1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 ubifs_assert(!c->ro_media && !c->ro_mount); 126 squeeze = (jhead == BASEHD); 127 again: 128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 129 130 if (c->ro_error) { 131 err = -EROFS; 132 goto out_unlock; 133 } 134 135 avail = c->leb_size - wbuf->offs - wbuf->used; 136 if (wbuf->lnum != -1 && avail >= len) 137 return 0; 138 139 /* 140 * Write buffer wasn't seek'ed or there is no enough space - look for an 141 * LEB with some empty space. 142 */ 143 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 144 if (lnum >= 0) 145 goto out; 146 147 err = lnum; 148 if (err != -ENOSPC) 149 goto out_unlock; 150 151 /* 152 * No free space, we have to run garbage collector to make 153 * some. But the write-buffer mutex has to be unlocked because 154 * GC also takes it. 155 */ 156 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 157 mutex_unlock(&wbuf->io_mutex); 158 159 lnum = ubifs_garbage_collect(c, 0); 160 if (lnum < 0) { 161 err = lnum; 162 if (err != -ENOSPC) 163 return err; 164 165 /* 166 * GC could not make a free LEB. But someone else may 167 * have allocated new bud for this journal head, 168 * because we dropped @wbuf->io_mutex, so try once 169 * again. 170 */ 171 dbg_jnl("GC couldn't make a free LEB for jhead %s", 172 dbg_jhead(jhead)); 173 if (retries++ < 2) { 174 dbg_jnl("retry (%d)", retries); 175 goto again; 176 } 177 178 dbg_jnl("return -ENOSPC"); 179 return err; 180 } 181 182 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 183 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 184 avail = c->leb_size - wbuf->offs - wbuf->used; 185 186 if (wbuf->lnum != -1 && avail >= len) { 187 /* 188 * Someone else has switched the journal head and we have 189 * enough space now. This happens when more than one process is 190 * trying to write to the same journal head at the same time. 191 */ 192 dbg_jnl("return LEB %d back, already have LEB %d:%d", 193 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 194 err = ubifs_return_leb(c, lnum); 195 if (err) 196 goto out_unlock; 197 return 0; 198 } 199 200 offs = 0; 201 202 out: 203 /* 204 * Make sure we synchronize the write-buffer before we add the new bud 205 * to the log. Otherwise we may have a power cut after the log 206 * reference node for the last bud (@lnum) is written but before the 207 * write-buffer data are written to the next-to-last bud 208 * (@wbuf->lnum). And the effect would be that the recovery would see 209 * that there is corruption in the next-to-last bud. 210 */ 211 err = ubifs_wbuf_sync_nolock(wbuf); 212 if (err) 213 goto out_return; 214 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 215 if (err) 216 goto out_return; 217 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype); 218 if (err) 219 goto out_unlock; 220 221 return 0; 222 223 out_unlock: 224 mutex_unlock(&wbuf->io_mutex); 225 return err; 226 227 out_return: 228 /* An error occurred and the LEB has to be returned to lprops */ 229 ubifs_assert(err < 0); 230 err1 = ubifs_return_leb(c, lnum); 231 if (err1 && err == -EAGAIN) 232 /* 233 * Return original error code only if it is not %-EAGAIN, 234 * which is not really an error. Otherwise, return the error 235 * code of 'ubifs_return_leb()'. 236 */ 237 err = err1; 238 mutex_unlock(&wbuf->io_mutex); 239 return err; 240 } 241 242 /** 243 * write_node - write node to a journal head. 244 * @c: UBIFS file-system description object 245 * @jhead: journal head 246 * @node: node to write 247 * @len: node length 248 * @lnum: LEB number written is returned here 249 * @offs: offset written is returned here 250 * 251 * This function writes a node to reserved space of journal head @jhead. 252 * Returns zero in case of success and a negative error code in case of 253 * failure. 254 */ 255 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 256 int *lnum, int *offs) 257 { 258 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 259 260 ubifs_assert(jhead != GCHD); 261 262 *lnum = c->jheads[jhead].wbuf.lnum; 263 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 264 265 dbg_jnl("jhead %s, LEB %d:%d, len %d", 266 dbg_jhead(jhead), *lnum, *offs, len); 267 ubifs_prepare_node(c, node, len, 0); 268 269 return ubifs_wbuf_write_nolock(wbuf, node, len); 270 } 271 272 /** 273 * write_head - write data to a journal head. 274 * @c: UBIFS file-system description object 275 * @jhead: journal head 276 * @buf: buffer to write 277 * @len: length to write 278 * @lnum: LEB number written is returned here 279 * @offs: offset written is returned here 280 * @sync: non-zero if the write-buffer has to by synchronized 281 * 282 * This function is the same as 'write_node()' but it does not assume the 283 * buffer it is writing is a node, so it does not prepare it (which means 284 * initializing common header and calculating CRC). 285 */ 286 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 287 int *lnum, int *offs, int sync) 288 { 289 int err; 290 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 291 292 ubifs_assert(jhead != GCHD); 293 294 *lnum = c->jheads[jhead].wbuf.lnum; 295 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 296 dbg_jnl("jhead %s, LEB %d:%d, len %d", 297 dbg_jhead(jhead), *lnum, *offs, len); 298 299 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 300 if (err) 301 return err; 302 if (sync) 303 err = ubifs_wbuf_sync_nolock(wbuf); 304 return err; 305 } 306 307 /** 308 * make_reservation - reserve journal space. 