xref: /openbmc/linux/fs/ubifs/journal.c (revision 76ce0265)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS journal.
13  *
14  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15  * length and position, while a bud logical eraseblock is any LEB in the main
16  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17  * contains only references to buds and some other stuff like commit
18  * start node. The idea is that when we commit the journal, we do
19  * not copy the data, the buds just become indexed. Since after the commit the
20  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22  * become leafs in the future.
23  *
24  * The journal is multi-headed because we want to write data to the journal as
25  * optimally as possible. It is nice to have nodes belonging to the same inode
26  * in one LEB, so we may write data owned by different inodes to different
27  * journal heads, although at present only one data head is used.
28  *
29  * For recovery reasons, the base head contains all inode nodes, all directory
30  * entry nodes and all truncate nodes. This means that the other heads contain
31  * only data nodes.
32  *
33  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34  * time of commit, the bud is retained to continue to be used in the journal,
35  * even though the "front" of the LEB is now indexed. In that case, the log
36  * reference contains the offset where the bud starts for the purposes of the
37  * journal.
38  *
39  * The journal size has to be limited, because the larger is the journal, the
40  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41  * takes (indexing in the TNC).
42  *
43  * All the journal write operations like 'ubifs_jnl_update()' here, which write
44  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45  * unclean reboots. Should the unclean reboot happen, the recovery code drops
46  * all the nodes.
47  */
48 
49 #include "ubifs.h"
50 
51 /**
52  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53  * @ino: the inode to zero out
54  */
55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56 {
57 	memset(ino->padding1, 0, 4);
58 	memset(ino->padding2, 0, 26);
59 }
60 
61 /**
62  * zero_dent_node_unused - zero out unused fields of an on-flash directory
63  *                         entry node.
64  * @dent: the directory entry to zero out
65  */
66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67 {
68 	dent->padding1 = 0;
69 }
70 
71 /**
72  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73  *                         node.
74  * @trun: the truncation node to zero out
75  */
76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77 {
78 	memset(trun->padding, 0, 12);
79 }
80 
81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82 {
83 	if (ubifs_authenticated(c))
84 		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85 }
86 
87 /**
88  * reserve_space - reserve space in the journal.
89  * @c: UBIFS file-system description object
90  * @jhead: journal head number
91  * @len: node length
92  *
93  * This function reserves space in journal head @head. If the reservation
94  * succeeded, the journal head stays locked and later has to be unlocked using
95  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96  * be done, and other negative error codes in case of other failures.
97  */
98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
99 {
100 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102 
103 	/*
104 	 * Typically, the base head has smaller nodes written to it, so it is
105 	 * better to try to allocate space at the ends of eraseblocks. This is
106 	 * what the squeeze parameter does.
107 	 */
108 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 	squeeze = (jhead == BASEHD);
110 again:
111 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112 
113 	if (c->ro_error) {
114 		err = -EROFS;
115 		goto out_unlock;
116 	}
117 
118 	avail = c->leb_size - wbuf->offs - wbuf->used;
119 	if (wbuf->lnum != -1 && avail >= len)
120 		return 0;
121 
122 	/*
123 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 	 * LEB with some empty space.
125 	 */
126 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 	if (lnum >= 0)
128 		goto out;
129 
130 	err = lnum;
131 	if (err != -ENOSPC)
132 		goto out_unlock;
133 
134 	/*
135 	 * No free space, we have to run garbage collector to make
136 	 * some. But the write-buffer mutex has to be unlocked because
137 	 * GC also takes it.
138 	 */
139 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 	mutex_unlock(&wbuf->io_mutex);
141 
142 	lnum = ubifs_garbage_collect(c, 0);
143 	if (lnum < 0) {
144 		err = lnum;
145 		if (err != -ENOSPC)
146 			return err;
147 
148 		/*
149 		 * GC could not make a free LEB. But someone else may
150 		 * have allocated new bud for this journal head,
151 		 * because we dropped @wbuf->io_mutex, so try once
152 		 * again.
153 		 */
154 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 			dbg_jhead(jhead));
156 		if (retries++ < 2) {
157 			dbg_jnl("retry (%d)", retries);
158 			goto again;
159 		}
160 
161 		dbg_jnl("return -ENOSPC");
162 		return err;
163 	}
164 
165 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 	avail = c->leb_size - wbuf->offs - wbuf->used;
168 
169 	if (wbuf->lnum != -1 && avail >= len) {
170 		/*
171 		 * Someone else has switched the journal head and we have
172 		 * enough space now. This happens when more than one process is
173 		 * trying to write to the same journal head at the same time.
174 		 */
175 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 		err = ubifs_return_leb(c, lnum);
178 		if (err)
179 			goto out_unlock;
180 		return 0;
181 	}
182 
183 	offs = 0;
184 
185 out:
186 	/*
187 	 * Make sure we synchronize the write-buffer before we add the new bud
188 	 * to the log. Otherwise we may have a power cut after the log
189 	 * reference node for the last bud (@lnum) is written but before the
190 	 * write-buffer data are written to the next-to-last bud
191 	 * (@wbuf->lnum). And the effect would be that the recovery would see
192 	 * that there is corruption in the next-to-last bud.
193 	 */
194 	err = ubifs_wbuf_sync_nolock(wbuf);
195 	if (err)
196 		goto out_return;
197 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 	if (err)
199 		goto out_return;
200 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 	if (err)
202 		goto out_unlock;
203 
204 	return 0;
205 
206 out_unlock:
207 	mutex_unlock(&wbuf->io_mutex);
208 	return err;
209 
210 out_return:
211 	/* An error occurred and the LEB has to be returned to lprops */
212 	ubifs_assert(c, err < 0);
213 	err1 = ubifs_return_leb(c, lnum);
214 	if (err1 && err == -EAGAIN)
215 		/*
216 		 * Return original error code only if it is not %-EAGAIN,
217 		 * which is not really an error. Otherwise, return the error
218 		 * code of 'ubifs_return_leb()'.
219 		 */
220 		err = err1;
221 	mutex_unlock(&wbuf->io_mutex);
222 	return err;
223 }
224 
225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 			     int len, struct shash_desc *hash)
227 {
228 	int auth_node_size = ubifs_auth_node_sz(c);
229 	int err;
230 
231 	while (1) {
232 		const struct ubifs_ch *ch = node;
233 		int nodelen = le32_to_cpu(ch->len);
234 
235 		ubifs_assert(c, len >= auth_node_size);
236 
237 		if (len == auth_node_size)
238 			break;
239 
240 		ubifs_assert(c, len > nodelen);
241 		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242 
243 		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 		if (err)
245 			return err;
246 
247 		node += ALIGN(nodelen, 8);
248 		len -= ALIGN(nodelen, 8);
249 	}
250 
251 	return ubifs_prepare_auth_node(c, node, hash);
252 }
253 
254 /**
255  * write_head - write data to a journal head.
256  * @c: UBIFS file-system description object
257  * @jhead: journal head
258  * @buf: buffer to write
259  * @len: length to write
260  * @lnum: LEB number written is returned here
261  * @offs: offset written is returned here
262  * @sync: non-zero if the write-buffer has to by synchronized
263  *
264  * This function writes data to the reserved space of journal head @jhead.
