1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 } 82 83 /** 84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 85 * node. 86 * @trun: the truncation node to zero out 87 */ 88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 89 { 90 memset(trun->padding, 0, 12); 91 } 92 93 /** 94 * reserve_space - reserve space in the journal. 95 * @c: UBIFS file-system description object 96 * @jhead: journal head number 97 * @len: node length 98 * 99 * This function reserves space in journal head @head. If the reservation 100 * succeeded, the journal head stays locked and later has to be unlocked using 101 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to 102 * be done, and other negative error codes in case of other failures. 103 */ 104 static int reserve_space(struct ubifs_info *c, int jhead, int len) 105 { 106 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 107 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 108 109 /* 110 * Typically, the base head has smaller nodes written to it, so it is 111 * better to try to allocate space at the ends of eraseblocks. This is 112 * what the squeeze parameter does. 113 */ 114 ubifs_assert(c, !c->ro_media && !c->ro_mount); 115 squeeze = (jhead == BASEHD); 116 again: 117 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 118 119 if (c->ro_error) { 120 err = -EROFS; 121 goto out_unlock; 122 } 123 124 avail = c->leb_size - wbuf->offs - wbuf->used; 125 if (wbuf->lnum != -1 && avail >= len) 126 return 0; 127 128 /* 129 * Write buffer wasn't seek'ed or there is no enough space - look for an 130 * LEB with some empty space. 131 */ 132 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 133 if (lnum >= 0) 134 goto out; 135 136 err = lnum; 137 if (err != -ENOSPC) 138 goto out_unlock; 139 140 /* 141 * No free space, we have to run garbage collector to make 142 * some. But the write-buffer mutex has to be unlocked because 143 * GC also takes it. 144 */ 145 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 146 mutex_unlock(&wbuf->io_mutex); 147 148 lnum = ubifs_garbage_collect(c, 0); 149 if (lnum < 0) { 150 err = lnum; 151 if (err != -ENOSPC) 152 return err; 153 154 /* 155 * GC could not make a free LEB. But someone else may 156 * have allocated new bud for this journal head, 157 * because we dropped @wbuf->io_mutex, so try once 158 * again. 159 */ 160 dbg_jnl("GC couldn't make a free LEB for jhead %s", 161 dbg_jhead(jhead)); 162 if (retries++ < 2) { 163 dbg_jnl("retry (%d)", retries); 164 goto again; 165 } 166 167 dbg_jnl("return -ENOSPC"); 168 return err; 169 } 170 171 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 172 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 173 avail = c->leb_size - wbuf->offs - wbuf->used; 174 175 if (wbuf->lnum != -1 && avail >= len) { 176 /* 177 * Someone else has switched the journal head and we have 178 * enough space now. This happens when more than one process is 179 * trying to write to the same journal head at the same time. 180 */ 181 dbg_jnl("return LEB %d back, already have LEB %d:%d", 182 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 183 err = ubifs_return_leb(c, lnum); 184 if (err) 185 goto out_unlock; 186 return 0; 187 } 188 189 offs = 0; 190 191 out: 192 /* 193 * Make sure we synchronize the write-buffer before we add the new bud 194 * to the log. Otherwise we may have a power cut after the log 195 * reference node for the last bud (@lnum) is written but before the 196 * write-buffer data are written to the next-to-last bud 197 * (@wbuf->lnum). And the effect would be that the recovery would see 198 * that there is corruption in the next-to-last bud. 199 */ 200 err = ubifs_wbuf_sync_nolock(wbuf); 201 if (err) 202 goto out_return; 203 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 204 if (err) 205 goto out_return; 206 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); 207 if (err) 208 goto out_unlock; 209 210 return 0; 211 212 out_unlock: 213 mutex_unlock(&wbuf->io_mutex); 214 return err; 215 216 out_return: 217 /* An error occurred and the LEB has to be returned to lprops */ 218 ubifs_assert(c, err < 0); 219 err1 = ubifs_return_leb(c, lnum); 220 if (err1 && err == -EAGAIN) 221 /* 222 * Return original error code only if it is not %-EAGAIN, 223 * which is not really an error. Otherwise, return the error 224 * code of 'ubifs_return_leb()'. 225 */ 226 err = err1; 227 mutex_unlock(&wbuf->io_mutex); 228 return err; 229 } 230 231 /** 232 * write_node - write node to a journal head. 233 * @c: UBIFS file-system description object 234 * @jhead: journal head 235 * @node: node to write 236 * @len: node length 237 * @lnum: LEB number written is returned here 238 * @offs: offset written is returned here 239 * 240 * This function writes a node to reserved space of journal head @jhead. 241 * Returns zero in case of success and a negative error code in case of 242 * failure. 243 */ 244 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 245 int *lnum, int *offs) 246 { 247 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 248 249 ubifs_assert(c, jhead != GCHD); 250 251 *lnum = c->jheads[jhead].wbuf.lnum; 252 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 253 254 dbg_jnl("jhead %s, LEB %d:%d, len %d", 255 dbg_jhead(jhead), *lnum, *offs, len); 256 ubifs_prepare_node(c, node, len, 0); 257 258 return ubifs_wbuf_write_nolock(wbuf, node, len); 259 } 260 261 /** 262 * write_head - write data to a journal head. 263 * @c: UBIFS file-system description object 264 * @jhead: journal head 265 * @buf: buffer to write 266 * @len: length to write 267 * @lnum: LEB number written is returned here 268 * @offs: offset written is returned here 269 * @sync: non-zero if the write-buffer has to by synchronized 270 * 271 * This function is the same as 'write_node()' but it does not assume the 272 * buffer it is writing is a node, so it does not prepare it (which means 273 * initializing common header and calculating CRC). 