xref: /openbmc/linux/fs/ubifs/journal.c (revision ae213c44)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 }
82 
83 /**
84  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85  *                         node.
86  * @trun: the truncation node to zero out
87  */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 	memset(trun->padding, 0, 12);
91 }
92 
93 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
94 {
95 	if (ubifs_authenticated(c))
96 		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
97 }
98 
99 /**
100  * reserve_space - reserve space in the journal.
101  * @c: UBIFS file-system description object
102  * @jhead: journal head number
103  * @len: node length
104  *
105  * This function reserves space in journal head @head. If the reservation
106  * succeeded, the journal head stays locked and later has to be unlocked using
107  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
108  * be done, and other negative error codes in case of other failures.
109  */
110 static int reserve_space(struct ubifs_info *c, int jhead, int len)
111 {
112 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
113 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
114 
115 	/*
116 	 * Typically, the base head has smaller nodes written to it, so it is
117 	 * better to try to allocate space at the ends of eraseblocks. This is
118 	 * what the squeeze parameter does.
119 	 */
120 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
121 	squeeze = (jhead == BASEHD);
122 again:
123 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
124 
125 	if (c->ro_error) {
126 		err = -EROFS;
127 		goto out_unlock;
128 	}
129 
130 	avail = c->leb_size - wbuf->offs - wbuf->used;
131 	if (wbuf->lnum != -1 && avail >= len)
132 		return 0;
133 
134 	/*
135 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
136 	 * LEB with some empty space.
137 	 */
138 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
139 	if (lnum >= 0)
140 		goto out;
141 
142 	err = lnum;
143 	if (err != -ENOSPC)
144 		goto out_unlock;
145 
146 	/*
147 	 * No free space, we have to run garbage collector to make
148 	 * some. But the write-buffer mutex has to be unlocked because
149 	 * GC also takes it.
150 	 */
151 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
152 	mutex_unlock(&wbuf->io_mutex);
153 
154 	lnum = ubifs_garbage_collect(c, 0);
155 	if (lnum < 0) {
156 		err = lnum;
157 		if (err != -ENOSPC)
158 			return err;
159 
160 		/*
161 		 * GC could not make a free LEB. But someone else may
162 		 * have allocated new bud for this journal head,
163 		 * because we dropped @wbuf->io_mutex, so try once
164 		 * again.
165 		 */
166 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
167 			dbg_jhead(jhead));
168 		if (retries++ < 2) {
169 			dbg_jnl("retry (%d)", retries);
170 			goto again;
171 		}
172 
173 		dbg_jnl("return -ENOSPC");
174 		return err;
175 	}
176 
177 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
178 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
179 	avail = c->leb_size - wbuf->offs - wbuf->used;
180 
181 	if (wbuf->lnum != -1 && avail >= len) {
182 		/*
183 		 * Someone else has switched the journal head and we have
184 		 * enough space now. This happens when more than one process is
185 		 * trying to write to the same journal head at the same time.
186 		 */
187 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
188 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
189 		err = ubifs_return_leb(c, lnum);
190 		if (err)
191 			goto out_unlock;
192 		return 0;
193 	}
194 
195 	offs = 0;
196 
197 out:
198 	/*
199 	 * Make sure we synchronize the write-buffer before we add the new bud
200 	 * to the log. Otherwise we may have a power cut after the log
201 	 * reference node for the last bud (@lnum) is written but before the
202 	 * write-buffer data are written to the next-to-last bud
203 	 * (@wbuf->lnum). And the effect would be that the recovery would see
204 	 * that there is corruption in the next-to-last bud.
205 	 */
206 	err = ubifs_wbuf_sync_nolock(wbuf);
207 	if (err)
208 		goto out_return;
209 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
210 	if (err)
211 		goto out_return;
212 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
213 	if (err)
214 		goto out_unlock;
215 
216 	return 0;
217 
218 out_unlock:
219 	mutex_unlock(&wbuf->io_mutex);
220 	return err;
221 
222 out_return:
223 	/* An error occurred and the LEB has to be returned to lprops */
224 	ubifs_assert(c, err < 0);
225 	err1 = ubifs_return_leb(c, lnum);
226 	if (err1 && err == -EAGAIN)
227 		/*
228 		 * Return original error code only if it is not %-EAGAIN,
229 		 * which is not really an error. Otherwise, return the error
230 		 * code of 'ubifs_return_leb()'.
231 		 */
232 		err = err1;
233 	mutex_unlock(&wbuf->io_mutex);
234 	return err;
235 }
236 
237 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
238 			     int len, struct shash_desc *hash)
239 {
240 	int auth_node_size = ubifs_auth_node_sz(c);
241 	int err;
242 
243 	while (1) {
244 		const struct ubifs_ch *ch = node;
245 		int nodelen = le32_to_cpu(ch->len);
246 
247 		ubifs_assert(c, len >= auth_node_size);
248 
249 		if (len == auth_node_size)
250 			break;
251 
252 		ubifs_assert(c, len > nodelen);
253 		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
254 
255 		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
256 		if (err)
257 			return err;
258 
259 		node += ALIGN(nodelen, 8);
260 		len -= ALIGN(nodelen, 8);
261 	}
262 
263 	return ubifs_prepare_auth_node(c, node, hash);
264 }
265 
266 /**
267  * write_head - write data to a journal head.
268  * @c: UBIFS file-system description object
269  * @jhead: journal head
270  * @buf: buffer to write
271  * @len: length to write
272  * @lnum: LEB number written is returned here
273  * @offs: offset written is returned here
274  * @sync: non-zero if the write-buffer has to by synchronized
275  *
276  * This function writes data to the reserved space of journal head @jhead.
277  * Returns zero in case of success and a negative error code in case of
278  * failure.
279  */
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 		      int *lnum, int *offs, int sync)
282 {
283 	int err;
284 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
285 
286 	ubifs_assert(c, jhead != GCHD);
287 
288 	*lnum = c->jheads[jhead].wbuf.lnum;
289 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 		dbg_jhead(jhead), *lnum, *offs, len);
292 
293 	if (ubifs_authenticated(c)) {
294 		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
295 		if (err)
296 			return err;
297 	}
298 
299 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 	if (err)
301 		return err;
302 	if (sync)
303 		err = ubifs_wbuf_sync_nolock(wbuf);
304 	return err;
305 }
306 
307 /**
308  * make_reservation - reserve journal space.
309  * @c: UBIFS file-system description object
310  * @jhead: journal head
311  * @len: how many bytes to reserve
312  *
313  * This function makes space reservation in journal head @jhead. The function
314  * takes the commit lock and locks the journal head, and the caller has to
315  * unlock the head and finish the reservation with 'finish_reservation()'.
316  * Returns zero in case of success and a negative error code in case of
317  * failure.
318  *
319  * Note, the journal head may be unlocked as soon as the data is written, while
320  * the commit lock has to be released after the data has been added to the
321  * TNC.
