xref: /openbmc/linux/fs/ubifs/journal.c (revision a09d2831)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 	memset(dent->padding2, 0, 4);
82 }
83 
84 /**
85  * zero_data_node_unused - zero out unused fields of an on-flash data node.
86  * @data: the data node to zero out
87  */
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
89 {
90 	memset(data->padding, 0, 2);
91 }
92 
93 /**
94  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95  *                         node.
96  * @trun: the truncation node to zero out
97  */
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99 {
100 	memset(trun->padding, 0, 12);
101 }
102 
103 /**
104  * reserve_space - reserve space in the journal.
105  * @c: UBIFS file-system description object
106  * @jhead: journal head number
107  * @len: node length
108  *
109  * This function reserves space in journal head @head. If the reservation
110  * succeeded, the journal head stays locked and later has to be unlocked using
111  * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112  * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113  * other negative error codes in case of other failures.
114  */
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
116 {
117 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119 
120 	/*
121 	 * Typically, the base head has smaller nodes written to it, so it is
122 	 * better to try to allocate space at the ends of eraseblocks. This is
123 	 * what the squeeze parameter does.
124 	 */
125 	squeeze = (jhead == BASEHD);
126 again:
127 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
128 
129 	if (c->ro_media) {
130 		err = -EROFS;
131 		goto out_unlock;
132 	}
133 
134 	avail = c->leb_size - wbuf->offs - wbuf->used;
135 	if (wbuf->lnum != -1 && avail >= len)
136 		return 0;
137 
138 	/*
139 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 	 * LEB with some empty space.
141 	 */
142 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
143 	if (lnum >= 0) {
144 		/* Found an LEB, add it to the journal head */
145 		err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
146 		if (err)
147 			goto out_return;
148 		/* A new bud was successfully allocated and added to the log */
149 		goto out;
150 	}
151 
152 	err = lnum;
153 	if (err != -ENOSPC)
154 		goto out_unlock;
155 
156 	/*
157 	 * No free space, we have to run garbage collector to make
158 	 * some. But the write-buffer mutex has to be unlocked because
159 	 * GC also takes it.
160 	 */
161 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
162 	mutex_unlock(&wbuf->io_mutex);
163 
164 	lnum = ubifs_garbage_collect(c, 0);
165 	if (lnum < 0) {
166 		err = lnum;
167 		if (err != -ENOSPC)
168 			return err;
169 
170 		/*
171 		 * GC could not make a free LEB. But someone else may
172 		 * have allocated new bud for this journal head,
173 		 * because we dropped @wbuf->io_mutex, so try once
174 		 * again.
175 		 */
176 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
177 			dbg_jhead(jhead));
178 		if (retries++ < 2) {
179 			dbg_jnl("retry (%d)", retries);
180 			goto again;
181 		}
182 
183 		dbg_jnl("return -ENOSPC");
184 		return err;
185 	}
186 
187 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
188 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
189 	avail = c->leb_size - wbuf->offs - wbuf->used;
190 
191 	if (wbuf->lnum != -1 && avail >= len) {
192 		/*
193 		 * Someone else has switched the journal head and we have
194 		 * enough space now. This happens when more than one process is
195 		 * trying to write to the same journal head at the same time.
196 		 */
197 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
198 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
199 		err = ubifs_return_leb(c, lnum);
200 		if (err)
201 			goto out_unlock;
202 		return 0;
203 	}
204 
205 	err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
206 	if (err)
207 		goto out_return;
208 	offs = 0;
209 
210 out:
211 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
212 	if (err)
213 		goto out_unlock;
214 
215 	return 0;
216 
217 out_unlock:
218 	mutex_unlock(&wbuf->io_mutex);
219 	return err;
220 
221 out_return:
222 	/* An error occurred and the LEB has to be returned to lprops */
223 	ubifs_assert(err < 0);
224 	err1 = ubifs_return_leb(c, lnum);
225 	if (err1 && err == -EAGAIN)
226 		/*
227 		 * Return original error code only if it is not %-EAGAIN,
228 		 * which is not really an error. Otherwise, return the error
229 		 * code of 'ubifs_return_leb()'.
230 		 */
231 		err = err1;
232 	mutex_unlock(&wbuf->io_mutex);
233 	return err;
234 }
235 
236 /**
237  * write_node - write node to a journal head.
238  * @c: UBIFS file-system description object
239  * @jhead: journal head
240  * @node: node to write
241  * @len: node length
242  * @lnum: LEB number written is returned here
243  * @offs: offset written is returned here
244  *
245  * This function writes a node to reserved space of journal head @jhead.
246  * Returns zero in case of success and a negative error code in case of
247  * failure.
248  */
249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
250 		      int *lnum, int *offs)
251 {
252 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
253 
254 	ubifs_assert(jhead != GCHD);
255 
256 	*lnum = c->jheads[jhead].wbuf.lnum;
257 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
258 
259 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
260 		dbg_jhead(jhead), *lnum, *offs, len);
261 	ubifs_prepare_node(c, node, len, 0);
262 
263 	return ubifs_wbuf_write_nolock(wbuf, node, len);
264 }
265 
266 /**
267  * write_head - write data to a journal head.
268  * @c: UBIFS file-system description object
269  * @jhead: journal head
270  * @buf: buffer to write
271  * @len: length to write
272  * @lnum: LEB number written is returned here
273  * @offs: offset written is returned here
274  * @sync: non-zero if the write-buffer has to by synchronized
275  *
276  * This function is the same as 'write_node()' but it does not assume the
277  * buffer it is writing is a node, so it does not prepare it (which means
278  * initializing common header and calculating CRC).