274 */ 275 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 276 int *lnum, int *offs, int sync) 277 { 278 int err; 279 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 280 281 ubifs_assert(c, jhead != GCHD); 282 283 *lnum = c->jheads[jhead].wbuf.lnum; 284 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 285 dbg_jnl("jhead %s, LEB %d:%d, len %d", 286 dbg_jhead(jhead), *lnum, *offs, len); 287 288 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 289 if (err) 290 return err; 291 if (sync) 292 err = ubifs_wbuf_sync_nolock(wbuf); 293 return err; 294 } 295 296 /** 297 * make_reservation - reserve journal space. 298 * @c: UBIFS file-system description object 299 * @jhead: journal head 300 * @len: how many bytes to reserve 301 * 302 * This function makes space reservation in journal head @jhead. The function 303 * takes the commit lock and locks the journal head, and the caller has to 304 * unlock the head and finish the reservation with 'finish_reservation()'. 305 * Returns zero in case of success and a negative error code in case of 306 * failure. 307 * 308 * Note, the journal head may be unlocked as soon as the data is written, while 309 * the commit lock has to be released after the data has been added to the 310 * TNC. 311 */ 312 static int make_reservation(struct ubifs_info *c, int jhead, int len) 313 { 314 int err, cmt_retries = 0, nospc_retries = 0; 315 316 again: 317 down_read(&c->commit_sem); 318 err = reserve_space(c, jhead, len); 319 if (!err) 320 /* c->commit_sem will get released via finish_reservation(). */ 321 return 0; 322 up_read(&c->commit_sem); 323 324 if (err == -ENOSPC) { 325 /* 326 * GC could not make any progress. We should try to commit 327 * once because it could make some dirty space and GC would 328 * make progress, so make the error -EAGAIN so that the below 329 * will commit and re-try. 330 */ 331 if (nospc_retries++ < 2) { 332 dbg_jnl("no space, retry"); 333 err = -EAGAIN; 334 } 335 336 /* 337 * This means that the budgeting is incorrect. We always have 338 * to be able to write to the media, because all operations are 339 * budgeted. Deletions are not budgeted, though, but we reserve 340 * an extra LEB for them. 341 */ 342 } 343 344 if (err != -EAGAIN) 345 goto out; 346 347 /* 348 * -EAGAIN means that the journal is full or too large, or the above 349 * code wants to do one commit. Do this and re-try. 350 */ 351 if (cmt_retries > 128) { 352 /* 353 * This should not happen unless the journal size limitations 354 * are too tough. 355 */ 356 ubifs_err(c, "stuck in space allocation"); 357 err = -ENOSPC; 358 goto out; 359 } else if (cmt_retries > 32) 360 ubifs_warn(c, "too many space allocation re-tries (%d)", 361 cmt_retries); 362 363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 364 cmt_retries); 365 cmt_retries += 1; 366 367 err = ubifs_run_commit(c); 368 if (err) 369 return err; 370 goto again; 371 372 out: 373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", 374 len, jhead, err); 375 if (err == -ENOSPC) { 376 /* This are some budgeting problems, print useful information */ 377 down_write(&c->commit_sem); 378 dump_stack(); 379 ubifs_dump_budg(c, &c->bi); 380 ubifs_dump_lprops(c); 381 cmt_retries = dbg_check_lprops(c); 382 up_write(&c->commit_sem); 383 } 384 return err; 385 } 386 387 /** 388 * release_head - release a journal head. 389 * @c: UBIFS file-system description object 390 * @jhead: journal head 391 * 392 * This function releases journal head @jhead which was locked by 393 * the 'make_reservation()' function. It has to be called after each successful 394 * 'make_reservation()' invocation. 395 */ 396 static inline void release_head(struct ubifs_info *c, int jhead) 397 { 398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 399 } 400 401 /** 402 * finish_reservation - finish a reservation. 403 * @c: UBIFS file-system description object 404 * 405 * This function finishes journal space reservation. It must be called after 406 * 'make_reservation()'. 407 */ 408 static void finish_reservation(struct ubifs_info *c) 409 { 410 up_read(&c->commit_sem); 411 } 412 413 /** 414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 415 * @mode: inode mode 416 */ 417 static int get_dent_type(int mode) 418 { 419 switch (mode & S_IFMT) { 420 case S_IFREG: 421 return UBIFS_ITYPE_REG; 422 case S_IFDIR: 423 return UBIFS_ITYPE_DIR; 424 case S_IFLNK: 425 return UBIFS_ITYPE_LNK; 426 case S_IFBLK: 427 return UBIFS_ITYPE_BLK; 428 case S_IFCHR: 429 return UBIFS_ITYPE_CHR; 430 case S_IFIFO: 431 return UBIFS_ITYPE_FIFO; 432 case S_IFSOCK: 433 return UBIFS_ITYPE_SOCK; 434 default: 435 BUG(); 436 } 437 return 0; 438 } 439 440 /** 441 * pack_inode - pack an inode node. 442 * @c: UBIFS file-system description object 443 * @ino: buffer in which to pack inode node 444 * @inode: inode to pack 445 * @last: indicates the last node of the group 446 */ 447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 448 const struct inode *inode, int last) 449 { 450 int data_len = 0, last_reference = !inode->i_nlink; 451 struct ubifs_inode *ui = ubifs_inode(inode); 452 453 ino->ch.node_type = UBIFS_INO_NODE; 454 ino_key_init_flash(c, &ino->key, inode->i_ino); 455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 462 ino->uid = cpu_to_le32(i_uid_read(inode)); 463 ino->gid = cpu_to_le32(i_gid_read(inode)); 464 ino->mode = cpu_to_le32(inode->i_mode); 465 ino->flags = cpu_to_le32(ui->flags); 466 ino->size = cpu_to_le64(ui->ui_size); 467 ino->nlink = cpu_to_le32(inode->i_nlink); 468 ino->compr_type = cpu_to_le16(ui->compr_type); 469 ino->data_len = cpu_to_le32(ui->data_len); 470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 471 ino->xattr_size = cpu_to_le32(ui->xattr_size); 472 ino->xattr_names = cpu_to_le32(ui->xattr_names); 473 zero_ino_node_unused(ino); 474 475 /* 476 * Drop the attached data if this is a deletion inode, the data is not 477 * needed anymore. 478 */ 479 if (!last_reference) { 480 memcpy(ino->data, ui->data, ui->data_len); 481 data_len = ui->data_len; 482 } 483 484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 485 } 486 487 /** 488 * mark_inode_clean - mark UBIFS inode as clean. 489 * @c: UBIFS file-system description object 490 * @ui: UBIFS inode to mark as clean 491 * 492 * This helper function marks UBIFS inode @ui as clean by cleaning the 493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 495 * just do nothing. 