322  */
323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
324 {
325 	int err, cmt_retries = 0, nospc_retries = 0;
326 
327 again:
328 	down_read(&c->commit_sem);
329 	err = reserve_space(c, jhead, len);
330 	if (!err)
331 		/* c->commit_sem will get released via finish_reservation(). */
332 		return 0;
333 	up_read(&c->commit_sem);
334 
335 	if (err == -ENOSPC) {
336 		/*
337 		 * GC could not make any progress. We should try to commit
338 		 * once because it could make some dirty space and GC would
339 		 * make progress, so make the error -EAGAIN so that the below
340 		 * will commit and re-try.
341 		 */
342 		if (nospc_retries++ < 2) {
343 			dbg_jnl("no space, retry");
344 			err = -EAGAIN;
345 		}
346 
347 		/*
348 		 * This means that the budgeting is incorrect. We always have
349 		 * to be able to write to the media, because all operations are
350 		 * budgeted. Deletions are not budgeted, though, but we reserve
351 		 * an extra LEB for them.
352 		 */
353 	}
354 
355 	if (err != -EAGAIN)
356 		goto out;
357 
358 	/*
359 	 * -EAGAIN means that the journal is full or too large, or the above
360 	 * code wants to do one commit. Do this and re-try.
361 	 */
362 	if (cmt_retries > 128) {
363 		/*
364 		 * This should not happen unless the journal size limitations
365 		 * are too tough.
366 		 */
367 		ubifs_err(c, "stuck in space allocation");
368 		err = -ENOSPC;
369 		goto out;
370 	} else if (cmt_retries > 32)
371 		ubifs_warn(c, "too many space allocation re-tries (%d)",
372 			   cmt_retries);
373 
374 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
375 		cmt_retries);
376 	cmt_retries += 1;
377 
378 	err = ubifs_run_commit(c);
379 	if (err)
380 		return err;
381 	goto again;
382 
383 out:
384 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
385 		  len, jhead, err);
386 	if (err == -ENOSPC) {
387 		/* This are some budgeting problems, print useful information */
388 		down_write(&c->commit_sem);
389 		dump_stack();
390 		ubifs_dump_budg(c, &c->bi);
391 		ubifs_dump_lprops(c);
392 		cmt_retries = dbg_check_lprops(c);
393 		up_write(&c->commit_sem);
394 	}
395 	return err;
396 }
397 
398 /**
399  * release_head - release a journal head.
400  * @c: UBIFS file-system description object
401  * @jhead: journal head
402  *
403  * This function releases journal head @jhead which was locked by
404  * the 'make_reservation()' function. It has to be called after each successful
405  * 'make_reservation()' invocation.
406  */
407 static inline void release_head(struct ubifs_info *c, int jhead)
408 {
409 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
410 }
411 
412 /**
413  * finish_reservation - finish a reservation.
414  * @c: UBIFS file-system description object
415  *
416  * This function finishes journal space reservation. It must be called after
417  * 'make_reservation()'.
418  */
419 static void finish_reservation(struct ubifs_info *c)
420 {
421 	up_read(&c->commit_sem);
422 }
423 
424 /**
425  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
426  * @mode: inode mode
427  */
428 static int get_dent_type(int mode)
429 {
430 	switch (mode & S_IFMT) {
431 	case S_IFREG:
432 		return UBIFS_ITYPE_REG;
433 	case S_IFDIR:
434 		return UBIFS_ITYPE_DIR;
435 	case S_IFLNK:
436 		return UBIFS_ITYPE_LNK;
437 	case S_IFBLK:
438 		return UBIFS_ITYPE_BLK;
439 	case S_IFCHR:
440 		return UBIFS_ITYPE_CHR;
441 	case S_IFIFO:
442 		return UBIFS_ITYPE_FIFO;
443 	case S_IFSOCK:
444 		return UBIFS_ITYPE_SOCK;
445 	default:
446 		BUG();
447 	}
448 	return 0;
449 }
450 
451 /**
452  * pack_inode - pack an inode node.
453  * @c: UBIFS file-system description object
454  * @ino: buffer in which to pack inode node
455  * @inode: inode to pack
456  * @last: indicates the last node of the group
457  */
458 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
459 		       const struct inode *inode, int last)
460 {
461 	int data_len = 0, last_reference = !inode->i_nlink;
462 	struct ubifs_inode *ui = ubifs_inode(inode);
463 
464 	ino->ch.node_type = UBIFS_INO_NODE;
465 	ino_key_init_flash(c, &ino->key, inode->i_ino);
466 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
467 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
468 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
469 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
470 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
471 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
472 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
473 	ino->uid   = cpu_to_le32(i_uid_read(inode));
474 	ino->gid   = cpu_to_le32(i_gid_read(inode));
475 	ino->mode  = cpu_to_le32(inode->i_mode);
476 	ino->flags = cpu_to_le32(ui->flags);
477 	ino->size  = cpu_to_le64(ui->ui_size);
478 	ino->nlink = cpu_to_le32(inode->i_nlink);
479 	ino->compr_type  = cpu_to_le16(ui->compr_type);
480 	ino->data_len    = cpu_to_le32(ui->data_len);
481 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
482 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
483 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
484 	zero_ino_node_unused(ino);
485 
486 	/*
487 	 * Drop the attached data if this is a deletion inode, the data is not
488 	 * needed anymore.
489 	 */
490 	if (!last_reference) {
491 		memcpy(ino->data, ui->data, ui->data_len);
492 		data_len = ui->data_len;
493 	}
494 
495 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
496 }
497 
498 /**
499  * mark_inode_clean - mark UBIFS inode as clean.
500  * @c: UBIFS file-system description object
501  * @ui: UBIFS inode to mark as clean
502  *
503  * This helper function marks UBIFS inode @ui as clean by cleaning the
504  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
505  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
506  * just do nothing.
507  */
508 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
509 {
510 	if (ui->dirty)
511 		ubifs_release_dirty_inode_budget(c, ui);
512 	ui->dirty = 0;
513 }
514 
515 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
516 {
517 	if (c->double_hash)
518 		dent->cookie = prandom_u32();
519 	else
520 		dent->cookie = 0;
521 }
522 
523 /**
524  * ubifs_jnl_update - update inode.
525  * @c: UBIFS file-system description object
526  * @dir: parent inode or host inode in case of extended attributes
527  * @nm: directory entry name
528  * @inode: inode to update
529  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
530  * @xent: non-zero if the directory entry is an extended attribute entry
531  *
532  * This function updates an inode by writing a directory entry (or extended
533  * attribute entry), the inode itself, and the parent directory inode (or the
534  * host inode) to the journal.
535  *
536  * The function writes the host inode @dir last, which is important in case of
537  * extended attributes. Indeed, then we guarantee that if the host inode gets
538  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
539  * the extended attribute inode gets flushed too. And this is exactly what the
540  * user expects - synchronizing the host inode synchronizes its extended
541  * attributes. Similarly, this guarantees that if @dir is synchronized, its
542  * directory entry corresponding to @nm gets synchronized too.
543  *
544  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
545  * function synchronizes the write-buffer.
