1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 squeeze = (jhead == BASEHD); 126 again: 127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 128 129 if (c->ro_media) { 130 err = -EROFS; 131 goto out_unlock; 132 } 133 134 avail = c->leb_size - wbuf->offs - wbuf->used; 135 if (wbuf->lnum != -1 && avail >= len) 136 return 0; 137 138 /* 139 * Write buffer wasn't seek'ed or there is no enough space - look for an 140 * LEB with some empty space. 141 */ 142 lnum = ubifs_find_free_space(c, len, &free, squeeze); 143 if (lnum >= 0) { 144 /* Found an LEB, add it to the journal head */ 145 offs = c->leb_size - free; 146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 147 if (err) 148 goto out_return; 149 /* A new bud was successfully allocated and added to the log */ 150 goto out; 151 } 152 153 err = lnum; 154 if (err != -ENOSPC) 155 goto out_unlock; 156 157 /* 158 * No free space, we have to run garbage collector to make 159 * some. But the write-buffer mutex has to be unlocked because 160 * GC also takes it. 161 */ 162 dbg_jnl("no free space jhead %d, run GC", jhead); 163 mutex_unlock(&wbuf->io_mutex); 164 165 lnum = ubifs_garbage_collect(c, 0); 166 if (lnum < 0) { 167 err = lnum; 168 if (err != -ENOSPC) 169 return err; 170 171 /* 172 * GC could not make a free LEB. But someone else may 173 * have allocated new bud for this journal head, 174 * because we dropped @wbuf->io_mutex, so try once 175 * again. 176 */ 177 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead); 178 if (retries++ < 2) { 179 dbg_jnl("retry (%d)", retries); 180 goto again; 181 } 182 183 dbg_jnl("return -ENOSPC"); 184 return err; 185 } 186 187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 188 dbg_jnl("got LEB %d for jhead %d", lnum, jhead); 189 avail = c->leb_size - wbuf->offs - wbuf->used; 190 191 if (wbuf->lnum != -1 && avail >= len) { 192 /* 193 * Someone else has switched the journal head and we have 194 * enough space now. This happens when more then one process is 195 * trying to write to the same journal head at the same time. 196 */ 197 dbg_jnl("return LEB %d back, already have LEB %d:%d", 198 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 199 err = ubifs_return_leb(c, lnum); 200 if (err) 201 goto out_unlock; 202 return 0; 203 } 204 205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0); 206 if (err) 207 goto out_return; 208 offs = 0; 209 210 out: 211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM); 212 if (err) 213 goto out_unlock; 214 215 return 0; 216 217 out_unlock: 218 mutex_unlock(&wbuf->io_mutex); 219 return err; 220 221 out_return: 222 /* An error occurred and the LEB has to be returned to lprops */ 223 ubifs_assert(err < 0); 224 err1 = ubifs_return_leb(c, lnum); 225 if (err1 && err == -EAGAIN) 226 /* 227 * Return original error code only if it is not %-EAGAIN, 228 * which is not really an error. Otherwise, return the error 229 * code of 'ubifs_return_leb()'. 230 */ 231 err = err1; 232 mutex_unlock(&wbuf->io_mutex); 233 return err; 234 } 235 236 /** 237 * write_node - write node to a journal head. 238 * @c: UBIFS file-system description object 239 * @jhead: journal head 240 * @node: node to write 241 * @len: node length 242 * @lnum: LEB number written is returned here 243 * @offs: offset written is returned here 244 * 245 * This function writes a node to reserved space of journal head @jhead. 246 * Returns zero in case of success and a negative error code in case of 247 * failure. 248 */ 249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 250 int *lnum, int *offs) 251 { 252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 253 254 ubifs_assert(jhead != GCHD); 255 256 *lnum = c->jheads[jhead].wbuf.lnum; 257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 258 259 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 260 ubifs_prepare_node(c, node, len, 0); 261 262 return ubifs_wbuf_write_nolock(wbuf, node, len); 263 } 264 265 /** 266 * write_head - write data to a journal head. 267 * @c: UBIFS file-system description object 268 * @jhead: journal head 269 * @buf: buffer to write 270 * @len: length to write 271 * @lnum: LEB number written is returned here 272 * @offs: offset written is returned here 273 * @sync: non-zero if the write-buffer has to by synchronized 274 * 275 * This function is the same as 'write_node()' but it does not assume the 276 * buffer it is writing is a node, so it does not prepare it (which means 277 * initializing common header and calculating CRC). 278 */ 279 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 280 int *lnum, int *offs, int sync) 281 { 282 int err; 283 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 284 285 ubifs_assert(jhead != GCHD); 286 287 *lnum = c->jheads[jhead].wbuf.lnum; 288 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 289 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 290 291 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 292 if (err) 293 return err; 294 if (sync) 295 err = ubifs_wbuf_sync_nolock(wbuf); 296 return err; 297 } 298 299 /** 300 * make_reservation - reserve journal space. 