265  * Returns zero in case of success and a negative error code in case of
266  * failure.
267  */
268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 		      int *lnum, int *offs, int sync)
270 {
271 	int err;
272 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273 
274 	ubifs_assert(c, jhead != GCHD);
275 
276 	*lnum = c->jheads[jhead].wbuf.lnum;
277 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 		dbg_jhead(jhead), *lnum, *offs, len);
280 
281 	if (ubifs_authenticated(c)) {
282 		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 		if (err)
284 			return err;
285 	}
286 
287 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 	if (err)
289 		return err;
290 	if (sync)
291 		err = ubifs_wbuf_sync_nolock(wbuf);
292 	return err;
293 }
294 
295 /**
296  * make_reservation - reserve journal space.
297  * @c: UBIFS file-system description object
298  * @jhead: journal head
299  * @len: how many bytes to reserve
300  *
301  * This function makes space reservation in journal head @jhead. The function
302  * takes the commit lock and locks the journal head, and the caller has to
303  * unlock the head and finish the reservation with 'finish_reservation()'.
304  * Returns zero in case of success and a negative error code in case of
305  * failure.
306  *
307  * Note, the journal head may be unlocked as soon as the data is written, while
308  * the commit lock has to be released after the data has been added to the
309  * TNC.
310  */
311 static int make_reservation(struct ubifs_info *c, int jhead, int len)
312 {
313 	int err, cmt_retries = 0, nospc_retries = 0;
314 
315 again:
316 	down_read(&c->commit_sem);
317 	err = reserve_space(c, jhead, len);
318 	if (!err)
319 		/* c->commit_sem will get released via finish_reservation(). */
320 		return 0;
321 	up_read(&c->commit_sem);
322 
323 	if (err == -ENOSPC) {
324 		/*
325 		 * GC could not make any progress. We should try to commit
326 		 * once because it could make some dirty space and GC would
327 		 * make progress, so make the error -EAGAIN so that the below
328 		 * will commit and re-try.
329 		 */
330 		if (nospc_retries++ < 2) {
331 			dbg_jnl("no space, retry");
332 			err = -EAGAIN;
333 		}
334 
335 		/*
336 		 * This means that the budgeting is incorrect. We always have
337 		 * to be able to write to the media, because all operations are
338 		 * budgeted. Deletions are not budgeted, though, but we reserve
339 		 * an extra LEB for them.
340 		 */
341 	}
342 
343 	if (err != -EAGAIN)
344 		goto out;
345 
346 	/*
347 	 * -EAGAIN means that the journal is full or too large, or the above
348 	 * code wants to do one commit. Do this and re-try.
349 	 */
350 	if (cmt_retries > 128) {
351 		/*
352 		 * This should not happen unless the journal size limitations
353 		 * are too tough.
354 		 */
355 		ubifs_err(c, "stuck in space allocation");
356 		err = -ENOSPC;
357 		goto out;
358 	} else if (cmt_retries > 32)
359 		ubifs_warn(c, "too many space allocation re-tries (%d)",
360 			   cmt_retries);
361 
362 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 		cmt_retries);
364 	cmt_retries += 1;
365 
366 	err = ubifs_run_commit(c);
367 	if (err)
368 		return err;
369 	goto again;
370 
371 out:
372 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 		  len, jhead, err);
374 	if (err == -ENOSPC) {
375 		/* This are some budgeting problems, print useful information */
376 		down_write(&c->commit_sem);
377 		dump_stack();
378 		ubifs_dump_budg(c, &c->bi);
379 		ubifs_dump_lprops(c);
380 		cmt_retries = dbg_check_lprops(c);
381 		up_write(&c->commit_sem);
382 	}
383 	return err;
384 }
385 
386 /**
387  * release_head - release a journal head.
388  * @c: UBIFS file-system description object
389  * @jhead: journal head
390  *
391  * This function releases journal head @jhead which was locked by
392  * the 'make_reservation()' function. It has to be called after each successful
393  * 'make_reservation()' invocation.
394  */
395 static inline void release_head(struct ubifs_info *c, int jhead)
396 {
397 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
398 }
399 
400 /**
401  * finish_reservation - finish a reservation.
402  * @c: UBIFS file-system description object
403  *
404  * This function finishes journal space reservation. It must be called after
405  * 'make_reservation()'.
406  */
407 static void finish_reservation(struct ubifs_info *c)
408 {
409 	up_read(&c->commit_sem);
410 }
411 
412 /**
413  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414  * @mode: inode mode
415  */
416 static int get_dent_type(int mode)
417 {
418 	switch (mode & S_IFMT) {
419 	case S_IFREG:
420 		return UBIFS_ITYPE_REG;
421 	case S_IFDIR:
422 		return UBIFS_ITYPE_DIR;
423 	case S_IFLNK:
424 		return UBIFS_ITYPE_LNK;
425 	case S_IFBLK:
426 		return UBIFS_ITYPE_BLK;
427 	case S_IFCHR:
428 		return UBIFS_ITYPE_CHR;
429 	case S_IFIFO:
430 		return UBIFS_ITYPE_FIFO;
431 	case S_IFSOCK:
432 		return UBIFS_ITYPE_SOCK;
433 	default:
434 		BUG();
435 	}
436 	return 0;
437 }
438 
439 /**
440  * pack_inode - pack an inode node.
441  * @c: UBIFS file-system description object
442  * @ino: buffer in which to pack inode node
443  * @inode: inode to pack
444  * @last: indicates the last node of the group
445  */
446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 		       const struct inode *inode, int last)
448 {
449 	int data_len = 0, last_reference = !inode->i_nlink;
450 	struct ubifs_inode *ui = ubifs_inode(inode);
451 
452 	ino->ch.node_type = UBIFS_INO_NODE;
453 	ino_key_init_flash(c, &ino->key, inode->i_ino);
454 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
456 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
457 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
458 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
459 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
460 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
461 	ino->uid   = cpu_to_le32(i_uid_read(inode));
462 	ino->gid   = cpu_to_le32(i_gid_read(inode));
463 	ino->mode  = cpu_to_le32(inode->i_mode);
464 	ino->flags = cpu_to_le32(ui->flags);
465 	ino->size  = cpu_to_le64(ui->ui_size);
466 	ino->nlink = cpu_to_le32(inode->i_nlink);
467 	ino->compr_type  = cpu_to_le16(ui->compr_type);
468 	ino->data_len    = cpu_to_le32(ui->data_len);
469 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
470 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
471 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 	zero_ino_node_unused(ino);
473 
474 	/*
475 	 * Drop the attached data if this is a deletion inode, the data is not
476 	 * needed anymore.
477 	 */
478 	if (!last_reference) {
479 		memcpy(ino->data, ui->data, ui->data_len);
480 		data_len = ui->data_len;
481 	}
482 
483 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
484 }
485 
486 /**
487  * mark_inode_clean - mark UBIFS inode as clean.
488  * @c: UBIFS file-system description object
489  * @ui: UBIFS inode to mark as clean
490  *
491  * This helper function marks UBIFS inode @ui as clean by cleaning the
492  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494  * just do nothing.