546  *
547  * This function marks the @dir and @inode inodes as clean and returns zero on
548  * success. In case of failure, a negative error code is returned.
549  */
550 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
551 		     const struct fscrypt_name *nm, const struct inode *inode,
552 		     int deletion, int xent)
553 {
554 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
555 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
556 	int last_reference = !!(deletion && inode->i_nlink == 0);
557 	struct ubifs_inode *ui = ubifs_inode(inode);
558 	struct ubifs_inode *host_ui = ubifs_inode(dir);
559 	struct ubifs_dent_node *dent;
560 	struct ubifs_ino_node *ino;
561 	union ubifs_key dent_key, ino_key;
562 	u8 hash_dent[UBIFS_HASH_ARR_SZ];
563 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
564 	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
565 
566 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
567 
568 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
569 	ilen = UBIFS_INO_NODE_SZ;
570 
571 	/*
572 	 * If the last reference to the inode is being deleted, then there is
573 	 * no need to attach and write inode data, it is being deleted anyway.
574 	 * And if the inode is being deleted, no need to synchronize
575 	 * write-buffer even if the inode is synchronous.
576 	 */
577 	if (!last_reference) {
578 		ilen += ui->data_len;
579 		sync |= IS_SYNC(inode);
580 	}
581 
582 	aligned_dlen = ALIGN(dlen, 8);
583 	aligned_ilen = ALIGN(ilen, 8);
584 
585 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
586 	/* Make sure to also account for extended attributes */
587 	if (ubifs_authenticated(c))
588 		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
589 	else
590 		len += host_ui->data_len;
591 
592 	dent = kzalloc(len, GFP_NOFS);
593 	if (!dent)
594 		return -ENOMEM;
595 
596 	/* Make reservation before allocating sequence numbers */
597 	err = make_reservation(c, BASEHD, len);
598 	if (err)
599 		goto out_free;
600 
601 	if (!xent) {
602 		dent->ch.node_type = UBIFS_DENT_NODE;
603 		if (nm->hash)
604 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
605 		else
606 			dent_key_init(c, &dent_key, dir->i_ino, nm);
607 	} else {
608 		dent->ch.node_type = UBIFS_XENT_NODE;
609 		xent_key_init(c, &dent_key, dir->i_ino, nm);
610 	}
611 
612 	key_write(c, &dent_key, dent->key);
613 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
614 	dent->type = get_dent_type(inode->i_mode);
615 	dent->nlen = cpu_to_le16(fname_len(nm));
616 	memcpy(dent->name, fname_name(nm), fname_len(nm));
617 	dent->name[fname_len(nm)] = '\0';
618 	set_dent_cookie(c, dent);
619 
620 	zero_dent_node_unused(dent);
621 	ubifs_prep_grp_node(c, dent, dlen, 0);
622 	err = ubifs_node_calc_hash(c, dent, hash_dent);
623 	if (err)
624 		goto out_release;
625 
626 	ino = (void *)dent + aligned_dlen;
627 	pack_inode(c, ino, inode, 0);
628 	err = ubifs_node_calc_hash(c, ino, hash_ino);
629 	if (err)
630 		goto out_release;
631 
632 	ino = (void *)ino + aligned_ilen;
633 	pack_inode(c, ino, dir, 1);
634 	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
635 	if (err)
636 		goto out_release;
637 
638 	if (last_reference) {
639 		err = ubifs_add_orphan(c, inode->i_ino);
640 		if (err) {
641 			release_head(c, BASEHD);
642 			goto out_finish;
643 		}
644 		ui->del_cmtno = c->cmt_no;
645 	}
646 
647 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
648 	if (err)
649 		goto out_release;
650 	if (!sync) {
651 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
652 
653 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
654 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
655 	}
656 	release_head(c, BASEHD);
657 	kfree(dent);
658 	ubifs_add_auth_dirt(c, lnum);
659 
660 	if (deletion) {
661 		if (nm->hash)
662 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
663 		else
664 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
665 		if (err)
666 			goto out_ro;
667 		err = ubifs_add_dirt(c, lnum, dlen);
668 	} else
669 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
670 				       hash_dent, nm);
671 	if (err)
672 		goto out_ro;
673 
674 	/*
675 	 * Note, we do not remove the inode from TNC even if the last reference
676 	 * to it has just been deleted, because the inode may still be opened.
677 	 * Instead, the inode has been added to orphan lists and the orphan
678 	 * subsystem will take further care about it.
679 	 */
680 	ino_key_init(c, &ino_key, inode->i_ino);
681 	ino_offs = dent_offs + aligned_dlen;
682 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
683 	if (err)
684 		goto out_ro;
685 
686 	ino_key_init(c, &ino_key, dir->i_ino);
687 	ino_offs += aligned_ilen;
688 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
689 			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
690 	if (err)
691 		goto out_ro;
692 
693 	finish_reservation(c);
694 	spin_lock(&ui->ui_lock);
695 	ui->synced_i_size = ui->ui_size;
696 	spin_unlock(&ui->ui_lock);
697 	if (xent) {
698 		spin_lock(&host_ui->ui_lock);
699 		host_ui->synced_i_size = host_ui->ui_size;
700 		spin_unlock(&host_ui->ui_lock);
701 	}
702 	mark_inode_clean(c, ui);
703 	mark_inode_clean(c, host_ui);
704 	return 0;
705 
706 out_finish:
707 	finish_reservation(c);
708 out_free:
709 	kfree(dent);
710 	return err;
711 
712 out_release:
713 	release_head(c, BASEHD);
714 	kfree(dent);
715 out_ro:
716 	ubifs_ro_mode(c, err);
717 	if (last_reference)
718 		ubifs_delete_orphan(c, inode->i_ino);
719 	finish_reservation(c);
720 	return err;
721 }
722 
723 /**
724  * ubifs_jnl_write_data - write a data node to the journal.
725  * @c: UBIFS file-system description object
726  * @inode: inode the data node belongs to
727  * @key: node key
728  * @buf: buffer to write
729  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
730  *
731  * This function writes a data node to the journal. Returns %0 if the data node
732  * was successfully written, and a negative error code in case of failure.
733  */
734 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
735 			 const union ubifs_key *key, const void *buf, int len)
736 {
737 	struct ubifs_data_node *data;
738 	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
739 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
740 	int write_len;
741 	struct ubifs_inode *ui = ubifs_inode(inode);
742 	bool encrypted = ubifs_crypt_is_encrypted(inode);
743 	u8 hash[UBIFS_HASH_ARR_SZ];
744 
745 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
746 		(unsigned long)key_inum(c, key), key_block(c, key), len);
747 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
748 
749 	if (encrypted)
750 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
751 
752 	auth_len = ubifs_auth_node_sz(c);
753 
754 	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
755 	if (!data) {
756 		/*
757 		 * Fall-back to the write reserve buffer. Note, we might be
758 		 * currently on the memory reclaim path, when the kernel is
759 		 * trying to free some memory by writing out dirty pages. The
760 		 * write reserve buffer helps us to guarantee that we are
761 		 * always able to write the data.
