1167 if (!move) 1168 pack_inode(c, p, old_dir, 1); 1169 else { 1170 pack_inode(c, p, old_dir, 0); 1171 p += ALIGN(plen, 8); 1172 pack_inode(c, p, new_dir, 1); 1173 } 1174 1175 if (last_reference) { 1176 err = ubifs_add_orphan(c, new_inode->i_ino); 1177 if (err) { 1178 release_head(c, BASEHD); 1179 goto out_finish; 1180 } 1181 new_ui->del_cmtno = c->cmt_no; 1182 } 1183 1184 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1185 if (err) 1186 goto out_release; 1187 if (!sync) { 1188 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1189 1190 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1191 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1192 if (new_inode) 1193 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1194 new_inode->i_ino); 1195 } 1196 release_head(c, BASEHD); 1197 1198 dent_key_init(c, &key, new_dir->i_ino, new_nm); 1199 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm); 1200 if (err) 1201 goto out_ro; 1202 1203 offs += aligned_dlen1; 1204 if (whiteout) { 1205 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1206 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm); 1207 if (err) 1208 goto out_ro; 1209 1210 ubifs_delete_orphan(c, whiteout->i_ino); 1211 } else { 1212 err = ubifs_add_dirt(c, lnum, dlen2); 1213 if (err) 1214 goto out_ro; 1215 1216 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1217 err = ubifs_tnc_remove_nm(c, &key, old_nm); 1218 if (err) 1219 goto out_ro; 1220 } 1221 1222 offs += aligned_dlen2; 1223 if (new_inode) { 1224 ino_key_init(c, &key, new_inode->i_ino); 1225 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1226 if (err) 1227 goto out_ro; 1228 offs += ALIGN(ilen, 8); 1229 } 1230 1231 ino_key_init(c, &key, old_dir->i_ino); 1232 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1233 if (err) 1234 goto out_ro; 1235 1236 if (move) { 1237 offs += ALIGN(plen, 8); 1238 ino_key_init(c, &key, new_dir->i_ino); 1239 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1240 if (err) 1241 goto out_ro; 1242 } 1243 1244 finish_reservation(c); 1245 if (new_inode) { 1246 mark_inode_clean(c, new_ui); 1247 spin_lock(&new_ui->ui_lock); 1248 new_ui->synced_i_size = new_ui->ui_size; 1249 spin_unlock(&new_ui->ui_lock); 1250 } 1251 mark_inode_clean(c, ubifs_inode(old_dir)); 1252 if (move) 1253 mark_inode_clean(c, ubifs_inode(new_dir)); 1254 kfree(dent); 1255 return 0; 1256 1257 out_release: 1258 release_head(c, BASEHD); 1259 out_ro: 1260 ubifs_ro_mode(c, err); 1261 if (last_reference) 1262 ubifs_delete_orphan(c, new_inode->i_ino); 1263 out_finish: 1264 finish_reservation(c); 1265 out_free: 1266 kfree(dent); 1267 return err; 1268 } 1269 1270 /** 1271 * truncate_data_node - re-compress/encrypt a truncated data node. 1272 * @c: UBIFS file-system description object 1273 * @inode: inode which referes to the data node 1274 * @block: data block number 1275 * @dn: data node to re-compress 1276 * @new_len: new length 1277 * 1278 * This function is used when an inode is truncated and the last data node of 1279 * the inode has to be re-compressed/encrypted and re-written. 1280 */ 1281 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, 1282 unsigned int block, struct ubifs_data_node *dn, 1283 int *new_len) 1284 { 1285 void *buf; 1286 int err, dlen, compr_type, out_len, old_dlen; 1287 1288 out_len = le32_to_cpu(dn->size); 1289 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1290 if (!buf) 1291 return -ENOMEM; 1292 1293 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1294 compr_type = le16_to_cpu(dn->compr_type); 1295 1296 if (ubifs_crypt_is_encrypted(inode)) { 1297 err = ubifs_decrypt(inode, dn, &dlen, block); 1298 if (err) 1299 goto out; 1300 } 1301 1302 if (compr_type == UBIFS_COMPR_NONE) { 1303 out_len = *new_len; 1304 } else { 1305 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); 1306 if (err) 1307 goto out; 1308 1309 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); 1310 } 1311 1312 if (ubifs_crypt_is_encrypted(inode)) { 1313 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); 1314 if (err) 1315 goto out; 1316 1317 out_len = old_dlen; 1318 } else { 1319 dn->compr_size = 0; 1320 } 1321 1322 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1323 dn->compr_type = cpu_to_le16(compr_type); 1324 dn->size = cpu_to_le32(*new_len); 1325 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1326 err = 0; 1327 out: 1328 kfree(buf); 1329 return err; 1330 } 1331 1332 /** 1333 * ubifs_jnl_truncate - update the journal for a truncation. 1334 * @c: UBIFS file-system description object 1335 * @inode: inode to truncate 1336 * @old_size: old size 1337 * @new_size: new size 1338 * 1339 * When the size of a file decreases due to truncation, a truncation node is 1340 * written, the journal tree is updated, and the last data block is re-written 1341 * if it has been affected. The inode is also updated in order to synchronize 1342 * the new inode size. 1343 * 1344 * This function marks the inode as clean and returns zero on success. In case 1345 * of failure, a negative error code is returned. 