495  */
496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
497 {
498 	if (ui->dirty)
499 		ubifs_release_dirty_inode_budget(c, ui);
500 	ui->dirty = 0;
501 }
502 
503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
504 {
505 	if (c->double_hash)
506 		dent->cookie = (__force __le32) prandom_u32();
507 	else
508 		dent->cookie = 0;
509 }
510 
511 /**
512  * ubifs_jnl_update - update inode.
513  * @c: UBIFS file-system description object
514  * @dir: parent inode or host inode in case of extended attributes
515  * @nm: directory entry name
516  * @inode: inode to update
517  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518  * @xent: non-zero if the directory entry is an extended attribute entry
519  *
520  * This function updates an inode by writing a directory entry (or extended
521  * attribute entry), the inode itself, and the parent directory inode (or the
522  * host inode) to the journal.
523  *
524  * The function writes the host inode @dir last, which is important in case of
525  * extended attributes. Indeed, then we guarantee that if the host inode gets
526  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527  * the extended attribute inode gets flushed too. And this is exactly what the
528  * user expects - synchronizing the host inode synchronizes its extended
529  * attributes. Similarly, this guarantees that if @dir is synchronized, its
530  * directory entry corresponding to @nm gets synchronized too.
531  *
532  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533  * function synchronizes the write-buffer.
534  *
535  * This function marks the @dir and @inode inodes as clean and returns zero on
536  * success. In case of failure, a negative error code is returned.
537  */
538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 		     const struct fscrypt_name *nm, const struct inode *inode,
540 		     int deletion, int xent)
541 {
542 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 	int last_reference = !!(deletion && inode->i_nlink == 0);
545 	struct ubifs_inode *ui = ubifs_inode(inode);
546 	struct ubifs_inode *host_ui = ubifs_inode(dir);
547 	struct ubifs_dent_node *dent;
548 	struct ubifs_ino_node *ino;
549 	union ubifs_key dent_key, ino_key;
550 	u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
553 
554 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
555 
556 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 	ilen = UBIFS_INO_NODE_SZ;
558 
559 	/*
560 	 * If the last reference to the inode is being deleted, then there is
561 	 * no need to attach and write inode data, it is being deleted anyway.
562 	 * And if the inode is being deleted, no need to synchronize
563 	 * write-buffer even if the inode is synchronous.
564 	 */
565 	if (!last_reference) {
566 		ilen += ui->data_len;
567 		sync |= IS_SYNC(inode);
568 	}
569 
570 	aligned_dlen = ALIGN(dlen, 8);
571 	aligned_ilen = ALIGN(ilen, 8);
572 
573 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 	/* Make sure to also account for extended attributes */
575 	if (ubifs_authenticated(c))
576 		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 	else
578 		len += host_ui->data_len;
579 
580 	dent = kzalloc(len, GFP_NOFS);
581 	if (!dent)
582 		return -ENOMEM;
583 
584 	/* Make reservation before allocating sequence numbers */
585 	err = make_reservation(c, BASEHD, len);
586 	if (err)
587 		goto out_free;
588 
589 	if (!xent) {
590 		dent->ch.node_type = UBIFS_DENT_NODE;
591 		if (fname_name(nm) == NULL)
592 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 		else
594 			dent_key_init(c, &dent_key, dir->i_ino, nm);
595 	} else {
596 		dent->ch.node_type = UBIFS_XENT_NODE;
597 		xent_key_init(c, &dent_key, dir->i_ino, nm);
598 	}
599 
600 	key_write(c, &dent_key, dent->key);
601 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 	dent->type = get_dent_type(inode->i_mode);
603 	dent->nlen = cpu_to_le16(fname_len(nm));
604 	memcpy(dent->name, fname_name(nm), fname_len(nm));
605 	dent->name[fname_len(nm)] = '\0';
606 	set_dent_cookie(c, dent);
607 
608 	zero_dent_node_unused(dent);
609 	ubifs_prep_grp_node(c, dent, dlen, 0);
610 	err = ubifs_node_calc_hash(c, dent, hash_dent);
611 	if (err)
612 		goto out_release;
613 
614 	ino = (void *)dent + aligned_dlen;
615 	pack_inode(c, ino, inode, 0);
616 	err = ubifs_node_calc_hash(c, ino, hash_ino);
617 	if (err)
618 		goto out_release;
619 
620 	ino = (void *)ino + aligned_ilen;
621 	pack_inode(c, ino, dir, 1);
622 	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 	if (err)
624 		goto out_release;
625 
626 	if (last_reference) {
627 		err = ubifs_add_orphan(c, inode->i_ino);
628 		if (err) {
629 			release_head(c, BASEHD);
630 			goto out_finish;
631 		}
632 		ui->del_cmtno = c->cmt_no;
633 	}
634 
635 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
636 	if (err)
637 		goto out_release;
638 	if (!sync) {
639 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
640 
641 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
642 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
643 	}
644 	release_head(c, BASEHD);
645 	kfree(dent);
646 	ubifs_add_auth_dirt(c, lnum);
647 
648 	if (deletion) {
649 		if (fname_name(nm) == NULL)
650 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
651 		else
652 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
653 		if (err)
654 			goto out_ro;
655 		err = ubifs_add_dirt(c, lnum, dlen);
656 	} else
657 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
658 				       hash_dent, nm);
659 	if (err)
660 		goto out_ro;
661 
662 	/*
663 	 * Note, we do not remove the inode from TNC even if the last reference
664 	 * to it has just been deleted, because the inode may still be opened.
665 	 * Instead, the inode has been added to orphan lists and the orphan
666 	 * subsystem will take further care about it.
667 	 */
668 	ino_key_init(c, &ino_key, inode->i_ino);
669 	ino_offs = dent_offs + aligned_dlen;
670 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
671 	if (err)
672 		goto out_ro;
673 
674 	ino_key_init(c, &ino_key, dir->i_ino);
675 	ino_offs += aligned_ilen;
676 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
677 			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
678 	if (err)
679 		goto out_ro;
680 
681 	finish_reservation(c);
682 	spin_lock(&ui->ui_lock);
683 	ui->synced_i_size = ui->ui_size;
684 	spin_unlock(&ui->ui_lock);
685 	if (xent) {
686 		spin_lock(&host_ui->ui_lock);
687 		host_ui->synced_i_size = host_ui->ui_size;
688 		spin_unlock(&host_ui->ui_lock);
689 	}
690 	mark_inode_clean(c, ui);
691 	mark_inode_clean(c, host_ui);
692 	return 0;
693 
694 out_finish:
695 	finish_reservation(c);
696 out_free:
697 	kfree(dent);
698 	return err;
699 
700 out_release:
701 	release_head(c, BASEHD);
702 	kfree(dent);
703 out_ro:
704 	ubifs_ro_mode(c, err);
705 	if (last_reference)
706 		ubifs_delete_orphan(c, inode->i_ino);
707 	finish_reservation(c);
708 	return err;
709 }
710 
711 /**
712  * ubifs_jnl_write_data - write a data node to the journal.
713  * @c: UBIFS file-system description object
714  * @inode: inode the data node belongs to
715  * @key: node key
716  * @buf: buffer to write
717  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
718  *
719  * This function writes a data node to the journal. Returns %0 if the data node
720  * was successfully written, and a negative error code in case of failure.
