1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 } 82 83 /** 84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 85 * node. 86 * @trun: the truncation node to zero out 87 */ 88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 89 { 90 memset(trun->padding, 0, 12); 91 } 92 93 /** 94 * reserve_space - reserve space in the journal. 95 * @c: UBIFS file-system description object 96 * @jhead: journal head number 97 * @len: node length 98 * 99 * This function reserves space in journal head @head. If the reservation 100 * succeeded, the journal head stays locked and later has to be unlocked using 101 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to 102 * be done, and other negative error codes in case of other failures. 103 */ 104 static int reserve_space(struct ubifs_info *c, int jhead, int len) 105 { 106 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 107 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 108 109 /* 110 * Typically, the base head has smaller nodes written to it, so it is 111 * better to try to allocate space at the ends of eraseblocks. This is 112 * what the squeeze parameter does. 113 */ 114 ubifs_assert(!c->ro_media && !c->ro_mount); 115 squeeze = (jhead == BASEHD); 116 again: 117 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 118 119 if (c->ro_error) { 120 err = -EROFS; 121 goto out_unlock; 122 } 123 124 avail = c->leb_size - wbuf->offs - wbuf->used; 125 if (wbuf->lnum != -1 && avail >= len) 126 return 0; 127 128 /* 129 * Write buffer wasn't seek'ed or there is no enough space - look for an 130 * LEB with some empty space. 131 */ 132 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 133 if (lnum >= 0) 134 goto out; 135 136 err = lnum; 137 if (err != -ENOSPC) 138 goto out_unlock; 139 140 /* 141 * No free space, we have to run garbage collector to make 142 * some. But the write-buffer mutex has to be unlocked because 143 * GC also takes it. 144 */ 145 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 146 mutex_unlock(&wbuf->io_mutex); 147 148 lnum = ubifs_garbage_collect(c, 0); 149 if (lnum < 0) { 150 err = lnum; 151 if (err != -ENOSPC) 152 return err; 153 154 /* 155 * GC could not make a free LEB. But someone else may 156 * have allocated new bud for this journal head, 157 * because we dropped @wbuf->io_mutex, so try once 158 * again. 159 */ 160 dbg_jnl("GC couldn't make a free LEB for jhead %s", 161 dbg_jhead(jhead)); 162 if (retries++ < 2) { 163 dbg_jnl("retry (%d)", retries); 164 goto again; 165 } 166 167 dbg_jnl("return -ENOSPC"); 168 return err; 169 } 170 171 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 172 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 173 avail = c->leb_size - wbuf->offs - wbuf->used; 174 175 if (wbuf->lnum != -1 && avail >= len) { 176 /* 177 * Someone else has switched the journal head and we have 178 * enough space now. This happens when more than one process is 179 * trying to write to the same journal head at the same time. 180 */ 181 dbg_jnl("return LEB %d back, already have LEB %d:%d", 182 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 183 err = ubifs_return_leb(c, lnum); 184 if (err) 185 goto out_unlock; 186 return 0; 187 } 188 189 offs = 0; 190 191 out: 192 /* 193 * Make sure we synchronize the write-buffer before we add the new bud 194 * to the log. Otherwise we may have a power cut after the log 195 * reference node for the last bud (@lnum) is written but before the 196 * write-buffer data are written to the next-to-last bud 197 * (@wbuf->lnum). And the effect would be that the recovery would see 198 * that there is corruption in the next-to-last bud. 199 */ 200 err = ubifs_wbuf_sync_nolock(wbuf); 201 if (err) 202 goto out_return; 203 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 204 if (err) 205 goto out_return; 206 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); 207 if (err) 208 goto out_unlock; 209 210 return 0; 211 212 out_unlock: 213 mutex_unlock(&wbuf->io_mutex); 214 return err; 215 216 out_return: 217 /* An error occurred and the LEB has to be returned to lprops */ 218 ubifs_assert(err < 0); 219 err1 = ubifs_return_leb(c, lnum); 220 if (err1 && err == -EAGAIN) 221 /* 222 * Return original error code only if it is not %-EAGAIN, 223 * which is not really an error. Otherwise, return the error 224 * code of 'ubifs_return_leb()'. 225 */ 226 err = err1; 227 mutex_unlock(&wbuf->io_mutex); 228 return err; 229 } 230 231 /** 232 * write_node - write node to a journal head. 233 * @c: UBIFS file-system description object 234 * @jhead: journal head 235 * @node: node to write 236 * @len: node length 237 * @lnum: LEB number written is returned here 238 * @offs: offset written is returned here 239 * 240 * This function writes a node to reserved space of journal head @jhead. 241 * Returns zero in case of success and a negative error code in case of 242 * failure. 243 */ 244 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 245 int *lnum, int *offs) 246 { 247 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 248 249 ubifs_assert(jhead != GCHD); 250 251 *lnum = c->jheads[jhead].wbuf.lnum; 252 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 253 254 dbg_jnl("jhead %s, LEB %d:%d, len %d", 255 dbg_jhead(jhead), *lnum, *offs, len); 256 ubifs_prepare_node(c, node, len, 0); 257 258 return ubifs_wbuf_write_nolock(wbuf, node, len); 259 } 260 261 /** 262 * write_head - write data to a journal head. 263 * @c: UBIFS file-system description object 264 * @jhead: journal head 265 * @buf: buffer to write 266 * @len: length to write 267 * @lnum: LEB number written is returned here 268 * @offs: offset written is returned here 269 * @sync: non-zero if the write-buffer has to by synchronized 270 * 271 * This function is the same as 'write_node()' but it does not assume the 272 * buffer it is writing is a node, so it does not prepare it (which means 273 * initializing common header and calculating CRC). 