1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 squeeze = (jhead == BASEHD); 126 again: 127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 128 129 if (c->ro_media) { 130 err = -EROFS; 131 goto out_unlock; 132 } 133 134 avail = c->leb_size - wbuf->offs - wbuf->used; 135 if (wbuf->lnum != -1 && avail >= len) 136 return 0; 137 138 /* 139 * Write buffer wasn't seek'ed or there is no enough space - look for an 140 * LEB with some empty space. 141 */ 142 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 143 if (lnum >= 0) { 144 /* Found an LEB, add it to the journal head */ 145 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 146 if (err) 147 goto out_return; 148 /* A new bud was successfully allocated and added to the log */ 149 goto out; 150 } 151 152 err = lnum; 153 if (err != -ENOSPC) 154 goto out_unlock; 155 156 /* 157 * No free space, we have to run garbage collector to make 158 * some. But the write-buffer mutex has to be unlocked because 159 * GC also takes it. 160 */ 161 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 162 mutex_unlock(&wbuf->io_mutex); 163 164 lnum = ubifs_garbage_collect(c, 0); 165 if (lnum < 0) { 166 err = lnum; 167 if (err != -ENOSPC) 168 return err; 169 170 /* 171 * GC could not make a free LEB. But someone else may 172 * have allocated new bud for this journal head, 173 * because we dropped @wbuf->io_mutex, so try once 174 * again. 175 */ 176 dbg_jnl("GC couldn't make a free LEB for jhead %s", 177 dbg_jhead(jhead)); 178 if (retries++ < 2) { 179 dbg_jnl("retry (%d)", retries); 180 goto again; 181 } 182 183 dbg_jnl("return -ENOSPC"); 184 return err; 185 } 186 187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 188 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 189 avail = c->leb_size - wbuf->offs - wbuf->used; 190 191 if (wbuf->lnum != -1 && avail >= len) { 192 /* 193 * Someone else has switched the journal head and we have 194 * enough space now. This happens when more than one process is 195 * trying to write to the same journal head at the same time. 196 */ 197 dbg_jnl("return LEB %d back, already have LEB %d:%d", 198 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 199 err = ubifs_return_leb(c, lnum); 200 if (err) 201 goto out_unlock; 202 return 0; 203 } 204 205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0); 206 if (err) 207 goto out_return; 208 offs = 0; 209 210 out: 211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype); 212 if (err) 213 goto out_unlock; 214 215 return 0; 216 217 out_unlock: 218 mutex_unlock(&wbuf->io_mutex); 219 return err; 220 221 out_return: 222 /* An error occurred and the LEB has to be returned to lprops */ 223 ubifs_assert(err < 0); 224 err1 = ubifs_return_leb(c, lnum); 225 if (err1 && err == -EAGAIN) 226 /* 227 * Return original error code only if it is not %-EAGAIN, 228 * which is not really an error. Otherwise, return the error 229 * code of 'ubifs_return_leb()'. 230 */ 231 err = err1; 232 mutex_unlock(&wbuf->io_mutex); 233 return err; 234 } 235 236 /** 237 * write_node - write node to a journal head. 238 * @c: UBIFS file-system description object 239 * @jhead: journal head 240 * @node: node to write 241 * @len: node length 242 * @lnum: LEB number written is returned here 243 * @offs: offset written is returned here 244 * 245 * This function writes a node to reserved space of journal head @jhead. 246 * Returns zero in case of success and a negative error code in case of 247 * failure. 248 */ 249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 250 int *lnum, int *offs) 251 { 252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 253 254 ubifs_assert(jhead != GCHD); 255 256 *lnum = c->jheads[jhead].wbuf.lnum; 257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 258 259 dbg_jnl("jhead %s, LEB %d:%d, len %d", 260 dbg_jhead(jhead), *lnum, *offs, len); 261 ubifs_prepare_node(c, node, len, 0); 262 263 return ubifs_wbuf_write_nolock(wbuf, node, len); 264 } 265 266 /** 267 * write_head - write data to a journal head. 268 * @c: UBIFS file-system description object 269 * @jhead: journal head 270 * @buf: buffer to write 271 * @len: length to write 272 * @lnum: LEB number written is returned here 273 * @offs: offset written is returned here 274 * @sync: non-zero if the write-buffer has to by synchronized 275 * 276 * This function is the same as 'write_node()' but it does not assume the 277 * buffer it is writing is a node, so it does not prepare it (which means 278 * initializing common header and calculating CRC). 279 */ 280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 281 int *lnum, int *offs, int sync) 282 { 283 int err; 284 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 285 286 ubifs_assert(jhead != GCHD); 287 288 *lnum = c->jheads[jhead].wbuf.lnum; 289 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 290 dbg_jnl("jhead %s, LEB %d:%d, len %d", 291 dbg_jhead(jhead), *lnum, *offs, len); 292 293 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 294 if (err) 295 return err; 296 if (sync) 297 err = ubifs_wbuf_sync_nolock(wbuf); 298 return err; 299 } 300 301 /** 302 * make_reservation - reserve journal space. 