721  */
722 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
723 			 const union ubifs_key *key, const void *buf, int len)
724 {
725 	struct ubifs_data_node *data;
726 	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
727 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
728 	int write_len;
729 	struct ubifs_inode *ui = ubifs_inode(inode);
730 	bool encrypted = IS_ENCRYPTED(inode);
731 	u8 hash[UBIFS_HASH_ARR_SZ];
732 
733 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
734 		(unsigned long)key_inum(c, key), key_block(c, key), len);
735 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
736 
737 	if (encrypted)
738 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
739 
740 	auth_len = ubifs_auth_node_sz(c);
741 
742 	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
743 	if (!data) {
744 		/*
745 		 * Fall-back to the write reserve buffer. Note, we might be
746 		 * currently on the memory reclaim path, when the kernel is
747 		 * trying to free some memory by writing out dirty pages. The
748 		 * write reserve buffer helps us to guarantee that we are
749 		 * always able to write the data.
750 		 */
751 		allocated = 0;
752 		mutex_lock(&c->write_reserve_mutex);
753 		data = c->write_reserve_buf;
754 	}
755 
756 	data->ch.node_type = UBIFS_DATA_NODE;
757 	key_write(c, key, &data->key);
758 	data->size = cpu_to_le32(len);
759 
760 	if (!(ui->flags & UBIFS_COMPR_FL))
761 		/* Compression is disabled for this inode */
762 		compr_type = UBIFS_COMPR_NONE;
763 	else
764 		compr_type = ui->compr_type;
765 
766 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
767 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
768 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
769 
770 	if (encrypted) {
771 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
772 		if (err)
773 			goto out_free;
774 
775 	} else {
776 		data->compr_size = 0;
777 		out_len = compr_len;
778 	}
779 
780 	dlen = UBIFS_DATA_NODE_SZ + out_len;
781 	if (ubifs_authenticated(c))
782 		write_len = ALIGN(dlen, 8) + auth_len;
783 	else
784 		write_len = dlen;
785 
786 	data->compr_type = cpu_to_le16(compr_type);
787 
788 	/* Make reservation before allocating sequence numbers */
789 	err = make_reservation(c, DATAHD, write_len);
790 	if (err)
791 		goto out_free;
792 
793 	ubifs_prepare_node(c, data, dlen, 0);
794 	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
795 	if (err)
796 		goto out_release;
797 
798 	err = ubifs_node_calc_hash(c, data, hash);
799 	if (err)
800 		goto out_release;
801 
802 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
803 	release_head(c, DATAHD);
804 
805 	ubifs_add_auth_dirt(c, lnum);
806 
807 	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
808 	if (err)
809 		goto out_ro;
810 
811 	finish_reservation(c);
812 	if (!allocated)
813 		mutex_unlock(&c->write_reserve_mutex);
814 	else
815 		kfree(data);
816 	return 0;
817 
818 out_release:
819 	release_head(c, DATAHD);
820 out_ro:
821 	ubifs_ro_mode(c, err);
822 	finish_reservation(c);
823 out_free:
824 	if (!allocated)
825 		mutex_unlock(&c->write_reserve_mutex);
826 	else
827 		kfree(data);
828 	return err;
829 }
830 
831 /**
832  * ubifs_jnl_write_inode - flush inode to the journal.
833  * @c: UBIFS file-system description object
834  * @inode: inode to flush
835  *
836  * This function writes inode @inode to the journal. If the inode is
837  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
838  * success and a negative error code in case of failure.
839  */
840 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
841 {
842 	int err, lnum, offs;
843 	struct ubifs_ino_node *ino, *ino_start;
844 	struct ubifs_inode *ui = ubifs_inode(inode);
845 	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
846 	int last_reference = !inode->i_nlink;
847 	int kill_xattrs = ui->xattr_cnt && last_reference;
848 	u8 hash[UBIFS_HASH_ARR_SZ];
849 
850 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
851 
852 	/*
853 	 * If the inode is being deleted, do not write the attached data. No
854 	 * need to synchronize the write-buffer either.
855 	 */
856 	if (!last_reference) {
857 		ilen += ui->data_len;
858 		sync = IS_SYNC(inode);
859 	} else if (kill_xattrs) {
860 		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
861 	}
862 
863 	if (ubifs_authenticated(c))
864 		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
865 	else
866 		write_len += ilen;
867 
868 	ino_start = ino = kmalloc(write_len, GFP_NOFS);
869 	if (!ino)
870 		return -ENOMEM;
871 
872 	/* Make reservation before allocating sequence numbers */
873 	err = make_reservation(c, BASEHD, write_len);
874 	if (err)
875 		goto out_free;
876 
877 	if (kill_xattrs) {
878 		union ubifs_key key;
879 		struct fscrypt_name nm = {0};
880 		struct inode *xino;
881 		struct ubifs_dent_node *xent, *pxent = NULL;
882 
883 		if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) {
884 			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
885 			goto out_release;
886 		}
887 
888 		lowest_xent_key(c, &key, inode->i_ino);
889 		while (1) {
890 			xent = ubifs_tnc_next_ent(c, &key, &nm);
891 			if (IS_ERR(xent)) {
892 				err = PTR_ERR(xent);
893 				if (err == -ENOENT)
894 					break;
895 
896 				goto out_release;
897 			}
898 
899 			fname_name(&nm) = xent->name;
900 			fname_len(&nm) = le16_to_cpu(xent->nlen);
901 
902 			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
903 			if (IS_ERR(xino)) {
904 				err = PTR_ERR(xino);
905 				ubifs_err(c, "dead directory entry '%s', error %d",
906 					  xent->name, err);
907 				ubifs_ro_mode(c, err);
908 				goto out_release;
909 			}
910 			ubifs_assert(c, ubifs_inode(xino)->xattr);
911 
912 			clear_nlink(xino);
913 			pack_inode(c, ino, xino, 0);
914 			ino = (void *)ino + UBIFS_INO_NODE_SZ;
915 			iput(xino);
916 
917 			kfree(pxent);
918 			pxent = xent;
919 			key_read(c, &xent->key, &key);
920 		}
921 		kfree(pxent);
922 	}
923 
924 	pack_inode(c, ino, inode, 1);
925 	err = ubifs_node_calc_hash(c, ino, hash);
926 	if (err)
927 		goto out_release;
928 
929 	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
930 	if (err)
931 		goto out_release;
932 	if (!sync)
933 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
934 					  inode->i_ino);
935 	release_head(c, BASEHD);
936 
937 	ubifs_add_auth_dirt(c, lnum);
938 
939 	if (last_reference) {
940 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
941 		if (err)
942 			goto out_ro;
943 		ubifs_delete_orphan(c, inode->i_ino);
944 		err = ubifs_add_dirt(c, lnum, write_len);
945 	} else {
946 		union ubifs_key key;
947 
948 		ino_key_init(c, &key, inode->i_ino);
949 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
950 	}
951 	if (err)
952 		goto out_ro;
953 
954 	finish_reservation(c);
955 	spin_lock(&ui->ui_lock);
956 	ui->synced_i_size = ui->ui_size;
957 	spin_unlock(&ui->ui_lock);
958 	kfree(ino_start);
959 	return 0;
960 
961 out_release:
962 	release_head(c, BASEHD);
963 out_ro:
964 	ubifs_ro_mode(c, err);
965 	finish_reservation(c);
966 out_free:
967 	kfree(ino_start);
968 	return err;
969 }
970 
971 /**
972  * ubifs_jnl_delete_inode - delete an inode.