279  */
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 		      int *lnum, int *offs, int sync)
282 {
283 	int err;
284 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
285 
286 	ubifs_assert(jhead != GCHD);
287 
288 	*lnum = c->jheads[jhead].wbuf.lnum;
289 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 		dbg_jhead(jhead), *lnum, *offs, len);
292 
293 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
294 	if (err)
295 		return err;
296 	if (sync)
297 		err = ubifs_wbuf_sync_nolock(wbuf);
298 	return err;
299 }
300 
301 /**
302  * make_reservation - reserve journal space.
303  * @c: UBIFS file-system description object
304  * @jhead: journal head
305  * @len: how many bytes to reserve
306  *
307  * This function makes space reservation in journal head @jhead. The function
308  * takes the commit lock and locks the journal head, and the caller has to
309  * unlock the head and finish the reservation with 'finish_reservation()'.
310  * Returns zero in case of success and a negative error code in case of
311  * failure.
312  *
313  * Note, the journal head may be unlocked as soon as the data is written, while
314  * the commit lock has to be released after the data has been added to the
315  * TNC.
316  */
317 static int make_reservation(struct ubifs_info *c, int jhead, int len)
318 {
319 	int err, cmt_retries = 0, nospc_retries = 0;
320 
321 again:
322 	down_read(&c->commit_sem);
323 	err = reserve_space(c, jhead, len);
324 	if (!err)
325 		return 0;
326 	up_read(&c->commit_sem);
327 
328 	if (err == -ENOSPC) {
329 		/*
330 		 * GC could not make any progress. We should try to commit
331 		 * once because it could make some dirty space and GC would
332 		 * make progress, so make the error -EAGAIN so that the below
333 		 * will commit and re-try.
334 		 */
335 		if (nospc_retries++ < 2) {
336 			dbg_jnl("no space, retry");
337 			err = -EAGAIN;
338 		}
339 
340 		/*
341 		 * This means that the budgeting is incorrect. We always have
342 		 * to be able to write to the media, because all operations are
343 		 * budgeted. Deletions are not budgeted, though, but we reserve
344 		 * an extra LEB for them.
345 		 */
346 	}
347 
348 	if (err != -EAGAIN)
349 		goto out;
350 
351 	/*
352 	 * -EAGAIN means that the journal is full or too large, or the above
353 	 * code wants to do one commit. Do this and re-try.
354 	 */
355 	if (cmt_retries > 128) {
356 		/*
357 		 * This should not happen unless the journal size limitations
358 		 * are too tough.
359 		 */
360 		ubifs_err("stuck in space allocation");
361 		err = -ENOSPC;
362 		goto out;
363 	} else if (cmt_retries > 32)
364 		ubifs_warn("too many space allocation re-tries (%d)",
365 			   cmt_retries);
366 
367 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
368 		cmt_retries);
369 	cmt_retries += 1;
370 
371 	err = ubifs_run_commit(c);
372 	if (err)
373 		return err;
374 	goto again;
375 
376 out:
377 	ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
378 		  len, jhead, err);
379 	if (err == -ENOSPC) {
380 		/* This are some budgeting problems, print useful information */
381 		down_write(&c->commit_sem);
382 		spin_lock(&c->space_lock);
383 		dbg_dump_stack();
384 		dbg_dump_budg(c);
385 		spin_unlock(&c->space_lock);
386 		dbg_dump_lprops(c);
387 		cmt_retries = dbg_check_lprops(c);
388 		up_write(&c->commit_sem);
389 	}
390 	return err;
391 }
392 
393 /**
394  * release_head - release a journal head.
395  * @c: UBIFS file-system description object
396  * @jhead: journal head
397  *
398  * This function releases journal head @jhead which was locked by
399  * the 'make_reservation()' function. It has to be called after each successful
400  * 'make_reservation()' invocation.
401  */
402 static inline void release_head(struct ubifs_info *c, int jhead)
403 {
404 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
405 }
406 
407 /**
408  * finish_reservation - finish a reservation.
409  * @c: UBIFS file-system description object
410  *
411  * This function finishes journal space reservation. It must be called after
412  * 'make_reservation()'.
413  */
414 static void finish_reservation(struct ubifs_info *c)
415 {
416 	up_read(&c->commit_sem);
417 }
418 
419 /**
420  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
421  * @mode: inode mode
422  */
423 static int get_dent_type(int mode)
424 {
425 	switch (mode & S_IFMT) {
426 	case S_IFREG:
427 		return UBIFS_ITYPE_REG;
428 	case S_IFDIR:
429 		return UBIFS_ITYPE_DIR;
430 	case S_IFLNK:
431 		return UBIFS_ITYPE_LNK;
432 	case S_IFBLK:
433 		return UBIFS_ITYPE_BLK;
434 	case S_IFCHR:
435 		return UBIFS_ITYPE_CHR;
436 	case S_IFIFO:
437 		return UBIFS_ITYPE_FIFO;
438 	case S_IFSOCK:
439 		return UBIFS_ITYPE_SOCK;
440 	default:
441 		BUG();
442 	}
443 	return 0;
444 }
445 
446 /**
447  * pack_inode - pack an inode node.