303 * @c: UBIFS file-system description object 304 * @jhead: journal head 305 * @len: how many bytes to reserve 306 * 307 * This function makes space reservation in journal head @jhead. The function 308 * takes the commit lock and locks the journal head, and the caller has to 309 * unlock the head and finish the reservation with 'finish_reservation()'. 310 * Returns zero in case of success and a negative error code in case of 311 * failure. 312 * 313 * Note, the journal head may be unlocked as soon as the data is written, while 314 * the commit lock has to be released after the data has been added to the 315 * TNC. 316 */ 317 static int make_reservation(struct ubifs_info *c, int jhead, int len) 318 { 319 int err, cmt_retries = 0, nospc_retries = 0; 320 321 again: 322 down_read(&c->commit_sem); 323 err = reserve_space(c, jhead, len); 324 if (!err) 325 return 0; 326 up_read(&c->commit_sem); 327 328 if (err == -ENOSPC) { 329 /* 330 * GC could not make any progress. We should try to commit 331 * once because it could make some dirty space and GC would 332 * make progress, so make the error -EAGAIN so that the below 333 * will commit and re-try. 334 */ 335 if (nospc_retries++ < 2) { 336 dbg_jnl("no space, retry"); 337 err = -EAGAIN; 338 } 339 340 /* 341 * This means that the budgeting is incorrect. We always have 342 * to be able to write to the media, because all operations are 343 * budgeted. Deletions are not budgeted, though, but we reserve 344 * an extra LEB for them. 345 */ 346 } 347 348 if (err != -EAGAIN) 349 goto out; 350 351 /* 352 * -EAGAIN means that the journal is full or too large, or the above 353 * code wants to do one commit. Do this and re-try. 354 */ 355 if (cmt_retries > 128) { 356 /* 357 * This should not happen unless the journal size limitations 358 * are too tough. 359 */ 360 ubifs_err("stuck in space allocation"); 361 err = -ENOSPC; 362 goto out; 363 } else if (cmt_retries > 32) 364 ubifs_warn("too many space allocation re-tries (%d)", 365 cmt_retries); 366 367 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 368 cmt_retries); 369 cmt_retries += 1; 370 371 err = ubifs_run_commit(c); 372 if (err) 373 return err; 374 goto again; 375 376 out: 377 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 378 len, jhead, err); 379 if (err == -ENOSPC) { 380 /* This are some budgeting problems, print useful information */ 381 down_write(&c->commit_sem); 382 spin_lock(&c->space_lock); 383 dbg_dump_stack(); 384 dbg_dump_budg(c); 385 spin_unlock(&c->space_lock); 386 dbg_dump_lprops(c); 387 cmt_retries = dbg_check_lprops(c); 388 up_write(&c->commit_sem); 389 } 390 return err; 391 } 392 393 /** 394 * release_head - release a journal head. 395 * @c: UBIFS file-system description object 396 * @jhead: journal head 397 * 398 * This function releases journal head @jhead which was locked by 399 * the 'make_reservation()' function. It has to be called after each successful 400 * 'make_reservation()' invocation. 401 */ 402 static inline void release_head(struct ubifs_info *c, int jhead) 403 { 404 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 405 } 406 407 /** 408 * finish_reservation - finish a reservation. 409 * @c: UBIFS file-system description object 410 * 411 * This function finishes journal space reservation. It must be called after 412 * 'make_reservation()'. 413 */ 414 static void finish_reservation(struct ubifs_info *c) 415 { 416 up_read(&c->commit_sem); 417 } 418 419 /** 420 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 421 * @mode: inode mode 422 */ 423 static int get_dent_type(int mode) 424 { 425 switch (mode & S_IFMT) { 426 case S_IFREG: 427 return UBIFS_ITYPE_REG; 428 case S_IFDIR: 429 return UBIFS_ITYPE_DIR; 430 case S_IFLNK: 431 return UBIFS_ITYPE_LNK; 432 case S_IFBLK: 433 return UBIFS_ITYPE_BLK; 434 case S_IFCHR: 435 return UBIFS_ITYPE_CHR; 436 case S_IFIFO: 437 return UBIFS_ITYPE_FIFO; 438 case S_IFSOCK: 439 return UBIFS_ITYPE_SOCK; 440 default: 441 BUG(); 442 } 443 return 0; 444 } 445 446 /** 447 * pack_inode - pack an inode node. 448 * @c: UBIFS file-system description object 449 * @ino: buffer in which to pack inode node 450 * @inode: inode to pack 451 * @last: indicates the last node of the group 452 */ 453 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 454 const struct inode *inode, int last) 455 { 456 int data_len = 0, last_reference = !inode->i_nlink; 457 struct ubifs_inode *ui = ubifs_inode(inode); 458 459 ino->ch.node_type = UBIFS_INO_NODE; 460 ino_key_init_flash(c, &ino->key, inode->i_ino); 461 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 462 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 463 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 464 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 465 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 466 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 467 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 468 ino->uid = cpu_to_le32(inode->i_uid); 469 ino->gid = cpu_to_le32(inode->i_gid); 470 ino->mode = cpu_to_le32(inode->i_mode); 471 ino->flags = cpu_to_le32(ui->flags); 472 ino->size = cpu_to_le64(ui->ui_size); 473 ino->nlink = cpu_to_le32(inode->i_nlink); 474 ino->compr_type = cpu_to_le16(ui->compr_type); 475 ino->data_len = cpu_to_le32(ui->data_len); 476 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 477 ino->xattr_size = cpu_to_le32(ui->xattr_size); 478 ino->xattr_names = cpu_to_le32(ui->xattr_names); 479 zero_ino_node_unused(ino); 480 481 /* 482 * Drop the attached data if this is a deletion inode, the data is not 483 * needed anymore. 