973  * @c: UBIFS file-system description object
974  * @inode: inode to delete
975  *
976  * This function deletes inode @inode which includes removing it from orphans,
977  * deleting it from TNC and, in some cases, writing a deletion inode to the
978  * journal.
979  *
980  * When regular file inodes are unlinked or a directory inode is removed, the
981  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
982  * direntry to the media, and adds the inode to orphans. After this, when the
983  * last reference to this inode has been dropped, this function is called. In
984  * general, it has to write one more deletion inode to the media, because if
985  * a commit happened between 'ubifs_jnl_update()' and
986  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
987  * anymore, and in fact it might not be on the flash anymore, because it might
988  * have been garbage-collected already. And for optimization reasons UBIFS does
989  * not read the orphan area if it has been unmounted cleanly, so it would have
990  * no indication in the journal that there is a deleted inode which has to be
991  * removed from TNC.
992  *
993  * However, if there was no commit between 'ubifs_jnl_update()' and
994  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
995  * inode to the media for the second time. And this is quite a typical case.
996  *
997  * This function returns zero in case of success and a negative error code in
998  * case of failure.
999  */
1000 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1001 {
1002 	int err;
1003 	struct ubifs_inode *ui = ubifs_inode(inode);
1004 
1005 	ubifs_assert(c, inode->i_nlink == 0);
1006 
1007 	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1008 		/* A commit happened for sure or inode hosts xattrs */
1009 		return ubifs_jnl_write_inode(c, inode);
1010 
1011 	down_read(&c->commit_sem);
1012 	/*
1013 	 * Check commit number again, because the first test has been done
1014 	 * without @c->commit_sem, so a commit might have happened.
1015 	 */
1016 	if (ui->del_cmtno != c->cmt_no) {
1017 		up_read(&c->commit_sem);
1018 		return ubifs_jnl_write_inode(c, inode);
1019 	}
1020 
1021 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1022 	if (err)
1023 		ubifs_ro_mode(c, err);
1024 	else
1025 		ubifs_delete_orphan(c, inode->i_ino);
1026 	up_read(&c->commit_sem);
1027 	return err;
1028 }
1029 
1030 /**
1031  * ubifs_jnl_xrename - cross rename two directory entries.
1032  * @c: UBIFS file-system description object
1033  * @fst_dir: parent inode of 1st directory entry to exchange
1034  * @fst_inode: 1st inode to exchange
1035  * @fst_nm: name of 1st inode to exchange
1036  * @snd_dir: parent inode of 2nd directory entry to exchange
1037  * @snd_inode: 2nd inode to exchange
1038  * @snd_nm: name of 2nd inode to exchange
1039  * @sync: non-zero if the write-buffer has to be synchronized
1040  *
1041  * This function implements the cross rename operation which may involve
1042  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1043  * and returns zero on success. In case of failure, a negative error code is
1044  * returned.
1045  */
1046 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1047 		      const struct inode *fst_inode,
1048 		      const struct fscrypt_name *fst_nm,
1049 		      const struct inode *snd_dir,
1050 		      const struct inode *snd_inode,
1051 		      const struct fscrypt_name *snd_nm, int sync)
1052 {
1053 	union ubifs_key key;
1054 	struct ubifs_dent_node *dent1, *dent2;
1055 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1056 	int aligned_dlen1, aligned_dlen2;
1057 	int twoparents = (fst_dir != snd_dir);
1058 	void *p;
1059 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1060 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1061 	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1062 	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1063 
1064 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1065 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1066 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1067 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1068 
1069 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1070 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1071 	aligned_dlen1 = ALIGN(dlen1, 8);
1072 	aligned_dlen2 = ALIGN(dlen2, 8);
1073 
1074 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1075 	if (twoparents)
1076 		len += plen;
1077 
1078 	len += ubifs_auth_node_sz(c);
1079 
1080 	dent1 = kzalloc(len, GFP_NOFS);
1081 	if (!dent1)
1082 		return -ENOMEM;
1083 
1084 	/* Make reservation before allocating sequence numbers */
1085 	err = make_reservation(c, BASEHD, len);
1086 	if (err)
1087 		goto out_free;
1088 
1089 	/* Make new dent for 1st entry */
1090 	dent1->ch.node_type = UBIFS_DENT_NODE;
1091 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1092 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1093 	dent1->type = get_dent_type(fst_inode->i_mode);
1094 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1095 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1096 	dent1->name[fname_len(snd_nm)] = '\0';
1097 	set_dent_cookie(c, dent1);
1098 	zero_dent_node_unused(dent1);
1099 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1100 	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1101 	if (err)
1102 		goto out_release;
1103 
1104 	/* Make new dent for 2nd entry */
1105 	dent2 = (void *)dent1 + aligned_dlen1;
1106 	dent2->ch.node_type = UBIFS_DENT_NODE;
1107 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1108 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1109 	dent2->type = get_dent_type(snd_inode->i_mode);
1110 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1111 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1112 	dent2->name[fname_len(fst_nm)] = '\0';
1113 	set_dent_cookie(c, dent2);
1114 	zero_dent_node_unused(dent2);
1115 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1116 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1117 	if (err)
1118 		goto out_release;
1119 
1120 	p = (void *)dent2 + aligned_dlen2;
1121 	if (!twoparents) {
1122 		pack_inode(c, p, fst_dir, 1);
1123 		err = ubifs_node_calc_hash(c, p, hash_p1);
1124 		if (err)
1125 			goto out_release;
1126 	} else {
1127 		pack_inode(c, p, fst_dir, 0);
1128 		err = ubifs_node_calc_hash(c, p, hash_p1);
1129 		if (err)
1130 			goto out_release;
1131 		p += ALIGN(plen, 8);
1132 		pack_inode(c, p, snd_dir, 1);
1133 		err = ubifs_node_calc_hash(c, p, hash_p2);
1134 		if (err)
1135 			goto out_release;
1136 	}
1137 
1138 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1139 	if (err)
1140 		goto out_release;
1141 	if (!sync) {
1142 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1143 
1144 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1145 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1146 	}
1147 	release_head(c, BASEHD);
1148 
1149 	ubifs_add_auth_dirt(c, lnum);
1150 
1151 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1152 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1153 	if (err)
1154 		goto out_ro;
1155 
1156 	offs += aligned_dlen1;
1157 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1158 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1159 	if (err)
1160 		goto out_ro;
1161 
1162 	offs += aligned_dlen2;
1163 
1164 	ino_key_init(c, &key, fst_dir->i_ino);
1165 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1166 	if (err)
1167 		goto out_ro;
1168 
1169 	if (twoparents) {
1170 		offs += ALIGN(plen, 8);
1171 		ino_key_init(c, &key, snd_dir->i_ino);
1172 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1173 		if (err)
1174 			goto out_ro;
1175 	}
1176 
1177 	finish_reservation(c);
1178 
1179 	mark_inode_clean(c, ubifs_inode(fst_dir));
1180 	if (twoparents)
1181 		mark_inode_clean(c, ubifs_inode(snd_dir));
1182 	kfree(dent1);
1183 	return 0;
1184 
1185 out_release:
1186 	release_head(c, BASEHD);
1187 out_ro:
1188 	ubifs_ro_mode(c, err);
1189 	finish_reservation(c);
1190 out_free:
1191 	kfree(dent1);
1192 	return err;
1193 }
1194 
1195 /**
1196  * ubifs_jnl_rename - rename a directory entry.