496 */ 497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 498 { 499 if (ui->dirty) 500 ubifs_release_dirty_inode_budget(c, ui); 501 ui->dirty = 0; 502 } 503 504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) 505 { 506 if (c->double_hash) 507 dent->cookie = prandom_u32(); 508 else 509 dent->cookie = 0; 510 } 511 512 /** 513 * ubifs_jnl_update - update inode. 514 * @c: UBIFS file-system description object 515 * @dir: parent inode or host inode in case of extended attributes 516 * @nm: directory entry name 517 * @inode: inode to update 518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 519 * @xent: non-zero if the directory entry is an extended attribute entry 520 * 521 * This function updates an inode by writing a directory entry (or extended 522 * attribute entry), the inode itself, and the parent directory inode (or the 523 * host inode) to the journal. 524 * 525 * The function writes the host inode @dir last, which is important in case of 526 * extended attributes. Indeed, then we guarantee that if the host inode gets 527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 528 * the extended attribute inode gets flushed too. And this is exactly what the 529 * user expects - synchronizing the host inode synchronizes its extended 530 * attributes. Similarly, this guarantees that if @dir is synchronized, its 531 * directory entry corresponding to @nm gets synchronized too. 532 * 533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 534 * function synchronizes the write-buffer. 535 * 536 * This function marks the @dir and @inode inodes as clean and returns zero on 537 * success. In case of failure, a negative error code is returned. 538 */ 539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 540 const struct fscrypt_name *nm, const struct inode *inode, 541 int deletion, int xent) 542 { 543 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 544 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 545 int last_reference = !!(deletion && inode->i_nlink == 0); 546 struct ubifs_inode *ui = ubifs_inode(inode); 547 struct ubifs_inode *host_ui = ubifs_inode(dir); 548 struct ubifs_dent_node *dent; 549 struct ubifs_ino_node *ino; 550 union ubifs_key dent_key, ino_key; 551 552 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 553 554 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 555 ilen = UBIFS_INO_NODE_SZ; 556 557 /* 558 * If the last reference to the inode is being deleted, then there is 559 * no need to attach and write inode data, it is being deleted anyway. 560 * And if the inode is being deleted, no need to synchronize 561 * write-buffer even if the inode is synchronous. 562 */ 563 if (!last_reference) { 564 ilen += ui->data_len; 565 sync |= IS_SYNC(inode); 566 } 567 568 aligned_dlen = ALIGN(dlen, 8); 569 aligned_ilen = ALIGN(ilen, 8); 570 571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 572 /* Make sure to also account for extended attributes */ 573 len += host_ui->data_len; 574 575 dent = kzalloc(len, GFP_NOFS); 576 if (!dent) 577 return -ENOMEM; 578 579 /* Make reservation before allocating sequence numbers */ 580 err = make_reservation(c, BASEHD, len); 581 if (err) 582 goto out_free; 583 584 if (!xent) { 585 dent->ch.node_type = UBIFS_DENT_NODE; 586 if (nm->hash) 587 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); 588 else 589 dent_key_init(c, &dent_key, dir->i_ino, nm); 590 } else { 591 dent->ch.node_type = UBIFS_XENT_NODE; 592 xent_key_init(c, &dent_key, dir->i_ino, nm); 593 } 594 595 key_write(c, &dent_key, dent->key); 596 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 597 dent->type = get_dent_type(inode->i_mode); 598 dent->nlen = cpu_to_le16(fname_len(nm)); 599 memcpy(dent->name, fname_name(nm), fname_len(nm)); 600 dent->name[fname_len(nm)] = '\0'; 601 set_dent_cookie(c, dent); 602 603 zero_dent_node_unused(dent); 604 ubifs_prep_grp_node(c, dent, dlen, 0); 605 606 ino = (void *)dent + aligned_dlen; 607 pack_inode(c, ino, inode, 0); 608 ino = (void *)ino + aligned_ilen; 609 pack_inode(c, ino, dir, 1); 610 611 if (last_reference) { 612 err = ubifs_add_orphan(c, inode->i_ino); 613 if (err) { 614 release_head(c, BASEHD); 615 goto out_finish; 616 } 617 ui->del_cmtno = c->cmt_no; 618 } 619 620 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 621 if (err) 622 goto out_release; 623 if (!sync) { 624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 625 626 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 627 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 628 } 629 release_head(c, BASEHD); 630 kfree(dent); 631 632 if (deletion) { 633 if (nm->hash) 634 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); 635 else 636 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 637 if (err) 638 goto out_ro; 639 err = ubifs_add_dirt(c, lnum, dlen); 640 } else 641 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 642 if (err) 643 goto out_ro; 644 645 /* 646 * Note, we do not remove the inode from TNC even if the last reference 647 * to it has just been deleted, because the inode may still be opened. 648 * Instead, the inode has been added to orphan lists and the orphan 649 * subsystem will take further care about it. 650 */ 651 ino_key_init(c, &ino_key, inode->i_ino); 652 ino_offs = dent_offs + aligned_dlen; 653 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 654 if (err) 655 goto out_ro; 656 657 ino_key_init(c, &ino_key, dir->i_ino); 658 ino_offs += aligned_ilen; 659 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, 660 UBIFS_INO_NODE_SZ + host_ui->data_len); 661 if (err) 662 goto out_ro; 663 664 finish_reservation(c); 665 spin_lock(&ui->ui_lock); 666 ui->synced_i_size = ui->ui_size; 667 spin_unlock(&ui->ui_lock); 668 if (xent) { 669 spin_lock(&host_ui->ui_lock); 670 host_ui->synced_i_size = host_ui->ui_size; 671 spin_unlock(&host_ui->ui_lock); 672 } 673 mark_inode_clean(c, ui); 674 mark_inode_clean(c, host_ui); 675 return 0; 676 677 out_finish: 678 finish_reservation(c); 679 out_free: 680 kfree(dent); 681 return err; 682 683 out_release: 684 release_head(c, BASEHD); 685 kfree(dent); 686 out_ro: 687 ubifs_ro_mode(c, err); 688 if (last_reference) 689 ubifs_delete_orphan(c, inode->i_ino); 690 finish_reservation(c); 691 return err; 692 } 693 694 /** 695 * ubifs_jnl_write_data - write a data node to the journal. 