484 */ 485 if (!last_reference) { 486 memcpy(ino->data, ui->data, ui->data_len); 487 data_len = ui->data_len; 488 } 489 490 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 491 } 492 493 /** 494 * mark_inode_clean - mark UBIFS inode as clean. 495 * @c: UBIFS file-system description object 496 * @ui: UBIFS inode to mark as clean 497 * 498 * This helper function marks UBIFS inode @ui as clean by cleaning the 499 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 500 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 501 * just do nothing. 502 */ 503 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 504 { 505 if (ui->dirty) 506 ubifs_release_dirty_inode_budget(c, ui); 507 ui->dirty = 0; 508 } 509 510 /** 511 * ubifs_jnl_update - update inode. 512 * @c: UBIFS file-system description object 513 * @dir: parent inode or host inode in case of extended attributes 514 * @nm: directory entry name 515 * @inode: inode to update 516 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 517 * @xent: non-zero if the directory entry is an extended attribute entry 518 * 519 * This function updates an inode by writing a directory entry (or extended 520 * attribute entry), the inode itself, and the parent directory inode (or the 521 * host inode) to the journal. 522 * 523 * The function writes the host inode @dir last, which is important in case of 524 * extended attributes. Indeed, then we guarantee that if the host inode gets 525 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 526 * the extended attribute inode gets flushed too. And this is exactly what the 527 * user expects - synchronizing the host inode synchronizes its extended 528 * attributes. Similarly, this guarantees that if @dir is synchronized, its 529 * directory entry corresponding to @nm gets synchronized too. 530 * 531 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 532 * function synchronizes the write-buffer. 533 * 534 * This function marks the @dir and @inode inodes as clean and returns zero on 535 * success. In case of failure, a negative error code is returned. 536 */ 537 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 538 const struct qstr *nm, const struct inode *inode, 539 int deletion, int xent) 540 { 541 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 542 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 543 int last_reference = !!(deletion && inode->i_nlink == 0); 544 struct ubifs_inode *ui = ubifs_inode(inode); 545 struct ubifs_inode *dir_ui = ubifs_inode(dir); 546 struct ubifs_dent_node *dent; 547 struct ubifs_ino_node *ino; 548 union ubifs_key dent_key, ino_key; 549 550 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 551 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 552 ubifs_assert(dir_ui->data_len == 0); 553 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 554 555 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 556 ilen = UBIFS_INO_NODE_SZ; 557 558 /* 559 * If the last reference to the inode is being deleted, then there is 560 * no need to attach and write inode data, it is being deleted anyway. 561 * And if the inode is being deleted, no need to synchronize 562 * write-buffer even if the inode is synchronous. 563 */ 564 if (!last_reference) { 565 ilen += ui->data_len; 566 sync |= IS_SYNC(inode); 567 } 568 569 aligned_dlen = ALIGN(dlen, 8); 570 aligned_ilen = ALIGN(ilen, 8); 571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 572 dent = kmalloc(len, GFP_NOFS); 573 if (!dent) 574 return -ENOMEM; 575 576 /* Make reservation before allocating sequence numbers */ 577 err = make_reservation(c, BASEHD, len); 578 if (err) 579 goto out_free; 580 581 if (!xent) { 582 dent->ch.node_type = UBIFS_DENT_NODE; 583 dent_key_init(c, &dent_key, dir->i_ino, nm); 584 } else { 585 dent->ch.node_type = UBIFS_XENT_NODE; 586 xent_key_init(c, &dent_key, dir->i_ino, nm); 587 } 588 589 key_write(c, &dent_key, dent->key); 590 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 591 dent->type = get_dent_type(inode->i_mode); 592 dent->nlen = cpu_to_le16(nm->len); 593 memcpy(dent->name, nm->name, nm->len); 594 dent->name[nm->len] = '\0'; 595 zero_dent_node_unused(dent); 596 ubifs_prep_grp_node(c, dent, dlen, 0); 597 598 ino = (void *)dent + aligned_dlen; 599 pack_inode(c, ino, inode, 0); 600 ino = (void *)ino + aligned_ilen; 601 pack_inode(c, ino, dir, 1); 602 603 if (last_reference) { 604 err = ubifs_add_orphan(c, inode->i_ino); 605 if (err) { 606 release_head(c, BASEHD); 607 goto out_finish; 608 } 609 ui->del_cmtno = c->cmt_no; 610 } 611 612 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 613 if (err) 614 goto out_release; 615 if (!sync) { 616 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 617 618 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 619 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 620 } 621 release_head(c, BASEHD); 622 kfree(dent); 623 624 if (deletion) { 625 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 626 if (err) 627 goto out_ro; 628 err = ubifs_add_dirt(c, lnum, dlen); 629 } else 630 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 631 if (err) 632 goto out_ro; 633 634 /* 635 * Note, we do not remove the inode from TNC even if the last reference 636 * to it has just been deleted, because the inode may still be opened. 