1197  * @c: UBIFS file-system description object
1198  * @old_dir: parent inode of directory entry to rename
1199  * @old_dentry: directory entry to rename
1200  * @new_dir: parent inode of directory entry to rename
1201  * @new_dentry: new directory entry (or directory entry to replace)
1202  * @sync: non-zero if the write-buffer has to be synchronized
1203  *
1204  * This function implements the re-name operation which may involve writing up
1205  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1206  * and returns zero on success. In case of failure, a negative error code is
1207  * returned.
1208  */
1209 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1210 		     const struct inode *old_inode,
1211 		     const struct fscrypt_name *old_nm,
1212 		     const struct inode *new_dir,
1213 		     const struct inode *new_inode,
1214 		     const struct fscrypt_name *new_nm,
1215 		     const struct inode *whiteout, int sync)
1216 {
1217 	void *p;
1218 	union ubifs_key key;
1219 	struct ubifs_dent_node *dent, *dent2;
1220 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1221 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1222 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1223 	int move = (old_dir != new_dir);
1224 	struct ubifs_inode *uninitialized_var(new_ui);
1225 	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1226 	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1227 	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1228 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1229 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1230 
1231 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1232 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1233 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1234 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1235 
1236 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1237 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1238 	if (new_inode) {
1239 		new_ui = ubifs_inode(new_inode);
1240 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1241 		ilen = UBIFS_INO_NODE_SZ;
1242 		if (!last_reference)
1243 			ilen += new_ui->data_len;
1244 	} else
1245 		ilen = 0;
1246 
1247 	aligned_dlen1 = ALIGN(dlen1, 8);
1248 	aligned_dlen2 = ALIGN(dlen2, 8);
1249 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1250 	if (move)
1251 		len += plen;
1252 
1253 	len += ubifs_auth_node_sz(c);
1254 
1255 	dent = kzalloc(len, GFP_NOFS);
1256 	if (!dent)
1257 		return -ENOMEM;
1258 
1259 	/* Make reservation before allocating sequence numbers */
1260 	err = make_reservation(c, BASEHD, len);
1261 	if (err)
1262 		goto out_free;
1263 
1264 	/* Make new dent */
1265 	dent->ch.node_type = UBIFS_DENT_NODE;
1266 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1267 	dent->inum = cpu_to_le64(old_inode->i_ino);
1268 	dent->type = get_dent_type(old_inode->i_mode);
1269 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1270 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1271 	dent->name[fname_len(new_nm)] = '\0';
1272 	set_dent_cookie(c, dent);
1273 	zero_dent_node_unused(dent);
1274 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1275 	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1276 	if (err)
1277 		goto out_release;
1278 
1279 	dent2 = (void *)dent + aligned_dlen1;
1280 	dent2->ch.node_type = UBIFS_DENT_NODE;
1281 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1282 
1283 	if (whiteout) {
1284 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1285 		dent2->type = get_dent_type(whiteout->i_mode);
1286 	} else {
1287 		/* Make deletion dent */
1288 		dent2->inum = 0;
1289 		dent2->type = DT_UNKNOWN;
1290 	}
1291 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1292 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1293 	dent2->name[fname_len(old_nm)] = '\0';
1294 	set_dent_cookie(c, dent2);
1295 	zero_dent_node_unused(dent2);
1296 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1297 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1298 	if (err)
1299 		goto out_release;
1300 
1301 	p = (void *)dent2 + aligned_dlen2;
1302 	if (new_inode) {
1303 		pack_inode(c, p, new_inode, 0);
1304 		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1305 		if (err)
1306 			goto out_release;
1307 
1308 		p += ALIGN(ilen, 8);
1309 	}
1310 
1311 	if (!move) {
1312 		pack_inode(c, p, old_dir, 1);
1313 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1314 		if (err)
1315 			goto out_release;
1316 	} else {
1317 		pack_inode(c, p, old_dir, 0);
1318 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1319 		if (err)
1320 			goto out_release;
1321 
1322 		p += ALIGN(plen, 8);
1323 		pack_inode(c, p, new_dir, 1);
1324 		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1325 		if (err)
1326 			goto out_release;
1327 	}
1328 
1329 	if (last_reference) {
1330 		err = ubifs_add_orphan(c, new_inode->i_ino);
1331 		if (err) {
1332 			release_head(c, BASEHD);
1333 			goto out_finish;
1334 		}
1335 		new_ui->del_cmtno = c->cmt_no;
1336 	}
1337 
1338 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1339 	if (err)
1340 		goto out_release;
1341 	if (!sync) {
1342 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1343 
1344 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1345 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1346 		if (new_inode)
1347 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1348 						  new_inode->i_ino);
1349 	}
1350 	release_head(c, BASEHD);
1351 
1352 	ubifs_add_auth_dirt(c, lnum);
1353 
1354 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1355 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1356 	if (err)
1357 		goto out_ro;
1358 
1359 	offs += aligned_dlen1;
1360 	if (whiteout) {
1361 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1362 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1363 		if (err)
1364 			goto out_ro;
1365 
1366 		ubifs_delete_orphan(c, whiteout->i_ino);
1367 	} else {
1368 		err = ubifs_add_dirt(c, lnum, dlen2);
1369 		if (err)
1370 			goto out_ro;
1371 
1372 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1373 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1374 		if (err)
1375 			goto out_ro;
1376 	}
1377 
1378 	offs += aligned_dlen2;
1379 	if (new_inode) {
1380 		ino_key_init(c, &key, new_inode->i_ino);
1381 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1382 		if (err)
1383 			goto out_ro;
1384 		offs += ALIGN(ilen, 8);
1385 	}
1386 
1387 	ino_key_init(c, &key, old_dir->i_ino);
1388 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1389 	if (err)
1390 		goto out_ro;
1391 
1392 	if (move) {
1393 		offs += ALIGN(plen, 8);
1394 		ino_key_init(c, &key, new_dir->i_ino);
1395 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1396 		if (err)
1397 			goto out_ro;
1398 	}
1399 
1400 	finish_reservation(c);
1401 	if (new_inode) {
1402 		mark_inode_clean(c, new_ui);
1403 		spin_lock(&new_ui->ui_lock);
1404 		new_ui->synced_i_size = new_ui->ui_size;
1405 		spin_unlock(&new_ui->ui_lock);
1406 	}
1407 	mark_inode_clean(c, ubifs_inode(old_dir));
1408 	if (move)
1409 		mark_inode_clean(c, ubifs_inode(new_dir));
1410 	kfree(dent);
1411 	return 0;
1412 
1413 out_release:
1414 	release_head(c, BASEHD);
1415 out_ro:
1416 	ubifs_ro_mode(c, err);
1417 	if (last_reference)
1418 		ubifs_delete_orphan(c, new_inode->i_ino);
1419 out_finish:
1420 	finish_reservation(c);
1421 out_free:
1422 	kfree(dent);
1423 	return err;
1424 }
1425 
1426 /**
1427  * truncate_data_node - re-compress/encrypt a truncated data node.