762 		 */
763 		allocated = 0;
764 		mutex_lock(&c->write_reserve_mutex);
765 		data = c->write_reserve_buf;
766 	}
767 
768 	data->ch.node_type = UBIFS_DATA_NODE;
769 	key_write(c, key, &data->key);
770 	data->size = cpu_to_le32(len);
771 
772 	if (!(ui->flags & UBIFS_COMPR_FL))
773 		/* Compression is disabled for this inode */
774 		compr_type = UBIFS_COMPR_NONE;
775 	else
776 		compr_type = ui->compr_type;
777 
778 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
779 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
780 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
781 
782 	if (encrypted) {
783 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
784 		if (err)
785 			goto out_free;
786 
787 	} else {
788 		data->compr_size = 0;
789 		out_len = compr_len;
790 	}
791 
792 	dlen = UBIFS_DATA_NODE_SZ + out_len;
793 	if (ubifs_authenticated(c))
794 		write_len = ALIGN(dlen, 8) + auth_len;
795 	else
796 		write_len = dlen;
797 
798 	data->compr_type = cpu_to_le16(compr_type);
799 
800 	/* Make reservation before allocating sequence numbers */
801 	err = make_reservation(c, DATAHD, write_len);
802 	if (err)
803 		goto out_free;
804 
805 	ubifs_prepare_node(c, data, dlen, 0);
806 	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
807 	if (err)
808 		goto out_release;
809 
810 	err = ubifs_node_calc_hash(c, data, hash);
811 	if (err)
812 		goto out_release;
813 
814 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
815 	release_head(c, DATAHD);
816 
817 	ubifs_add_auth_dirt(c, lnum);
818 
819 	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
820 	if (err)
821 		goto out_ro;
822 
823 	finish_reservation(c);
824 	if (!allocated)
825 		mutex_unlock(&c->write_reserve_mutex);
826 	else
827 		kfree(data);
828 	return 0;
829 
830 out_release:
831 	release_head(c, DATAHD);
832 out_ro:
833 	ubifs_ro_mode(c, err);
834 	finish_reservation(c);
835 out_free:
836 	if (!allocated)
837 		mutex_unlock(&c->write_reserve_mutex);
838 	else
839 		kfree(data);
840 	return err;
841 }
842 
843 /**
844  * ubifs_jnl_write_inode - flush inode to the journal.
845  * @c: UBIFS file-system description object
846  * @inode: inode to flush
847  *
848  * This function writes inode @inode to the journal. If the inode is
849  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
850  * success and a negative error code in case of failure.
851  */
852 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
853 {
854 	int err, lnum, offs;
855 	struct ubifs_ino_node *ino, *ino_start;
856 	struct ubifs_inode *ui = ubifs_inode(inode);
857 	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
858 	int last_reference = !inode->i_nlink;
859 	int kill_xattrs = ui->xattr_cnt && last_reference;
860 	u8 hash[UBIFS_HASH_ARR_SZ];
861 
862 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
863 
864 	/*
865 	 * If the inode is being deleted, do not write the attached data. No
866 	 * need to synchronize the write-buffer either.
867 	 */
868 	if (!last_reference) {
869 		ilen += ui->data_len;
870 		sync = IS_SYNC(inode);
871 	} else if (kill_xattrs) {
872 		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
873 	}
874 
875 	if (ubifs_authenticated(c))
876 		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
877 	else
878 		write_len += ilen;
879 
880 	ino_start = ino = kmalloc(write_len, GFP_NOFS);
881 	if (!ino)
882 		return -ENOMEM;
883 
884 	/* Make reservation before allocating sequence numbers */
885 	err = make_reservation(c, BASEHD, write_len);
886 	if (err)
887 		goto out_free;
888 
889 	if (kill_xattrs) {
890 		union ubifs_key key;
891 		struct fscrypt_name nm = {0};
892 		struct inode *xino;
893 		struct ubifs_dent_node *xent, *pxent = NULL;
894 
895 		if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
896 			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
897 			goto out_release;
898 		}
899 
900 		lowest_xent_key(c, &key, inode->i_ino);
901 		while (1) {
902 			xent = ubifs_tnc_next_ent(c, &key, &nm);
903 			if (IS_ERR(xent)) {
904 				err = PTR_ERR(xent);
905 				if (err == -ENOENT)
906 					break;
907 
908 				goto out_release;
909 			}
910 
911 			fname_name(&nm) = xent->name;
912 			fname_len(&nm) = le16_to_cpu(xent->nlen);
913 
914 			xino = ubifs_iget(c->vfs_sb, xent->inum);
915 			if (IS_ERR(xino)) {
916 				err = PTR_ERR(xino);
917 				ubifs_err(c, "dead directory entry '%s', error %d",
918 					  xent->name, err);
919 				ubifs_ro_mode(c, err);
920 				goto out_release;
921 			}
922 			ubifs_assert(c, ubifs_inode(xino)->xattr);
923 
924 			clear_nlink(xino);
925 			pack_inode(c, ino, xino, 0);
926 			ino = (void *)ino + UBIFS_INO_NODE_SZ;
927 			iput(xino);
928 
929 			kfree(pxent);
930 			pxent = xent;
931 			key_read(c, &xent->key, &key);
932 		}
933 		kfree(pxent);
934 	}
935 
936 	pack_inode(c, ino, inode, 1);
937 	err = ubifs_node_calc_hash(c, ino, hash);
938 	if (err)
939 		goto out_release;
940 
941 	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
942 	if (err)
943 		goto out_release;
944 	if (!sync)
945 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
946 					  inode->i_ino);
947 	release_head(c, BASEHD);
948 
949 	ubifs_add_auth_dirt(c, lnum);
950 
951 	if (last_reference) {
952 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
953 		if (err)
954 			goto out_ro;
955 		ubifs_delete_orphan(c, inode->i_ino);
956 		err = ubifs_add_dirt(c, lnum, write_len);
957 	} else {
958 		union ubifs_key key;
959 
960 		ino_key_init(c, &key, inode->i_ino);
961 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
962 	}
963 	if (err)
964 		goto out_ro;
965 
966 	finish_reservation(c);
967 	spin_lock(&ui->ui_lock);
968 	ui->synced_i_size = ui->ui_size;
969 	spin_unlock(&ui->ui_lock);
970 	kfree(ino_start);
971 	return 0;
972 
973 out_release:
974 	release_head(c, BASEHD);
975 out_ro:
976 	ubifs_ro_mode(c, err);
977 	finish_reservation(c);
978 out_free:
979 	kfree(ino_start);
980 	return err;
981 }
982 
983 /**
984  * ubifs_jnl_delete_inode - delete an inode.
985  * @c: UBIFS file-system description object
986  * @inode: inode to delete
987  *
988  * This function deletes inode @inode which includes removing it from orphans,
989  * deleting it from TNC and, in some cases, writing a deletion inode to the
990  * journal.