637 * Instead, the inode has been added to orphan lists and the orphan 638 * subsystem will take further care about it. 639 */ 640 ino_key_init(c, &ino_key, inode->i_ino); 641 ino_offs = dent_offs + aligned_dlen; 642 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 643 if (err) 644 goto out_ro; 645 646 ino_key_init(c, &ino_key, dir->i_ino); 647 ino_offs += aligned_ilen; 648 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 649 if (err) 650 goto out_ro; 651 652 finish_reservation(c); 653 spin_lock(&ui->ui_lock); 654 ui->synced_i_size = ui->ui_size; 655 spin_unlock(&ui->ui_lock); 656 mark_inode_clean(c, ui); 657 mark_inode_clean(c, dir_ui); 658 return 0; 659 660 out_finish: 661 finish_reservation(c); 662 out_free: 663 kfree(dent); 664 return err; 665 666 out_release: 667 release_head(c, BASEHD); 668 out_ro: 669 ubifs_ro_mode(c, err); 670 if (last_reference) 671 ubifs_delete_orphan(c, inode->i_ino); 672 finish_reservation(c); 673 return err; 674 } 675 676 /** 677 * ubifs_jnl_write_data - write a data node to the journal. 678 * @c: UBIFS file-system description object 679 * @inode: inode the data node belongs to 680 * @key: node key 681 * @buf: buffer to write 682 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 683 * 684 * This function writes a data node to the journal. Returns %0 if the data node 685 * was successfully written, and a negative error code in case of failure. 686 */ 687 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 688 const union ubifs_key *key, const void *buf, int len) 689 { 690 struct ubifs_data_node *data; 691 int err, lnum, offs, compr_type, out_len; 692 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; 693 struct ubifs_inode *ui = ubifs_inode(inode); 694 695 dbg_jnl("ino %lu, blk %u, len %d, key %s", 696 (unsigned long)key_inum(c, key), key_block(c, key), len, 697 DBGKEY(key)); 698 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 699 700 data = kmalloc(dlen, GFP_NOFS); 701 if (!data) 702 return -ENOMEM; 703 704 data->ch.node_type = UBIFS_DATA_NODE; 705 key_write(c, key, &data->key); 706 data->size = cpu_to_le32(len); 707 zero_data_node_unused(data); 708 709 if (!(ui->flags & UBIFS_COMPR_FL)) 710 /* Compression is disabled for this inode */ 711 compr_type = UBIFS_COMPR_NONE; 712 else 713 compr_type = ui->compr_type; 714 715 out_len = dlen - UBIFS_DATA_NODE_SZ; 716 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 717 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 718 719 dlen = UBIFS_DATA_NODE_SZ + out_len; 720 data->compr_type = cpu_to_le16(compr_type); 721 722 /* Make reservation before allocating sequence numbers */ 723 err = make_reservation(c, DATAHD, dlen); 724 if (err) 725 goto out_free; 726 727 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 728 if (err) 729 goto out_release; 730 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 731 release_head(c, DATAHD); 732 733 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 734 if (err) 735 goto out_ro; 736 737 finish_reservation(c); 738 kfree(data); 739 return 0; 740 741 out_release: 742 release_head(c, DATAHD); 743 out_ro: 744 ubifs_ro_mode(c, err); 745 finish_reservation(c); 746 out_free: 747 kfree(data); 748 return err; 749 } 750 751 /** 752 * ubifs_jnl_write_inode - flush inode to the journal. 753 * @c: UBIFS file-system description object 754 * @inode: inode to flush 755 * 756 * This function writes inode @inode to the journal. If the inode is 757 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 758 * success and a negative error code in case of failure. 759 */ 760 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 761 { 762 int err, lnum, offs; 763 struct ubifs_ino_node *ino; 764 struct ubifs_inode *ui = ubifs_inode(inode); 765 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 766 767 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 768 769 /* 770 * If the inode is being deleted, do not write the attached data. No 771 * need to synchronize the write-buffer either. 772 */ 773 if (!last_reference) { 774 len += ui->data_len; 775 sync = IS_SYNC(inode); 776 } 777 ino = kmalloc(len, GFP_NOFS); 778 if (!ino) 779 return -ENOMEM; 780 781 /* Make reservation before allocating sequence numbers */ 782 err = make_reservation(c, BASEHD, len); 783 if (err) 784 goto out_free; 785 786 pack_inode(c, ino, inode, 1); 787 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 788 if (err) 789 goto out_release; 790 if (!sync) 791 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 792 inode->i_ino); 793 release_head(c, BASEHD); 794 795 if (last_reference) { 796 err = ubifs_tnc_remove_ino(c, inode->i_ino); 797 if (err) 798 goto out_ro; 799 ubifs_delete_orphan(c, inode->i_ino); 800 err = ubifs_add_dirt(c, lnum, len); 801 } else { 802 union ubifs_key key; 803 804 ino_key_init(c, &key, inode->i_ino); 805 err = ubifs_tnc_add(c, &key, lnum, offs, len); 806 } 807 if (err) 808 goto out_ro; 809 810 finish_reservation(c); 811 spin_lock(&ui->ui_lock); 812 ui->synced_i_size = ui->ui_size; 813 spin_unlock(&ui->ui_lock); 814 kfree(ino); 815 return 0; 816 817 out_release: 818 release_head(c, BASEHD); 819 out_ro: 820 ubifs_ro_mode(c, err); 821 finish_reservation(c); 822 out_free: 823 kfree(ino); 824 return err; 825 } 826 827 /** 828 * ubifs_jnl_delete_inode - delete an inode. 