301 * @c: UBIFS file-system description object 302 * @jhead: journal head 303 * @len: how many bytes to reserve 304 * 305 * This function makes space reservation in journal head @jhead. The function 306 * takes the commit lock and locks the journal head, and the caller has to 307 * unlock the head and finish the reservation with 'finish_reservation()'. 308 * Returns zero in case of success and a negative error code in case of 309 * failure. 310 * 311 * Note, the journal head may be unlocked as soon as the data is written, while 312 * the commit lock has to be released after the data has been added to the 313 * TNC. 314 */ 315 static int make_reservation(struct ubifs_info *c, int jhead, int len) 316 { 317 int err, cmt_retries = 0, nospc_retries = 0; 318 319 again: 320 down_read(&c->commit_sem); 321 err = reserve_space(c, jhead, len); 322 if (!err) 323 return 0; 324 up_read(&c->commit_sem); 325 326 if (err == -ENOSPC) { 327 /* 328 * GC could not make any progress. We should try to commit 329 * once because it could make some dirty space and GC would 330 * make progress, so make the error -EAGAIN so that the below 331 * will commit and re-try. 332 */ 333 if (nospc_retries++ < 2) { 334 dbg_jnl("no space, retry"); 335 err = -EAGAIN; 336 } 337 338 /* 339 * This means that the budgeting is incorrect. We always have 340 * to be able to write to the media, because all operations are 341 * budgeted. Deletions are not budgeted, though, but we reserve 342 * an extra LEB for them. 343 */ 344 } 345 346 if (err != -EAGAIN) 347 goto out; 348 349 /* 350 * -EAGAIN means that the journal is full or too large, or the above 351 * code wants to do one commit. Do this and re-try. 352 */ 353 if (cmt_retries > 128) { 354 /* 355 * This should not happen unless the journal size limitations 356 * are too tough. 357 */ 358 ubifs_err("stuck in space allocation"); 359 err = -ENOSPC; 360 goto out; 361 } else if (cmt_retries > 32) 362 ubifs_warn("too many space allocation re-tries (%d)", 363 cmt_retries); 364 365 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 366 cmt_retries); 367 cmt_retries += 1; 368 369 err = ubifs_run_commit(c); 370 if (err) 371 return err; 372 goto again; 373 374 out: 375 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 376 len, jhead, err); 377 if (err == -ENOSPC) { 378 /* This are some budgeting problems, print useful information */ 379 down_write(&c->commit_sem); 380 spin_lock(&c->space_lock); 381 dbg_dump_stack(); 382 dbg_dump_budg(c); 383 spin_unlock(&c->space_lock); 384 dbg_dump_lprops(c); 385 cmt_retries = dbg_check_lprops(c); 386 up_write(&c->commit_sem); 387 } 388 return err; 389 } 390 391 /** 392 * release_head - release a journal head. 393 * @c: UBIFS file-system description object 394 * @jhead: journal head 395 * 396 * This function releases journal head @jhead which was locked by 397 * the 'make_reservation()' function. It has to be called after each successful 398 * 'make_reservation()' invocation. 399 */ 400 static inline void release_head(struct ubifs_info *c, int jhead) 401 { 402 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 403 } 404 405 /** 406 * finish_reservation - finish a reservation. 407 * @c: UBIFS file-system description object 408 * 409 * This function finishes journal space reservation. It must be called after 410 * 'make_reservation()'. 411 */ 412 static void finish_reservation(struct ubifs_info *c) 413 { 414 up_read(&c->commit_sem); 415 } 416 417 /** 418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 419 * @mode: inode mode 420 */ 421 static int get_dent_type(int mode) 422 { 423 switch (mode & S_IFMT) { 424 case S_IFREG: 425 return UBIFS_ITYPE_REG; 426 case S_IFDIR: 427 return UBIFS_ITYPE_DIR; 428 case S_IFLNK: 429 return UBIFS_ITYPE_LNK; 430 case S_IFBLK: 431 return UBIFS_ITYPE_BLK; 432 case S_IFCHR: 433 return UBIFS_ITYPE_CHR; 434 case S_IFIFO: 435 return UBIFS_ITYPE_FIFO; 436 case S_IFSOCK: 437 return UBIFS_ITYPE_SOCK; 438 default: 439 BUG(); 440 } 441 return 0; 442 } 443 444 /** 445 * pack_inode - pack an inode node. 446 * @c: UBIFS file-system description object 447 * @ino: buffer in which to pack inode node 448 * @inode: inode to pack 449 * @last: indicates the last node of the group 450 * @last_reference: non-zero if this is a deletion inode 451 */ 452 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 453 const struct inode *inode, int last, 454 int last_reference) 455 { 456 int data_len = 0; 457 struct ubifs_inode *ui = ubifs_inode(inode); 458 459 ino->ch.node_type = UBIFS_INO_NODE; 460 ino_key_init_flash(c, &ino->key, inode->i_ino); 461 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 462 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 463 