448  * @c: UBIFS file-system description object
449  * @ino: buffer in which to pack inode node
450  * @inode: inode to pack
451  * @last: indicates the last node of the group
452  */
453 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
454 		       const struct inode *inode, int last)
455 {
456 	int data_len = 0, last_reference = !inode->i_nlink;
457 	struct ubifs_inode *ui = ubifs_inode(inode);
458 
459 	ino->ch.node_type = UBIFS_INO_NODE;
460 	ino_key_init_flash(c, &ino->key, inode->i_ino);
461 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
462 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
463 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
464 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
465 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
466 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
467 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
468 	ino->uid   = cpu_to_le32(inode->i_uid);
469 	ino->gid   = cpu_to_le32(inode->i_gid);
470 	ino->mode  = cpu_to_le32(inode->i_mode);
471 	ino->flags = cpu_to_le32(ui->flags);
472 	ino->size  = cpu_to_le64(ui->ui_size);
473 	ino->nlink = cpu_to_le32(inode->i_nlink);
474 	ino->compr_type  = cpu_to_le16(ui->compr_type);
475 	ino->data_len    = cpu_to_le32(ui->data_len);
476 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
477 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
478 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
479 	zero_ino_node_unused(ino);
480 
481 	/*
482 	 * Drop the attached data if this is a deletion inode, the data is not
483 	 * needed anymore.
484 	 */
485 	if (!last_reference) {
486 		memcpy(ino->data, ui->data, ui->data_len);
487 		data_len = ui->data_len;
488 	}
489 
490 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
491 }
492 
493 /**
494  * mark_inode_clean - mark UBIFS inode as clean.
495  * @c: UBIFS file-system description object
496  * @ui: UBIFS inode to mark as clean
497  *
498  * This helper function marks UBIFS inode @ui as clean by cleaning the
499  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
500  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
501  * just do nothing.
502  */
503 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
504 {
505 	if (ui->dirty)
506 		ubifs_release_dirty_inode_budget(c, ui);
507 	ui->dirty = 0;
508 }
509 
510 /**
511  * ubifs_jnl_update - update inode.
512  * @c: UBIFS file-system description object
513  * @dir: parent inode or host inode in case of extended attributes
514  * @nm: directory entry name
515  * @inode: inode to update
516  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
517  * @xent: non-zero if the directory entry is an extended attribute entry
518  *
519  * This function updates an inode by writing a directory entry (or extended
520  * attribute entry), the inode itself, and the parent directory inode (or the
521  * host inode) to the journal.
522  *
523  * The function writes the host inode @dir last, which is important in case of
524  * extended attributes. Indeed, then we guarantee that if the host inode gets
525  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
526  * the extended attribute inode gets flushed too. And this is exactly what the
527  * user expects - synchronizing the host inode synchronizes its extended
528  * attributes. Similarly, this guarantees that if @dir is synchronized, its
529  * directory entry corresponding to @nm gets synchronized too.
530  *
531  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
532  * function synchronizes the write-buffer.
533  *
534  * This function marks the @dir and @inode inodes as clean and returns zero on
535  * success. In case of failure, a negative error code is returned.
536  */
537 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
538 		     const struct qstr *nm, const struct inode *inode,
539 		     int deletion, int xent)
540 {
541 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
542 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
543 	int last_reference = !!(deletion && inode->i_nlink == 0);
544 	struct ubifs_inode *ui = ubifs_inode(inode);
545 	struct ubifs_inode *dir_ui = ubifs_inode(dir);
546 	struct ubifs_dent_node *dent;
547 	struct ubifs_ino_node *ino;
548 	union ubifs_key dent_key, ino_key;
549 
550 	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
551 		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
552 	ubifs_assert(dir_ui->data_len == 0);
553 	ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
554 
555 	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
556 	ilen = UBIFS_INO_NODE_SZ;
557 
558 	/*
559 	 * If the last reference to the inode is being deleted, then there is
560 	 * no need to attach and write inode data, it is being deleted anyway.
561 	 * And if the inode is being deleted, no need to synchronize
562 	 * write-buffer even if the inode is synchronous.
563 	 */
564 	if (!last_reference) {
565 		ilen += ui->data_len;
566 		sync |= IS_SYNC(inode);
567 	}
568 
569 	aligned_dlen = ALIGN(dlen, 8);
570 	aligned_ilen = ALIGN(ilen, 8);
571 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 	dent = kmalloc(len, GFP_NOFS);
573 	if (!dent)
574 		return -ENOMEM;
575 
576 	/* Make reservation before allocating sequence numbers */
577 	err = make_reservation(c, BASEHD, len);
578 	if (err)
579 		goto out_free;
580 
581 	if (!xent) {
582 		dent->ch.node_type = UBIFS_DENT_NODE;
583 		dent_key_init(c, &dent_key, dir->i_ino, nm);
584 	} else {
585 		dent->ch.node_type = UBIFS_XENT_NODE;
586 		xent_key_init(c, &dent_key, dir->i_ino, nm);
587 	}
588 
589 	key_write(c, &dent_key, dent->key);
590 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
591 	dent->type = get_dent_type(inode->i_mode);
592 	dent->nlen = cpu_to_le16(nm->len);
593 	memcpy(dent->name, nm->name, nm->len);
594 	dent->name[nm->len] = '\0';
595 	zero_dent_node_unused(dent);
596 	ubifs_prep_grp_node(c, dent, dlen, 0);
597 
598 	ino = (void *)dent + aligned_dlen;
599 	pack_inode(c, ino, inode, 0);
600 	ino = (void *)ino + aligned_ilen;
601 	pack_inode(c, ino, dir, 1);
602 
603 	if (last_reference) {
604 		err = ubifs_add_orphan(c, inode->i_ino);
605 		if (err) {
606 			release_head(c, BASEHD);
607 			goto out_finish;
608 		}
609 		ui->del_cmtno = c->cmt_no;
610 	}
611 
612 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
613 	if (err)
614 		goto out_release;
615 	if (!sync) {
616 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
617 
618 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
619 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
620 	}
621 	release_head(c, BASEHD);
622 	kfree(dent);
623 
624 	if (deletion) {
625 		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
626 		if (err)
627 			goto out_ro;
628 		err = ubifs_add_dirt(c, lnum, dlen);
629 	} else
630 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
631 	if (err)
632 		goto out_ro;
633 
634 	/*
635 	 * Note, we do not remove the inode from TNC even if the last reference
636 	 * to it has just been deleted, because the inode may still be opened.