829 * @c: UBIFS file-system description object 830 * @inode: inode to delete 831 * 832 * This function deletes inode @inode which includes removing it from orphans, 833 * deleting it from TNC and, in some cases, writing a deletion inode to the 834 * journal. 835 * 836 * When regular file inodes are unlinked or a directory inode is removed, the 837 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 838 * direntry to the media, and adds the inode to orphans. After this, when the 839 * last reference to this inode has been dropped, this function is called. In 840 * general, it has to write one more deletion inode to the media, because if 841 * a commit happened between 'ubifs_jnl_update()' and 842 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 843 * anymore, and in fact it might not be on the flash anymore, because it might 844 * have been garbage-collected already. And for optimization reasons UBIFS does 845 * not read the orphan area if it has been unmounted cleanly, so it would have 846 * no indication in the journal that there is a deleted inode which has to be 847 * removed from TNC. 848 * 849 * However, if there was no commit between 'ubifs_jnl_update()' and 850 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 851 * inode to the media for the second time. And this is quite a typical case. 852 * 853 * This function returns zero in case of success and a negative error code in 854 * case of failure. 855 */ 856 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 857 { 858 int err; 859 struct ubifs_inode *ui = ubifs_inode(inode); 860 861 ubifs_assert(inode->i_nlink == 0); 862 863 if (ui->del_cmtno != c->cmt_no) 864 /* A commit happened for sure */ 865 return ubifs_jnl_write_inode(c, inode); 866 867 down_read(&c->commit_sem); 868 /* 869 * Check commit number again, because the first test has been done 870 * without @c->commit_sem, so a commit might have happened. 871 */ 872 if (ui->del_cmtno != c->cmt_no) { 873 up_read(&c->commit_sem); 874 return ubifs_jnl_write_inode(c, inode); 875 } 876 877 err = ubifs_tnc_remove_ino(c, inode->i_ino); 878 if (err) 879 ubifs_ro_mode(c, err); 880 else 881 ubifs_delete_orphan(c, inode->i_ino); 882 up_read(&c->commit_sem); 883 return err; 884 } 885 886 /** 887 * ubifs_jnl_rename - rename a directory entry. 888 * @c: UBIFS file-system description object 889 * @old_dir: parent inode of directory entry to rename 890 * @old_dentry: directory entry to rename 891 * @new_dir: parent inode of directory entry to rename 892 * @new_dentry: new directory entry (or directory entry to replace) 893 * @sync: non-zero if the write-buffer has to be synchronized 894 * 895 * This function implements the re-name operation which may involve writing up 896 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 897 * and returns zero on success. In case of failure, a negative error code is 898 * returned. 899 */ 900 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 901 const struct dentry *old_dentry, 902 const struct inode *new_dir, 903 const struct dentry *new_dentry, int sync) 904 { 905 void *p; 906 union ubifs_key key; 907 struct ubifs_dent_node *dent, *dent2; 908 int err, dlen1, dlen2, ilen, lnum, offs, len; 909 const struct inode *old_inode = old_dentry->d_inode; 910 const struct inode *new_inode = new_dentry->d_inode; 911 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 912 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 913 int move = (old_dir != new_dir); 914 struct ubifs_inode *uninitialized_var(new_ui); 915 916 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 917 old_dentry->d_name.len, old_dentry->d_name.name, 918 old_dir->i_ino, new_dentry->d_name.len, 919 new_dentry->d_name.name, new_dir->i_ino); 920 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 921 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 922 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 923 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 924 925 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 926 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 927 if (new_inode) { 928 new_ui = ubifs_inode(new_inode); 929 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 930 ilen = UBIFS_INO_NODE_SZ; 931 if (!last_reference) 932 ilen += new_ui->data_len; 933 } else 934 ilen = 0; 935 936 aligned_dlen1 = ALIGN(dlen1, 8); 937 aligned_dlen2 = ALIGN(dlen2, 8); 938 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 939 if (old_dir != new_dir) 940 len += plen; 941 dent = kmalloc(len, GFP_NOFS); 942 if (!dent) 943 return -ENOMEM; 944 945 /* Make reservation before