274 */ 275 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 276 int *lnum, int *offs, int sync) 277 { 278 int err; 279 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 280 281 ubifs_assert(jhead != GCHD); 282 283 *lnum = c->jheads[jhead].wbuf.lnum; 284 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 285 dbg_jnl("jhead %s, LEB %d:%d, len %d", 286 dbg_jhead(jhead), *lnum, *offs, len); 287 288 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 289 if (err) 290 return err; 291 if (sync) 292 err = ubifs_wbuf_sync_nolock(wbuf); 293 return err; 294 } 295 296 /** 297 * make_reservation - reserve journal space. 298 * @c: UBIFS file-system description object 299 * @jhead: journal head 300 * @len: how many bytes to reserve 301 * 302 * This function makes space reservation in journal head @jhead. The function 303 * takes the commit lock and locks the journal head, and the caller has to 304 * unlock the head and finish the reservation with 'finish_reservation()'. 305 * Returns zero in case of success and a negative error code in case of 306 * failure. 307 * 308 * Note, the journal head may be unlocked as soon as the data is written, while 309 * the commit lock has to be released after the data has been added to the 310 * TNC. 311 */ 312 static int make_reservation(struct ubifs_info *c, int jhead, int len) 313 { 314 int err, cmt_retries = 0, nospc_retries = 0; 315 316 again: 317 down_read(&c->commit_sem); 318 err = reserve_space(c, jhead, len); 319 if (!err) 320 return 0; 321 up_read(&c->commit_sem); 322 323 if (err == -ENOSPC) { 324 /* 325 * GC could not make any progress. We should try to commit 326 * once because it could make some dirty space and GC would 327 * make progress, so make the error -EAGAIN so that the below 328 * will commit and re-try. 329 */ 330 if (nospc_retries++ < 2) { 331 dbg_jnl("no space, retry"); 332 err = -EAGAIN; 333 } 334 335 /* 336 * This means that the budgeting is incorrect. We always have 337 * to be able to write to the media, because all operations are 338 * budgeted. Deletions are not budgeted, though, but we reserve 339 * an extra LEB for them. 340 */ 341 } 342 343 if (err != -EAGAIN) 344 goto out; 345 346 /* 347 * -EAGAIN means that the journal is full or too large, or the above 348 * code wants to do one commit. Do this and re-try. 349 */ 350 if (cmt_retries > 128) { 351 /* 352 * This should not happen unless the journal size limitations 353 * are too tough. 354 */ 355 ubifs_err(c, "stuck in space allocation"); 356 err = -ENOSPC; 357 goto out; 358 } else if (cmt_retries > 32) 359 ubifs_warn(c, "too many space allocation re-tries (%d)", 360 cmt_retries); 361 362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 363 cmt_retries); 364 cmt_retries += 1; 365 366 err = ubifs_run_commit(c); 367 if (err) 368 return err; 369 goto again; 370 371 out: 372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", 373 len, jhead, err); 374 if (err == -ENOSPC) { 375 /* This are some budgeting problems, print useful information */ 376 down_write(&c->commit_sem); 377 dump_stack(); 378 ubifs_dump_budg(c, &c->bi); 379 ubifs_dump_lprops(c); 380 cmt_retries = dbg_check_lprops(c); 381 up_write(&c->commit_sem); 382 } 383 return err; 384 } 385 386 /** 387 * release_head - release a journal head. 388 * @c: UBIFS file-system description object 389 * @jhead: journal head 390 * 391 * This function releases journal head @jhead which was locked by 392 * the 'make_reservation()' function. It has to be called after each successful 393 * 'make_reservation()' invocation. 394 */ 395 static inline void release_head(struct ubifs_info *c, int jhead) 396 { 397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 398 } 399 400 /** 401 * finish_reservation - finish a reservation. 402 * @c: UBIFS file-system description object 403 * 404 * This function finishes journal space reservation. It must be called after 405 * 'make_reservation()'. 406 */ 407 static void finish_reservation(struct ubifs_info *c) 408 { 409 up_read(&c->commit_sem); 410 } 411 412 /** 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 414 * @mode: inode mode 415 */ 416 static int get_dent_type(int mode) 417 { 418 switch (mode & S_IFMT) { 419 case S_IFREG: 420 return UBIFS_ITYPE_REG; 421 case S_IFDIR: 422 return UBIFS_ITYPE_DIR; 423 case S_IFLNK: 424 return UBIFS_ITYPE_LNK; 425 case S_IFBLK: 426 return UBIFS_ITYPE_BLK; 427 case S_IFCHR: 428 return UBIFS_ITYPE_CHR; 429 case S_IFIFO: 430 return UBIFS_ITYPE_FIFO; 431 case S_IFSOCK: 432 return UBIFS_ITYPE_SOCK; 433 default: 434 BUG(); 435 } 436 return 0; 437 } 438 439 /** 440 * pack_inode - pack an inode node. 441 * @c: UBIFS file-system description object 442 * @ino: buffer in which to pack inode node 443 * @inode: inode to pack 444 * @last: indicates the last node of the group 445 */ 446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 447 const struct inode *inode, int last) 448 { 449 int data_len = 0, last_reference = !inode->i_nlink; 450 struct ubifs_inode *ui = ubifs_inode(inode); 451 452 ino->ch.node_type = UBIFS_INO_NODE; 453 ino_key_init_flash(c, &ino->key, inode->i_ino); 454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 457 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 458 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 461 ino->uid = cpu_to_le32(i_uid_read(inode)); 462 ino->gid = cpu_to_le32(i_gid_read(inode)); 463 ino->mode = cpu_to_le32(inode->i_mode); 464 ino->flags = cpu_to_le32(ui->flags); 465 ino->size = cpu_to_le64(ui->ui_size); 466 ino->nlink = cpu_to_le32(inode->i_nlink); 467 ino->compr_type = cpu_to_le16(ui->compr_type); 468 ino->data_len = cpu_to_le32(ui->data_len); 469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 470 ino->xattr_size = cpu_to_le32(ui->xattr_size); 471 ino->xattr_names = cpu_to_le32(ui->xattr_names); 472 zero_ino_node_unused(ino); 473 474 /* 475 * Drop the attached data if this is a deletion inode, the data is not 476 * needed anymore. 477 */ 478 if (!last_reference) { 479 memcpy(ino->data, ui->data, ui->data_len); 480 data_len = ui->data_len; 481 } 482 483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 484 } 485 486 /** 487 * mark_inode_clean - mark UBIFS inode as clean. 488 * @c: UBIFS file-system description object 489 * @ui: UBIFS inode to mark as clean 490 * 491 * This helper function marks UBIFS inode @ui as clean by cleaning the 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 494 * just do nothing. 