637 	 * Instead, the inode has been added to orphan lists and the orphan
638 	 * subsystem will take further care about it.
639 	 */
640 	ino_key_init(c, &ino_key, inode->i_ino);
641 	ino_offs = dent_offs + aligned_dlen;
642 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
643 	if (err)
644 		goto out_ro;
645 
646 	ino_key_init(c, &ino_key, dir->i_ino);
647 	ino_offs += aligned_ilen;
648 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
649 	if (err)
650 		goto out_ro;
651 
652 	finish_reservation(c);
653 	spin_lock(&ui->ui_lock);
654 	ui->synced_i_size = ui->ui_size;
655 	spin_unlock(&ui->ui_lock);
656 	mark_inode_clean(c, ui);
657 	mark_inode_clean(c, dir_ui);
658 	return 0;
659 
660 out_finish:
661 	finish_reservation(c);
662 out_free:
663 	kfree(dent);
664 	return err;
665 
666 out_release:
667 	release_head(c, BASEHD);
668 out_ro:
669 	ubifs_ro_mode(c, err);
670 	if (last_reference)
671 		ubifs_delete_orphan(c, inode->i_ino);
672 	finish_reservation(c);
673 	return err;
674 }
675 
676 /**
677  * ubifs_jnl_write_data - write a data node to the journal.
678  * @c: UBIFS file-system description object
679  * @inode: inode the data node belongs to
680  * @key: node key
681  * @buf: buffer to write
682  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
683  *
684  * This function writes a data node to the journal. Returns %0 if the data node
685  * was successfully written, and a negative error code in case of failure.
686  */
687 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
688 			 const union ubifs_key *key, const void *buf, int len)
689 {
690 	struct ubifs_data_node *data;
691 	int err, lnum, offs, compr_type, out_len;
692 	int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
693 	struct ubifs_inode *ui = ubifs_inode(inode);
694 
695 	dbg_jnl("ino %lu, blk %u, len %d, key %s",
696 		(unsigned long)key_inum(c, key), key_block(c, key), len,
697 		DBGKEY(key));
698 	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
699 
700 	data = kmalloc(dlen, GFP_NOFS);
701 	if (!data)
702 		return -ENOMEM;
703 
704 	data->ch.node_type = UBIFS_DATA_NODE;
705 	key_write(c, key, &data->key);
706 	data->size = cpu_to_le32(len);
707 	zero_data_node_unused(data);
708 
709 	if (!(ui->flags & UBIFS_COMPR_FL))
710 		/* Compression is disabled for this inode */
711 		compr_type = UBIFS_COMPR_NONE;
712 	else
713 		compr_type = ui->compr_type;
714 
715 	out_len = dlen - UBIFS_DATA_NODE_SZ;
716 	ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
717 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
718 
719 	dlen = UBIFS_DATA_NODE_SZ + out_len;
720 	data->compr_type = cpu_to_le16(compr_type);
721 
722 	/* Make reservation before allocating sequence numbers */
723 	err = make_reservation(c, DATAHD, dlen);
724 	if (err)
725 		goto out_free;
726 
727 	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
728 	if (err)
729 		goto out_release;
730 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
731 	release_head(c, DATAHD);
732 
733 	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
734 	if (err)
735 		goto out_ro;
736 
737 	finish_reservation(c);
738 	kfree(data);
739 	return 0;
740 
741 out_release:
742 	release_head(c, DATAHD);
743 out_ro:
744 	ubifs_ro_mode(c, err);
745 	finish_reservation(c);
746 out_free:
747 	kfree(data);
748 	return err;
749 }
750 
751 /**
752  * ubifs_jnl_write_inode - flush inode to the journal.
753  * @c: UBIFS file-system description object
754  * @inode: inode to flush
755  *
756  * This function writes inode @inode to the journal. If the inode is
757  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
758  * success and a negative error code in case of failure.
759  */
760 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
761 {
762 	int err, lnum, offs;
763 	struct ubifs_ino_node *ino;
764 	struct ubifs_inode *ui = ubifs_inode(inode);
765 	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
766 
767 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
768 
769 	/*
770 	 * If the inode is being deleted, do not write the attached data. No
771 	 * need to synchronize the write-buffer either.