allocating sequence numbers */ 946 err = make_reservation(c, BASEHD, len); 947 if (err) 948 goto out_free; 949 950 /* Make new dent */ 951 dent->ch.node_type = UBIFS_DENT_NODE; 952 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 953 dent->inum = cpu_to_le64(old_inode->i_ino); 954 dent->type = get_dent_type(old_inode->i_mode); 955 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 956 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 957 dent->name[new_dentry->d_name.len] = '\0'; 958 zero_dent_node_unused(dent); 959 ubifs_prep_grp_node(c, dent, dlen1, 0); 960 961 /* Make deletion dent */ 962 dent2 = (void *)dent + aligned_dlen1; 963 dent2->ch.node_type = UBIFS_DENT_NODE; 964 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 965 &old_dentry->d_name); 966 dent2->inum = 0; 967 dent2->type = DT_UNKNOWN; 968 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 969 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 970 dent2->name[old_dentry->d_name.len] = '\0'; 971 zero_dent_node_unused(dent2); 972 ubifs_prep_grp_node(c, dent2, dlen2, 0); 973 974 p = (void *)dent2 + aligned_dlen2; 975 if (new_inode) { 976 pack_inode(c, p, new_inode, 0); 977 p += ALIGN(ilen, 8); 978 } 979 980 if (!move) 981 pack_inode(c, p, old_dir, 1); 982 else { 983 pack_inode(c, p, old_dir, 0); 984 p += ALIGN(plen, 8); 985 pack_inode(c, p, new_dir, 1); 986 } 987 988 if (last_reference) { 989 err = ubifs_add_orphan(c, new_inode->i_ino); 990 if (err) { 991 release_head(c, BASEHD); 992 goto out_finish; 993 } 994 new_ui->del_cmtno = c->cmt_no; 995 } 996 997 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 998 if (err) 999 goto out_release; 1000 if (!sync) { 1001 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1002 1003 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1004 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1005 if (new_inode) 1006 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1007 new_inode->i_ino); 1008 } 1009 release_head(c, BASEHD); 1010 1011 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 1012 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 1013 if (err) 1014 goto out_ro; 1015 1016 err = ubifs_add_dirt(c, lnum, dlen2); 1017 if (err) 1018 goto out_ro; 1019 1020 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 1021 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 1022 if (err) 1023 goto out_ro; 1024 1025 offs += aligned_dlen1 + aligned_dlen2; 1026 if (new_inode) { 1027 ino_key_init(c, &key, new_inode->i_ino); 1028 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1029 if (err) 1030 goto out_ro; 1031 offs += ALIGN(ilen, 8); 1032 } 1033 1034 ino_key_init(c, &key, old_dir->i_ino); 1035 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1036 if (err) 1037 goto out_ro; 1038 1039 if (old_dir != new_dir) { 1040 offs += ALIGN(plen, 8); 1041 ino_key_init(c, &key, new_dir->i_ino); 1042 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1043 if (err) 1044 goto out_ro; 1045 } 1046 1047 finish_reservation(c); 1048 if (new_inode) { 1049 mark_inode_clean(c, new_ui); 1050 spin_lock(&new_ui->ui_lock); 1051 new_ui->synced_i_size = new_ui->ui_size; 1052 spin_unlock(&new_ui->ui_lock); 1053 } 1054 mark_inode_clean(c, ubifs_inode(old_dir)); 1055 if (move) 1056 mark_inode_clean(c, ubifs_inode(new_dir)); 1057 kfree(dent); 1058 return 0; 1059 1060 out_release: 1061 release_head(c, BASEHD); 1062 out_ro: 1063 ubifs_ro_mode(c, err); 1064 if (last_reference) 1065 ubifs_delete_orphan(c, new_inode->i_ino); 1066 out_finish: 1067 finish_reservation(c); 1068 out_free: 1069 kfree(dent); 1070 return err; 1071 } 1072 1073 /** 1074 * recomp_data_node - re-compress a truncated data node. 1075 * @dn: data node to re-compress 1076 * @new_len: new length 1077 * 1078 * This function is used when an inode is truncated and the last data node of 1079 * the inode has to be re-compressed and re-written. 1080 */ 1081 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1082 { 1083 void *buf; 1084 int err, len, compr_type, out_len; 1085 1086 out_len = le32_to_cpu(dn->size); 1087 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1088 if (!buf) 1089 return -ENOMEM; 1090 1091 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1092 compr_type = le16_to_cpu(dn->compr_type); 1093 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1094 if (err) 1095 goto out; 1096 1097 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1098 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1099 dn->compr_type = cpu_to_le16(compr_type); 1100 dn->size = cpu_to_le32(*new_len); 1101 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1102 out: 1103 kfree(buf); 1104 return err; 1105 } 1106 1107 /** 1108 * ubifs_jnl_truncate - update the journal for a truncation. 1109 * @c: UBIFS file-system description object 1110 * @inode: inode to truncate 1111 * @old_size: old size 1112 * @new_size: new size 1113 * 1114 * When the size of a file decreases due to truncation, a truncation node is 1115 * written, the journal tree is updated, and the last data block is re-written 1116 * if it has been affected. The inode is also updated in order to synchronize 1117 * the new inode size. 1118 * 1119 * This function marks the inode as clean and returns zero on success. In case 1120 * of failure, a negative error code is returned. 