696 * @c: UBIFS file-system description object 697 * @inode: inode the data node belongs to 698 * @key: node key 699 * @buf: buffer to write 700 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 701 * 702 * This function writes a data node to the journal. Returns %0 if the data node 703 * was successfully written, and a negative error code in case of failure. 704 */ 705 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 706 const union ubifs_key *key, const void *buf, int len) 707 { 708 struct ubifs_data_node *data; 709 int err, lnum, offs, compr_type, out_len, compr_len; 710 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 711 struct ubifs_inode *ui = ubifs_inode(inode); 712 bool encrypted = ubifs_crypt_is_encrypted(inode); 713 714 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 715 (unsigned long)key_inum(c, key), key_block(c, key), len); 716 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE); 717 718 if (encrypted) 719 dlen += UBIFS_CIPHER_BLOCK_SIZE; 720 721 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); 722 if (!data) { 723 /* 724 * Fall-back to the write reserve buffer. Note, we might be 725 * currently on the memory reclaim path, when the kernel is 726 * trying to free some memory by writing out dirty pages. The 727 * write reserve buffer helps us to guarantee that we are 728 * always able to write the data. 729 */ 730 allocated = 0; 731 mutex_lock(&c->write_reserve_mutex); 732 data = c->write_reserve_buf; 733 } 734 735 data->ch.node_type = UBIFS_DATA_NODE; 736 key_write(c, key, &data->key); 737 data->size = cpu_to_le32(len); 738 739 if (!(ui->flags & UBIFS_COMPR_FL)) 740 /* Compression is disabled for this inode */ 741 compr_type = UBIFS_COMPR_NONE; 742 else 743 compr_type = ui->compr_type; 744 745 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; 746 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); 747 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE); 748 749 if (encrypted) { 750 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); 751 if (err) 752 goto out_free; 753 754 } else { 755 data->compr_size = 0; 756 out_len = compr_len; 757 } 758 759 dlen = UBIFS_DATA_NODE_SZ + out_len; 760 data->compr_type = cpu_to_le16(compr_type); 761 762 /* Make reservation before allocating sequence numbers */ 763 err = make_reservation(c, DATAHD, dlen); 764 if (err) 765 goto out_free; 766 767 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 768 if (err) 769 goto out_release; 770 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 771 release_head(c, DATAHD); 772 773 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 774 if (err) 775 goto out_ro; 776 777 finish_reservation(c); 778 if (!allocated) 779 mutex_unlock(&c->write_reserve_mutex); 780 else 781 kfree(data); 782 return 0; 783 784 out_release: 785 release_head(c, DATAHD); 786 out_ro: 787 ubifs_ro_mode(c, err); 788 finish_reservation(c); 789 out_free: 790 if (!allocated) 791 mutex_unlock(&c->write_reserve_mutex); 792 else 793 kfree(data); 794 return err; 795 } 796 797 /** 798 * ubifs_jnl_write_inode - flush inode to the journal. 799 * @c: UBIFS file-system description object 800 * @inode: inode to flush 801 * 802 * This function writes inode @inode to the journal. If the inode is 803 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 804 * success and a negative error code in case of failure. 805 */ 806 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 807 { 808 int err, lnum, offs; 809 struct ubifs_ino_node *ino; 810 struct ubifs_inode *ui = ubifs_inode(inode); 811 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 812 813 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 814 815 /* 816 * If the inode is being deleted, do not write the attached data. No 817 * need to synchronize the write-buffer either. 818 */ 819 if (!last_reference) { 820 len += ui->data_len; 821 sync = IS_SYNC(inode); 822 } 823 ino = kmalloc(len, GFP_NOFS); 824 if (!ino) 825 return -ENOMEM; 826 827 /* Make reservation before allocating sequence numbers */ 828 err = make_reservation(c, BASEHD, len); 829 if (err) 830 goto out_free; 831 832 pack_inode(c, ino, inode, 1); 833 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 834 if (err) 835 goto out_release; 836 if (!sync) 837 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 838 inode->i_ino); 839 release_head(c, BASEHD); 840 841 if (last_reference) { 842 err = ubifs_tnc_remove_ino(c, inode->i_ino); 843 if (err) 844 goto out_ro; 845 ubifs_delete_orphan(c, inode->i_ino); 846 err = ubifs_add_dirt(c, lnum, len); 847 } else { 848 union ubifs_key key; 849 850 ino_key_init(c, &key, inode->i_ino); 851 err = ubifs_tnc_add(c, &key, lnum, offs, len); 852 } 853 if (err) 854 goto out_ro; 855 856 finish_reservation(c); 857 spin_lock(&ui->ui_lock); 858 ui->synced_i_size = ui->ui_size; 859 spin_unlock(&ui->ui_lock); 860 kfree(ino); 861 return 0; 862 863 out_release: 864 release_head(c, BASEHD); 865 out_ro: 866 ubifs_ro_mode(c, err); 867 finish_reservation(c); 868 out_free: 869 kfree(ino); 870 return err; 871 } 872 873 /** 874 * ubifs_jnl_delete_inode - delete an inode. 875 * @c: UBIFS file-system description object 876 * @inode: inode to delete 877 * 878 * This function deletes inode @inode which includes removing it from orphans, 879 * deleting it from TNC and, in some cases, writing a deletion inode to the 880 * journal. 881 * 882 * When regular file inodes are unlinked or a directory inode is removed, the 883 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 884 * direntry to the media, and adds the inode to orphans. After this, when the 885 * last reference to this inode has been dropped, this function is called. In 886 * general, it has to write one more deletion inode to the media, because if 887 * a commit happened between 'ubifs_jnl_update()' and 888 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 889 * anymore, and in fact it might not be on the flash anymore, because it might 890 * have been garbage-collected already. And for optimization reasons UBIFS does 891 * not read the orphan area if it has been unmounted cleanly, so it would have 892 * no indication in the journal that there is a deleted inode which has to be 893 * removed from TNC. 894 * 895 * However, if there was no commit between 'ubifs_jnl_update()' and 896 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 897 * inode to the media for the second time. And this is quite a typical case. 898 * 899 * This function returns zero in case of success and a negative error code in 900 * case of failure. 