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 464 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 465 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 466 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 467 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 468 ino->uid = cpu_to_le32(inode->i_uid); 469 ino->gid = cpu_to_le32(inode->i_gid); 470 ino->mode = cpu_to_le32(inode->i_mode); 471 ino->flags = cpu_to_le32(ui->flags); 472 ino->size = cpu_to_le64(ui->ui_size); 473 ino->nlink = cpu_to_le32(inode->i_nlink); 474 ino->compr_type = cpu_to_le16(ui->compr_type); 475 ino->data_len = cpu_to_le32(ui->data_len); 476 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 477 ino->xattr_size = cpu_to_le32(ui->xattr_size); 478 ino->xattr_names = cpu_to_le32(ui->xattr_names); 479 zero_ino_node_unused(ino); 480 481 /* 482 * Drop the attached data if this is a deletion inode, the data is not 483 * needed anymore. 484 */ 485 if (!last_reference) { 486 memcpy(ino->data, ui->data, ui->data_len); 487 data_len = ui->data_len; 488 } 489 490 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 491 } 492 493 /** 494 * mark_inode_clean - mark UBIFS inode as clean. 495 * @c: UBIFS file-system description object 496 * @ui: UBIFS inode to mark as clean 497 * 498 * This helper function marks UBIFS inode @ui as clean by cleaning the 499 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 500 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 501 * just do nothing. 502 */ 503 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 504 { 505 if (ui->dirty) 506 ubifs_release_dirty_inode_budget(c, ui); 507 ui->dirty = 0; 508 } 509 510 /** 511 * ubifs_jnl_update - update inode. 512 * @c: UBIFS file-system description object 513 * @dir: parent inode or host inode in case of extended attributes 514 * @nm: directory entry name 515 * @inode: inode to update 516 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 517 * @xent: non-zero if the directory entry is an extended attribute entry 518 * 519 * This function updates an inode by writing a directory entry (or extended 520 * attribute entry), the inode itself, and the parent directory inode (or the 521 * host inode) to the journal. 522 * 523 * The function writes the host inode @dir last, which is important in case of 524 * extended attributes. Indeed, then we guarantee that if the host inode gets 525 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 526 * the extended attribute inode gets flushed too. And this is exactly what the 527 * user expects - synchronizing the host inode synchronizes its extended 528 * attributes. Similarly, this guarantees that if @dir is synchronized, its 529 * directory entry corresponding to @nm gets synchronized too. 530 * 531 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 532 * function synchronizes the write-buffer. 533 * 534 * This function marks the @dir and @inode inodes as clean and returns zero on 535 * success. In case of failure, a negative error code is returned. 536 */ 537 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 538 const struct qstr *nm, const struct inode *inode, 539 int deletion, int xent) 540 { 541 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 542 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 543 int last_reference = !!(deletion && inode->i_nlink == 0); 544 struct ubifs_inode *ui = ubifs_inode(inode); 545 struct ubifs_inode *dir_ui = ubifs_inode(dir); 546 struct ubifs_dent_node *dent; 547 struct ubifs_ino_node *ino; 548 union ubifs_key dent_key, ino_key; 549 550 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 551 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 552 ubifs_assert(dir_ui->data_len == 0); 553 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 554 555 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 556 ilen = UBIFS_INO_NODE_SZ; 557 558 /* 559 * If the last reference to the inode is being deleted, then there is 560 * no need to attach and write inode data, it is being deleted anyway. 561 * And if the inode is being deleted, no need to synchronize 562 * write-buffer even if the inode is synchronous. 563 */ 564 if (!last_reference) { 565 ilen += ui->data_len; 566 sync |= IS_SYNC(inode); 567 } 568 569 aligned_dlen = ALIGN(dlen, 8); 570 aligned_ilen = ALIGN(ilen, 8); 571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 572 dent = kmalloc(len, GFP_NOFS); 573 if (!dent) 574 return -ENOMEM; 575 576 /* Make reservation before allocating sequence numbers */ 577 err = make_reservation(c, BASEHD, len); 578 if (err) 579 goto out_free; 580 581 if (!xent) { 582 dent->ch.node_type = UBIFS_DENT_NODE; 583 dent_key_init(c, &dent_key, dir->i_ino, nm); 584 } else { 585 dent->ch.node_type = UBIFS_XENT_NODE; 586 xent_key_init(c, &dent_key, dir->i_ino, nm); 587 } 588 589 key_write(c, &dent_key, dent->key); 590 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 