1121 */ 1122 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1123 loff_t old_size, loff_t new_size) 1124 { 1125 union ubifs_key key, to_key; 1126 struct ubifs_ino_node *ino; 1127 struct ubifs_trun_node *trun; 1128 struct ubifs_data_node *uninitialized_var(dn); 1129 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1130 struct ubifs_inode *ui = ubifs_inode(inode); 1131 ino_t inum = inode->i_ino; 1132 unsigned int blk; 1133 1134 dbg_jnl("ino %lu, size %lld -> %lld", 1135 (unsigned long)inum, old_size, new_size); 1136 ubifs_assert(!ui->data_len); 1137 ubifs_assert(S_ISREG(inode->i_mode)); 1138 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1139 1140 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1141 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1142 ino = kmalloc(sz, GFP_NOFS); 1143 if (!ino) 1144 return -ENOMEM; 1145 1146 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1147 trun->ch.node_type = UBIFS_TRUN_NODE; 1148 trun->inum = cpu_to_le32(inum); 1149 trun->old_size = cpu_to_le64(old_size); 1150 trun->new_size = cpu_to_le64(new_size); 1151 zero_trun_node_unused(trun); 1152 1153 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1154 if (dlen) { 1155 /* Get last data block so it can be truncated */ 1156 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1157 blk = new_size >> UBIFS_BLOCK_SHIFT; 1158 data_key_init(c, &key, inum, blk); 1159 dbg_jnl("last block key %s", DBGKEY(&key)); 1160 err = ubifs_tnc_lookup(c, &key, dn); 1161 if (err == -ENOENT) 1162 dlen = 0; /* Not found (so it is a hole) */ 1163 else if (err) 1164 goto out_free; 1165 else { 1166 if (le32_to_cpu(dn->size) <= dlen) 1167 dlen = 0; /* Nothing to do */ 1168 else { 1169 int compr_type = le16_to_cpu(dn->compr_type); 1170 1171 if (compr_type != UBIFS_COMPR_NONE) { 1172 err = recomp_data_node(dn, &dlen); 1173 if (err) 1174 goto out_free; 1175 } else { 1176 dn->size = cpu_to_le32(dlen); 1177 dlen += UBIFS_DATA_NODE_SZ; 1178 } 1179 zero_data_node_unused(dn); 1180 } 1181 } 1182 } 1183 1184 /* Must make reservation before allocating sequence numbers */ 1185 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1186 if (dlen) 1187 len += dlen; 1188 err = make_reservation(c, BASEHD, len); 1189 if (err) 1190 goto out_free; 1191 1192 pack_inode(c, ino, inode, 0); 1193 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1194 if (dlen) 1195 ubifs_prep_grp_node(c, dn, dlen, 1); 1196 1197 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1198 if (err) 1199 goto out_release; 1200 if (!sync) 1201 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1202 release_head(c, BASEHD); 1203 1204 if (dlen) { 1205 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1206 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1207 if (err) 1208 goto out_ro; 1209 } 1210 1211 ino_key_init(c, &key, inum); 1212 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1213 if (err) 1214 goto out_ro; 1215 1216 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1217 if (err) 1218 goto out_ro; 1219 1220 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1221 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1222 data_key_init(c, &key, inum, blk); 1223 1224 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1225 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1226 data_key_init(c, &to_key, inum, blk); 1227 1228 err = ubifs_tnc_remove_range(c, &key, &to_key); 1229 if (err) 1230 goto out_ro; 1231 1232 finish_reservation(c); 1233 spin_lock(&ui->ui_lock); 1234 ui->synced_i_size = ui->ui_size; 1235 spin_unlock(&ui->ui_lock); 1236 mark_inode_clean(c, ui); 1237 kfree(ino); 1238 return 0; 1239 1240 out_release: 1241 release_head(c, BASEHD); 1242 out_ro: 1243 ubifs_ro_mode(c, err); 1244 finish_reservation(c); 1245 out_free: 1246 kfree(ino); 1247 return err; 1248 } 1249 1250 #ifdef CONFIG_UBIFS_FS_XATTR 1251 1252 /** 1253 * ubifs_jnl_delete_xattr - delete an extended attribute. 1254 * @c: UBIFS file-system description object 1255 * @host: host inode 1256 * @inode: extended attribute inode 1257 * @nm: extended attribute entry name 1258 * 1259 * This function delete an extended attribute which is very similar to 1260 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1261 * updates the target inode. Returns zero in case of success and a negative 1262 * error code in case of failure. 