1346 */ 1347 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1348 loff_t old_size, loff_t new_size) 1349 { 1350 union ubifs_key key, to_key; 1351 struct ubifs_ino_node *ino; 1352 struct ubifs_trun_node *trun; 1353 struct ubifs_data_node *uninitialized_var(dn); 1354 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1355 struct ubifs_inode *ui = ubifs_inode(inode); 1356 ino_t inum = inode->i_ino; 1357 unsigned int blk; 1358 1359 dbg_jnl("ino %lu, size %lld -> %lld", 1360 (unsigned long)inum, old_size, new_size); 1361 ubifs_assert(!ui->data_len); 1362 ubifs_assert(S_ISREG(inode->i_mode)); 1363 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1364 1365 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1366 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1367 ino = kmalloc(sz, GFP_NOFS); 1368 if (!ino) 1369 return -ENOMEM; 1370 1371 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1372 trun->ch.node_type = UBIFS_TRUN_NODE; 1373 trun->inum = cpu_to_le32(inum); 1374 trun->old_size = cpu_to_le64(old_size); 1375 trun->new_size = cpu_to_le64(new_size); 1376 zero_trun_node_unused(trun); 1377 1378 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1379 if (dlen) { 1380 /* Get last data block so it can be truncated */ 1381 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1382 blk = new_size >> UBIFS_BLOCK_SHIFT; 1383 data_key_init(c, &key, inum, blk); 1384 dbg_jnlk(&key, "last block key "); 1385 err = ubifs_tnc_lookup(c, &key, dn); 1386 if (err == -ENOENT) 1387 dlen = 0; /* Not found (so it is a hole) */ 1388 else if (err) 1389 goto out_free; 1390 else { 1391 if (le32_to_cpu(dn->size) <= dlen) 1392 dlen = 0; /* Nothing to do */ 1393 else { 1394 err = truncate_data_node(c, inode, blk, dn, &dlen); 1395 if (err) 1396 goto out_free; 1397 } 1398 } 1399 } 1400 1401 /* Must make reservation before allocating sequence numbers */ 1402 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1403 if (dlen) 1404 len += dlen; 1405 err = make_reservation(c, BASEHD, len); 1406 if (err) 1407 goto out_free; 1408 1409 pack_inode(c, ino, inode, 0); 1410 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1411 if (dlen) 1412 ubifs_prep_grp_node(c, dn, dlen, 1); 1413 1414 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1415 if (err) 1416 goto out_release; 1417 if (!sync) 1418 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1419 release_head(c, BASEHD); 1420 1421 if (dlen) { 1422 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1423 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1424 if (err) 1425 goto out_ro; 1426 } 1427 1428 ino_key_init(c, &key, inum); 1429 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1430 if (err) 1431 goto out_ro; 1432 1433 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1434 if (err) 1435 goto out_ro; 1436 1437 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1438 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1439 data_key_init(c, &key, inum, blk); 1440 1441 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1442 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1443 data_key_init(c, &to_key, inum, blk); 1444 1445 err = ubifs_tnc_remove_range(c, &key, &to_key); 1446 if (err) 1447 goto out_ro; 1448 1449 finish_reservation(c); 1450 spin_lock(&ui->ui_lock); 1451 ui->synced_i_size = ui->ui_size; 1452 spin_unlock(&ui->ui_lock); 1453 mark_inode_clean(c, ui); 1454 kfree(ino); 1455 return 0; 1456 1457 out_release: 1458 release_head(c, BASEHD); 1459 out_ro: 1460 ubifs_ro_mode(c, err); 1461 finish_reservation(c); 1462 out_free: 1463 kfree(ino); 1464 return err; 1465 } 1466 1467 1468 /** 1469 * ubifs_jnl_delete_xattr - delete an extended attribute. 1470 * @c: UBIFS file-system description object 1471 * @host: host inode 1472 * @inode: extended attribute inode 1473 * @nm: extended attribute entry name 1474 * 1475 * This function delete an extended attribute which is very similar to 1476 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1477 * updates the target inode. Returns zero in case of success and a negative 1478 * error code in case of failure. 1479 */ 1480 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1481 const struct inode *inode, 1482 const struct fscrypt_name *nm) 1483 { 1484 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1485 struct ubifs_dent_node *xent; 1486 struct ubifs_ino_node *ino; 1487 union ubifs_key xent_key, key1, key2; 1488 int sync = IS_DIRSYNC(host); 1489 struct ubifs_inode *host_ui = ubifs_inode(host); 1490 1491 ubifs_assert(inode->i_nlink == 0); 1492 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1493 1494 /* 1495 * Since we are deleting the inode, we do not bother to attach any data 1496 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1497 */ 1498 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 1499 aligned_xlen = ALIGN(xlen, 8); 1500 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1501 