495 */ 496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 497 { 498 if (ui->dirty) 499 ubifs_release_dirty_inode_budget(c, ui); 500 ui->dirty = 0; 501 } 502 503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) 504 { 505 if (c->double_hash) 506 dent->cookie = prandom_u32(); 507 else 508 dent->cookie = 0; 509 } 510 511 /** 512 * ubifs_jnl_update - update inode. 513 * @c: UBIFS file-system description object 514 * @dir: parent inode or host inode in case of extended attributes 515 * @nm: directory entry name 516 * @inode: inode to update 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 518 * @xent: non-zero if the directory entry is an extended attribute entry 519 * 520 * This function updates an inode by writing a directory entry (or extended 521 * attribute entry), the inode itself, and the parent directory inode (or the 522 * host inode) to the journal. 523 * 524 * The function writes the host inode @dir last, which is important in case of 525 * extended attributes. Indeed, then we guarantee that if the host inode gets 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 527 * the extended attribute inode gets flushed too. And this is exactly what the 528 * user expects - synchronizing the host inode synchronizes its extended 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its 530 * directory entry corresponding to @nm gets synchronized too. 531 * 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 533 * function synchronizes the write-buffer. 534 * 535 * This function marks the @dir and @inode inodes as clean and returns zero on 536 * success. In case of failure, a negative error code is returned. 537 */ 538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 539 const struct fscrypt_name *nm, const struct inode *inode, 540 int deletion, int xent) 541 { 542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 544 int last_reference = !!(deletion && inode->i_nlink == 0); 545 struct ubifs_inode *ui = ubifs_inode(inode); 546 struct ubifs_inode *host_ui = ubifs_inode(dir); 547 struct ubifs_dent_node *dent; 548 struct ubifs_ino_node *ino; 549 union ubifs_key dent_key, ino_key; 550 551 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 552 553 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 554 ilen = UBIFS_INO_NODE_SZ; 555 556 /* 557 * If the last reference to the inode is being deleted, then there is 558 * no need to attach and write inode data, it is being deleted anyway. 559 * And if the inode is being deleted, no need to synchronize 560 * write-buffer even if the inode is synchronous. 561 */ 562 if (!last_reference) { 563 ilen += ui->data_len; 564 sync |= IS_SYNC(inode); 565 } 566 567 aligned_dlen = ALIGN(dlen, 8); 568 aligned_ilen = ALIGN(ilen, 8); 569 570 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 571 /* Make sure to also account for extended attributes */ 572 len += host_ui->data_len; 573 574 dent = kzalloc(len, GFP_NOFS); 575 if (!dent) 576 return -ENOMEM; 577 578 /* Make reservation before allocating sequence numbers */ 579 err = make_reservation(c, BASEHD, len); 580 if (err) 581 goto out_free; 582 583 if (!xent) { 584 dent->ch.node_type = UBIFS_DENT_NODE; 585 if (nm->hash) 586 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); 587 else 588 dent_key_init(c, &dent_key, dir->i_ino, nm); 589 } else { 590 dent->ch.node_type = UBIFS_XENT_NODE; 591 xent_key_init(c, &dent_key, dir->i_ino, nm); 592 } 593 594 key_write(c, &dent_key, dent->key); 595 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 596 dent->type = get_dent_type(inode->i_mode); 597 dent->nlen = cpu_to_le16(fname_len(nm)); 598 memcpy(dent->name, fname_name(nm), fname_len(nm)); 599 dent->name[fname_len(nm)] = '\0'; 600 set_dent_cookie(c, dent); 601 602 zero_dent_node_unused(dent); 603 ubifs_prep_grp_node(c, dent, dlen, 0); 604 605 ino = (void *)dent + aligned_dlen; 606 pack_inode(c, ino, inode, 0); 607 ino = (void *)ino + aligned_ilen; 608 pack_inode(c, ino, dir, 1); 609 610 if (last_reference) { 611 err = ubifs_add_orphan(c, inode->i_ino); 612 if (err) { 613 release_head(c, BASEHD); 614 goto out_finish; 615 } 616 ui->del_cmtno = c->cmt_no; 617 } 618 619 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 620 if (err) 621 goto out_release; 622 if (!sync) { 623 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 624 625 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 626 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 627 } 628 release_head(c, BASEHD); 629 kfree(dent); 630 631 if (deletion) { 632 if (nm->hash) 633 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); 634 else 635 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 636 if (err) 637 goto out_ro; 638 err = ubifs_add_dirt(c, lnum, dlen); 639 } else 640 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 641 if (err) 642 goto out_ro; 643 644 /* 645 * Note, we do not remove the inode from TNC even if the last reference 646 * to it has just been deleted, because the inode may still be opened. 647 * Instead, the inode has been added to orphan lists and the orphan 648 * subsystem will take further care about it. 649 */ 650 ino_key_init(c, &ino_key, inode->i_ino); 651 ino_offs = dent_offs + aligned_dlen; 652 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 653 if (err) 654 goto out_ro; 655 656 ino_key_init(c, &ino_key, dir->i_ino); 657 ino_offs += aligned_ilen; 658 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, 659 UBIFS_INO_NODE_SZ + host_ui->data_len); 660 if (err) 661 goto out_ro; 662 663 finish_reservation(c); 664 spin_lock(&ui->ui_lock); 665 ui->synced_i_size = ui->ui_size; 666 spin_unlock(&ui->ui_lock); 667 mark_inode_clean(c, ui); 668 mark_inode_clean(c, host_ui); 669 return 0; 670 671 out_finish: 672 finish_reservation(c); 673 out_free: 674 kfree(dent); 675 return err; 676 677 out_release: 678 release_head(c, BASEHD); 679 kfree(dent); 680 out_ro: 681 ubifs_ro_mode(c, err); 682 if (last_reference) 683 ubifs_delete_orphan(c, inode->i_ino); 684 finish_reservation(c); 685 return err; 686 } 687 688 /** 689 * ubifs_jnl_write_data - write a data node to the journal. 