591 dent->type = get_dent_type(inode->i_mode); 592 dent->nlen = cpu_to_le16(nm->len); 593 memcpy(dent->name, nm->name, nm->len); 594 dent->name[nm->len] = '\0'; 595 zero_dent_node_unused(dent); 596 ubifs_prep_grp_node(c, dent, dlen, 0); 597 598 ino = (void *)dent + aligned_dlen; 599 pack_inode(c, ino, inode, 0, last_reference); 600 ino = (void *)ino + aligned_ilen; 601 pack_inode(c, ino, dir, 1, 0); 602 603 if (last_reference) { 604 err = ubifs_add_orphan(c, inode->i_ino); 605 if (err) { 606 release_head(c, BASEHD); 607 goto out_finish; 608 } 609 } 610 611 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 612 if (err) 613 goto out_release; 614 if (!sync) { 615 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 616 617 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 618 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 619 } 620 release_head(c, BASEHD); 621 kfree(dent); 622 623 if (deletion) { 624 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 625 if (err) 626 goto out_ro; 627 err = ubifs_add_dirt(c, lnum, dlen); 628 } else 629 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 630 if (err) 631 goto out_ro; 632 633 /* 634 * Note, we do not remove the inode from TNC even if the last reference 635 * to it has just been deleted, because the inode may still be opened. 636 * Instead, the inode has been added to orphan lists and the orphan 637 * subsystem will take further care about it. 638 */ 639 ino_key_init(c, &ino_key, inode->i_ino); 640 ino_offs = dent_offs + aligned_dlen; 641 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 642 if (err) 643 goto out_ro; 644 645 ino_key_init(c, &ino_key, dir->i_ino); 646 ino_offs += aligned_ilen; 647 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 648 if (err) 649 goto out_ro; 650 651 finish_reservation(c); 652 spin_lock(&ui->ui_lock); 653 ui->synced_i_size = ui->ui_size; 654 spin_unlock(&ui->ui_lock); 655 mark_inode_clean(c, ui); 656 mark_inode_clean(c, dir_ui); 657 return 0; 658 659 out_finish: 660 finish_reservation(c); 661 out_free: 662 kfree(dent); 663 return err; 664 665 out_release: 666 release_head(c, BASEHD); 667 out_ro: 668 ubifs_ro_mode(c, err); 669 if (last_reference) 670 ubifs_delete_orphan(c, inode->i_ino); 671 finish_reservation(c); 672 return err; 673 } 674 675 /** 676 * ubifs_jnl_write_data - write a data node to the journal. 677 * @c: UBIFS file-system description object 678 * @inode: inode the data node belongs to 679 * @key: node key 680 * @buf: buffer to write 681 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 682 * 683 * This function writes a data node to the journal. Returns %0 if the data node 684 * was successfully written, and a negative error code in case of failure. 685 */ 686 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 687 const union ubifs_key *key, const void *buf, int len) 688 { 689 struct ubifs_data_node *data; 690 int err, lnum, offs, compr_type, out_len; 691 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; 692 struct ubifs_inode *ui = ubifs_inode(inode); 693 694 dbg_jnl("ino %lu, blk %u, len %d, key %s", key_inum(c, key), 695 key_block(c, key), len, DBGKEY(key)); 696 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 697 698 data = kmalloc(dlen, GFP_NOFS); 699 if (!data) 700 return -ENOMEM; 701 702 data->ch.node_type = UBIFS_DATA_NODE; 703 key_write(c, key, &data->key); 704 data->size = cpu_to_le32(len); 705 zero_data_node_unused(data); 706 707 if (!(ui->flags && UBIFS_COMPR_FL)) 708 /* Compression is disabled for this inode */ 709 compr_type = UBIFS_COMPR_NONE; 710 else 711 compr_type = ui->compr_type; 712 713 out_len = dlen - UBIFS_DATA_NODE_SZ; 714 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 715 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 716 717 dlen = UBIFS_DATA_NODE_SZ + out_len; 718 data->compr_type = cpu_to_le16(compr_type); 719 720 /* Make reservation before allocating sequence numbers */ 721 err = make_reservation(c, DATAHD, dlen); 722 if (err) 723 goto out_free; 724 725 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 726 if (err) 727 goto out_release; 728 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 729 release_head(c, DATAHD); 730 731 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 732 if (err) 733 goto out_ro; 734 735 finish_reservation(c); 736 kfree(data); 737 return 0; 738 739 out_release: 740 release_head(c, DATAHD); 741 out_ro: 742 ubifs_ro_mode(c, err); 743 finish_reservation(c); 744 out_free: 745 kfree(data); 746 return err; 747 } 748 749 /** 750 * ubifs_jnl_write_inode - flush inode to the journal. 751 * @c: UBIFS file-system description object 752 * @inode: inode to flush 753 * @deletion: inode has been deleted 754 * 755 * This function writes inode @inode to the journal. If the inode is 756 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 757 * success and a negative error code in case of failure. 