772 	 */
773 	if (!last_reference) {
774 		len += ui->data_len;
775 		sync = IS_SYNC(inode);
776 	}
777 	ino = kmalloc(len, GFP_NOFS);
778 	if (!ino)
779 		return -ENOMEM;
780 
781 	/* Make reservation before allocating sequence numbers */
782 	err = make_reservation(c, BASEHD, len);
783 	if (err)
784 		goto out_free;
785 
786 	pack_inode(c, ino, inode, 1);
787 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
788 	if (err)
789 		goto out_release;
790 	if (!sync)
791 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
792 					  inode->i_ino);
793 	release_head(c, BASEHD);
794 
795 	if (last_reference) {
796 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
797 		if (err)
798 			goto out_ro;
799 		ubifs_delete_orphan(c, inode->i_ino);
800 		err = ubifs_add_dirt(c, lnum, len);
801 	} else {
802 		union ubifs_key key;
803 
804 		ino_key_init(c, &key, inode->i_ino);
805 		err = ubifs_tnc_add(c, &key, lnum, offs, len);
806 	}
807 	if (err)
808 		goto out_ro;
809 
810 	finish_reservation(c);
811 	spin_lock(&ui->ui_lock);
812 	ui->synced_i_size = ui->ui_size;
813 	spin_unlock(&ui->ui_lock);
814 	kfree(ino);
815 	return 0;
816 
817 out_release:
818 	release_head(c, BASEHD);
819 out_ro:
820 	ubifs_ro_mode(c, err);
821 	finish_reservation(c);
822 out_free:
823 	kfree(ino);
824 	return err;
825 }
826 
827 /**
828  * ubifs_jnl_delete_inode - delete an inode.
829  * @c: UBIFS file-system description object
830  * @inode: inode to delete
831  *
832  * This function deletes inode @inode which includes removing it from orphans,
833  * deleting it from TNC and, in some cases, writing a deletion inode to the
834  * journal.
835  *
836  * When regular file inodes are unlinked or a directory inode is removed, the
837  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
838  * direntry to the media, and adds the inode to orphans. After this, when the
839  * last reference to this inode has been dropped, this function is called. In
840  * general, it has to write one more deletion inode to the media, because if
841  * a commit happened between 'ubifs_jnl_update()' and
842  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
843  * anymore, and in fact it might not be on the flash anymore, because it might
844  * have been garbage-collected already. And for optimization reasons UBIFS does
845  * not read the orphan area if it has been unmounted cleanly, so it would have
846  * no indication in the journal that there is a deleted inode which has to be
847  * removed from TNC.
848  *
849  * However, if there was no commit between 'ubifs_jnl_update()' and
850  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
851  * inode to the media for the second time. And this is quite a typical case.
852  *
853  * This function returns zero in case of success and a negative error code in
854  * case of failure.
855  */
856 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
857 {
858 	int err;
859 	struct ubifs_inode *ui = ubifs_inode(inode);
860 
861 	ubifs_assert(inode->i_nlink == 0);
862 
863 	if (ui->del_cmtno != c->cmt_no)
864 		/* A commit happened for sure */
865 		return ubifs_jnl_write_inode(c, inode);
866 
867 	down_read(&c->commit_sem);
868 	/*
869 	 * Check commit number again, because the first test has been done
870 	 * without @c->commit_sem, so a commit might have happened.
871 	 */
872 	if (ui->del_cmtno != c->cmt_no) {
873 		up_read(&c->commit_sem);
874 		return ubifs_jnl_write_inode(c, inode);
875 	}
876 
877 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
878 	if (err)
879 		ubifs_ro_mode(c, err);
880 	else
881 		ubifs_delete_orphan(c, inode->i_ino);
882 	up_read(&c->commit_sem);
883 	return err;
884 }
885 
886 /**
887  * ubifs_jnl_rename - rename a directory entry.
888  * @c: UBIFS file-system description object
889  * @old_dir: parent inode of directory entry to rename
890  * @old_dentry: directory entry to rename
891  * @new_dir: parent inode of directory entry to rename
892  * @new_dentry: new directory entry (or directory entry to replace)
893  * @sync: non-zero if the write-buffer has to be synchronized
894  *
895  * This function implements the re-name operation which may involve writing up
896  * to 3 inodes and 2 directory entries. It marks the written inodes as clean
897  * and returns zero on success. In case of failure, a negative error code is
898  * returned.