690 * @c: UBIFS file-system description object 691 * @inode: inode the data node belongs to 692 * @key: node key 693 * @buf: buffer to write 694 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 695 * 696 * This function writes a data node to the journal. Returns %0 if the data node 697 * was successfully written, and a negative error code in case of failure. 698 */ 699 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 700 const union ubifs_key *key, const void *buf, int len) 701 { 702 struct ubifs_data_node *data; 703 int err, lnum, offs, compr_type, out_len, compr_len; 704 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 705 struct ubifs_inode *ui = ubifs_inode(inode); 706 bool encrypted = ubifs_crypt_is_encrypted(inode); 707 708 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 709 (unsigned long)key_inum(c, key), key_block(c, key), len); 710 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 711 712 if (encrypted) 713 dlen += UBIFS_CIPHER_BLOCK_SIZE; 714 715 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); 716 if (!data) { 717 /* 718 * Fall-back to the write reserve buffer. Note, we might be 719 * currently on the memory reclaim path, when the kernel is 720 * trying to free some memory by writing out dirty pages. The 721 * write reserve buffer helps us to guarantee that we are 722 * always able to write the data. 723 */ 724 allocated = 0; 725 mutex_lock(&c->write_reserve_mutex); 726 data = c->write_reserve_buf; 727 } 728 729 data->ch.node_type = UBIFS_DATA_NODE; 730 key_write(c, key, &data->key); 731 data->size = cpu_to_le32(len); 732 733 if (!(ui->flags & UBIFS_COMPR_FL)) 734 /* Compression is disabled for this inode */ 735 compr_type = UBIFS_COMPR_NONE; 736 else 737 compr_type = ui->compr_type; 738 739 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; 740 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); 741 ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE); 742 743 if (encrypted) { 744 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); 745 if (err) 746 goto out_free; 747 748 } else { 749 data->compr_size = 0; 750 out_len = compr_len; 751 } 752 753 dlen = UBIFS_DATA_NODE_SZ + out_len; 754 data->compr_type = cpu_to_le16(compr_type); 755 756 /* Make reservation before allocating sequence numbers */ 757 err = make_reservation(c, DATAHD, dlen); 758 if (err) 759 goto out_free; 760 761 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 762 if (err) 763 goto out_release; 764 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 765 release_head(c, DATAHD); 766 767 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 768 if (err) 769 goto out_ro; 770 771 finish_reservation(c); 772 if (!allocated) 773 mutex_unlock(&c->write_reserve_mutex); 774 else 775 kfree(data); 776 return 0; 777 778 out_release: 779 release_head(c, DATAHD); 780 out_ro: 781 ubifs_ro_mode(c, err); 782 finish_reservation(c); 783 out_free: 784 if (!allocated) 785 mutex_unlock(&c->write_reserve_mutex); 786 else 787 kfree(data); 788 return err; 789 } 790 791 /** 792 * ubifs_jnl_write_inode - flush inode to the journal. 793 * @c: UBIFS file-system description object 794 * @inode: inode to flush 795 * 796 * This function writes inode @inode to the journal. If the inode is 797 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 798 * success and a negative error code in case of failure. 799 */ 800 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 801 { 802 int err, lnum, offs; 803 struct ubifs_ino_node *ino; 804 struct ubifs_inode *ui = ubifs_inode(inode); 805 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 806 807 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 808 809 /* 810 * If the inode is being deleted, do not write the attached data. No 811 * need to synchronize the write-buffer either. 812 */ 813 if (!last_reference) { 814 len += ui->data_len; 815 sync = IS_SYNC(inode); 816 } 817 ino = kmalloc(len, GFP_NOFS); 818 if (!ino) 819 return -ENOMEM; 820 821 /* Make reservation before allocating sequence numbers */ 822 err = make_reservation(c, BASEHD, len); 823 if (err) 824 goto out_free; 825 826 pack_inode(c, ino, inode, 1); 827 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 828 if (err) 829 goto out_release; 830 if (!sync) 831 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 832 inode->i_ino); 833 release_head(c, BASEHD); 834 835 if (last_reference) { 836 err = ubifs_tnc_remove_ino(c, inode->i_ino); 837 if (err) 838 goto out_ro; 839 ubifs_delete_orphan(c, inode->i_ino); 840 err = ubifs_add_dirt(c, lnum, len); 841 } else { 842 union ubifs_key key; 843 844 ino_key_init(c, &key, inode->i_ino); 845 err = ubifs_tnc_add(c, &key, lnum, offs, len); 846 } 847 if (err) 848 goto out_ro; 849 850 finish_reservation(c); 851 spin_lock(&ui->ui_lock); 852 ui->synced_i_size = ui->ui_size; 853 spin_unlock(&ui->ui_lock); 854 kfree(ino); 855 return 0; 856 857 out_release: 858 release_head(c, BASEHD); 859 out_ro: 860 ubifs_ro_mode(c, err); 861 finish_reservation(c); 862 out_free: 863 kfree(ino); 864 return err; 865 } 866 867 /** 868 * ubifs_jnl_delete_inode - delete an inode. 869 * @c: UBIFS file-system description object 870 * @inode: inode to delete 871 * 872 * This function deletes inode @inode which includes removing it from orphans, 873 * deleting it from TNC and, in some cases, writing a deletion inode to the 874 * journal. 875 * 876 * When regular file inodes are unlinked or a directory inode is removed, the 877 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 878 * direntry to the media, and adds the inode to orphans. After this, when the 879 * last reference to this inode has been dropped, this function is called. In 880 * general, it has to write one more deletion inode to the media, because if 881 * a commit happened between 'ubifs_jnl_update()' and 882 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 883 * anymore, and in fact it might not be on the flash anymore, because it might 884 * have been garbage-collected already. And for optimization reasons UBIFS does 885 * not read the orphan area if it has been unmounted cleanly, so it would have 886 * no indication in the journal that there is a deleted inode which has to be 887 * removed from TNC. 888 * 889 * However, if there was no commit between 'ubifs_jnl_update()' and 890 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 891 * inode to the media for the second time. And this is quite a typical case. 892 * 893 * This function returns zero in case of success and a negative error code in 894 * case of failure. 