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1502 1503 xent = kzalloc(len, GFP_NOFS); 1504 if (!xent) 1505 return -ENOMEM; 1506 1507 /* Make reservation before allocating sequence numbers */ 1508 err = make_reservation(c, BASEHD, len); 1509 if (err) { 1510 kfree(xent); 1511 return err; 1512 } 1513 1514 xent->ch.node_type = UBIFS_XENT_NODE; 1515 xent_key_init(c, &xent_key, host->i_ino, nm); 1516 key_write(c, &xent_key, xent->key); 1517 xent->inum = 0; 1518 xent->type = get_dent_type(inode->i_mode); 1519 xent->nlen = cpu_to_le16(fname_len(nm)); 1520 memcpy(xent->name, fname_name(nm), fname_len(nm)); 1521 xent->name[fname_len(nm)] = '\0'; 1522 zero_dent_node_unused(xent); 1523 ubifs_prep_grp_node(c, xent, xlen, 0); 1524 1525 ino = (void *)xent + aligned_xlen; 1526 pack_inode(c, ino, inode, 0); 1527 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1528 pack_inode(c, ino, host, 1); 1529 1530 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1531 if (!sync && !err) 1532 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1533 release_head(c, BASEHD); 1534 kfree(xent); 1535 if (err) 1536 goto out_ro; 1537 1538 /* Remove the extended attribute entry from TNC */ 1539 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1540 if (err) 1541 goto out_ro; 1542 err = ubifs_add_dirt(c, lnum, xlen); 1543 if (err) 1544 goto out_ro; 1545 1546 /* 1547 * Remove all nodes belonging to the extended attribute inode from TNC. 1548 * Well, there actually must be only one node - the inode itself. 1549 */ 1550 lowest_ino_key(c, &key1, inode->i_ino); 1551 highest_ino_key(c, &key2, inode->i_ino); 1552 err = ubifs_tnc_remove_range(c, &key1, &key2); 1553 if (err) 1554 goto out_ro; 1555 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1556 if (err) 1557 goto out_ro; 1558 1559 /* And update TNC with the new host inode position */ 1560 ino_key_init(c, &key1, host->i_ino); 1561 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1562 if (err) 1563 goto out_ro; 1564 1565 finish_reservation(c); 1566 spin_lock(&host_ui->ui_lock); 1567 host_ui->synced_i_size = host_ui->ui_size; 1568 spin_unlock(&host_ui->ui_lock); 1569 mark_inode_clean(c, host_ui); 1570 return 0; 1571 1572 out_ro: 1573 ubifs_ro_mode(c, err); 1574 finish_reservation(c); 1575 return err; 1576 } 1577 1578 /** 1579 * ubifs_jnl_change_xattr - change an extended attribute. 1580 * @c: UBIFS file-system description object 1581 * @inode: extended attribute inode 1582 * @host: host inode 1583 * 1584 * This function writes the updated version of an extended attribute inode and 1585 * the host inode to the journal (to the base head). The host inode is written 1586 * after the extended attribute inode in order to guarantee that the extended 1587 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1588 * consequently, the write-buffer is synchronized. This function returns zero 1589 * in case of success and a negative error code in case of failure. 1590 */ 1591 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1592 const struct inode *host) 1593 { 1594 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1595 struct ubifs_inode *host_ui = ubifs_inode(host); 1596 struct ubifs_ino_node *ino; 1597 union ubifs_key key; 1598 int sync = IS_DIRSYNC(host); 1599 1600 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1601 ubifs_assert(host->i_nlink > 0); 1602 ubifs_assert(inode->i_nlink > 0); 1603 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1604 1605 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1606 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1607 aligned_len1 = ALIGN(len1, 8); 1608 aligned_len = aligned_len1 + ALIGN(len2, 8); 1609 1610 ino = kzalloc(aligned_len, GFP_NOFS); 1611 if (!ino) 1612 return -ENOMEM; 1613 1614 /* Make reservation before allocating sequence numbers */ 1615 err = make_reservation(c, BASEHD, aligned_len); 1616 if (err) 1617 goto out_free; 1618 1619 pack_inode(c, ino, host, 0); 1620 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1621 1622 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1623 if (!sync && !err) { 1624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1625 1626 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1627 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1628 } 1629 release_head(c, BASEHD); 1630 if (err) 1631 goto out_ro; 1632 1633 ino_key_init(c, &key, host->i_ino); 1634 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1635 if (err) 1636 goto out_ro; 1637 1638 ino_key_init(c, &key, inode->i_ino); 1639 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1640 if (err) 1641 goto out_ro; 1642 1643 finish_reservation(c); 1644 spin_lock(&host_ui->ui_lock); 1645 host_ui->synced_i_size = host_ui->ui_size; 1646 spin_unlock(&host_ui->ui_lock); 1647 mark_inode_clean(c, host_ui); 1648 kfree(ino); 1649 return 0; 1650 1651 out_ro: 1652 ubifs_ro_mode(c, err); 1653 finish_reservation(c); 1654 out_free: 1655 kfree(ino); 1656 return err; 1657 } 1658 1659