309 * @c: UBIFS file-system description object 310 * @jhead: journal head 311 * @len: how many bytes to reserve 312 * 313 * This function makes space reservation in journal head @jhead. The function 314 * takes the commit lock and locks the journal head, and the caller has to 315 * unlock the head and finish the reservation with 'finish_reservation()'. 316 * Returns zero in case of success and a negative error code in case of 317 * failure. 318 * 319 * Note, the journal head may be unlocked as soon as the data is written, while 320 * the commit lock has to be released after the data has been added to the 321 * TNC. 322 */ 323 static int make_reservation(struct ubifs_info *c, int jhead, int len) 324 { 325 int err, cmt_retries = 0, nospc_retries = 0; 326 327 again: 328 down_read(&c->commit_sem); 329 err = reserve_space(c, jhead, len); 330 if (!err) 331 return 0; 332 up_read(&c->commit_sem); 333 334 if (err == -ENOSPC) { 335 /* 336 * GC could not make any progress. We should try to commit 337 * once because it could make some dirty space and GC would 338 * make progress, so make the error -EAGAIN so that the below 339 * will commit and re-try. 340 */ 341 if (nospc_retries++ < 2) { 342 dbg_jnl("no space, retry"); 343 err = -EAGAIN; 344 } 345 346 /* 347 * This means that the budgeting is incorrect. We always have 348 * to be able to write to the media, because all operations are 349 * budgeted. Deletions are not budgeted, though, but we reserve 350 * an extra LEB for them. 351 */ 352 } 353 354 if (err != -EAGAIN) 355 goto out; 356 357 /* 358 * -EAGAIN means that the journal is full or too large, or the above 359 * code wants to do one commit. Do this and re-try. 360 */ 361 if (cmt_retries > 128) { 362 /* 363 * This should not happen unless the journal size limitations 364 * are too tough. 365 */ 366 ubifs_err("stuck in space allocation"); 367 err = -ENOSPC; 368 goto out; 369 } else if (cmt_retries > 32) 370 ubifs_warn("too many space allocation re-tries (%d)", 371 cmt_retries); 372 373 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 374 cmt_retries); 375 cmt_retries += 1; 376 377 err = ubifs_run_commit(c); 378 if (err) 379 return err; 380 goto again; 381 382 out: 383 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 384 len, jhead, err); 385 if (err == -ENOSPC) { 386 /* This are some budgeting problems, print useful information */ 387 down_write(&c->commit_sem); 388 dbg_dump_stack(); 389 dbg_dump_budg(c, &c->bi); 390 dbg_dump_lprops(c); 391 cmt_retries = dbg_check_lprops(c); 392 up_write(&c->commit_sem); 393 } 394 return err; 395 } 396 397 /** 398 * release_head - release a journal head. 399 * @c: UBIFS file-system description object 400 * @jhead: journal head 401 * 402 * This function releases journal head @jhead which was locked by 403 * the 'make_reservation()' function. It has to be called after each successful 404 * 'make_reservation()' invocation. 405 */ 406 static inline void release_head(struct ubifs_info *c, int jhead) 407 { 408 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 409 } 410 411 /** 412 * finish_reservation - finish a reservation. 413 * @c: UBIFS file-system description object 414 * 415 * This function finishes journal space reservation. It must be called after 416 * 'make_reservation()'. 417 */ 418 static void finish_reservation(struct ubifs_info *c) 419 { 420 up_read(&c->commit_sem); 421 } 422 423 /** 424 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 425 * @mode: inode mode 426 */ 427 static int get_dent_type(int mode) 428 { 429 switch (mode & S_IFMT) { 430 case S_IFREG: 431 return UBIFS_ITYPE_REG; 432 case S_IFDIR: 433 return UBIFS_ITYPE_DIR; 434 case S_IFLNK: 435 return UBIFS_ITYPE_LNK; 436 case S_IFBLK: 437 return UBIFS_ITYPE_BLK; 438 case S_IFCHR: 439 return UBIFS_ITYPE_CHR; 440 case S_IFIFO: 441 return UBIFS_ITYPE_FIFO; 442 case S_IFSOCK: 443 return UBIFS_ITYPE_SOCK; 444 default: 445 BUG(); 446 } 447 return 0; 448 } 449 450 /** 451 * pack_inode - pack an inode node. 452 * @c: UBIFS file-system description object 453 * @ino: buffer in which to pack inode node 454 * @inode: inode to pack 455 * @last: indicates the last node of the group 456 */ 457 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 458 const struct inode *inode, int last) 459 { 460 int data_len = 0, last_reference = !inode->i_nlink; 461 struct ubifs_inode *ui = ubifs_inode(inode); 462 463 ino->ch.node_type = UBIFS_INO_NODE; 464 ino_key_init_flash(c, &ino->key, inode->i_ino); 465 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 466 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 467 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 468 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 469 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 470 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 471 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 472 ino->uid = cpu_to_le32(inode->i_uid); 473 ino->gid = cpu_to_le32(inode->i_gid); 474 ino->mode = cpu_to_le32(inode->i_mode); 475 ino->flags = cpu_to_le32(ui->flags); 476 ino->size = cpu_to_le64(ui->ui_size); 477 ino->nlink = cpu_to_le32(inode->i_nlink); 478 ino->compr_type = cpu_to_le16(ui->compr_type); 479 ino->data_len = cpu_to_le32(ui->data_len); 480 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 481 ino->xattr_size = cpu_to_le32(ui->xattr_size); 482 ino->xattr_names = cpu_to_le32(ui->xattr_names); 483 zero_ino_node_unused(ino); 484 485 /* 486 * Drop the attached data if this is a deletion inode, the data is not 487 * needed anymore. 