758 */ 759 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode, 760 int deletion) 761 { 762 int err, len, lnum, offs, sync = 0; 763 struct ubifs_ino_node *ino; 764 struct ubifs_inode *ui = ubifs_inode(inode); 765 766 dbg_jnl("ino %lu%s", inode->i_ino, 767 deletion ? " (last reference)" : ""); 768 if (deletion) 769 ubifs_assert(inode->i_nlink == 0); 770 771 len = UBIFS_INO_NODE_SZ; 772 /* 773 * If the inode is being deleted, do not write the attached data. No 774 * need to synchronize the write-buffer either. 775 */ 776 if (!deletion) { 777 len += ui->data_len; 778 sync = IS_SYNC(inode); 779 } 780 ino = kmalloc(len, GFP_NOFS); 781 if (!ino) 782 return -ENOMEM; 783 784 /* Make reservation before allocating sequence numbers */ 785 err = make_reservation(c, BASEHD, len); 786 if (err) 787 goto out_free; 788 789 pack_inode(c, ino, inode, 1, deletion); 790 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 791 if (err) 792 goto out_release; 793 if (!sync) 794 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 795 inode->i_ino); 796 release_head(c, BASEHD); 797 798 if (deletion) { 799 err = ubifs_tnc_remove_ino(c, inode->i_ino); 800 if (err) 801 goto out_ro; 802 ubifs_delete_orphan(c, inode->i_ino); 803 err = ubifs_add_dirt(c, lnum, len); 804 } else { 805 union ubifs_key key; 806 807 ino_key_init(c, &key, inode->i_ino); 808 err = ubifs_tnc_add(c, &key, lnum, offs, len); 809 } 810 if (err) 811 goto out_ro; 812 813 finish_reservation(c); 814 spin_lock(&ui->ui_lock); 815 ui->synced_i_size = ui->ui_size; 816 spin_unlock(&ui->ui_lock); 817 kfree(ino); 818 return 0; 819 820 out_release: 821 release_head(c, BASEHD); 822 out_ro: 823 ubifs_ro_mode(c, err); 824 finish_reservation(c); 825 out_free: 826 kfree(ino); 827 return err; 828 } 829 830 /** 831 * ubifs_jnl_rename - rename a directory entry. 832 * @c: UBIFS file-system description object 833 * @old_dir: parent inode of directory entry to rename 834 * @old_dentry: directory entry to rename 835 * @new_dir: parent inode of directory entry to rename 836 * @new_dentry: new directory entry (or directory entry to replace) 837 * @sync: non-zero if the write-buffer has to be synchronized 838 * 839 * This function implements the re-name operation which may involve writing up 840 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 841 * and returns zero on success. In case of failure, a negative error code is 842 * returned. 843 */ 844 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 845 const struct dentry *old_dentry, 846 const struct inode *new_dir, 847 const struct dentry *new_dentry, int sync) 848 { 849 void *p; 850 union ubifs_key key; 851 struct ubifs_dent_node *dent, *dent2; 852 int err, dlen1, dlen2, ilen, lnum, offs, len; 853 const struct inode *old_inode = old_dentry->d_inode; 854 const struct inode *new_inode = new_dentry->d_inode; 855 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 856 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 857 int move = (old_dir != new_dir); 858 struct ubifs_inode *uninitialized_var(new_ui); 859 860 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 861 old_dentry->d_name.len, old_dentry->d_name.name, 862 old_dir->i_ino, new_dentry->d_name.len, 863 new_dentry->d_name.name, new_dir->i_ino); 864 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 865 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 866 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 867 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 868 869 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 870 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 871 if (new_inode) { 872 new_ui = ubifs_inode(new_inode); 873 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 874 ilen = UBIFS_INO_NODE_SZ; 875 if (!last_reference) 876 ilen += new_ui->data_len; 877 } else 878 ilen = 0; 879 880 aligned_dlen1 = ALIGN(dlen1, 8); 881 aligned_dlen2 = ALIGN(dlen2, 8); 882 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 883 if (old_dir != new_dir) 884 len += plen; 885 dent = kmalloc(len, GFP_NOFS); 886 if (!dent) 887 return -ENOMEM; 888 889 /* Make reservation before allocating sequence numbers */ 890 err = make_reservation(c, BASEHD, len); 891 if (err) 892 goto out_free; 893 894 /* Make new dent */ 895 dent->ch.node_type = UBIFS_DENT_NODE; 896 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 897 dent->inum = cpu_to_le64(old_inode->i_ino); 898 dent->type = get_dent_type(old_inode->i_mode); 899 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 900 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 901 dent->name[new_dentry->d_name.len] = '\0'; 902 zero_dent_node_unused(dent); 903 ubifs_prep_grp_node(c, dent, dlen1, 0); 904 905 /* Make deletion dent */ 906 dent2 = (void *)dent + aligned_dlen1; 907 dent2->ch.node_type = UBIFS_DENT_NODE; 908 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 909 &old_dentry->d_name); 910 dent2->inum = 0; 911 dent2->type = DT_UNKNOWN; 912 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 913 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 914 dent2->name[old_dentry->d_name.len] = '\0'; 915 zero_dent_node_unused(dent2); 916 ubifs_prep_grp_node(c, dent2, dlen2, 0); 917 918 p = (void *)dent2 + aligned_dlen2; 919 if (new_inode) { 920 pack_inode(c, p, new_inode, 0, last_reference); 921 p += ALIGN(ilen, 8); 922 } 923 924 if (!move) 925 pack_inode(c, p, old_dir, 1, 0); 926 else { 927 pack_inode(c, p, old_dir, 0, 0); 928 p += ALIGN(plen, 8); 929 pack_inode(c, p, new_dir, 1, 0); 930 } 931 932 if (last_reference) { 933 err = ubifs_add_orphan(c, new_inode->i_ino); 934 if (err) { 935 release_head(c, BASEHD); 936 goto out_finish; 937 } 938 } 939 940 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 941 if (err) 942 goto out_release; 943 if (!sync) { 944 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 945 946 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 947 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 948 if (new_inode) 949 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 950 new_inode->i_ino); 951 } 952 release_head(c, BASEHD); 953 954 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 955 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 956 if (err) 957 goto out_ro; 958 959 err = ubifs_add_dirt(c, lnum, dlen2); 960 if (err) 961 goto out_ro; 962 963 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 964 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 965 if (err) 966 goto out_ro; 967 968 offs += aligned_dlen1 + aligned_dlen2; 969 if (new_inode) { 970 ino_key_init(c, &key, new_inode->i_ino); 971 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 972 if (err) 973 goto out_ro; 974 offs += ALIGN(ilen, 8); 975 } 976 977 ino_key_init(c, &key, old_dir->i_ino); 978 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 979 if (err) 980 goto out_ro; 981 982 if (old_dir != new_dir) { 983 offs += ALIGN(plen, 8); 984 ino_key_init(c, &key, new_dir->i_ino); 985 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 986 if (err) 987 goto out_ro; 988 } 989 990 finish_reservation(c); 991 if (new_inode) { 992 mark_inode_clean(c, new_ui); 993 spin_lock(&new_ui->ui_lock); 994 new_ui->synced_i_size = new_ui->ui_size; 995 spin_unlock(&new_ui->ui_lock); 996 } 997 mark_inode_clean(c, ubifs_inode(old_dir)); 998 if (move) 999 mark_inode_clean(c, ubifs_inode(new_dir)); 1000 kfree(dent); 1001 return 0; 1002 1003 out_release: 1004 release_head(c, BASEHD); 1005 out_ro: 1006 ubifs_ro_mode(c, err); 1007 if (last_reference) 1008 ubifs_delete_orphan(c, new_inode->i_ino); 1009 out_finish: 1010 finish_reservation(c); 1011 out_free: 1012 kfree(dent); 1013 return err; 1014 } 1015 1016 /** 1017 * recomp_data_node - re-compress a truncated data node. 1018 * @dn: data node to re-compress 1019 * @new_len: new length 1020 * 1021 * This function is used when an inode is truncated and the last data node of 1022 * the inode has to be re-compressed and re-written. 1023 */ 1024 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1025 { 1026 void *buf; 1027 int err, len, compr_type, out_len; 1028 1029 out_len = le32_to_cpu(dn->size); 1030 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1031 if (!buf) 1032 return -ENOMEM; 1033 1034 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1035 compr_type = le16_to_cpu(dn->compr_type); 1036 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1037 if (err) 1038 goto out; 1039 1040 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1041 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1042 dn->compr_type = cpu_to_le16(compr_type); 1043 dn->size = cpu_to_le32(*new_len); 1044 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1045 out: 1046 kfree(buf); 1047 return err; 1048 } 1049 1050 /** 1051 * ubifs_jnl_truncate - update the journal for a truncation. 1052 * @c: UBIFS file-system description object 1053 * @inode: inode to truncate 1054 * @old_size: old size 1055 * @new_size: new size 1056 * 1057 * When the size of a file decreases due to truncation, a truncation node is 1058 * written, the journal tree is updated, and the last data block is re-written 1059 * if it has been affected. The inode is also updated in order to synchronize 1060 * the new inode size. 1061 * 1062 * This function marks the inode as clean and returns zero on success. In case 1063 * of failure, a negative error code is returned. 