1428  * @c: UBIFS file-system description object
1429  * @inode: inode which referes to the data node
1430  * @block: data block number
1431  * @dn: data node to re-compress
1432  * @new_len: new length
1433  *
1434  * This function is used when an inode is truncated and the last data node of
1435  * the inode has to be re-compressed/encrypted and re-written.
1436  */
1437 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1438 			      unsigned int block, struct ubifs_data_node *dn,
1439 			      int *new_len)
1440 {
1441 	void *buf;
1442 	int err, dlen, compr_type, out_len, old_dlen;
1443 
1444 	out_len = le32_to_cpu(dn->size);
1445 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1446 	if (!buf)
1447 		return -ENOMEM;
1448 
1449 	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1450 	compr_type = le16_to_cpu(dn->compr_type);
1451 
1452 	if (IS_ENCRYPTED(inode)) {
1453 		err = ubifs_decrypt(inode, dn, &dlen, block);
1454 		if (err)
1455 			goto out;
1456 	}
1457 
1458 	if (compr_type == UBIFS_COMPR_NONE) {
1459 		out_len = *new_len;
1460 	} else {
1461 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1462 		if (err)
1463 			goto out;
1464 
1465 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1466 	}
1467 
1468 	if (IS_ENCRYPTED(inode)) {
1469 		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1470 		if (err)
1471 			goto out;
1472 
1473 		out_len = old_dlen;
1474 	} else {
1475 		dn->compr_size = 0;
1476 	}
1477 
1478 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1479 	dn->compr_type = cpu_to_le16(compr_type);
1480 	dn->size = cpu_to_le32(*new_len);
1481 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1482 	err = 0;
1483 out:
1484 	kfree(buf);
1485 	return err;
1486 }
1487 
1488 /**
1489  * ubifs_jnl_truncate - update the journal for a truncation.
1490  * @c: UBIFS file-system description object
1491  * @inode: inode to truncate
1492  * @old_size: old size
1493  * @new_size: new size
1494  *
1495  * When the size of a file decreases due to truncation, a truncation node is
1496  * written, the journal tree is updated, and the last data block is re-written
1497  * if it has been affected. The inode is also updated in order to synchronize
1498  * the new inode size.
1499  *
1500  * This function marks the inode as clean and returns zero on success. In case
1501  * of failure, a negative error code is returned.
1502  */
1503 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1504 		       loff_t old_size, loff_t new_size)
1505 {
1506 	union ubifs_key key, to_key;
1507 	struct ubifs_ino_node *ino;
1508 	struct ubifs_trun_node *trun;
1509 	struct ubifs_data_node *uninitialized_var(dn);
1510 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1511 	struct ubifs_inode *ui = ubifs_inode(inode);
1512 	ino_t inum = inode->i_ino;
1513 	unsigned int blk;
1514 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1515 	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1516 
1517 	dbg_jnl("ino %lu, size %lld -> %lld",
1518 		(unsigned long)inum, old_size, new_size);
1519 	ubifs_assert(c, !ui->data_len);
1520 	ubifs_assert(c, S_ISREG(inode->i_mode));
1521 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1522 
1523 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1524 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1525 
1526 	sz += ubifs_auth_node_sz(c);
1527 
1528 	ino = kmalloc(sz, GFP_NOFS);
1529 	if (!ino)
1530 		return -ENOMEM;
1531 
1532 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1533 	trun->ch.node_type = UBIFS_TRUN_NODE;
1534 	trun->inum = cpu_to_le32(inum);
1535 	trun->old_size = cpu_to_le64(old_size);
1536 	trun->new_size = cpu_to_le64(new_size);
1537 	zero_trun_node_unused(trun);
1538 
1539 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1540 	if (dlen) {
1541 		/* Get last data block so it can be truncated */
1542 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1543 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1544 		data_key_init(c, &key, inum, blk);
1545 		dbg_jnlk(&key, "last block key ");
1546 		err = ubifs_tnc_lookup(c, &key, dn);
1547 		if (err == -ENOENT)
1548 			dlen = 0; /* Not found (so it is a hole) */
1549 		else if (err)
1550 			goto out_free;
1551 		else {
1552 			int dn_len = le32_to_cpu(dn->size);
1553 
1554 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1555 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1556 					  blk, inode->i_ino);
1557 				ubifs_dump_node(c, dn);
1558 				goto out_free;
1559 			}
1560 
1561 			if (dn_len <= dlen)
1562 				dlen = 0; /* Nothing to do */
1563 			else {
1564 				err = truncate_data_node(c, inode, blk, dn, &dlen);
1565 				if (err)
1566 					goto out_free;
1567 			}
1568 		}
1569 	}
1570 
1571 	/* Must make reservation before allocating sequence numbers */
1572 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1573 
1574 	if (ubifs_authenticated(c))
1575 		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1576 	else
1577 		len += dlen;
1578 
1579 	err = make_reservation(c, BASEHD, len);
1580 	if (err)
1581 		goto out_free;
1582 
1583 	pack_inode(c, ino, inode, 0);
1584 	err = ubifs_node_calc_hash(c, ino, hash_ino);
1585 	if (err)
1586 		goto out_release;
1587 
1588 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1589 	if (dlen) {
1590 		ubifs_prep_grp_node(c, dn, dlen, 1);
1591 		err = ubifs_node_calc_hash(c, dn, hash_dn);
1592 		if (err)
1593 			goto out_release;
1594 	}
1595 
1596 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1597 	if (err)
1598 		goto out_release;
1599 	if (!sync)
1600 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1601 	release_head(c, BASEHD);
1602 
1603 	ubifs_add_auth_dirt(c, lnum);
1604 
1605 	if (dlen) {
1606 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1607 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1608 		if (err)
1609 			goto out_ro;
1610 	}
1611 
1612 	ino_key_init(c, &key, inum);
1613 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1614 	if (err)
1615 		goto out_ro;
1616 
1617 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1618 	if (err)
1619 		goto out_ro;
1620 
1621 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1622 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1623 	data_key_init(c, &key, inum, blk);
1624 
1625 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1626 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1627 	data_key_init(c, &to_key, inum, blk);
1628 
1629 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1630 	if (err)
1631 		goto out_ro;
1632 
1633 	finish_reservation(c);
1634 	spin_lock(&ui->ui_lock);
1635 	ui->synced_i_size = ui->ui_size;
1636 	spin_unlock(&ui->ui_lock);
1637 	mark_inode_clean(c, ui);
1638 	kfree(ino);
1639 	return 0;
1640 
1641 out_release:
1642 	release_head(c, BASEHD);
1643 out_ro:
1644 	ubifs_ro_mode(c, err);
1645 	finish_reservation(c);
1646 out_free:
1647 	kfree(ino);
1648 	return err;
1649 }
1650 
1651 
1652 /**
1653  * ubifs_jnl_delete_xattr - delete an extended attribute.