488 */ 489 if (!last_reference) { 490 memcpy(ino->data, ui->data, ui->data_len); 491 data_len = ui->data_len; 492 } 493 494 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 495 } 496 497 /** 498 * mark_inode_clean - mark UBIFS inode as clean. 499 * @c: UBIFS file-system description object 500 * @ui: UBIFS inode to mark as clean 501 * 502 * This helper function marks UBIFS inode @ui as clean by cleaning the 503 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 504 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 505 * just do nothing. 506 */ 507 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 508 { 509 if (ui->dirty) 510 ubifs_release_dirty_inode_budget(c, ui); 511 ui->dirty = 0; 512 } 513 514 /** 515 * ubifs_jnl_update - update inode. 516 * @c: UBIFS file-system description object 517 * @dir: parent inode or host inode in case of extended attributes 518 * @nm: directory entry name 519 * @inode: inode to update 520 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 521 * @xent: non-zero if the directory entry is an extended attribute entry 522 * 523 * This function updates an inode by writing a directory entry (or extended 524 * attribute entry), the inode itself, and the parent directory inode (or the 525 * host inode) to the journal. 526 * 527 * The function writes the host inode @dir last, which is important in case of 528 * extended attributes. Indeed, then we guarantee that if the host inode gets 529 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 530 * the extended attribute inode gets flushed too. And this is exactly what the 531 * user expects - synchronizing the host inode synchronizes its extended 532 * attributes. Similarly, this guarantees that if @dir is synchronized, its 533 * directory entry corresponding to @nm gets synchronized too. 534 * 535 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 536 * function synchronizes the write-buffer. 537 * 538 * This function marks the @dir and @inode inodes as clean and returns zero on 539 * success. In case of failure, a negative error code is returned. 540 */ 541 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 542 const struct qstr *nm, const struct inode *inode, 543 int deletion, int xent) 544 { 545 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 546 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 547 int last_reference = !!(deletion && inode->i_nlink == 0); 548 struct ubifs_inode *ui = ubifs_inode(inode); 549 struct ubifs_inode *dir_ui = ubifs_inode(dir); 550 struct ubifs_dent_node *dent; 551 struct ubifs_ino_node *ino; 552 union ubifs_key dent_key, ino_key; 553 554 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 555 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 556 ubifs_assert(dir_ui->data_len == 0); 557 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 558 559 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 560 ilen = UBIFS_INO_NODE_SZ; 561 562 /* 563 * If the last reference to the inode is being deleted, then there is 564 * no need to attach and write inode data, it is being deleted anyway. 565 * And if the inode is being deleted, no need to synchronize 566 * write-buffer even if the inode is synchronous. 567 */ 568 if (!last_reference) { 569 ilen += ui->data_len; 570 sync |= IS_SYNC(inode); 571 } 572 573 aligned_dlen = ALIGN(dlen, 8); 574 aligned_ilen = ALIGN(ilen, 8); 575 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 576 dent = kmalloc(len, GFP_NOFS); 577 if (!dent) 578 return -ENOMEM; 579 580 /* Make reservation before allocating sequence numbers */ 581 err = make_reservation(c, BASEHD, len); 582 if (err) 583 goto out_free; 584 585 if (!xent) { 586 dent->ch.node_type = UBIFS_DENT_NODE; 587 dent_key_init(c, &dent_key, dir->i_ino, nm); 588 } else { 589 dent->ch.node_type = UBIFS_XENT_NODE; 590 xent_key_init(c, &dent_key, dir->i_ino, nm); 591 } 592 593 key_write(c, &dent_key, dent->key); 594 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 595 dent->type = get_dent_type(inode->i_mode); 596 dent->nlen = cpu_to_le16(nm->len); 597 memcpy(dent->name, nm->name, nm->len); 598 dent->name[nm->len] = '\0'; 599 zero_dent_node_unused(dent); 600 ubifs_prep_grp_node(c, dent, dlen, 0); 601 602 ino = (void *)dent + aligned_dlen; 603 pack_inode(c, ino, inode, 0); 604 ino = (void *)ino + aligned_ilen; 605 pack_inode(c, ino, dir, 1); 606 607 if (last_reference) { 608 err = ubifs_add_orphan(c, inode->i_ino); 609 if (err) { 610 release_head(c, BASEHD); 611 goto out_finish; 612 } 613 ui->del_cmtno = c->cmt_no; 614 } 615 616 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 617 if (err) 618 goto out_release; 619 if (!sync) { 620 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 621 622 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 623 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 624 } 625 release_head(c, BASEHD); 626 kfree(dent); 627 628 if (deletion) { 629 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 630 if (err) 631 goto out_ro; 632 err = ubifs_add_dirt(c, lnum, dlen); 633 } else 634 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 635 if (err) 636 goto out_ro; 637 638 /* 639 * Note, we do not remove the inode from TNC even if the last reference 640 * to it has just been deleted, because the inode may still be opened. 