991  *
992  * When regular file inodes are unlinked or a directory inode is removed, the
993  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
994  * direntry to the media, and adds the inode to orphans. After this, when the
995  * last reference to this inode has been dropped, this function is called. In
996  * general, it has to write one more deletion inode to the media, because if
997  * a commit happened between 'ubifs_jnl_update()' and
998  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
999  * anymore, and in fact it might not be on the flash anymore, because it might
1000  * have been garbage-collected already. And for optimization reasons UBIFS does
1001  * not read the orphan area if it has been unmounted cleanly, so it would have
1002  * no indication in the journal that there is a deleted inode which has to be
1003  * removed from TNC.
1004  *
1005  * However, if there was no commit between 'ubifs_jnl_update()' and
1006  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1007  * inode to the media for the second time. And this is quite a typical case.
1008  *
1009  * This function returns zero in case of success and a negative error code in
1010  * case of failure.
1011  */
1012 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1013 {
1014 	int err;
1015 	struct ubifs_inode *ui = ubifs_inode(inode);
1016 
1017 	ubifs_assert(c, inode->i_nlink == 0);
1018 
1019 	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1020 		/* A commit happened for sure or inode hosts xattrs */
1021 		return ubifs_jnl_write_inode(c, inode);
1022 
1023 	down_read(&c->commit_sem);
1024 	/*
1025 	 * Check commit number again, because the first test has been done
1026 	 * without @c->commit_sem, so a commit might have happened.
1027 	 */
1028 	if (ui->del_cmtno != c->cmt_no) {
1029 		up_read(&c->commit_sem);
1030 		return ubifs_jnl_write_inode(c, inode);
1031 	}
1032 
1033 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1034 	if (err)
1035 		ubifs_ro_mode(c, err);
1036 	else
1037 		ubifs_delete_orphan(c, inode->i_ino);
1038 	up_read(&c->commit_sem);
1039 	return err;
1040 }
1041 
1042 /**
1043  * ubifs_jnl_xrename - cross rename two directory entries.
1044  * @c: UBIFS file-system description object
1045  * @fst_dir: parent inode of 1st directory entry to exchange
1046  * @fst_inode: 1st inode to exchange
1047  * @fst_nm: name of 1st inode to exchange
1048  * @snd_dir: parent inode of 2nd directory entry to exchange
1049  * @snd_inode: 2nd inode to exchange
1050  * @snd_nm: name of 2nd inode to exchange
1051  * @sync: non-zero if the write-buffer has to be synchronized
1052  *
1053  * This function implements the cross rename operation which may involve
1054  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1055  * and returns zero on success. In case of failure, a negative error code is
1056  * returned.
1057  */
1058 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1059 		      const struct inode *fst_inode,
1060 		      const struct fscrypt_name *fst_nm,
1061 		      const struct inode *snd_dir,
1062 		      const struct inode *snd_inode,
1063 		      const struct fscrypt_name *snd_nm, int sync)
1064 {
1065 	union ubifs_key key;
1066 	struct ubifs_dent_node *dent1, *dent2;
1067 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1068 	int aligned_dlen1, aligned_dlen2;
1069 	int twoparents = (fst_dir != snd_dir);
1070 	void *p;
1071 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1072 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1073 	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1074 	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1075 
1076 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1077 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1078 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1079 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1080 
1081 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1082 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1083 	aligned_dlen1 = ALIGN(dlen1, 8);
1084 	aligned_dlen2 = ALIGN(dlen2, 8);
1085 
1086 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1087 	if (twoparents)
1088 		len += plen;
1089 
1090 	len += ubifs_auth_node_sz(c);
1091 
1092 	dent1 = kzalloc(len, GFP_NOFS);
1093 	if (!dent1)
1094 		return -ENOMEM;
1095 
1096 	/* Make reservation before allocating sequence numbers */
1097 	err = make_reservation(c, BASEHD, len);
1098 	if (err)
1099 		goto out_free;
1100 
1101 	/* Make new dent for 1st entry */
1102 	dent1->ch.node_type = UBIFS_DENT_NODE;
1103 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1104 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1105 	dent1->type = get_dent_type(fst_inode->i_mode);
1106 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1107 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1108 	dent1->name[fname_len(snd_nm)] = '\0';
1109 	set_dent_cookie(c, dent1);
1110 	zero_dent_node_unused(dent1);
1111 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1112 	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1113 	if (err)
1114 		goto out_release;
1115 
1116 	/* Make new dent for 2nd entry */
1117 	dent2 = (void *)dent1 + aligned_dlen1;
1118 	dent2->ch.node_type = UBIFS_DENT_NODE;
1119 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1120 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1121 	dent2->type = get_dent_type(snd_inode->i_mode);
1122 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1123 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1124 	dent2->name[fname_len(fst_nm)] = '\0';
1125 	set_dent_cookie(c, dent2);
1126 	zero_dent_node_unused(dent2);
1127 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1128 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1129 	if (err)
1130 		goto out_release;
1131 
1132 	p = (void *)dent2 + aligned_dlen2;
1133 	if (!twoparents) {
1134 		pack_inode(c, p, fst_dir, 1);
1135 		err = ubifs_node_calc_hash(c, p, hash_p1);
1136 		if (err)
1137 			goto out_release;
1138 	} else {
1139 		pack_inode(c, p, fst_dir, 0);
1140 		err = ubifs_node_calc_hash(c, p, hash_p1);
1141 		if (err)
1142 			goto out_release;
1143 		p += ALIGN(plen, 8);
1144 		pack_inode(c, p, snd_dir, 1);
1145 		err = ubifs_node_calc_hash(c, p, hash_p2);
1146 		if (err)
1147 			goto out_release;
1148 	}
1149 
1150 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1151 	if (err)
1152 		goto out_release;
1153 	if (!sync) {
1154 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1155 
1156 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1157 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1158 	}
1159 	release_head(c, BASEHD);
1160 
1161 	ubifs_add_auth_dirt(c, lnum);
1162 
1163 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1164 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1165 	if (err)
1166 		goto out_ro;
1167 
1168 	offs += aligned_dlen1;
1169 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1170 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1171 	if (err)
1172 		goto out_ro;
1173 
1174 	offs += aligned_dlen2;
1175 
1176 	ino_key_init(c, &key, fst_dir->i_ino);
1177 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1178 	if (err)
1179 		goto out_ro;
1180 
1181 	if (twoparents) {
1182 		offs += ALIGN(plen, 8);
1183 		ino_key_init(c, &key, snd_dir->i_ino);
1184 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1185 		if (err)
1186 			goto out_ro;
1187 	}
1188 
1189 	finish_reservation(c);
1190 
1191 	mark_inode_clean(c, ubifs_inode(fst_dir));
1192 	if (twoparents)
1193 		mark_inode_clean(c, ubifs_inode(snd_dir));
1194 	kfree(dent1);
1195 	return 0;
1196 
1197 out_release:
1198 	release_head(c, BASEHD);
1199 out_ro:
1200 	ubifs_ro_mode(c, err);
1201 	finish_reservation(c);
1202 out_free:
1203 	kfree(dent1);
1204 	return err;
1205 }
1206 
1207 /**
1208  * ubifs_jnl_rename - rename a directory entry.