899  */
900 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
901 		     const struct dentry *old_dentry,
902 		     const struct inode *new_dir,
903 		     const struct dentry *new_dentry, int sync)
904 {
905 	void *p;
906 	union ubifs_key key;
907 	struct ubifs_dent_node *dent, *dent2;
908 	int err, dlen1, dlen2, ilen, lnum, offs, len;
909 	const struct inode *old_inode = old_dentry->d_inode;
910 	const struct inode *new_inode = new_dentry->d_inode;
911 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
912 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
913 	int move = (old_dir != new_dir);
914 	struct ubifs_inode *uninitialized_var(new_ui);
915 
916 	dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
917 		old_dentry->d_name.len, old_dentry->d_name.name,
918 		old_dir->i_ino, new_dentry->d_name.len,
919 		new_dentry->d_name.name, new_dir->i_ino);
920 	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
921 	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
922 	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
923 	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
924 
925 	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
926 	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
927 	if (new_inode) {
928 		new_ui = ubifs_inode(new_inode);
929 		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
930 		ilen = UBIFS_INO_NODE_SZ;
931 		if (!last_reference)
932 			ilen += new_ui->data_len;
933 	} else
934 		ilen = 0;
935 
936 	aligned_dlen1 = ALIGN(dlen1, 8);
937 	aligned_dlen2 = ALIGN(dlen2, 8);
938 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
939 	if (old_dir != new_dir)
940 		len += plen;
941 	dent = kmalloc(len, GFP_NOFS);
942 	if (!dent)
943 		return -ENOMEM;
944 
945 	/* Make reservation before allocating sequence numbers */
946 	err = make_reservation(c, BASEHD, len);
947 	if (err)
948 		goto out_free;
949 
950 	/* Make new dent */
951 	dent->ch.node_type = UBIFS_DENT_NODE;
952 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
953 	dent->inum = cpu_to_le64(old_inode->i_ino);
954 	dent->type = get_dent_type(old_inode->i_mode);
955 	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
956 	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
957 	dent->name[new_dentry->d_name.len] = '\0';
958 	zero_dent_node_unused(dent);
959 	ubifs_prep_grp_node(c, dent, dlen1, 0);
960 
961 	/* Make deletion dent */
962 	dent2 = (void *)dent + aligned_dlen1;
963 	dent2->ch.node_type = UBIFS_DENT_NODE;
964 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
965 			    &old_dentry->d_name);
966 	dent2->inum = 0;
967 	dent2->type = DT_UNKNOWN;
968 	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
969 	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
970 	dent2->name[old_dentry->d_name.len] = '\0';
971 	zero_dent_node_unused(dent2);
972 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
973 
974 	p = (void *)dent2 + aligned_dlen2;
975 	if (new_inode) {
976 		pack_inode(c, p, new_inode, 0);
977 		p += ALIGN(ilen, 8);
978 	}
979 
980 	if (!move)
981 		pack_inode(c, p, old_dir, 1);
982 	else {
983 		pack_inode(c, p, old_dir, 0);
984 		p += ALIGN(plen, 8);
985 		pack_inode(c, p, new_dir, 1);
986 	}
987 
988 	if (last_reference) {
989 		err = ubifs_add_orphan(c, new_inode->i_ino);
990 		if (err) {
991 			release_head(c, BASEHD);
992 			goto out_finish;
993 		}
994 		new_ui->del_cmtno = c->cmt_no;
995 	}
996 
997 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
998 	if (err)
999 		goto out_release;
1000 	if (!sync) {
1001 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1002 
1003 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1004 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1005 		if (new_inode)
1006 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1007 						  new_inode->i_ino);
1008 	}
1009 	release_head(c, BASEHD);
1010 
1011 	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1012 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1013 	if (err)
1014 		goto out_ro;
1015 
1016 	err = ubifs_add_dirt(c, lnum, dlen2);
1017 	if (err)
1018 		goto out_ro;
1019 
1020 	dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1021 	err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1022 	if (err)
1023 		goto out_ro;
1024 
1025 	offs += aligned_dlen1 + aligned_dlen2;
1026 	if (new_inode) {
1027 		ino_key_init(c, &key, new_inode->i_ino);
1028 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1029 		if (err)
1030 			goto out_ro;
1031 		offs += ALIGN(ilen, 8);
1032 	}
1033 
1034 	ino_key_init(c, &key, old_dir->i_ino);
1035 	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1036 	if (err)
1037 		goto out_ro;
1038 
1039 	if (old_dir != new_dir) {
1040 		offs += ALIGN(plen, 8);
1041 		ino_key_init(c, &key, new_dir->i_ino);
1042 		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1043 		if (err)
1044 			goto out_ro;
1045 	}
1046 
1047 	finish_reservation(c);
1048 	if (new_inode) {
1049 		mark_inode_clean(c, new_ui);
1050 		spin_lock(&new_ui->ui_lock);
1051 		new_ui->synced_i_size = new_ui->ui_size;
1052 		spin_unlock(&new_ui->ui_lock);
1053 	}
1054 	mark_inode_clean(c, ubifs_inode(old_dir));
1055 	if (move)
1056 		mark_inode_clean(c, ubifs_inode(new_dir));
1057 	kfree(dent);
1058 	return 0;
1059 
1060 out_release:
1061 	release_head(c, BASEHD);
1062 out_ro:
1063 	ubifs_ro_mode(c, err);
1064 	if (last_reference)
1065 		ubifs_delete_orphan(c, new_inode->i_ino);
1066 out_finish:
1067 	finish_reservation(c);
1068 out_free:
1069 	kfree(dent);
1070 	return err;
1071 }
1072 
1073 /**
1074  * recomp_data_node - re-compress a truncated data node.
1075  * @dn: data node to re-compress
1076  * @new_len: new length
1077  *
1078  * This function is used when an inode is truncated and the last data node of
1079  * the inode has to be re-compressed and re-written.
1080  */
1081 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1082 {
1083 	void *buf;
1084 	int err, len, compr_type, out_len;
1085 
1086 	out_len = le32_to_cpu(dn->size);
1087 	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1088 	if (!buf)
1089 		return -ENOMEM;
1090 
1091 	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1092 	compr_type = le16_to_cpu(dn->compr_type);
1093 	err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1094 	if (err)
1095 		goto out;
1096 
1097 	ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1098 	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1099 	dn->compr_type = cpu_to_le16(compr_type);
1100 	dn->size = cpu_to_le32(*new_len);
1101 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1102 out:
1103 	kfree(buf);
1104 	return err;
1105 }
1106 
1107 /**
1108  * ubifs_jnl_truncate - update the journal for a truncation.
1109  * @c: UBIFS file-system description object
1110  * @inode: inode to truncate
1111  * @old_size: old size
1112  * @new_size: new size
1113  *
1114  * When the size of a file decreases due to truncation, a truncation node is
1115  * written, the journal tree is updated, and the last data block is re-written
1116  * if it has been affected. The inode is also updated in order to synchronize
1117  * the new inode size.