641 * Instead, the inode has been added to orphan lists and the orphan 642 * subsystem will take further care about it. 643 */ 644 ino_key_init(c, &ino_key, inode->i_ino); 645 ino_offs = dent_offs + aligned_dlen; 646 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 647 if (err) 648 goto out_ro; 649 650 ino_key_init(c, &ino_key, dir->i_ino); 651 ino_offs += aligned_ilen; 652 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 653 if (err) 654 goto out_ro; 655 656 finish_reservation(c); 657 spin_lock(&ui->ui_lock); 658 ui->synced_i_size = ui->ui_size; 659 spin_unlock(&ui->ui_lock); 660 mark_inode_clean(c, ui); 661 mark_inode_clean(c, dir_ui); 662 return 0; 663 664 out_finish: 665 finish_reservation(c); 666 out_free: 667 kfree(dent); 668 return err; 669 670 out_release: 671 release_head(c, BASEHD); 672 kfree(dent); 673 out_ro: 674 ubifs_ro_mode(c, err); 675 if (last_reference) 676 ubifs_delete_orphan(c, inode->i_ino); 677 finish_reservation(c); 678 return err; 679 } 680 681 /** 682 * ubifs_jnl_write_data - write a data node to the journal. 683 * @c: UBIFS file-system description object 684 * @inode: inode the data node belongs to 685 * @key: node key 686 * @buf: buffer to write 687 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 688 * 689 * This function writes a data node to the journal. Returns %0 if the data node 690 * was successfully written, and a negative error code in case of failure. 691 */ 692 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 693 const union ubifs_key *key, const void *buf, int len) 694 { 695 struct ubifs_data_node *data; 696 int err, lnum, offs, compr_type, out_len; 697 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 698 struct ubifs_inode *ui = ubifs_inode(inode); 699 700 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 701 (unsigned long)key_inum(c, key), key_block(c, key), len); 702 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 703 704 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN); 705 if (!data) { 706 /* 707 * Fall-back to the write reserve buffer. Note, we might be 708 * currently on the memory reclaim path, when the kernel is 709 * trying to free some memory by writing out dirty pages. The 710 * write reserve buffer helps us to guarantee that we are 711 * always able to write the data. 712 */ 713 allocated = 0; 714 mutex_lock(&c->write_reserve_mutex); 715 data = c->write_reserve_buf; 716 } 717 718 data->ch.node_type = UBIFS_DATA_NODE; 719 key_write(c, key, &data->key); 720 data->size = cpu_to_le32(len); 721 zero_data_node_unused(data); 722 723 if (!(ui->flags & UBIFS_COMPR_FL)) 724 /* Compression is disabled for this inode */ 725 compr_type = UBIFS_COMPR_NONE; 726 else 727 compr_type = ui->compr_type; 728 729 out_len = dlen - UBIFS_DATA_NODE_SZ; 730 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 731 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 732 733 dlen = UBIFS_DATA_NODE_SZ + out_len; 734 data->compr_type = cpu_to_le16(compr_type); 735 736 /* Make reservation before allocating sequence numbers */ 737 err = make_reservation(c, DATAHD, dlen); 738 if (err) 739 goto out_free; 740 741 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 742 if (err) 743 goto out_release; 744 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 745 release_head(c, DATAHD); 746 747 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 748 if (err) 749 goto out_ro; 750 751 finish_reservation(c); 752 if (!allocated) 753 mutex_unlock(&c->write_reserve_mutex); 754 else 755 kfree(data); 756 return 0; 757 758 out_release: 759 release_head(c, DATAHD); 760 out_ro: 761 ubifs_ro_mode(c, err); 762 finish_reservation(c); 763 out_free: 764 if (!allocated) 765 mutex_unlock(&c->write_reserve_mutex); 766 else 767 kfree(data); 768 return err; 769 } 770 771 /** 772 * ubifs_jnl_write_inode - flush inode to the journal. 773 * @c: UBIFS file-system description object 774 * @inode: inode to flush 775 * 776 * This function writes inode @inode to the journal. If the inode is 777 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 778 * success and a negative error code in case of failure. 779 */ 780 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 781 { 782 int err, lnum, offs; 783 struct ubifs_ino_node *ino; 784 struct ubifs_inode *ui = ubifs_inode(inode); 785 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 786 787 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 788 789 /* 790 * If the inode is being deleted, do not write the attached data. No 791 * need to synchronize the write-buffer either. 