901 */ 902 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 903 { 904 int err; 905 struct ubifs_inode *ui = ubifs_inode(inode); 906 907 ubifs_assert(c, inode->i_nlink == 0); 908 909 if (ui->del_cmtno != c->cmt_no) 910 /* A commit happened for sure */ 911 return ubifs_jnl_write_inode(c, inode); 912 913 down_read(&c->commit_sem); 914 /* 915 * Check commit number again, because the first test has been done 916 * without @c->commit_sem, so a commit might have happened. 917 */ 918 if (ui->del_cmtno != c->cmt_no) { 919 up_read(&c->commit_sem); 920 return ubifs_jnl_write_inode(c, inode); 921 } 922 923 err = ubifs_tnc_remove_ino(c, inode->i_ino); 924 if (err) 925 ubifs_ro_mode(c, err); 926 else 927 ubifs_delete_orphan(c, inode->i_ino); 928 up_read(&c->commit_sem); 929 return err; 930 } 931 932 /** 933 * ubifs_jnl_xrename - cross rename two directory entries. 934 * @c: UBIFS file-system description object 935 * @fst_dir: parent inode of 1st directory entry to exchange 936 * @fst_inode: 1st inode to exchange 937 * @fst_nm: name of 1st inode to exchange 938 * @snd_dir: parent inode of 2nd directory entry to exchange 939 * @snd_inode: 2nd inode to exchange 940 * @snd_nm: name of 2nd inode to exchange 941 * @sync: non-zero if the write-buffer has to be synchronized 942 * 943 * This function implements the cross rename operation which may involve 944 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean 945 * and returns zero on success. In case of failure, a negative error code is 946 * returned. 947 */ 948 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 949 const struct inode *fst_inode, 950 const struct fscrypt_name *fst_nm, 951 const struct inode *snd_dir, 952 const struct inode *snd_inode, 953 const struct fscrypt_name *snd_nm, int sync) 954 { 955 union ubifs_key key; 956 struct ubifs_dent_node *dent1, *dent2; 957 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; 958 int aligned_dlen1, aligned_dlen2; 959 int twoparents = (fst_dir != snd_dir); 960 void *p; 961 962 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0); 963 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0); 964 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); 965 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); 966 967 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; 968 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; 969 aligned_dlen1 = ALIGN(dlen1, 8); 970 aligned_dlen2 = ALIGN(dlen2, 8); 971 972 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); 973 if (twoparents) 974 len += plen; 975 976 dent1 = kzalloc(len, GFP_NOFS); 977 if (!dent1) 978 return -ENOMEM; 979 980 /* Make reservation before allocating sequence numbers */ 981 err = make_reservation(c, BASEHD, len); 982 if (err) 983 goto out_free; 984 985 /* Make new dent for 1st entry */ 986 dent1->ch.node_type = UBIFS_DENT_NODE; 987 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); 988 dent1->inum = cpu_to_le64(fst_inode->i_ino); 989 dent1->type = get_dent_type(fst_inode->i_mode); 990 dent1->nlen = cpu_to_le16(fname_len(snd_nm)); 991 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); 992 dent1->name[fname_len(snd_nm)] = '\0'; 993 set_dent_cookie(c, dent1); 994 zero_dent_node_unused(dent1); 995 ubifs_prep_grp_node(c, dent1, dlen1, 0); 996 997 /* Make new dent for 2nd entry */ 998 dent2 = (void *)dent1 + aligned_dlen1; 999 dent2->ch.node_type = UBIFS_DENT_NODE; 1000 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); 1001 dent2->inum = cpu_to_le64(snd_inode->i_ino); 1002 dent2->type = get_dent_type(snd_inode->i_mode); 1003 dent2->nlen = cpu_to_le16(fname_len(fst_nm)); 1004 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); 1005 dent2->name[fname_len(fst_nm)] = '\0'; 1006 set_dent_cookie(c, dent2); 1007 zero_dent_node_unused(dent2); 1008 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1009 1010 p = (void *)dent2 + aligned_dlen2; 1011 if (!twoparents) 1012 pack_inode(c, p, fst_dir, 1); 1013 else { 1014 pack_inode(c, p, fst_dir, 0); 1015 p += ALIGN(plen, 8); 1016 pack_inode(c, p, snd_dir, 1); 1017 } 1018 1019 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); 1020 if (err) 1021 goto out_release; 1022 if (!sync) { 1023 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1024 1025 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); 1026 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); 1027 } 1028 release_head(c, BASEHD); 1029 1030 dent_key_init(c, &key, snd_dir->i_ino, snd_nm); 1031 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm); 1032 if (err) 1033 goto out_ro; 1034 1035 offs += aligned_dlen1; 1036 dent_key_init(c, &key, fst_dir->i_ino, fst_nm); 1037 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm); 1038 if (err) 1039 goto out_ro; 1040 1041 offs += aligned_dlen2; 1042 1043 ino_key_init(c, &key, fst_dir->i_ino); 1044 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1045 if (err) 1046 goto out_ro; 1047 1048 if (twoparents) { 1049 offs += ALIGN(plen, 8); 1050 ino_key_init(c, &key, snd_dir->i_ino); 1051 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1052 if (err) 1053 goto out_ro; 1054 } 1055 1056 finish_reservation(c); 1057 1058 mark_inode_clean(c, ubifs_inode(fst_dir)); 1059 if (twoparents) 1060 mark_inode_clean(c, ubifs_inode(snd_dir)); 1061 kfree(dent1); 1062 return 0; 1063 1064 out_release: 1065 release_head(c, BASEHD); 1066 out_ro: 1067 ubifs_ro_mode(c, err); 1068 finish_reservation(c); 1069 out_free: 1070 kfree(dent1); 1071 return err; 1072 } 1073 1074 /** 1075 * ubifs_jnl_rename - rename a directory entry. 