895 */ 896 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 897 { 898 int err; 899 struct ubifs_inode *ui = ubifs_inode(inode); 900 901 ubifs_assert(inode->i_nlink == 0); 902 903 if (ui->del_cmtno != c->cmt_no) 904 /* A commit happened for sure */ 905 return ubifs_jnl_write_inode(c, inode); 906 907 down_read(&c->commit_sem); 908 /* 909 * Check commit number again, because the first test has been done 910 * without @c->commit_sem, so a commit might have happened. 911 */ 912 if (ui->del_cmtno != c->cmt_no) { 913 up_read(&c->commit_sem); 914 return ubifs_jnl_write_inode(c, inode); 915 } 916 917 err = ubifs_tnc_remove_ino(c, inode->i_ino); 918 if (err) 919 ubifs_ro_mode(c, err); 920 else 921 ubifs_delete_orphan(c, inode->i_ino); 922 up_read(&c->commit_sem); 923 return err; 924 } 925 926 /** 927 * ubifs_jnl_xrename - cross rename two directory entries. 928 * @c: UBIFS file-system description object 929 * @fst_dir: parent inode of 1st directory entry to exchange 930 * @fst_inode: 1st inode to exchange 931 * @fst_nm: name of 1st inode to exchange 932 * @snd_dir: parent inode of 2nd directory entry to exchange 933 * @snd_inode: 2nd inode to exchange 934 * @snd_nm: name of 2nd inode to exchange 935 * @sync: non-zero if the write-buffer has to be synchronized 936 * 937 * This function implements the cross rename operation which may involve 938 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean 939 * and returns zero on success. In case of failure, a negative error code is 940 * returned. 941 */ 942 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 943 const struct inode *fst_inode, 944 const struct fscrypt_name *fst_nm, 945 const struct inode *snd_dir, 946 const struct inode *snd_inode, 947 const struct fscrypt_name *snd_nm, int sync) 948 { 949 union ubifs_key key; 950 struct ubifs_dent_node *dent1, *dent2; 951 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; 952 int aligned_dlen1, aligned_dlen2; 953 int twoparents = (fst_dir != snd_dir); 954 void *p; 955 956 ubifs_assert(ubifs_inode(fst_dir)->data_len == 0); 957 ubifs_assert(ubifs_inode(snd_dir)->data_len == 0); 958 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); 959 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); 960 961 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; 962 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; 963 aligned_dlen1 = ALIGN(dlen1, 8); 964 aligned_dlen2 = ALIGN(dlen2, 8); 965 966 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); 967 if (twoparents) 968 len += plen; 969 970 dent1 = kzalloc(len, GFP_NOFS); 971 if (!dent1) 972 return -ENOMEM; 973 974 /* Make reservation before allocating sequence numbers */ 975 err = make_reservation(c, BASEHD, len); 976 if (err) 977 goto out_free; 978 979 /* Make new dent for 1st entry */ 980 dent1->ch.node_type = UBIFS_DENT_NODE; 981 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); 982 dent1->inum = cpu_to_le64(fst_inode->i_ino); 983 dent1->type = get_dent_type(fst_inode->i_mode); 984 dent1->nlen = cpu_to_le16(fname_len(snd_nm)); 985 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); 986 dent1->name[fname_len(snd_nm)] = '\0'; 987 set_dent_cookie(c, dent1); 988 zero_dent_node_unused(dent1); 989 ubifs_prep_grp_node(c, dent1, dlen1, 0); 990 991 /* Make new dent for 2nd entry */ 992 dent2 = (void *)dent1 + aligned_dlen1; 993 dent2->ch.node_type = UBIFS_DENT_NODE; 994 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); 995 dent2->inum = cpu_to_le64(snd_inode->i_ino); 996 dent2->type = get_dent_type(snd_inode->i_mode); 997 dent2->nlen = cpu_to_le16(fname_len(fst_nm)); 998 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); 999 dent2->name[fname_len(fst_nm)] = '\0'; 1000 set_dent_cookie(c, dent2); 1001 zero_dent_node_unused(dent2); 1002 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1003 1004 p = (void *)dent2 + aligned_dlen2; 1005 if (!twoparents) 1006 pack_inode(c, p, fst_dir, 1); 1007 else { 1008 pack_inode(c, p, fst_dir, 0); 1009 p += ALIGN(plen, 8); 1010 pack_inode(c, p, snd_dir, 1); 1011 } 1012 1013 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); 1014 if (err) 1015 goto out_release; 1016 if (!sync) { 1017 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1018 1019 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); 1020 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); 1021 } 1022 release_head(c, BASEHD); 1023 1024 dent_key_init(c, &key, snd_dir->i_ino, snd_nm); 1025 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm); 1026 if (err) 1027 goto out_ro; 1028 1029 offs += aligned_dlen1; 1030 dent_key_init(c, &key, fst_dir->i_ino, fst_nm); 1031 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm); 1032 if (err) 1033 goto out_ro; 1034 1035 offs += aligned_dlen2; 1036 1037 ino_key_init(c, &key, fst_dir->i_ino); 1038 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1039 if (err) 1040 goto out_ro; 1041 1042 if (twoparents) { 1043 offs += ALIGN(plen, 8); 1044 ino_key_init(c, &key, snd_dir->i_ino); 1045 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1046 if (err) 1047 goto out_ro; 1048 } 1049 1050 finish_reservation(c); 1051 1052 mark_inode_clean(c, ubifs_inode(fst_dir)); 1053 if (twoparents) 1054 mark_inode_clean(c, ubifs_inode(snd_dir)); 1055 kfree(dent1); 1056 return 0; 1057 1058 out_release: 1059 release_head(c, BASEHD); 1060 out_ro: 1061 ubifs_ro_mode(c, err); 1062 finish_reservation(c); 1063 out_free: 1064 kfree(dent1); 1065 return err; 1066 } 1067 1068 /** 1069 * ubifs_jnl_rename - rename a directory entry. 