792 */ 793 if (!last_reference) { 794 len += ui->data_len; 795 sync = IS_SYNC(inode); 796 } 797 ino = kmalloc(len, GFP_NOFS); 798 if (!ino) 799 return -ENOMEM; 800 801 /* Make reservation before allocating sequence numbers */ 802 err = make_reservation(c, BASEHD, len); 803 if (err) 804 goto out_free; 805 806 pack_inode(c, ino, inode, 1); 807 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 808 if (err) 809 goto out_release; 810 if (!sync) 811 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 812 inode->i_ino); 813 release_head(c, BASEHD); 814 815 if (last_reference) { 816 err = ubifs_tnc_remove_ino(c, inode->i_ino); 817 if (err) 818 goto out_ro; 819 ubifs_delete_orphan(c, inode->i_ino); 820 err = ubifs_add_dirt(c, lnum, len); 821 } else { 822 union ubifs_key key; 823 824 ino_key_init(c, &key, inode->i_ino); 825 err = ubifs_tnc_add(c, &key, lnum, offs, len); 826 } 827 if (err) 828 goto out_ro; 829 830 finish_reservation(c); 831 spin_lock(&ui->ui_lock); 832 ui->synced_i_size = ui->ui_size; 833 spin_unlock(&ui->ui_lock); 834 kfree(ino); 835 return 0; 836 837 out_release: 838 release_head(c, BASEHD); 839 out_ro: 840 ubifs_ro_mode(c, err); 841 finish_reservation(c); 842 out_free: 843 kfree(ino); 844 return err; 845 } 846 847 /** 848 * ubifs_jnl_delete_inode - delete an inode. 849 * @c: UBIFS file-system description object 850 * @inode: inode to delete 851 * 852 * This function deletes inode @inode which includes removing it from orphans, 853 * deleting it from TNC and, in some cases, writing a deletion inode to the 854 * journal. 855 * 856 * When regular file inodes are unlinked or a directory inode is removed, the 857 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 858 * direntry to the media, and adds the inode to orphans. After this, when the 859 * last reference to this inode has been dropped, this function is called. In 860 * general, it has to write one more deletion inode to the media, because if 861 * a commit happened between 'ubifs_jnl_update()' and 862 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 863 * anymore, and in fact it might not be on the flash anymore, because it might 864 * have been garbage-collected already. And for optimization reasons UBIFS does 865 * not read the orphan area if it has been unmounted cleanly, so it would have 866 * no indication in the journal that there is a deleted inode which has to be 867 * removed from TNC. 868 * 869 * However, if there was no commit between 'ubifs_jnl_update()' and 870 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 871 * inode to the media for the second time. And this is quite a typical case. 872 * 873 * This function returns zero in case of success and a negative error code in 874 * case of failure. 875 */ 876 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 877 { 878 int err; 879 struct ubifs_inode *ui = ubifs_inode(inode); 880 881 ubifs_assert(inode->i_nlink == 0); 882 883 if (ui->del_cmtno != c->cmt_no) 884 /* A commit happened for sure */ 885 return ubifs_jnl_write_inode(c, inode); 886 887 down_read(&c->commit_sem); 888 /* 889 * Check commit number again, because the first test has been done 890 * without @c->commit_sem, so a commit might have happened. 891 */ 892 if (ui->del_cmtno != c->cmt_no) { 893 up_read(&c->commit_sem); 894 return ubifs_jnl_write_inode(c, inode); 895 } 896 897 err = ubifs_tnc_remove_ino(c, inode->i_ino); 898 if (err) 899 ubifs_ro_mode(c, err); 900 else 901 ubifs_delete_orphan(c, inode->i_ino); 902 up_read(&c->commit_sem); 903 return err; 904 } 905 906 /** 907 * ubifs_jnl_rename - rename a directory entry. 908 * @c: UBIFS file-system description object 909 * @old_dir: parent inode of directory entry to rename 910 * @old_dentry: directory entry to rename 911 * @new_dir: parent inode of directory entry to rename 912 * @new_dentry: new directory entry (or directory entry to replace) 913 * @sync: non-zero if the write-buffer has to be synchronized 914 * 915 * This function implements the re-name operation which may involve writing up 916 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 917 * and returns zero on success. In case of failure, a negative error code is 918 * returned. 919 */ 920 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 921 const struct dentry *old_dentry, 922 const struct inode *new_dir, 923 const struct dentry *new_dentry, int sync) 924 { 925 void *p; 926 union ubifs_key key; 927 struct ubifs_dent_node *dent, *dent2; 928 int err, dlen1, dlen2, ilen, lnum, offs, len; 929 const struct inode *old_inode = old_dentry->d_inode; 930 const struct inode *new_inode = new_dentry->d_inode; 931 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 932 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 933 int move = (old_dir != new_dir); 934 struct ubifs_inode *uninitialized_var(new_ui); 935 936 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 937 old_dentry->d_name.len, old_dentry->d_name.name, 938 old_dir->i_ino, new_dentry->d_name.len, 939 new_dentry->d_name.name, new_dir->i_ino); 940 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 941 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 942 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 943 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 944 945 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 946 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 947 if (new_inode) { 948 new_ui = ubifs_inode(new_inode); 949 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 950 ilen = UBIFS_INO_NODE_SZ; 951 if (!last_reference) 952 ilen += new_ui->data_len; 953 } else 