1209  * @c: UBIFS file-system description object
1210  * @old_dir: parent inode of directory entry to rename
1211  * @old_dentry: directory entry to rename
1212  * @new_dir: parent inode of directory entry to rename
1213  * @new_dentry: new directory entry (or directory entry to replace)
1214  * @sync: non-zero if the write-buffer has to be synchronized
1215  *
1216  * This function implements the re-name operation which may involve writing up
1217  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1218  * and returns zero on success. In case of failure, a negative error code is
1219  * returned.
1220  */
1221 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1222 		     const struct inode *old_inode,
1223 		     const struct fscrypt_name *old_nm,
1224 		     const struct inode *new_dir,
1225 		     const struct inode *new_inode,
1226 		     const struct fscrypt_name *new_nm,
1227 		     const struct inode *whiteout, int sync)
1228 {
1229 	void *p;
1230 	union ubifs_key key;
1231 	struct ubifs_dent_node *dent, *dent2;
1232 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1233 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1234 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1235 	int move = (old_dir != new_dir);
1236 	struct ubifs_inode *uninitialized_var(new_ui);
1237 	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1238 	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1239 	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1240 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1241 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1242 
1243 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1244 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1245 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1246 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1247 
1248 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1249 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1250 	if (new_inode) {
1251 		new_ui = ubifs_inode(new_inode);
1252 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1253 		ilen = UBIFS_INO_NODE_SZ;
1254 		if (!last_reference)
1255 			ilen += new_ui->data_len;
1256 	} else
1257 		ilen = 0;
1258 
1259 	aligned_dlen1 = ALIGN(dlen1, 8);
1260 	aligned_dlen2 = ALIGN(dlen2, 8);
1261 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1262 	if (move)
1263 		len += plen;
1264 
1265 	len += ubifs_auth_node_sz(c);
1266 
1267 	dent = kzalloc(len, GFP_NOFS);
1268 	if (!dent)
1269 		return -ENOMEM;
1270 
1271 	/* Make reservation before allocating sequence numbers */
1272 	err = make_reservation(c, BASEHD, len);
1273 	if (err)
1274 		goto out_free;
1275 
1276 	/* Make new dent */
1277 	dent->ch.node_type = UBIFS_DENT_NODE;
1278 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1279 	dent->inum = cpu_to_le64(old_inode->i_ino);
1280 	dent->type = get_dent_type(old_inode->i_mode);
1281 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1282 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1283 	dent->name[fname_len(new_nm)] = '\0';
1284 	set_dent_cookie(c, dent);
1285 	zero_dent_node_unused(dent);
1286 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1287 	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1288 	if (err)
1289 		goto out_release;
1290 
1291 	dent2 = (void *)dent + aligned_dlen1;
1292 	dent2->ch.node_type = UBIFS_DENT_NODE;
1293 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1294 
1295 	if (whiteout) {
1296 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1297 		dent2->type = get_dent_type(whiteout->i_mode);
1298 	} else {
1299 		/* Make deletion dent */
1300 		dent2->inum = 0;
1301 		dent2->type = DT_UNKNOWN;
1302 	}
1303 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1304 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1305 	dent2->name[fname_len(old_nm)] = '\0';
1306 	set_dent_cookie(c, dent2);
1307 	zero_dent_node_unused(dent2);
1308 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1309 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1310 	if (err)
1311 		goto out_release;
1312 
1313 	p = (void *)dent2 + aligned_dlen2;
1314 	if (new_inode) {
1315 		pack_inode(c, p, new_inode, 0);
1316 		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1317 		if (err)
1318 			goto out_release;
1319 
1320 		p += ALIGN(ilen, 8);
1321 	}
1322 
1323 	if (!move) {
1324 		pack_inode(c, p, old_dir, 1);
1325 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1326 		if (err)
1327 			goto out_release;
1328 	} else {
1329 		pack_inode(c, p, old_dir, 0);
1330 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1331 		if (err)
1332 			goto out_release;
1333 
1334 		p += ALIGN(plen, 8);
1335 		pack_inode(c, p, new_dir, 1);
1336 		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1337 		if (err)
1338 			goto out_release;
1339 	}
1340 
1341 	if (last_reference) {
1342 		err = ubifs_add_orphan(c, new_inode->i_ino);
1343 		if (err) {
1344 			release_head(c, BASEHD);
1345 			goto out_finish;
1346 		}
1347 		new_ui->del_cmtno = c->cmt_no;
1348 	}
1349 
1350 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1351 	if (err)
1352 		goto out_release;
1353 	if (!sync) {
1354 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1355 
1356 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1357 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1358 		if (new_inode)
1359 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1360 						  new_inode->i_ino);
1361 	}
1362 	release_head(c, BASEHD);
1363 
1364 	ubifs_add_auth_dirt(c, lnum);
1365 
1366 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1367 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1368 	if (err)
1369 		goto out_ro;
1370 
1371 	offs += aligned_dlen1;
1372 	if (whiteout) {
1373 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1374 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1375 		if (err)
1376 			goto out_ro;
1377 
1378 		ubifs_delete_orphan(c, whiteout->i_ino);
1379 	} else {
1380 		err = ubifs_add_dirt(c, lnum, dlen2);
1381 		if (err)
1382 			goto out_ro;
1383 
1384 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1385 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1386 		if (err)
1387 			goto out_ro;
1388 	}
1389 
1390 	offs += aligned_dlen2;
1391 	if (new_inode) {
1392 		ino_key_init(c, &key, new_inode->i_ino);
1393 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1394 		if (err)
1395 			goto out_ro;
1396 		offs += ALIGN(ilen, 8);
1397 	}
1398 
1399 	ino_key_init(c, &key, old_dir->i_ino);
1400 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1401 	if (err)
1402 		goto out_ro;
1403 
1404 	if (move) {
1405 		offs += ALIGN(plen, 8);
1406 		ino_key_init(c, &key, new_dir->i_ino);
1407 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1408 		if (err)
1409 			goto out_ro;
1410 	}
1411 
1412 	finish_reservation(c);
1413 	if (new_inode) {
1414 		mark_inode_clean(c, new_ui);
1415 		spin_lock(&new_ui->ui_lock);
1416 		new_ui->synced_i_size = new_ui->ui_size;
1417 		spin_unlock(&new_ui->ui_lock);
1418 	}
1419 	mark_inode_clean(c, ubifs_inode(old_dir));
1420 	if (move)
1421 		mark_inode_clean(c, ubifs_inode(new_dir));
1422 	kfree(dent);
1423 	return 0;
1424 
1425 out_release:
1426 	release_head(c, BASEHD);
1427 out_ro:
1428 	ubifs_ro_mode(c, err);
1429 	if (last_reference)
1430 		ubifs_delete_orphan(c, new_inode->i_ino);
1431 out_finish:
1432 	finish_reservation(c);
1433 out_free:
1434 	kfree(dent);
1435 	return err;
1436 }
1437 
1438 /**
1439  * truncate_data_node - re-compress/encrypt a truncated data node.