1654  * @c: UBIFS file-system description object
1655  * @host: host inode
1656  * @inode: extended attribute inode
1657  * @nm: extended attribute entry name
1658  *
1659  * This function delete an extended attribute which is very similar to
1660  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1661  * updates the target inode. Returns zero in case of success and a negative
1662  * error code in case of failure.
1663  */
1664 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1665 			   const struct inode *inode,
1666 			   const struct fscrypt_name *nm)
1667 {
1668 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1669 	struct ubifs_dent_node *xent;
1670 	struct ubifs_ino_node *ino;
1671 	union ubifs_key xent_key, key1, key2;
1672 	int sync = IS_DIRSYNC(host);
1673 	struct ubifs_inode *host_ui = ubifs_inode(host);
1674 	u8 hash[UBIFS_HASH_ARR_SZ];
1675 
1676 	ubifs_assert(c, inode->i_nlink == 0);
1677 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1678 
1679 	/*
1680 	 * Since we are deleting the inode, we do not bother to attach any data
1681 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1682 	 */
1683 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1684 	aligned_xlen = ALIGN(xlen, 8);
1685 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1686 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1687 
1688 	write_len = len + ubifs_auth_node_sz(c);
1689 
1690 	xent = kzalloc(write_len, GFP_NOFS);
1691 	if (!xent)
1692 		return -ENOMEM;
1693 
1694 	/* Make reservation before allocating sequence numbers */
1695 	err = make_reservation(c, BASEHD, write_len);
1696 	if (err) {
1697 		kfree(xent);
1698 		return err;
1699 	}
1700 
1701 	xent->ch.node_type = UBIFS_XENT_NODE;
1702 	xent_key_init(c, &xent_key, host->i_ino, nm);
1703 	key_write(c, &xent_key, xent->key);
1704 	xent->inum = 0;
1705 	xent->type = get_dent_type(inode->i_mode);
1706 	xent->nlen = cpu_to_le16(fname_len(nm));
1707 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1708 	xent->name[fname_len(nm)] = '\0';
1709 	zero_dent_node_unused(xent);
1710 	ubifs_prep_grp_node(c, xent, xlen, 0);
1711 
1712 	ino = (void *)xent + aligned_xlen;
1713 	pack_inode(c, ino, inode, 0);
1714 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1715 	pack_inode(c, ino, host, 1);
1716 	err = ubifs_node_calc_hash(c, ino, hash);
1717 	if (err)
1718 		goto out_release;
1719 
1720 	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1721 	if (!sync && !err)
1722 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1723 	release_head(c, BASEHD);
1724 
1725 	ubifs_add_auth_dirt(c, lnum);
1726 	kfree(xent);
1727 	if (err)
1728 		goto out_ro;
1729 
1730 	/* Remove the extended attribute entry from TNC */
1731 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1732 	if (err)
1733 		goto out_ro;
1734 	err = ubifs_add_dirt(c, lnum, xlen);
1735 	if (err)
1736 		goto out_ro;
1737 
1738 	/*
1739 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1740 	 * Well, there actually must be only one node - the inode itself.
1741 	 */
1742 	lowest_ino_key(c, &key1, inode->i_ino);
1743 	highest_ino_key(c, &key2, inode->i_ino);
1744 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1745 	if (err)
1746 		goto out_ro;
1747 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1748 	if (err)
1749 		goto out_ro;
1750 
1751 	/* And update TNC with the new host inode position */
1752 	ino_key_init(c, &key1, host->i_ino);
1753 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1754 	if (err)
1755 		goto out_ro;
1756 
1757 	finish_reservation(c);
1758 	spin_lock(&host_ui->ui_lock);
1759 	host_ui->synced_i_size = host_ui->ui_size;
1760 	spin_unlock(&host_ui->ui_lock);
1761 	mark_inode_clean(c, host_ui);
1762 	return 0;
1763 
1764 out_release:
1765 	kfree(xent);
1766 	release_head(c, BASEHD);
1767 out_ro:
1768 	ubifs_ro_mode(c, err);
1769 	finish_reservation(c);
1770 	return err;
1771 }
1772 
1773 /**
1774  * ubifs_jnl_change_xattr - change an extended attribute.
1775  * @c: UBIFS file-system description object
1776  * @inode: extended attribute inode
1777  * @host: host inode
1778  *
1779  * This function writes the updated version of an extended attribute inode and
1780  * the host inode to the journal (to the base head). The host inode is written
1781  * after the extended attribute inode in order to guarantee that the extended
1782  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1783  * consequently, the write-buffer is synchronized. This function returns zero
1784  * in case of success and a negative error code in case of failure.
1785  */
1786 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1787 			   const struct inode *host)
1788 {
1789 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1790 	struct ubifs_inode *host_ui = ubifs_inode(host);
1791 	struct ubifs_ino_node *ino;
1792 	union ubifs_key key;
1793 	int sync = IS_DIRSYNC(host);
1794 	u8 hash_host[UBIFS_HASH_ARR_SZ];
1795 	u8 hash[UBIFS_HASH_ARR_SZ];
1796 
1797 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1798 	ubifs_assert(c, host->i_nlink > 0);
1799 	ubifs_assert(c, inode->i_nlink > 0);
1800 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1801 
1802 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1803 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1804 	aligned_len1 = ALIGN(len1, 8);
1805 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1806 
1807 	aligned_len += ubifs_auth_node_sz(c);
1808 
1809 	ino = kzalloc(aligned_len, GFP_NOFS);
1810 	if (!ino)
1811 		return -ENOMEM;
1812 
1813 	/* Make reservation before allocating sequence numbers */
1814 	err = make_reservation(c, BASEHD, aligned_len);
1815 	if (err)
1816 		goto out_free;
1817 
1818 	pack_inode(c, ino, host, 0);
1819 	err = ubifs_node_calc_hash(c, ino, hash_host);
1820 	if (err)
1821 		goto out_release;
1822 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1823 	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1824 	if (err)
1825 		goto out_release;
1826 
1827 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1828 	if (!sync && !err) {
1829 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1830 
1831 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1832 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1833 	}
1834 	release_head(c, BASEHD);
1835 	if (err)
1836 		goto out_ro;
1837 
1838 	ubifs_add_auth_dirt(c, lnum);
1839 
1840 	ino_key_init(c, &key, host->i_ino);
1841 	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1842 	if (err)
1843 		goto out_ro;
1844 
1845 	ino_key_init(c, &key, inode->i_ino);
1846 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1847 	if (err)
1848 		goto out_ro;
1849 
1850 	finish_reservation(c);
1851 	spin_lock(&host_ui->ui_lock);
1852 	host_ui->synced_i_size = host_ui->ui_size;
1853 	spin_unlock(&host_ui->ui_lock);
1854 	mark_inode_clean(c, host_ui);
1855 	kfree(ino);
1856 	return 0;
1857 
1858 out_release:
1859 	release_head(c, BASEHD);
1860 out_ro:
1861 	ubifs_ro_mode(c, err);
1862 	finish_reservation(c);
1863 out_free:
1864 	kfree(ino);
1865 	return err;
1866 }
1867 
1868