954 ilen = 0; 955 956 aligned_dlen1 = ALIGN(dlen1, 8); 957 aligned_dlen2 = ALIGN(dlen2, 8); 958 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 959 if (old_dir != new_dir) 960 len += plen; 961 dent = kmalloc(len, GFP_NOFS); 962 if (!dent) 963 return -ENOMEM; 964 965 /* Make reservation before allocating sequence numbers */ 966 err = make_reservation(c, BASEHD, len); 967 if (err) 968 goto out_free; 969 970 /* Make new dent */ 971 dent->ch.node_type = UBIFS_DENT_NODE; 972 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 973 dent->inum = cpu_to_le64(old_inode->i_ino); 974 dent->type = get_dent_type(old_inode->i_mode); 975 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 976 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 977 dent->name[new_dentry->d_name.len] = '\0'; 978 zero_dent_node_unused(dent); 979 ubifs_prep_grp_node(c, dent, dlen1, 0); 980 981 /* Make deletion dent */ 982 dent2 = (void *)dent + aligned_dlen1; 983 dent2->ch.node_type = UBIFS_DENT_NODE; 984 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 985 &old_dentry->d_name); 986 dent2->inum = 0; 987 dent2->type = DT_UNKNOWN; 988 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 989 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 990 dent2->name[old_dentry->d_name.len] = '\0'; 991 zero_dent_node_unused(dent2); 992 ubifs_prep_grp_node(c, dent2, dlen2, 0); 993 994 p = (void *)dent2 + aligned_dlen2; 995 if (new_inode) { 996 pack_inode(c, p, new_inode, 0); 997 p += ALIGN(ilen, 8); 998 } 999 1000 if (!move) 1001 pack_inode(c, p, old_dir, 1); 1002 else { 1003 pack_inode(c, p, old_dir, 0); 1004 p += ALIGN(plen, 8); 1005 pack_inode(c, p, new_dir, 1); 1006 } 1007 1008 if (last_reference) { 1009 err = ubifs_add_orphan(c, new_inode->i_ino); 1010 if (err) { 1011 release_head(c, BASEHD); 1012 goto out_finish; 1013 } 1014 new_ui->del_cmtno = c->cmt_no; 1015 } 1016 1017 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1018 if (err) 1019 goto out_release; 1020 if (!sync) { 1021 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1022 1023 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1024 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1025 if (new_inode) 1026 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1027 new_inode->i_ino); 1028 } 1029 release_head(c, BASEHD); 1030 1031 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 1032 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 1033 if (err) 1034 goto out_ro; 1035 1036 err = ubifs_add_dirt(c, lnum, dlen2); 1037 if (err) 1038 goto out_ro; 1039 1040 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 1041 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 1042 if (err) 1043 goto out_ro; 1044 1045 offs += aligned_dlen1 + aligned_dlen2; 1046 if (new_inode) { 1047 ino_key_init(c, &key, new_inode->i_ino); 1048 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1049 if (err) 1050 goto out_ro; 1051 offs += ALIGN(ilen, 8); 1052 } 1053 1054 ino_key_init(c, &key, old_dir->i_ino); 1055 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1056 if (err) 1057 goto out_ro; 1058 1059 if (old_dir != new_dir) { 1060 offs += ALIGN(plen, 8); 1061 ino_key_init(c, &key, new_dir->i_ino); 1062 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1063 if (err) 1064 goto out_ro; 1065 } 1066 1067 finish_reservation(c); 1068 if (new_inode) { 1069 mark_inode_clean(c, new_ui); 1070 spin_lock(&new_ui->ui_lock); 1071 new_ui->synced_i_size = new_ui->ui_size; 1072 spin_unlock(&new_ui->ui_lock); 1073 } 1074 mark_inode_clean(c, ubifs_inode(old_dir)); 1075 if (move) 1076 mark_inode_clean(c, ubifs_inode(new_dir)); 1077 kfree(dent); 1078 return 0; 1079 1080 out_release: 1081 release_head(c, BASEHD); 1082 out_ro: 1083 ubifs_ro_mode(c, err); 1084 if (last_reference) 1085 ubifs_delete_orphan(c, new_inode->i_ino); 1086 out_finish: 1087 finish_reservation(c); 1088 out_free: 1089 kfree(dent); 1090 return err; 1091 } 1092 1093 /** 1094 * recomp_data_node - re-compress a truncated data node. 1095 * @dn: data node to re-compress 1096 * @new_len: new length 1097 * 1098 * This function is used when an inode is truncated and the last data node of 1099 * the inode has to be re-compressed and re-written. 1100 */ 1101 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1102 { 1103 void *buf; 1104 int err, len, compr_type, out_len; 1105 1106 out_len = le32_to_cpu(dn->size); 1107 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1108 if (!buf) 1109 return -ENOMEM; 1110 1111 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1112 compr_type = le16_to_cpu(dn->compr_type); 1113 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1114 if (err) 1115 goto out; 1116 1117 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1118 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1119 dn->compr_type = cpu_to_le16(compr_type); 1120 dn->size = cpu_to_le32(*new_len); 1121 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1122 out: 1123 kfree(buf); 1124 return err; 1125 } 1126 1127 /** 1128 * ubifs_jnl_truncate - update the journal for a truncation. 