1440  * @c: UBIFS file-system description object
1441  * @inode: inode which referes to the data node
1442  * @block: data block number
1443  * @dn: data node to re-compress
1444  * @new_len: new length
1445  *
1446  * This function is used when an inode is truncated and the last data node of
1447  * the inode has to be re-compressed/encrypted and re-written.
1448  */
1449 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1450 			      unsigned int block, struct ubifs_data_node *dn,
1451 			      int *new_len)
1452 {
1453 	void *buf;
1454 	int err, dlen, compr_type, out_len, old_dlen;
1455 
1456 	out_len = le32_to_cpu(dn->size);
1457 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1458 	if (!buf)
1459 		return -ENOMEM;
1460 
1461 	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1462 	compr_type = le16_to_cpu(dn->compr_type);
1463 
1464 	if (ubifs_crypt_is_encrypted(inode)) {
1465 		err = ubifs_decrypt(inode, dn, &dlen, block);
1466 		if (err)
1467 			goto out;
1468 	}
1469 
1470 	if (compr_type == UBIFS_COMPR_NONE) {
1471 		out_len = *new_len;
1472 	} else {
1473 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1474 		if (err)
1475 			goto out;
1476 
1477 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1478 	}
1479 
1480 	if (ubifs_crypt_is_encrypted(inode)) {
1481 		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1482 		if (err)
1483 			goto out;
1484 
1485 		out_len = old_dlen;
1486 	} else {
1487 		dn->compr_size = 0;
1488 	}
1489 
1490 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1491 	dn->compr_type = cpu_to_le16(compr_type);
1492 	dn->size = cpu_to_le32(*new_len);
1493 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1494 	err = 0;
1495 out:
1496 	kfree(buf);
1497 	return err;
1498 }
1499 
1500 /**
1501  * ubifs_jnl_truncate - update the journal for a truncation.
1502  * @c: UBIFS file-system description object
1503  * @inode: inode to truncate
1504  * @old_size: old size
1505  * @new_size: new size
1506  *
1507  * When the size of a file decreases due to truncation, a truncation node is
1508  * written, the journal tree is updated, and the last data block is re-written
1509  * if it has been affected. The inode is also updated in order to synchronize
1510  * the new inode size.
1511  *
1512  * This function marks the inode as clean and returns zero on success. In case
1513  * of failure, a negative error code is returned.
1514  */
1515 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1516 		       loff_t old_size, loff_t new_size)
1517 {
1518 	union ubifs_key key, to_key;
1519 	struct ubifs_ino_node *ino;
1520 	struct ubifs_trun_node *trun;
1521 	struct ubifs_data_node *uninitialized_var(dn);
1522 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1523 	struct ubifs_inode *ui = ubifs_inode(inode);
1524 	ino_t inum = inode->i_ino;
1525 	unsigned int blk;
1526 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1527 	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1528 
1529 	dbg_jnl("ino %lu, size %lld -> %lld",
1530 		(unsigned long)inum, old_size, new_size);
1531 	ubifs_assert(c, !ui->data_len);
1532 	ubifs_assert(c, S_ISREG(inode->i_mode));
1533 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1534 
1535 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1536 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1537 
1538 	sz += ubifs_auth_node_sz(c);
1539 
1540 	ino = kmalloc(sz, GFP_NOFS);
1541 	if (!ino)
1542 		return -ENOMEM;
1543 
1544 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1545 	trun->ch.node_type = UBIFS_TRUN_NODE;
1546 	trun->inum = cpu_to_le32(inum);
1547 	trun->old_size = cpu_to_le64(old_size);
1548 	trun->new_size = cpu_to_le64(new_size);
1549 	zero_trun_node_unused(trun);
1550 
1551 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1552 	if (dlen) {
1553 		/* Get last data block so it can be truncated */
1554 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1555 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1556 		data_key_init(c, &key, inum, blk);
1557 		dbg_jnlk(&key, "last block key ");
1558 		err = ubifs_tnc_lookup(c, &key, dn);
1559 		if (err == -ENOENT)
1560 			dlen = 0; /* Not found (so it is a hole) */
1561 		else if (err)
1562 			goto out_free;
1563 		else {
1564 			int dn_len = le32_to_cpu(dn->size);
1565 
1566 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1567 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1568 					  blk, inode->i_ino);
1569 				ubifs_dump_node(c, dn);
1570 				goto out_free;
1571 			}
1572 
1573 			if (dn_len <= dlen)
1574 				dlen = 0; /* Nothing to do */
1575 			else {
1576 				err = truncate_data_node(c, inode, blk, dn, &dlen);
1577 				if (err)
1578 					goto out_free;
1579 			}
1580 		}
1581 	}
1582 
1583 	/* Must make reservation before allocating sequence numbers */
1584 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1585 
1586 	if (ubifs_authenticated(c))
1587 		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1588 	else
1589 		len += dlen;
1590 
1591 	err = make_reservation(c, BASEHD, len);
1592 	if (err)
1593 		goto out_free;
1594 
1595 	pack_inode(c, ino, inode, 0);
1596 	err = ubifs_node_calc_hash(c, ino, hash_ino);
1597 	if (err)
1598 		goto out_release;
1599 
1600 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1601 	if (dlen) {
1602 		ubifs_prep_grp_node(c, dn, dlen, 1);
1603 		err = ubifs_node_calc_hash(c, dn, hash_dn);
1604 		if (err)
1605 			goto out_release;
1606 	}
1607 
1608 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1609 	if (err)
1610 		goto out_release;
1611 	if (!sync)
1612 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1613 	release_head(c, BASEHD);
1614 
1615 	ubifs_add_auth_dirt(c, lnum);
1616 
1617 	if (dlen) {
1618 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1619 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1620 		if (err)
1621 			goto out_ro;
1622 	}
1623 
1624 	ino_key_init(c, &key, inum);
1625 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1626 	if (err)
1627 		goto out_ro;
1628 
1629 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1630 	if (err)
1631 		goto out_ro;
1632 
1633 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1634 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1635 	data_key_init(c, &key, inum, blk);
1636 
1637 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1638 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1639 	data_key_init(c, &to_key, inum, blk);
1640 
1641 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1642 	if (err)
1643 		goto out_ro;
1644 
1645 	finish_reservation(c);
1646 	spin_lock(&ui->ui_lock);
1647 	ui->synced_i_size = ui->ui_size;
1648 	spin_unlock(&ui->ui_lock);
1649 	mark_inode_clean(c, ui);
1650 	kfree(ino);
1651 	return 0;
1652 
1653 out_release:
1654 	release_head(c, BASEHD);
1655 out_ro:
1656 	ubifs_ro_mode(c, err);
1657 	finish_reservation(c);
1658 out_free:
1659 	kfree(ino);
1660 	return err;
1661 }
1662 
1663 
1664 /**
1665  * ubifs_jnl_delete_xattr - delete an extended attribute.