1076 * @c: UBIFS file-system description object 1077 * @old_dir: parent inode of directory entry to rename 1078 * @old_dentry: directory entry to rename 1079 * @new_dir: parent inode of directory entry to rename 1080 * @new_dentry: new directory entry (or directory entry to replace) 1081 * @sync: non-zero if the write-buffer has to be synchronized 1082 * 1083 * This function implements the re-name operation which may involve writing up 1084 * to 4 inodes and 2 directory entries. It marks the written inodes as clean 1085 * and returns zero on success. In case of failure, a negative error code is 1086 * returned. 1087 */ 1088 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1089 const struct inode *old_inode, 1090 const struct fscrypt_name *old_nm, 1091 const struct inode *new_dir, 1092 const struct inode *new_inode, 1093 const struct fscrypt_name *new_nm, 1094 const struct inode *whiteout, int sync) 1095 { 1096 void *p; 1097 union ubifs_key key; 1098 struct ubifs_dent_node *dent, *dent2; 1099 int err, dlen1, dlen2, ilen, lnum, offs, len; 1100 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 1101 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 1102 int move = (old_dir != new_dir); 1103 struct ubifs_inode *uninitialized_var(new_ui); 1104 1105 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0); 1106 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0); 1107 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 1108 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 1109 1110 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; 1111 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; 1112 if (new_inode) { 1113 new_ui = ubifs_inode(new_inode); 1114 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex)); 1115 ilen = UBIFS_INO_NODE_SZ; 1116 if (!last_reference) 1117 ilen += new_ui->data_len; 1118 } else 1119 ilen = 0; 1120 1121 aligned_dlen1 = ALIGN(dlen1, 8); 1122 aligned_dlen2 = ALIGN(dlen2, 8); 1123 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 1124 if (move) 1125 len += plen; 1126 dent = kzalloc(len, GFP_NOFS); 1127 if (!dent) 1128 return -ENOMEM; 1129 1130 /* Make reservation before allocating sequence numbers */ 1131 err = make_reservation(c, BASEHD, len); 1132 if (err) 1133 goto out_free; 1134 1135 /* Make new dent */ 1136 dent->ch.node_type = UBIFS_DENT_NODE; 1137 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); 1138 dent->inum = cpu_to_le64(old_inode->i_ino); 1139 dent->type = get_dent_type(old_inode->i_mode); 1140 dent->nlen = cpu_to_le16(fname_len(new_nm)); 1141 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); 1142 dent->name[fname_len(new_nm)] = '\0'; 1143 set_dent_cookie(c, dent); 1144 zero_dent_node_unused(dent); 1145 ubifs_prep_grp_node(c, dent, dlen1, 0); 1146 1147 dent2 = (void *)dent + aligned_dlen1; 1148 dent2->ch.node_type = UBIFS_DENT_NODE; 1149 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); 1150 1151 if (whiteout) { 1152 dent2->inum = cpu_to_le64(whiteout->i_ino); 1153 dent2->type = get_dent_type(whiteout->i_mode); 1154 } else { 1155 /* Make deletion dent */ 1156 dent2->inum = 0; 1157 dent2->type = DT_UNKNOWN; 1158 } 1159 dent2->nlen = cpu_to_le16(fname_len(old_nm)); 1160 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); 1161 dent2->name[fname_len(old_nm)] = '\0'; 1162 set_dent_cookie(c, dent2); 1163 zero_dent_node_unused(dent2); 1164 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1165 1166 p = (void *)dent2 + aligned_dlen2; 1167 if (new_inode) { 1168 pack_inode(c, p, new_inode, 0); 1169 p += ALIGN(ilen, 8); 1170 } 1171 1172 if (!move) 1173 pack_inode(c, p, old_dir, 1); 1174 else { 1175 pack_inode(c, p, old_dir, 0); 1176 p += ALIGN(plen, 8); 1177 pack_inode(c, p, new_dir, 1); 1178 } 1179 1180 if (last_reference) { 1181 err = ubifs_add_orphan(c, new_inode->i_ino); 1182 if (err) { 1183 release_head(c, BASEHD); 1184 goto out_finish; 1185 } 1186 new_ui->del_cmtno = c->cmt_no; 1187 } 1188 1189 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1190 if (err) 1191 goto out_release; 1192 if (!sync) { 1193 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1194 1195 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1196 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1197 if (new_inode) 1198 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1199 new_inode->i_ino); 1200 } 1201 release_head(c, BASEHD); 1202 1203 dent_key_init(c, &key, new_dir->i_ino, new_nm); 1204 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm); 1205 if (err) 1206 goto out_ro; 1207 1208 offs += aligned_dlen1; 1209 if (whiteout) { 1210 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1211 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm); 1212 if (err) 1213 goto out_ro; 1214 1215 ubifs_delete_orphan(c, whiteout->i_ino); 1216 } else { 1217 err = ubifs_add_dirt(c, lnum, dlen2); 1218 if (err) 1219 goto out_ro; 1220 1221 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1222 err = ubifs_tnc_remove_nm(c, &key, old_nm); 1223 if (err) 1224 goto out_ro; 1225 } 1226 1227 offs += aligned_dlen2; 1228 if (new_inode) { 1229 ino_key_init(c, &key, new_inode->i_ino); 1230 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1231 if (err) 1232 goto out_ro; 1233 offs += ALIGN(ilen, 8); 1234 } 1235 1236 ino_key_init(c, &key, old_dir->i_ino); 1237 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1238 if (err) 1239 goto out_ro; 1240 1241 if (move) { 1242 offs += ALIGN(plen, 8); 1243 ino_key_init(c, &key, new_dir->i_ino); 1244 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1245 if (err) 1246 goto out_ro; 1247 } 1248 1249 finish_reservation(c); 1250 if (new_inode) { 1251 mark_inode_clean(c, new_ui); 1252 spin_lock(&new_ui->ui_lock); 1253 new_ui->synced_i_size = new_ui->ui_size; 1254 spin_unlock(&new_ui->ui_lock); 1255 } 1256 mark_inode_clean(c, ubifs_inode(old_dir)); 1257 if (move) 1258 mark_inode_clean(c, ubifs_inode(new_dir)); 1259 kfree(dent); 1260 return 0; 1261 1262 out_release: 1263 release_head(c, BASEHD); 1264 out_ro: 1265 ubifs_ro_mode(c, err); 1266 if (last_reference) 1267 ubifs_delete_orphan(c, new_inode->i_ino); 1268 out_finish: 1269 finish_reservation(c); 1270 out_free: 1271 kfree(dent); 1272 return err; 1273 } 1274 1275 /** 1276 * truncate_data_node - re-compress/encrypt a truncated data node. 1277 * @c: UBIFS file-system description object 1278 * @inode: inode which referes to the data node 1279 * @block: data block number 1280 * @dn: data node to re-compress 1281 * @new_len: new length 1282 * 1283 * This function is used when an inode is truncated and the last data node of 1284 * the inode has to be re-compressed/encrypted and re-written. 