1129 * @c: UBIFS file-system description object 1130 * @inode: inode to truncate 1131 * @old_size: old size 1132 * @new_size: new size 1133 * 1134 * When the size of a file decreases due to truncation, a truncation node is 1135 * written, the journal tree is updated, and the last data block is re-written 1136 * if it has been affected. The inode is also updated in order to synchronize 1137 * the new inode size. 1138 * 1139 * This function marks the inode as clean and returns zero on success. In case 1140 * of failure, a negative error code is returned. 1141 */ 1142 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1143 loff_t old_size, loff_t new_size) 1144 { 1145 union ubifs_key key, to_key; 1146 struct ubifs_ino_node *ino; 1147 struct ubifs_trun_node *trun; 1148 struct ubifs_data_node *uninitialized_var(dn); 1149 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1150 struct ubifs_inode *ui = ubifs_inode(inode); 1151 ino_t inum = inode->i_ino; 1152 unsigned int blk; 1153 1154 dbg_jnl("ino %lu, size %lld -> %lld", 1155 (unsigned long)inum, old_size, new_size); 1156 ubifs_assert(!ui->data_len); 1157 ubifs_assert(S_ISREG(inode->i_mode)); 1158 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1159 1160 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1161 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1162 ino = kmalloc(sz, GFP_NOFS); 1163 if (!ino) 1164 return -ENOMEM; 1165 1166 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1167 trun->ch.node_type = UBIFS_TRUN_NODE; 1168 trun->inum = cpu_to_le32(inum); 1169 trun->old_size = cpu_to_le64(old_size); 1170 trun->new_size = cpu_to_le64(new_size); 1171 zero_trun_node_unused(trun); 1172 1173 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1174 if (dlen) { 1175 /* Get last data block so it can be truncated */ 1176 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1177 blk = new_size >> UBIFS_BLOCK_SHIFT; 1178 data_key_init(c, &key, inum, blk); 1179 dbg_jnlk(&key, "last block key "); 1180 err = ubifs_tnc_lookup(c, &key, dn); 1181 if (err == -ENOENT) 1182 dlen = 0; /* Not found (so it is a hole) */ 1183 else if (err) 1184 goto out_free; 1185 else { 1186 if (le32_to_cpu(dn->size) <= dlen) 1187 dlen = 0; /* Nothing to do */ 1188 else { 1189 int compr_type = le16_to_cpu(dn->compr_type); 1190 1191 if (compr_type != UBIFS_COMPR_NONE) { 1192 err = recomp_data_node(dn, &dlen); 1193 if (err) 1194 goto out_free; 1195 } else { 1196 dn->size = cpu_to_le32(dlen); 1197 dlen += UBIFS_DATA_NODE_SZ; 1198 } 1199 zero_data_node_unused(dn); 1200 } 1201 } 1202 } 1203 1204 /* Must make reservation before allocating sequence numbers */ 1205 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1206 if (dlen) 1207 len += dlen; 1208 err = make_reservation(c, BASEHD, len); 1209 if (err) 1210 goto out_free; 1211 1212 pack_inode(c, ino, inode, 0); 1213 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1214 if (dlen) 1215 ubifs_prep_grp_node(c, dn, dlen, 1); 1216 1217 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1218 if (err) 1219 goto out_release; 1220 if (!sync) 1221 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1222 release_head(c, BASEHD); 1223 1224 if (dlen) { 1225 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1226 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1227 if (err) 1228 goto out_ro; 1229 } 1230 1231 ino_key_init(c, &key, inum); 1232 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1233 if (err) 1234 goto out_ro; 1235 1236 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1237 if (err) 1238 goto out_ro; 1239 1240 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1241 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1242 data_key_init(c, &key, inum, blk); 1243 1244 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1245 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1246 data_key_init(c, &to_key, inum, blk); 1247 1248 err = ubifs_tnc_remove_range(c, &key, &to_key); 1249 if (err) 1250 goto out_ro; 1251 1252 finish_reservation(c); 1253 spin_lock(&ui->ui_lock); 1254 ui->synced_i_size = ui->ui_size; 1255 spin_unlock(&ui->ui_lock); 1256 mark_inode_clean(c, ui); 1257 kfree(ino); 1258 return 0; 1259 1260 out_release: 1261 release_head(c, BASEHD); 1262 out_ro: 1263 ubifs_ro_mode(c, err); 1264 finish_reservation(c); 1265 out_free: 1266 kfree(ino); 1267 return err; 1268 } 1269 1270 #ifdef CONFIG_UBIFS_FS_XATTR 1271 1272 /** 1273 * ubifs_jnl_delete_xattr - delete an extended attribute. 1274 * @c: UBIFS file-system description object 1275 * @host: host inode 1276 * @inode: extended attribute inode 1277 * @nm: extended attribute entry name 1278 * 1279 * This function delete an extended attribute which is very similar to 1280 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1281 * updates the target inode. Returns zero in case of success and a negative 1282 * error code in case of failure. 