1666  * @c: UBIFS file-system description object
1667  * @host: host inode
1668  * @inode: extended attribute inode
1669  * @nm: extended attribute entry name
1670  *
1671  * This function delete an extended attribute which is very similar to
1672  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1673  * updates the target inode. Returns zero in case of success and a negative
1674  * error code in case of failure.
1675  */
1676 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1677 			   const struct inode *inode,
1678 			   const struct fscrypt_name *nm)
1679 {
1680 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1681 	struct ubifs_dent_node *xent;
1682 	struct ubifs_ino_node *ino;
1683 	union ubifs_key xent_key, key1, key2;
1684 	int sync = IS_DIRSYNC(host);
1685 	struct ubifs_inode *host_ui = ubifs_inode(host);
1686 	u8 hash[UBIFS_HASH_ARR_SZ];
1687 
1688 	ubifs_assert(c, inode->i_nlink == 0);
1689 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1690 
1691 	/*
1692 	 * Since we are deleting the inode, we do not bother to attach any data
1693 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1694 	 */
1695 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1696 	aligned_xlen = ALIGN(xlen, 8);
1697 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1698 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1699 
1700 	write_len = len + ubifs_auth_node_sz(c);
1701 
1702 	xent = kzalloc(write_len, GFP_NOFS);
1703 	if (!xent)
1704 		return -ENOMEM;
1705 
1706 	/* Make reservation before allocating sequence numbers */
1707 	err = make_reservation(c, BASEHD, write_len);
1708 	if (err) {
1709 		kfree(xent);
1710 		return err;
1711 	}
1712 
1713 	xent->ch.node_type = UBIFS_XENT_NODE;
1714 	xent_key_init(c, &xent_key, host->i_ino, nm);
1715 	key_write(c, &xent_key, xent->key);
1716 	xent->inum = 0;
1717 	xent->type = get_dent_type(inode->i_mode);
1718 	xent->nlen = cpu_to_le16(fname_len(nm));
1719 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1720 	xent->name[fname_len(nm)] = '\0';
1721 	zero_dent_node_unused(xent);
1722 	ubifs_prep_grp_node(c, xent, xlen, 0);
1723 
1724 	ino = (void *)xent + aligned_xlen;
1725 	pack_inode(c, ino, inode, 0);
1726 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1727 	pack_inode(c, ino, host, 1);
1728 	err = ubifs_node_calc_hash(c, ino, hash);
1729 	if (err)
1730 		goto out_release;
1731 
1732 	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1733 	if (!sync && !err)
1734 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1735 	release_head(c, BASEHD);
1736 
1737 	ubifs_add_auth_dirt(c, lnum);
1738 	kfree(xent);
1739 	if (err)
1740 		goto out_ro;
1741 
1742 	/* Remove the extended attribute entry from TNC */
1743 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1744 	if (err)
1745 		goto out_ro;
1746 	err = ubifs_add_dirt(c, lnum, xlen);
1747 	if (err)
1748 		goto out_ro;
1749 
1750 	/*
1751 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1752 	 * Well, there actually must be only one node - the inode itself.
1753 	 */
1754 	lowest_ino_key(c, &key1, inode->i_ino);
1755 	highest_ino_key(c, &key2, inode->i_ino);
1756 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1757 	if (err)
1758 		goto out_ro;
1759 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1760 	if (err)
1761 		goto out_ro;
1762 
1763 	/* And update TNC with the new host inode position */
1764 	ino_key_init(c, &key1, host->i_ino);
1765 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1766 	if (err)
1767 		goto out_ro;
1768 
1769 	finish_reservation(c);
1770 	spin_lock(&host_ui->ui_lock);
1771 	host_ui->synced_i_size = host_ui->ui_size;
1772 	spin_unlock(&host_ui->ui_lock);
1773 	mark_inode_clean(c, host_ui);
1774 	return 0;
1775 
1776 out_release:
1777 	kfree(xent);
1778 	release_head(c, BASEHD);
1779 out_ro:
1780 	ubifs_ro_mode(c, err);
1781 	finish_reservation(c);
1782 	return err;
1783 }
1784 
1785 /**
1786  * ubifs_jnl_change_xattr - change an extended attribute.
1787  * @c: UBIFS file-system description object
1788  * @inode: extended attribute inode
1789  * @host: host inode
1790  *
1791  * This function writes the updated version of an extended attribute inode and
1792  * the host inode to the journal (to the base head). The host inode is written
1793  * after the extended attribute inode in order to guarantee that the extended
1794  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1795  * consequently, the write-buffer is synchronized. This function returns zero
1796  * in case of success and a negative error code in case of failure.
1797  */
1798 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1799 			   const struct inode *host)
1800 {
1801 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1802 	struct ubifs_inode *host_ui = ubifs_inode(host);
1803 	struct ubifs_ino_node *ino;
1804 	union ubifs_key key;
1805 	int sync = IS_DIRSYNC(host);
1806 	u8 hash_host[UBIFS_HASH_ARR_SZ];
1807 	u8 hash[UBIFS_HASH_ARR_SZ];
1808 
1809 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1810 	ubifs_assert(c, host->i_nlink > 0);
1811 	ubifs_assert(c, inode->i_nlink > 0);
1812 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1813 
1814 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1815 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1816 	aligned_len1 = ALIGN(len1, 8);
1817 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1818 
1819 	aligned_len += ubifs_auth_node_sz(c);
1820 
1821 	ino = kzalloc(aligned_len, GFP_NOFS);
1822 	if (!ino)
1823 		return -ENOMEM;
1824 
1825 	/* Make reservation before allocating sequence numbers */
1826 	err = make_reservation(c, BASEHD, aligned_len);
1827 	if (err)
1828 		goto out_free;
1829 
1830 	pack_inode(c, ino, host, 0);
1831 	err = ubifs_node_calc_hash(c, ino, hash_host);
1832 	if (err)
1833 		goto out_release;
1834 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1835 	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1836 	if (err)
1837 		goto out_release;
1838 
1839 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1840 	if (!sync && !err) {
1841 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1842 
1843 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1844 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1845 	}
1846 	release_head(c, BASEHD);
1847 	if (err)
1848 		goto out_ro;
1849 
1850 	ubifs_add_auth_dirt(c, lnum);
1851 
1852 	ino_key_init(c, &key, host->i_ino);
1853 	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1854 	if (err)
1855 		goto out_ro;
1856 
1857 	ino_key_init(c, &key, inode->i_ino);
1858 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1859 	if (err)
1860 		goto out_ro;
1861 
1862 	finish_reservation(c);
1863 	spin_lock(&host_ui->ui_lock);
1864 	host_ui->synced_i_size = host_ui->ui_size;
1865 	spin_unlock(&host_ui->ui_lock);
1866 	mark_inode_clean(c, host_ui);
1867 	kfree(ino);
1868 	return 0;
1869 
1870 out_release:
1871 	release_head(c, BASEHD);
1872 out_ro:
1873 	ubifs_ro_mode(c, err);
1874 	finish_reservation(c);
1875 out_free:
1876 	kfree(ino);
1877 	return err;
1878 }
1879 
1880