1064 */ 1065 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1066 loff_t old_size, loff_t new_size) 1067 { 1068 union ubifs_key key, to_key; 1069 struct ubifs_ino_node *ino; 1070 struct ubifs_trun_node *trun; 1071 struct ubifs_data_node *uninitialized_var(dn); 1072 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1073 struct ubifs_inode *ui = ubifs_inode(inode); 1074 ino_t inum = inode->i_ino; 1075 unsigned int blk; 1076 1077 dbg_jnl("ino %lu, size %lld -> %lld", inum, old_size, new_size); 1078 ubifs_assert(!ui->data_len); 1079 ubifs_assert(S_ISREG(inode->i_mode)); 1080 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1081 1082 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1083 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1084 ino = kmalloc(sz, GFP_NOFS); 1085 if (!ino) 1086 return -ENOMEM; 1087 1088 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1089 trun->ch.node_type = UBIFS_TRUN_NODE; 1090 trun->inum = cpu_to_le32(inum); 1091 trun->old_size = cpu_to_le64(old_size); 1092 trun->new_size = cpu_to_le64(new_size); 1093 zero_trun_node_unused(trun); 1094 1095 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1096 if (dlen) { 1097 /* Get last data block so it can be truncated */ 1098 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1099 blk = new_size >> UBIFS_BLOCK_SHIFT; 1100 data_key_init(c, &key, inum, blk); 1101 dbg_jnl("last block key %s", DBGKEY(&key)); 1102 err = ubifs_tnc_lookup(c, &key, dn); 1103 if (err == -ENOENT) 1104 dlen = 0; /* Not found (so it is a hole) */ 1105 else if (err) 1106 goto out_free; 1107 else { 1108 if (le32_to_cpu(dn->size) <= dlen) 1109 dlen = 0; /* Nothing to do */ 1110 else { 1111 int compr_type = le16_to_cpu(dn->compr_type); 1112 1113 if (compr_type != UBIFS_COMPR_NONE) { 1114 err = recomp_data_node(dn, &dlen); 1115 if (err) 1116 goto out_free; 1117 } else { 1118 dn->size = cpu_to_le32(dlen); 1119 dlen += UBIFS_DATA_NODE_SZ; 1120 } 1121 zero_data_node_unused(dn); 1122 } 1123 } 1124 } 1125 1126 /* Must make reservation before allocating sequence numbers */ 1127 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1128 if (dlen) 1129 len += dlen; 1130 err = make_reservation(c, BASEHD, len); 1131 if (err) 1132 goto out_free; 1133 1134 pack_inode(c, ino, inode, 0, 0); 1135 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1136 if (dlen) 1137 ubifs_prep_grp_node(c, dn, dlen, 1); 1138 1139 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1140 if (err) 1141 goto out_release; 1142 if (!sync) 1143 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1144 release_head(c, BASEHD); 1145 1146 if (dlen) { 1147 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1148 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1149 if (err) 1150 goto out_ro; 1151 } 1152 1153 ino_key_init(c, &key, inum); 1154 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1155 if (err) 1156 goto out_ro; 1157 1158 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1159 if (err) 1160 goto out_ro; 1161 1162 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1163 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1164 data_key_init(c, &key, inum, blk); 1165 1166 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1167 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1); 1168 data_key_init(c, &to_key, inum, blk); 1169 1170 err = ubifs_tnc_remove_range(c, &key, &to_key); 1171 if (err) 1172 goto out_ro; 1173 1174 finish_reservation(c); 1175 spin_lock(&ui->ui_lock); 1176 ui->synced_i_size = ui->ui_size; 1177 spin_unlock(&ui->ui_lock); 1178 mark_inode_clean(c, ui); 1179 kfree(ino); 1180 return 0; 1181 1182 out_release: 1183 release_head(c, BASEHD); 1184 out_ro: 1185 ubifs_ro_mode(c, err); 1186 finish_reservation(c); 1187 out_free: 1188 kfree(ino); 1189 return err; 1190 } 1191 1192 #ifdef CONFIG_UBIFS_FS_XATTR 1193 1194 /** 1195 * ubifs_jnl_delete_xattr - delete an extended attribute. 1196 * @c: UBIFS file-system description object 1197 * @host: host inode 1198 * @inode: extended attribute inode 1199 * @nm: extended attribute entry name 1200 * 1201 * This function delete an extended attribute which is very similar to 1202 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1203 * updates the target inode. Returns zero in case of success and a negative 1204 * error code in case of failure. 1205 */ 1206 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1207 const struct inode *inode, const struct qstr *nm) 1208 { 1209 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1210 struct ubifs_dent_node *xent; 1211 struct ubifs_ino_node *ino; 1212 union ubifs_key xent_key, key1, key2; 1213 int sync = IS_DIRSYNC(host); 1214 struct ubifs_inode *host_ui = ubifs_inode(host); 1215 1216 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1217 host->i_ino, inode->i_ino, nm->name, 1218 ubifs_inode(inode)->data_len); 1219 ubifs_assert(inode->i_nlink == 0); 1220 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1221 1222 /* 1223 * Since we are deleting the inode, we do not bother to attach any data 1224 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1225 */ 1226 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1227 aligned_xlen = ALIGN(xlen, 8); 1228 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1229 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1230 1231 xent = kmalloc(len, GFP_NOFS); 