1070 * @c: UBIFS file-system description object 1071 * @old_dir: parent inode of directory entry to rename 1072 * @old_dentry: directory entry to rename 1073 * @new_dir: parent inode of directory entry to rename 1074 * @new_dentry: new directory entry (or directory entry to replace) 1075 * @sync: non-zero if the write-buffer has to be synchronized 1076 * 1077 * This function implements the re-name operation which may involve writing up 1078 * to 4 inodes and 2 directory entries. It marks the written inodes as clean 1079 * and returns zero on success. In case of failure, a negative error code is 1080 * returned. 1081 */ 1082 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1083 const struct inode *old_inode, 1084 const struct fscrypt_name *old_nm, 1085 const struct inode *new_dir, 1086 const struct inode *new_inode, 1087 const struct fscrypt_name *new_nm, 1088 const struct inode *whiteout, int sync) 1089 { 1090 void *p; 1091 union ubifs_key key; 1092 struct ubifs_dent_node *dent, *dent2; 1093 int err, dlen1, dlen2, ilen, lnum, offs, len; 1094 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 1095 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 1096 int move = (old_dir != new_dir); 1097 struct ubifs_inode *uninitialized_var(new_ui); 1098 1099 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 1100 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 1101 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 1102 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 1103 1104 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; 1105 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; 1106 if (new_inode) { 1107 new_ui = ubifs_inode(new_inode); 1108 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 1109 ilen = UBIFS_INO_NODE_SZ; 1110 if (!last_reference) 1111 ilen += new_ui->data_len; 1112 } else 1113 ilen = 0; 1114 1115 aligned_dlen1 = ALIGN(dlen1, 8); 1116 aligned_dlen2 = ALIGN(dlen2, 8); 1117 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 1118 if (move) 1119 len += plen; 1120 dent = kzalloc(len, GFP_NOFS); 1121 if (!dent) 1122 return -ENOMEM; 1123 1124 /* Make reservation before allocating sequence numbers */ 1125 err = make_reservation(c, BASEHD, len); 1126 if (err) 1127 goto out_free; 1128 1129 /* Make new dent */ 1130 dent->ch.node_type = UBIFS_DENT_NODE; 1131 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); 1132 dent->inum = cpu_to_le64(old_inode->i_ino); 1133 dent->type = get_dent_type(old_inode->i_mode); 1134 dent->nlen = cpu_to_le16(fname_len(new_nm)); 1135 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); 1136 dent->name[fname_len(new_nm)] = '\0'; 1137 set_dent_cookie(c, dent); 1138 zero_dent_node_unused(dent); 1139 ubifs_prep_grp_node(c, dent, dlen1, 0); 1140 1141 dent2 = (void *)dent + aligned_dlen1; 1142 dent2->ch.node_type = UBIFS_DENT_NODE; 1143 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); 1144 1145 if (whiteout) { 1146 dent2->inum = cpu_to_le64(whiteout->i_ino); 1147 dent2->type = get_dent_type(whiteout->i_mode); 1148 } else { 1149 /* Make deletion dent */ 1150 dent2->inum = 0; 1151 dent2->type = DT_UNKNOWN; 1152 } 1153 dent2->nlen = cpu_to_le16(fname_len(old_nm)); 1154 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); 1155 dent2->name[fname_len(old_nm)] = '\0'; 1156 set_dent_cookie(c, dent2); 1157 zero_dent_node_unused(dent2); 1158 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1159 1160 p = (void *)dent2 + aligned_dlen2; 1161 if (new_inode) { 1162 pack_inode(c, p, new_inode, 0); 1163 p += ALIGN(ilen, 8); 1164 } 1165 1166 if (!move) 1167 pack_inode(c, p, old_dir, 1); 1168 else { 1169 pack_inode(c, p, old_dir, 0); 1170 p += ALIGN(plen, 8); 1171 pack_inode(c, p, new_dir, 1); 1172 } 1173 1174 if (last_reference) { 1175 err = ubifs_add_orphan(c, new_inode->i_ino); 1176 if (err) { 1177 release_head(c, BASEHD); 1178 goto out_finish; 1179 } 1180 new_ui->del_cmtno = c->cmt_no; 1181 } 1182 1183 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1184 if (err) 1185 goto out_release; 1186 if (!sync) { 1187 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1188 1189 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1190 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1191 if (new_inode) 1192 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1193 new_inode->i_ino); 1194 } 1195 release_head(c, BASEHD); 1196 1197 dent_key_init(c, &key, new_dir->i_ino, new_nm); 1198 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm); 1199 if (err) 1200 goto out_ro; 1201 1202 offs += aligned_dlen1; 1203 if (whiteout) { 1204 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1205 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm); 1206 if (err) 1207 goto out_ro; 1208 1209 ubifs_delete_orphan(c, whiteout->i_ino); 1210 } else { 1211 err = ubifs_add_dirt(c, lnum, dlen2); 1212 if (err) 1213 goto out_ro; 1214 1215 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1216 err = ubifs_tnc_remove_nm(c, &key, old_nm); 1217 if (err) 1218 goto out_ro; 1219 } 1220 1221 offs += aligned_dlen2; 1222 if (new_inode) { 1223 ino_key_init(c, &key, new_inode->i_ino); 1224 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1225 if (err) 1226 goto out_ro; 1227 offs += ALIGN(ilen, 8); 1228 } 1229 1230 ino_key_init(c, &key, old_dir->i_ino); 1231 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1232 if (err) 1233 goto out_ro; 1234 1235 if (move) { 1236 offs += ALIGN(plen, 8); 1237 ino_key_init(c, &key, new_dir->i_ino); 1238 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1239 if (err) 1240 goto out_ro; 1241 } 1242 1243 finish_reservation(c); 1244 if (new_inode) { 1245 mark_inode_clean(c, new_ui); 1246 spin_lock(&new_ui->ui_lock); 1247 new_ui->synced_i_size = new_ui->ui_size; 1248 spin_unlock(&new_ui->ui_lock); 1249 } 1250 mark_inode_clean(c, ubifs_inode(old_dir)); 1251 if (move) 1252 mark_inode_clean(c, ubifs_inode(new_dir)); 1253 kfree(dent); 1254 return 0; 1255 1256 out_release: 1257 release_head(c, BASEHD); 1258 out_ro: 1259 ubifs_ro_mode(c, err); 1260 if (last_reference) 1261 ubifs_delete_orphan(c, new_inode->i_ino); 1262 out_finish: 1263 finish_reservation(c); 1264 out_free: 1265 kfree(dent); 1266 return err; 1267 } 1268 1269 /** 1270 * truncate_data_node - re-compress/encrypt a truncated data node. 1271 * @c: UBIFS file-system description object 1272 * @inode: inode which referes to the data node 1273 * @block: data block number 1274 * @dn: data node to re-compress 1275 * @new_len: new length 1276 * 1277 * This function is used when an inode is truncated and the last data node of 1278 * the inode has to be re-compressed/encrypted and re-written. 