1118  *
1119  * This function marks the inode as clean and returns zero on success. In case
1120  * of failure, a negative error code is returned.
1121  */
1122 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1123 		       loff_t old_size, loff_t new_size)
1124 {
1125 	union ubifs_key key, to_key;
1126 	struct ubifs_ino_node *ino;
1127 	struct ubifs_trun_node *trun;
1128 	struct ubifs_data_node *uninitialized_var(dn);
1129 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1130 	struct ubifs_inode *ui = ubifs_inode(inode);
1131 	ino_t inum = inode->i_ino;
1132 	unsigned int blk;
1133 
1134 	dbg_jnl("ino %lu, size %lld -> %lld",
1135 		(unsigned long)inum, old_size, new_size);
1136 	ubifs_assert(!ui->data_len);
1137 	ubifs_assert(S_ISREG(inode->i_mode));
1138 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1139 
1140 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1141 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1142 	ino = kmalloc(sz, GFP_NOFS);
1143 	if (!ino)
1144 		return -ENOMEM;
1145 
1146 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1147 	trun->ch.node_type = UBIFS_TRUN_NODE;
1148 	trun->inum = cpu_to_le32(inum);
1149 	trun->old_size = cpu_to_le64(old_size);
1150 	trun->new_size = cpu_to_le64(new_size);
1151 	zero_trun_node_unused(trun);
1152 
1153 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1154 	if (dlen) {
1155 		/* Get last data block so it can be truncated */
1156 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1157 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1158 		data_key_init(c, &key, inum, blk);
1159 		dbg_jnl("last block key %s", DBGKEY(&key));
1160 		err = ubifs_tnc_lookup(c, &key, dn);
1161 		if (err == -ENOENT)
1162 			dlen = 0; /* Not found (so it is a hole) */
1163 		else if (err)
1164 			goto out_free;
1165 		else {
1166 			if (le32_to_cpu(dn->size) <= dlen)
1167 				dlen = 0; /* Nothing to do */
1168 			else {
1169 				int compr_type = le16_to_cpu(dn->compr_type);
1170 
1171 				if (compr_type != UBIFS_COMPR_NONE) {
1172 					err = recomp_data_node(dn, &dlen);
1173 					if (err)
1174 						goto out_free;
1175 				} else {
1176 					dn->size = cpu_to_le32(dlen);
1177 					dlen += UBIFS_DATA_NODE_SZ;
1178 				}
1179 				zero_data_node_unused(dn);
1180 			}
1181 		}
1182 	}
1183 
1184 	/* Must make reservation before allocating sequence numbers */
1185 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1186 	if (dlen)
1187 		len += dlen;
1188 	err = make_reservation(c, BASEHD, len);
1189 	if (err)
1190 		goto out_free;
1191 
1192 	pack_inode(c, ino, inode, 0);
1193 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1194 	if (dlen)
1195 		ubifs_prep_grp_node(c, dn, dlen, 1);
1196 
1197 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1198 	if (err)
1199 		goto out_release;
1200 	if (!sync)
1201 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1202 	release_head(c, BASEHD);
1203 
1204 	if (dlen) {
1205 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1206 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1207 		if (err)
1208 			goto out_ro;
1209 	}
1210 
1211 	ino_key_init(c, &key, inum);
1212 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1213 	if (err)
1214 		goto out_ro;
1215 
1216 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1217 	if (err)
1218 		goto out_ro;
1219 
1220 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1221 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1222 	data_key_init(c, &key, inum, blk);
1223 
1224 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1225 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1226 	data_key_init(c, &to_key, inum, blk);
1227 
1228 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1229 	if (err)
1230 		goto out_ro;
1231 
1232 	finish_reservation(c);
1233 	spin_lock(&ui->ui_lock);
1234 	ui->synced_i_size = ui->ui_size;
1235 	spin_unlock(&ui->ui_lock);
1236 	mark_inode_clean(c, ui);
1237 	kfree(ino);
1238 	return 0;
1239 
1240 out_release:
1241 	release_head(c, BASEHD);
1242 out_ro:
1243 	ubifs_ro_mode(c, err);
1244 	finish_reservation(c);
1245 out_free:
1246 	kfree(ino);
1247 	return err;
1248 }
1249 
1250 #ifdef CONFIG_UBIFS_FS_XATTR
1251 
1252 /**
1253  * ubifs_jnl_delete_xattr - delete an extended attribute.
1254  * @c: UBIFS file-system description object
1255  * @host: host inode
1256  * @inode: extended attribute inode
1257  * @nm: extended attribute entry name
1258  *
1259  * This function delete an extended attribute which is very similar to
1260  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1261  * updates the target inode. Returns zero in case of success and a negative
1262  * error code in case of failure.