1285 */ 1286 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, 1287 unsigned int block, struct ubifs_data_node *dn, 1288 int *new_len) 1289 { 1290 void *buf; 1291 int err, dlen, compr_type, out_len, old_dlen; 1292 1293 out_len = le32_to_cpu(dn->size); 1294 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS); 1295 if (!buf) 1296 return -ENOMEM; 1297 1298 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1299 compr_type = le16_to_cpu(dn->compr_type); 1300 1301 if (ubifs_crypt_is_encrypted(inode)) { 1302 err = ubifs_decrypt(inode, dn, &dlen, block); 1303 if (err) 1304 goto out; 1305 } 1306 1307 if (compr_type == UBIFS_COMPR_NONE) { 1308 out_len = *new_len; 1309 } else { 1310 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); 1311 if (err) 1312 goto out; 1313 1314 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); 1315 } 1316 1317 if (ubifs_crypt_is_encrypted(inode)) { 1318 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); 1319 if (err) 1320 goto out; 1321 1322 out_len = old_dlen; 1323 } else { 1324 dn->compr_size = 0; 1325 } 1326 1327 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE); 1328 dn->compr_type = cpu_to_le16(compr_type); 1329 dn->size = cpu_to_le32(*new_len); 1330 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1331 err = 0; 1332 out: 1333 kfree(buf); 1334 return err; 1335 } 1336 1337 /** 1338 * ubifs_jnl_truncate - update the journal for a truncation. 1339 * @c: UBIFS file-system description object 1340 * @inode: inode to truncate 1341 * @old_size: old size 1342 * @new_size: new size 1343 * 1344 * When the size of a file decreases due to truncation, a truncation node is 1345 * written, the journal tree is updated, and the last data block is re-written 1346 * if it has been affected. The inode is also updated in order to synchronize 1347 * the new inode size. 1348 * 1349 * This function marks the inode as clean and returns zero on success. In case 1350 * of failure, a negative error code is returned. 1351 */ 1352 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1353 loff_t old_size, loff_t new_size) 1354 { 1355 union ubifs_key key, to_key; 1356 struct ubifs_ino_node *ino; 1357 struct ubifs_trun_node *trun; 1358 struct ubifs_data_node *uninitialized_var(dn); 1359 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1360 struct ubifs_inode *ui = ubifs_inode(inode); 1361 ino_t inum = inode->i_ino; 1362 unsigned int blk; 1363 1364 dbg_jnl("ino %lu, size %lld -> %lld", 1365 (unsigned long)inum, old_size, new_size); 1366 ubifs_assert(c, !ui->data_len); 1367 ubifs_assert(c, S_ISREG(inode->i_mode)); 1368 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 1369 1370 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1371 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1372 ino = kmalloc(sz, GFP_NOFS); 1373 if (!ino) 1374 return -ENOMEM; 1375 1376 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1377 trun->ch.node_type = UBIFS_TRUN_NODE; 1378 trun->inum = cpu_to_le32(inum); 1379 trun->old_size = cpu_to_le64(old_size); 1380 trun->new_size = cpu_to_le64(new_size); 1381 zero_trun_node_unused(trun); 1382 1383 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1384 if (dlen) { 1385 /* Get last data block so it can be truncated */ 1386 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1387 blk = new_size >> UBIFS_BLOCK_SHIFT; 1388 data_key_init(c, &key, inum, blk); 1389 dbg_jnlk(&key, "last block key "); 1390 err = ubifs_tnc_lookup(c, &key, dn); 1391 if (err == -ENOENT) 1392 dlen = 0; /* Not found (so it is a hole) */ 1393 else if (err) 1394 goto out_free; 1395 else { 1396 int dn_len = le32_to_cpu(dn->size); 1397 1398 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) { 1399 ubifs_err(c, "bad data node (block %u, inode %lu)", 1400 blk, inode->i_ino); 1401 ubifs_dump_node(c, dn); 1402 goto out_free; 1403 } 1404 1405 if (dn_len <= dlen) 1406 dlen = 0; /* Nothing to do */ 1407 else { 1408 err = truncate_data_node(c, inode, blk, dn, &dlen); 1409 if (err) 1410 goto out_free; 1411 } 1412 } 1413 } 1414 1415 /* Must make reservation before allocating sequence numbers */ 1416 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1417 if (dlen) 1418 len += dlen; 1419 err = make_reservation(c, BASEHD, len); 1420 if (err) 1421 goto out_free; 1422 1423 pack_inode(c, ino, inode, 0); 1424 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1425 if (dlen) 1426 ubifs_prep_grp_node(c, dn, dlen, 1); 1427 1428 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1429 if (err) 1430 goto out_release; 1431 if (!sync) 1432 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1433 release_head(c, BASEHD); 1434 1435 if (dlen) { 1436 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1437 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1438 if (err) 1439 goto out_ro; 1440 } 1441 1442 ino_key_init(c, &key, inum); 1443 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1444 if (err) 1445 goto out_ro; 1446 1447 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1448 if (err) 1449 goto out_ro; 1450 1451 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1452 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1453 data_key_init(c, &key, inum, blk); 1454 1455 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1456 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1457 data_key_init(c, &to_key, inum, blk); 1458 1459 err = ubifs_tnc_remove_range(c, &key, &to_key); 1460 if (err) 1461 goto out_ro; 1462 1463 finish_reservation(c); 1464 spin_lock(&ui->ui_lock); 1465 ui->synced_i_size = ui->ui_size; 1466 spin_unlock(&ui->ui_lock); 1467 mark_inode_clean(c, ui); 1468 kfree(ino); 1469 return 0; 1470 1471 out_release: 1472 release_head(c, BASEHD); 1473 out_ro: 1474 ubifs_ro_mode(c, err); 1475 finish_reservation(c); 1476 out_free: 1477 kfree(ino); 1478 return err; 1479 } 1480 1481 1482 /** 1483 * ubifs_jnl_delete_xattr - delete an extended attribute. 