1279 */ 1280 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, 1281 unsigned int block, struct ubifs_data_node *dn, 1282 int *new_len) 1283 { 1284 void *buf; 1285 int err, compr_type; 1286 u32 dlen, out_len, old_dlen; 1287 1288 out_len = le32_to_cpu(dn->size); 1289 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS); 1290 if (!buf) 1291 return -ENOMEM; 1292 1293 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1294 compr_type = le16_to_cpu(dn->compr_type); 1295 1296 if (ubifs_crypt_is_encrypted(inode)) { 1297 err = ubifs_decrypt(inode, dn, &dlen, block); 1298 if (err) 1299 goto out; 1300 } 1301 1302 if (compr_type == UBIFS_COMPR_NONE) { 1303 out_len = *new_len; 1304 } else { 1305 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); 1306 if (err) 1307 goto out; 1308 1309 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); 1310 } 1311 1312 if (ubifs_crypt_is_encrypted(inode)) { 1313 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); 1314 if (err) 1315 goto out; 1316 1317 out_len = old_dlen; 1318 } else { 1319 dn->compr_size = 0; 1320 } 1321 1322 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1323 dn->compr_type = cpu_to_le16(compr_type); 1324 dn->size = cpu_to_le32(*new_len); 1325 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1326 err = 0; 1327 out: 1328 kfree(buf); 1329 return err; 1330 } 1331 1332 /** 1333 * ubifs_jnl_truncate - update the journal for a truncation. 1334 * @c: UBIFS file-system description object 1335 * @inode: inode to truncate 1336 * @old_size: old size 1337 * @new_size: new size 1338 * 1339 * When the size of a file decreases due to truncation, a truncation node is 1340 * written, the journal tree is updated, and the last data block is re-written 1341 * if it has been affected. The inode is also updated in order to synchronize 1342 * the new inode size. 1343 * 1344 * This function marks the inode as clean and returns zero on success. In case 1345 * of failure, a negative error code is returned. 1346 */ 1347 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1348 loff_t old_size, loff_t new_size) 1349 { 1350 union ubifs_key key, to_key; 1351 struct ubifs_ino_node *ino; 1352 struct ubifs_trun_node *trun; 1353 struct ubifs_data_node *uninitialized_var(dn); 1354 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1355 struct ubifs_inode *ui = ubifs_inode(inode); 1356 ino_t inum = inode->i_ino; 1357 unsigned int blk; 1358 1359 dbg_jnl("ino %lu, size %lld -> %lld", 1360 (unsigned long)inum, old_size, new_size); 1361 ubifs_assert(!ui->data_len); 1362 ubifs_assert(S_ISREG(inode->i_mode)); 1363 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1364 1365 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1366 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1367 ino = kmalloc(sz, GFP_NOFS); 1368 if (!ino) 1369 return -ENOMEM; 1370 1371 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1372 trun->ch.node_type = UBIFS_TRUN_NODE; 1373 trun->inum = cpu_to_le32(inum); 1374 trun->old_size = cpu_to_le64(old_size); 1375 trun->new_size = cpu_to_le64(new_size); 1376 zero_trun_node_unused(trun); 1377 1378 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1379 if (dlen) { 1380 /* Get last data block so it can be truncated */ 1381 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1382 blk = new_size >> UBIFS_BLOCK_SHIFT; 1383 data_key_init(c, &key, inum, blk); 1384 dbg_jnlk(&key, "last block key "); 1385 err = ubifs_tnc_lookup(c, &key, dn); 1386 if (err == -ENOENT) 1387 dlen = 0; /* Not found (so it is a hole) */ 1388 else if (err) 1389 goto out_free; 1390 else { 1391 if (le32_to_cpu(dn->size) <= dlen) 1392 dlen = 0; /* Nothing to do */ 1393 else { 1394 err = truncate_data_node(c, inode, blk, dn, &dlen); 1395 if (err) 1396 goto out_free; 1397 } 1398 } 1399 } 1400 1401 /* Must make reservation before allocating sequence numbers */ 1402 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1403 if (dlen) 1404 len += dlen; 1405 err = make_reservation(c, BASEHD, len); 1406 if (err) 1407 goto out_free; 1408 1409 pack_inode(c, ino, inode, 0); 1410 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1411 if (dlen) 1412 ubifs_prep_grp_node(c, dn, dlen, 1); 1413 1414 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1415 if (err) 1416 goto out_release; 1417 if (!sync) 1418 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1419 release_head(c, BASEHD); 1420 1421 if (dlen) { 1422 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1423 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1424 if (err) 1425 goto out_ro; 1426 } 1427 1428 ino_key_init(c, &key, inum); 1429 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1430 if (err) 1431 goto out_ro; 1432 1433 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1434 if (err) 1435 goto out_ro; 1436 1437 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1438 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1439 data_key_init(c, &key, inum, blk); 1440 1441 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1442 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1443 data_key_init(c, &to_key, inum, blk); 1444 1445 err = ubifs_tnc_remove_range(c, &key, &to_key); 1446 if (err) 1447 goto out_ro; 1448 1449 finish_reservation(c); 1450 spin_lock(&ui->ui_lock); 1451 ui->synced_i_size = ui->ui_size; 1452 spin_unlock(&ui->ui_lock); 1453 mark_inode_clean(c, ui); 1454 kfree(ino); 1455 return 0; 1456 1457 out_release: 1458 release_head(c, BASEHD); 1459 out_ro: 1460 ubifs_ro_mode(c, err); 1461 finish_reservation(c); 1462 out_free: 1463 kfree(ino); 1464 return err; 1465 } 1466 1467 1468 /** 1469 * ubifs_jnl_delete_xattr - delete an extended attribute. 