1263  */
1264 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1265 			   const struct inode *inode, const struct qstr *nm)
1266 {
1267 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1268 	struct ubifs_dent_node *xent;
1269 	struct ubifs_ino_node *ino;
1270 	union ubifs_key xent_key, key1, key2;
1271 	int sync = IS_DIRSYNC(host);
1272 	struct ubifs_inode *host_ui = ubifs_inode(host);
1273 
1274 	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1275 		host->i_ino, inode->i_ino, nm->name,
1276 		ubifs_inode(inode)->data_len);
1277 	ubifs_assert(inode->i_nlink == 0);
1278 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1279 
1280 	/*
1281 	 * Since we are deleting the inode, we do not bother to attach any data
1282 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1283 	 */
1284 	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1285 	aligned_xlen = ALIGN(xlen, 8);
1286 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1287 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1288 
1289 	xent = kmalloc(len, GFP_NOFS);
1290 	if (!xent)
1291 		return -ENOMEM;
1292 
1293 	/* Make reservation before allocating sequence numbers */
1294 	err = make_reservation(c, BASEHD, len);
1295 	if (err) {
1296 		kfree(xent);
1297 		return err;
1298 	}
1299 
1300 	xent->ch.node_type = UBIFS_XENT_NODE;
1301 	xent_key_init(c, &xent_key, host->i_ino, nm);
1302 	key_write(c, &xent_key, xent->key);
1303 	xent->inum = 0;
1304 	xent->type = get_dent_type(inode->i_mode);
1305 	xent->nlen = cpu_to_le16(nm->len);
1306 	memcpy(xent->name, nm->name, nm->len);
1307 	xent->name[nm->len] = '\0';
1308 	zero_dent_node_unused(xent);
1309 	ubifs_prep_grp_node(c, xent, xlen, 0);
1310 
1311 	ino = (void *)xent + aligned_xlen;
1312 	pack_inode(c, ino, inode, 0);
1313 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1314 	pack_inode(c, ino, host, 1);
1315 
1316 	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1317 	if (!sync && !err)
1318 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1319 	release_head(c, BASEHD);
1320 	kfree(xent);
1321 	if (err)
1322 		goto out_ro;
1323 
1324 	/* Remove the extended attribute entry from TNC */
1325 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1326 	if (err)
1327 		goto out_ro;
1328 	err = ubifs_add_dirt(c, lnum, xlen);
1329 	if (err)
1330 		goto out_ro;
1331 
1332 	/*
1333 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1334 	 * Well, there actually must be only one node - the inode itself.
1335 	 */
1336 	lowest_ino_key(c, &key1, inode->i_ino);
1337 	highest_ino_key(c, &key2, inode->i_ino);
1338 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1339 	if (err)
1340 		goto out_ro;
1341 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1342 	if (err)
1343 		goto out_ro;
1344 
1345 	/* And update TNC with the new host inode position */
1346 	ino_key_init(c, &key1, host->i_ino);
1347 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1348 	if (err)
1349 		goto out_ro;
1350 
1351 	finish_reservation(c);
1352 	spin_lock(&host_ui->ui_lock);
1353 	host_ui->synced_i_size = host_ui->ui_size;
1354 	spin_unlock(&host_ui->ui_lock);
1355 	mark_inode_clean(c, host_ui);
1356 	return 0;
1357 
1358 out_ro:
1359 	ubifs_ro_mode(c, err);
1360 	finish_reservation(c);
1361 	return err;
1362 }
1363 
1364 /**
1365  * ubifs_jnl_change_xattr - change an extended attribute.
1366  * @c: UBIFS file-system description object
1367  * @inode: extended attribute inode
1368  * @host: host inode
1369  *
1370  * This function writes the updated version of an extended attribute inode and
1371  * the host inode to the journal (to the base head). The host inode is written
1372  * after the extended attribute inode in order to guarantee that the extended
1373  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1374  * consequently, the write-buffer is synchronized. This function returns zero
1375  * in case of success and a negative error code in case of failure.
1376  */
1377 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1378 			   const struct inode *host)
1379 {
1380 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1381 	struct ubifs_inode *host_ui = ubifs_inode(host);
1382 	struct ubifs_ino_node *ino;
1383 	union ubifs_key key;
1384 	int sync = IS_DIRSYNC(host);
1385 
1386 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1387 	ubifs_assert(host->i_nlink > 0);
1388 	ubifs_assert(inode->i_nlink > 0);
1389 	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1390 
1391 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1392 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1393 	aligned_len1 = ALIGN(len1, 8);
1394 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1395 
1396 	ino = kmalloc(aligned_len, GFP_NOFS);
1397 	if (!ino)
1398 		return -ENOMEM;
1399 
1400 	/* Make reservation before allocating sequence numbers */
1401 	err = make_reservation(c, BASEHD, aligned_len);
1402 	if (err)
1403 		goto out_free;
1404 
1405 	pack_inode(c, ino, host, 0);
1406 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1407 
1408 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1409 	if (!sync && !err) {
1410 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1411 
1412 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1413 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1414 	}
1415 	release_head(c, BASEHD);
1416 	if (err)
1417 		goto out_ro;
1418 
1419 	ino_key_init(c, &key, host->i_ino);
1420 	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1421 	if (err)
1422 		goto out_ro;
1423 
1424 	ino_key_init(c, &key, inode->i_ino);
1425 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1426 	if (err)
1427 		goto out_ro;
1428 
1429 	finish_reservation(c);
1430 	spin_lock(&host_ui->ui_lock);
1431 	host_ui->synced_i_size = host_ui->ui_size;
1432 	spin_unlock(&host_ui->ui_lock);
1433 	mark_inode_clean(c, host_ui);
1434 	kfree(ino);
1435 	return 0;
1436 
1437 out_ro:
1438 	ubifs_ro_mode(c, err);
1439 	finish_reservation(c);
1440 out_free:
1441 	kfree(ino);
1442 	return err;
1443 }
1444 
1445 #endif /* CONFIG_UBIFS_FS_XATTR */
1446