1232 if (!xent) 1233 return -ENOMEM; 1234 1235 /* Make reservation before allocating sequence numbers */ 1236 err = make_reservation(c, BASEHD, len); 1237 if (err) { 1238 kfree(xent); 1239 return err; 1240 } 1241 1242 xent->ch.node_type = UBIFS_XENT_NODE; 1243 xent_key_init(c, &xent_key, host->i_ino, nm); 1244 key_write(c, &xent_key, xent->key); 1245 xent->inum = 0; 1246 xent->type = get_dent_type(inode->i_mode); 1247 xent->nlen = cpu_to_le16(nm->len); 1248 memcpy(xent->name, nm->name, nm->len); 1249 xent->name[nm->len] = '\0'; 1250 zero_dent_node_unused(xent); 1251 ubifs_prep_grp_node(c, xent, xlen, 0); 1252 1253 ino = (void *)xent + aligned_xlen; 1254 pack_inode(c, ino, inode, 0, 1); 1255 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1256 pack_inode(c, ino, host, 1, 0); 1257 1258 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1259 if (!sync && !err) 1260 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1261 release_head(c, BASEHD); 1262 kfree(xent); 1263 if (err) 1264 goto out_ro; 1265 1266 /* Remove the extended attribute entry from TNC */ 1267 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1268 if (err) 1269 goto out_ro; 1270 err = ubifs_add_dirt(c, lnum, xlen); 1271 if (err) 1272 goto out_ro; 1273 1274 /* 1275 * Remove all nodes belonging to the extended attribute inode from TNC. 1276 * Well, there actually must be only one node - the inode itself. 1277 */ 1278 lowest_ino_key(c, &key1, inode->i_ino); 1279 highest_ino_key(c, &key2, inode->i_ino); 1280 err = ubifs_tnc_remove_range(c, &key1, &key2); 1281 if (err) 1282 goto out_ro; 1283 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1284 if (err) 1285 goto out_ro; 1286 1287 /* And update TNC with the new host inode position */ 1288 ino_key_init(c, &key1, host->i_ino); 1289 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1290 if (err) 1291 goto out_ro; 1292 1293 finish_reservation(c); 1294 spin_lock(&host_ui->ui_lock); 1295 host_ui->synced_i_size = host_ui->ui_size; 1296 spin_unlock(&host_ui->ui_lock); 1297 mark_inode_clean(c, host_ui); 1298 return 0; 1299 1300 out_ro: 1301 ubifs_ro_mode(c, err); 1302 finish_reservation(c); 1303 return err; 1304 } 1305 1306 /** 1307 * ubifs_jnl_change_xattr - change an extended attribute. 1308 * @c: UBIFS file-system description object 1309 * @inode: extended attribute inode 1310 * @host: host inode 1311 * 1312 * This function writes the updated version of an extended attribute inode and 1313 * the host inode tho the journal (to the base head). The host inode is written 1314 * after the extended attribute inode in order to guarantee that the extended 1315 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1316 * consequently, the write-buffer is synchronized. This function returns zero 1317 * in case of success and a negative error code in case of failure. 1318 */ 1319 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1320 const struct inode *host) 1321 { 1322 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1323 struct ubifs_inode *host_ui = ubifs_inode(inode); 1324 struct ubifs_ino_node *ino; 1325 union ubifs_key key; 1326 int sync = IS_DIRSYNC(host); 1327 1328 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1329 ubifs_assert(host->i_nlink > 0); 1330 ubifs_assert(inode->i_nlink > 0); 1331 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1332 1333 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1334 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1335 aligned_len1 = ALIGN(len1, 8); 1336 aligned_len = aligned_len1 + ALIGN(len2, 8); 1337 1338 ino = kmalloc(aligned_len, GFP_NOFS); 1339 if (!ino) 1340 return -ENOMEM; 1341 1342 /* Make reservation before allocating sequence numbers */ 1343 err = make_reservation(c, BASEHD, aligned_len); 1344 if (err) 1345 goto out_free; 1346 1347 pack_inode(c, ino, host, 0, 0); 1348 pack_inode(c, (void *)ino + aligned_len1, inode, 1, 0); 1349 1350 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1351 if (!sync && !err) { 1352 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1353 1354 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1355 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1356 } 1357 release_head(c, BASEHD); 1358 if (err) 1359 goto out_ro; 1360 1361 ino_key_init(c, &key, host->i_ino); 1362 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1363 if (err) 1364 goto out_ro; 1365 1366 ino_key_init(c, &key, inode->i_ino); 1367 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1368 if (err) 1369 goto out_ro; 1370 1371 finish_reservation(c); 1372 spin_lock(&host_ui->ui_lock); 1373 host_ui->synced_i_size = host_ui->ui_size; 1374 spin_unlock(&host_ui->ui_lock); 1375 mark_inode_clean(c, host_ui); 1376 kfree(ino); 1377 return 0; 1378 1379 out_ro: 1380 ubifs_ro_mode(c, err); 1381 finish_reservation(c); 1382 out_free: 1383 kfree(ino); 1384 return err; 1385 } 1386 1387 #endif /* CONFIG_UBIFS_FS_XATTR */ 1388