1283 */ 1284 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1285 const struct inode *inode, const struct qstr *nm) 1286 { 1287 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1288 struct ubifs_dent_node *xent; 1289 struct ubifs_ino_node *ino; 1290 union ubifs_key xent_key, key1, key2; 1291 int sync = IS_DIRSYNC(host); 1292 struct ubifs_inode *host_ui = ubifs_inode(host); 1293 1294 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1295 host->i_ino, inode->i_ino, nm->name, 1296 ubifs_inode(inode)->data_len); 1297 ubifs_assert(inode->i_nlink == 0); 1298 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1299 1300 /* 1301 * Since we are deleting the inode, we do not bother to attach any data 1302 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1303 */ 1304 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1305 aligned_xlen = ALIGN(xlen, 8); 1306 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1307 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1308 1309 xent = kmalloc(len, GFP_NOFS); 1310 if (!xent) 1311 return -ENOMEM; 1312 1313 /* Make reservation before allocating sequence numbers */ 1314 err = make_reservation(c, BASEHD, len); 1315 if (err) { 1316 kfree(xent); 1317 return err; 1318 } 1319 1320 xent->ch.node_type = UBIFS_XENT_NODE; 1321 xent_key_init(c, &xent_key, host->i_ino, nm); 1322 key_write(c, &xent_key, xent->key); 1323 xent->inum = 0; 1324 xent->type = get_dent_type(inode->i_mode); 1325 xent->nlen = cpu_to_le16(nm->len); 1326 memcpy(xent->name, nm->name, nm->len); 1327 xent->name[nm->len] = '\0'; 1328 zero_dent_node_unused(xent); 1329 ubifs_prep_grp_node(c, xent, xlen, 0); 1330 1331 ino = (void *)xent + aligned_xlen; 1332 pack_inode(c, ino, inode, 0); 1333 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1334 pack_inode(c, ino, host, 1); 1335 1336 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1337 if (!sync && !err) 1338 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1339 release_head(c, BASEHD); 1340 kfree(xent); 1341 if (err) 1342 goto out_ro; 1343 1344 /* Remove the extended attribute entry from TNC */ 1345 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1346 if (err) 1347 goto out_ro; 1348 err = ubifs_add_dirt(c, lnum, xlen); 1349 if (err) 1350 goto out_ro; 1351 1352 /* 1353 * Remove all nodes belonging to the extended attribute inode from TNC. 1354 * Well, there actually must be only one node - the inode itself. 1355 */ 1356 lowest_ino_key(c, &key1, inode->i_ino); 1357 highest_ino_key(c, &key2, inode->i_ino); 1358 err = ubifs_tnc_remove_range(c, &key1, &key2); 1359 if (err) 1360 goto out_ro; 1361 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1362 if (err) 1363 goto out_ro; 1364 1365 /* And update TNC with the new host inode position */ 1366 ino_key_init(c, &key1, host->i_ino); 1367 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1368 if (err) 1369 goto out_ro; 1370 1371 finish_reservation(c); 1372 spin_lock(&host_ui->ui_lock); 1373 host_ui->synced_i_size = host_ui->ui_size; 1374 spin_unlock(&host_ui->ui_lock); 1375 mark_inode_clean(c, host_ui); 1376 return 0; 1377 1378 out_ro: 1379 ubifs_ro_mode(c, err); 1380 finish_reservation(c); 1381 return err; 1382 } 1383 1384 /** 1385 * ubifs_jnl_change_xattr - change an extended attribute. 1386 * @c: UBIFS file-system description object 1387 * @inode: extended attribute inode 1388 * @host: host inode 1389 * 1390 * This function writes the updated version of an extended attribute inode and 1391 * the host inode to the journal (to the base head). The host inode is written 1392 * after the extended attribute inode in order to guarantee that the extended 1393 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1394 * consequently, the write-buffer is synchronized. This function returns zero 1395 * in case of success and a negative error code in case of failure. 1396 */ 1397 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1398 const struct inode *host) 1399 { 1400 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1401 struct ubifs_inode *host_ui = ubifs_inode(host); 1402 struct ubifs_ino_node *ino; 1403 union ubifs_key key; 1404 int sync = IS_DIRSYNC(host); 1405 1406 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1407 ubifs_assert(host->i_nlink > 0); 1408 ubifs_assert(inode->i_nlink > 0); 1409 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1410 1411 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1412 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1413 aligned_len1 = ALIGN(len1, 8); 1414 aligned_len = aligned_len1 + ALIGN(len2, 8); 1415 1416 ino = kmalloc(aligned_len, GFP_NOFS); 1417 if (!ino) 1418 return -ENOMEM; 1419 1420 /* Make reservation before allocating sequence numbers */ 1421 err = make_reservation(c, BASEHD, aligned_len); 1422 if (err) 1423 goto out_free; 1424 1425 pack_inode(c, ino, host, 0); 1426 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1427 1428 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1429 if (!sync && !err) { 1430 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1431 1432 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1433 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1434 } 1435 release_head(c, BASEHD); 1436 if (err) 1437 goto out_ro; 1438 1439 ino_key_init(c, &key, host->i_ino); 1440 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1441 if (err) 1442 goto out_ro; 1443 1444 ino_key_init(c, &key, inode->i_ino); 1445 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1446 if (err) 1447 goto out_ro; 1448 1449 finish_reservation(c); 1450 spin_lock(&host_ui->ui_lock); 1451 host_ui->synced_i_size = host_ui->ui_size; 1452 spin_unlock(&host_ui->ui_lock); 1453 mark_inode_clean(c, host_ui); 1454 kfree(ino); 1455 return 0; 1456 1457 out_ro: 1458 ubifs_ro_mode(c, err); 1459 finish_reservation(c); 1460 out_free: 1461 kfree(ino); 1462 return err; 1463 } 1464 1465 #endif /* CONFIG_UBIFS_FS_XATTR */ 1466