1263 */ 1264 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1265 const struct inode *inode, const struct qstr *nm) 1266 { 1267 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1268 struct ubifs_dent_node *xent; 1269 struct ubifs_ino_node *ino; 1270 union ubifs_key xent_key, key1, key2; 1271 int sync = IS_DIRSYNC(host); 1272 struct ubifs_inode *host_ui = ubifs_inode(host); 1273 1274 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1275 host->i_ino, inode->i_ino, nm->name, 1276 ubifs_inode(inode)->data_len); 1277 ubifs_assert(inode->i_nlink == 0); 1278 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1279 1280 /* 1281 * Since we are deleting the inode, we do not bother to attach any data 1282 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1283 */ 1284 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1285 aligned_xlen = ALIGN(xlen, 8); 1286 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1287 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1288 1289 xent = kmalloc(len, GFP_NOFS); 1290 if (!xent) 1291 return -ENOMEM; 1292 1293 /* Make reservation before allocating sequence numbers */ 1294 err = make_reservation(c, BASEHD, len); 1295 if (err) { 1296 kfree(xent); 1297 return err; 1298 } 1299 1300 xent->ch.node_type = UBIFS_XENT_NODE; 1301 xent_key_init(c, &xent_key, host->i_ino, nm); 1302 key_write(c, &xent_key, xent->key); 1303 xent->inum = 0; 1304 xent->type = get_dent_type(inode->i_mode); 1305 xent->nlen = cpu_to_le16(nm->len); 1306 memcpy(xent->name, nm->name, nm->len); 1307 xent->name[nm->len] = '\0'; 1308 zero_dent_node_unused(xent); 1309 ubifs_prep_grp_node(c, xent, xlen, 0); 1310 1311 ino = (void *)xent + aligned_xlen; 1312 pack_inode(c, ino, inode, 0); 1313 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1314 pack_inode(c, ino, host, 1); 1315 1316 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1317 if (!sync && !err) 1318 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1319 release_head(c, BASEHD); 1320 kfree(xent); 1321 if (err) 1322 goto out_ro; 1323 1324 /* Remove the extended attribute entry from TNC */ 1325 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1326 if (err) 1327 goto out_ro; 1328 err = ubifs_add_dirt(c, lnum, xlen); 1329 if (err) 1330 goto out_ro; 1331 1332 /* 1333 * Remove all nodes belonging to the extended attribute inode from TNC. 1334 * Well, there actually must be only one node - the inode itself. 1335 */ 1336 lowest_ino_key(c, &key1, inode->i_ino); 1337 highest_ino_key(c, &key2, inode->i_ino); 1338 err = ubifs_tnc_remove_range(c, &key1, &key2); 1339 if (err) 1340 goto out_ro; 1341 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1342 if (err) 1343 goto out_ro; 1344 1345 /* And update TNC with the new host inode position */ 1346 ino_key_init(c, &key1, host->i_ino); 1347 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1348 if (err) 1349 goto out_ro; 1350 1351 finish_reservation(c); 1352 spin_lock(&host_ui->ui_lock); 1353 host_ui->synced_i_size = host_ui->ui_size; 1354 spin_unlock(&host_ui->ui_lock); 1355 mark_inode_clean(c, host_ui); 1356 return 0; 1357 1358 out_ro: 1359 ubifs_ro_mode(c, err); 1360 finish_reservation(c); 1361 return err; 1362 } 1363 1364 /** 1365 * ubifs_jnl_change_xattr - change an extended attribute. 1366 * @c: UBIFS file-system description object 1367 * @inode: extended attribute inode 1368 * @host: host inode 1369 * 1370 * This function writes the updated version of an extended attribute inode and 1371 * the host inode to the journal (to the base head). The host inode is written 1372 * after the extended attribute inode in order to guarantee that the extended 1373 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1374 * consequently, the write-buffer is synchronized. This function returns zero 1375 * in case of success and a negative error code in case of failure. 1376 */ 1377 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1378 const struct inode *host) 1379 { 1380 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1381 struct ubifs_inode *host_ui = ubifs_inode(host); 1382 struct ubifs_ino_node *ino; 1383 union ubifs_key key; 1384 int sync = IS_DIRSYNC(host); 1385 1386 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1387 ubifs_assert(host->i_nlink > 0); 1388 ubifs_assert(inode->i_nlink > 0); 1389 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1390 1391 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1392 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1393 aligned_len1 = ALIGN(len1, 8); 1394 aligned_len = aligned_len1 + ALIGN(len2, 8); 1395 1396 ino = kmalloc(aligned_len, GFP_NOFS); 1397 if (!ino) 1398 return -ENOMEM; 1399 1400 /* Make reservation before allocating sequence numbers */ 1401 err = make_reservation(c, BASEHD, aligned_len); 1402 if (err) 1403 goto out_free; 1404 1405 pack_inode(c, ino, host, 0); 1406 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1407 1408 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1409 if (!sync && !err) { 1410 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1411 1412 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1413 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1414 } 1415 release_head(c, BASEHD); 1416 if (err) 1417 goto out_ro; 1418 1419 ino_key_init(c, &key, host->i_ino); 1420 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1421 if (err) 1422 goto out_ro; 1423 1424 ino_key_init(c, &key, inode->i_ino); 1425 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1426 if (err) 1427 goto out_ro; 1428 1429 finish_reservation(c); 1430 spin_lock(&host_ui->ui_lock); 1431 host_ui->synced_i_size = host_ui->ui_size; 1432 spin_unlock(&host_ui->ui_lock); 1433 mark_inode_clean(c, host_ui); 1434 kfree(ino); 1435 return 0; 1436 1437 out_ro: 1438 ubifs_ro_mode(c, err); 1439 finish_reservation(c); 1440 out_free: 1441 kfree(ino); 1442 return err; 1443 } 1444 1445 #endif /* CONFIG_UBIFS_FS_XATTR */ 1446