1484 * @c: UBIFS file-system description object 1485 * @host: host inode 1486 * @inode: extended attribute inode 1487 * @nm: extended attribute entry name 1488 * 1489 * This function delete an extended attribute which is very similar to 1490 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1491 * updates the target inode. Returns zero in case of success and a negative 1492 * error code in case of failure. 1493 */ 1494 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1495 const struct inode *inode, 1496 const struct fscrypt_name *nm) 1497 { 1498 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1499 struct ubifs_dent_node *xent; 1500 struct ubifs_ino_node *ino; 1501 union ubifs_key xent_key, key1, key2; 1502 int sync = IS_DIRSYNC(host); 1503 struct ubifs_inode *host_ui = ubifs_inode(host); 1504 1505 ubifs_assert(c, inode->i_nlink == 0); 1506 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1507 1508 /* 1509 * Since we are deleting the inode, we do not bother to attach any data 1510 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1511 */ 1512 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 1513 aligned_xlen = ALIGN(xlen, 8); 1514 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1515 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1516 1517 xent = kzalloc(len, GFP_NOFS); 1518 if (!xent) 1519 return -ENOMEM; 1520 1521 /* Make reservation before allocating sequence numbers */ 1522 err = make_reservation(c, BASEHD, len); 1523 if (err) { 1524 kfree(xent); 1525 return err; 1526 } 1527 1528 xent->ch.node_type = UBIFS_XENT_NODE; 1529 xent_key_init(c, &xent_key, host->i_ino, nm); 1530 key_write(c, &xent_key, xent->key); 1531 xent->inum = 0; 1532 xent->type = get_dent_type(inode->i_mode); 1533 xent->nlen = cpu_to_le16(fname_len(nm)); 1534 memcpy(xent->name, fname_name(nm), fname_len(nm)); 1535 xent->name[fname_len(nm)] = '\0'; 1536 zero_dent_node_unused(xent); 1537 ubifs_prep_grp_node(c, xent, xlen, 0); 1538 1539 ino = (void *)xent + aligned_xlen; 1540 pack_inode(c, ino, inode, 0); 1541 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1542 pack_inode(c, ino, host, 1); 1543 1544 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1545 if (!sync && !err) 1546 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1547 release_head(c, BASEHD); 1548 kfree(xent); 1549 if (err) 1550 goto out_ro; 1551 1552 /* Remove the extended attribute entry from TNC */ 1553 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1554 if (err) 1555 goto out_ro; 1556 err = ubifs_add_dirt(c, lnum, xlen); 1557 if (err) 1558 goto out_ro; 1559 1560 /* 1561 * Remove all nodes belonging to the extended attribute inode from TNC. 1562 * Well, there actually must be only one node - the inode itself. 1563 */ 1564 lowest_ino_key(c, &key1, inode->i_ino); 1565 highest_ino_key(c, &key2, inode->i_ino); 1566 err = ubifs_tnc_remove_range(c, &key1, &key2); 1567 if (err) 1568 goto out_ro; 1569 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1570 if (err) 1571 goto out_ro; 1572 1573 /* And update TNC with the new host inode position */ 1574 ino_key_init(c, &key1, host->i_ino); 1575 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1576 if (err) 1577 goto out_ro; 1578 1579 finish_reservation(c); 1580 spin_lock(&host_ui->ui_lock); 1581 host_ui->synced_i_size = host_ui->ui_size; 1582 spin_unlock(&host_ui->ui_lock); 1583 mark_inode_clean(c, host_ui); 1584 return 0; 1585 1586 out_ro: 1587 ubifs_ro_mode(c, err); 1588 finish_reservation(c); 1589 return err; 1590 } 1591 1592 /** 1593 * ubifs_jnl_change_xattr - change an extended attribute. 1594 * @c: UBIFS file-system description object 1595 * @inode: extended attribute inode 1596 * @host: host inode 1597 * 1598 * This function writes the updated version of an extended attribute inode and 1599 * the host inode to the journal (to the base head). The host inode is written 1600 * after the extended attribute inode in order to guarantee that the extended 1601 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1602 * consequently, the write-buffer is synchronized. This function returns zero 1603 * in case of success and a negative error code in case of failure. 1604 */ 1605 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1606 const struct inode *host) 1607 { 1608 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1609 struct ubifs_inode *host_ui = ubifs_inode(host); 1610 struct ubifs_ino_node *ino; 1611 union ubifs_key key; 1612 int sync = IS_DIRSYNC(host); 1613 1614 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1615 ubifs_assert(c, host->i_nlink > 0); 1616 ubifs_assert(c, inode->i_nlink > 0); 1617 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1618 1619 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1620 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1621 aligned_len1 = ALIGN(len1, 8); 1622 aligned_len = aligned_len1 + ALIGN(len2, 8); 1623 1624 ino = kzalloc(aligned_len, GFP_NOFS); 1625 if (!ino) 1626 return -ENOMEM; 1627 1628 /* Make reservation before allocating sequence numbers */ 1629 err = make_reservation(c, BASEHD, aligned_len); 1630 if (err) 1631 goto out_free; 1632 1633 pack_inode(c, ino, host, 0); 1634 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1635 1636 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1637 if (!sync && !err) { 1638 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1639 1640 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1642 } 1643 release_head(c, BASEHD); 1644 if (err) 1645 goto out_ro; 1646 1647 ino_key_init(c, &key, host->i_ino); 1648 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1649 if (err) 1650 goto out_ro; 1651 1652 ino_key_init(c, &key, inode->i_ino); 1653 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1654 if (err) 1655 goto out_ro; 1656 1657 finish_reservation(c); 1658 spin_lock(&host_ui->ui_lock); 1659 host_ui->synced_i_size = host_ui->ui_size; 1660 spin_unlock(&host_ui->ui_lock); 1661 mark_inode_clean(c, host_ui); 1662 kfree(ino); 1663 return 0; 1664 1665 out_ro: 1666 ubifs_ro_mode(c, err); 1667 finish_reservation(c); 1668 out_free: 1669 kfree(ino); 1670 return err; 1671 } 1672 1673