1470 * @c: UBIFS file-system description object 1471 * @host: host inode 1472 * @inode: extended attribute inode 1473 * @nm: extended attribute entry name 1474 * 1475 * This function delete an extended attribute which is very similar to 1476 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1477 * updates the target inode. Returns zero in case of success and a negative 1478 * error code in case of failure. 1479 */ 1480 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1481 const struct inode *inode, 1482 const struct fscrypt_name *nm) 1483 { 1484 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1485 struct ubifs_dent_node *xent; 1486 struct ubifs_ino_node *ino; 1487 union ubifs_key xent_key, key1, key2; 1488 int sync = IS_DIRSYNC(host); 1489 struct ubifs_inode *host_ui = ubifs_inode(host); 1490 1491 ubifs_assert(inode->i_nlink == 0); 1492 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1493 1494 /* 1495 * Since we are deleting the inode, we do not bother to attach any data 1496 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1497 */ 1498 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 1499 aligned_xlen = ALIGN(xlen, 8); 1500 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1501 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1502 1503 xent = kzalloc(len, GFP_NOFS); 1504 if (!xent) 1505 return -ENOMEM; 1506 1507 /* Make reservation before allocating sequence numbers */ 1508 err = make_reservation(c, BASEHD, len); 1509 if (err) { 1510 kfree(xent); 1511 return err; 1512 } 1513 1514 xent->ch.node_type = UBIFS_XENT_NODE; 1515 xent_key_init(c, &xent_key, host->i_ino, nm); 1516 key_write(c, &xent_key, xent->key); 1517 xent->inum = 0; 1518 xent->type = get_dent_type(inode->i_mode); 1519 xent->nlen = cpu_to_le16(fname_len(nm)); 1520 memcpy(xent->name, fname_name(nm), fname_len(nm)); 1521 xent->name[fname_len(nm)] = '\0'; 1522 zero_dent_node_unused(xent); 1523 ubifs_prep_grp_node(c, xent, xlen, 0); 1524 1525 ino = (void *)xent + aligned_xlen; 1526 pack_inode(c, ino, inode, 0); 1527 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1528 pack_inode(c, ino, host, 1); 1529 1530 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1531 if (!sync && !err) 1532 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1533 release_head(c, BASEHD); 1534 kfree(xent); 1535 if (err) 1536 goto out_ro; 1537 1538 /* Remove the extended attribute entry from TNC */ 1539 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1540 if (err) 1541 goto out_ro; 1542 err = ubifs_add_dirt(c, lnum, xlen); 1543 if (err) 1544 goto out_ro; 1545 1546 /* 1547 * Remove all nodes belonging to the extended attribute inode from TNC. 1548 * Well, there actually must be only one node - the inode itself. 1549 */ 1550 lowest_ino_key(c, &key1, inode->i_ino); 1551 highest_ino_key(c, &key2, inode->i_ino); 1552 err = ubifs_tnc_remove_range(c, &key1, &key2); 1553 if (err) 1554 goto out_ro; 1555 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1556 if (err) 1557 goto out_ro; 1558 1559 /* And update TNC with the new host inode position */ 1560 ino_key_init(c, &key1, host->i_ino); 1561 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1562 if (err) 1563 goto out_ro; 1564 1565 finish_reservation(c); 1566 spin_lock(&host_ui->ui_lock); 1567 host_ui->synced_i_size = host_ui->ui_size; 1568 spin_unlock(&host_ui->ui_lock); 1569 mark_inode_clean(c, host_ui); 1570 return 0; 1571 1572 out_ro: 1573 ubifs_ro_mode(c, err); 1574 finish_reservation(c); 1575 return err; 1576 } 1577 1578 /** 1579 * ubifs_jnl_change_xattr - change an extended attribute. 1580 * @c: UBIFS file-system description object 1581 * @inode: extended attribute inode 1582 * @host: host inode 1583 * 1584 * This function writes the updated version of an extended attribute inode and 1585 * the host inode to the journal (to the base head). The host inode is written 1586 * after the extended attribute inode in order to guarantee that the extended 1587 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1588 * consequently, the write-buffer is synchronized. This function returns zero 1589 * in case of success and a negative error code in case of failure. 1590 */ 1591 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1592 const struct inode *host) 1593 { 1594 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1595 struct ubifs_inode *host_ui = ubifs_inode(host); 1596 struct ubifs_ino_node *ino; 1597 union ubifs_key key; 1598 int sync = IS_DIRSYNC(host); 1599 1600 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1601 ubifs_assert(host->i_nlink > 0); 1602 ubifs_assert(inode->i_nlink > 0); 1603 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1604 1605 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1606 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1607 aligned_len1 = ALIGN(len1, 8); 1608 aligned_len = aligned_len1 + ALIGN(len2, 8); 1609 1610 ino = kzalloc(aligned_len, GFP_NOFS); 1611 if (!ino) 1612 return -ENOMEM; 1613 1614 /* Make reservation before allocating sequence numbers */ 1615 err = make_reservation(c, BASEHD, aligned_len); 1616 if (err) 1617 goto out_free; 1618 1619 pack_inode(c, ino, host, 0); 1620 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1621 1622 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1623 if (!sync && !err) { 1624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1625 1626 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1627 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1628 } 1629 release_head(c, BASEHD); 1630 if (err) 1631 goto out_ro; 1632 1633 ino_key_init(c, &key, host->i_ino); 1634 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1635 if (err) 1636 goto out_ro; 1637 1638 ino_key_init(c, &key, inode->i_ino); 1639 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1640 if (err) 1641 goto out_ro; 1642 1643 finish_reservation(c); 1644 spin_lock(&host_ui->ui_lock); 1645 host_ui->synced_i_size = host_ui->ui_size; 1646 spin_unlock(&host_ui->ui_lock); 1647 mark_inode_clean(c, host_ui); 1648 kfree(ino); 1649 return 0; 1650 1651 out_ro: 1652 ubifs_ro_mode(c, err); 1653 finish_reservation(c); 1654 out_free: 1655 kfree(ino); 1656 return err; 1657 } 1658 1659