1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program; if not, write to the Free Software Foundation, Inc., 51 18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Authors: Artem Bityutskiy (Битюцкий Артём) 21 * Adrian Hunter 22 * Zoltan Sogor 23 */ 24 25 /* 26 * This file implements UBIFS I/O subsystem which provides various I/O-related 27 * helper functions (reading/writing/checking/validating nodes) and implements 28 * write-buffering support. Write buffers help to save space which otherwise 29 * would have been wasted for padding to the nearest minimal I/O unit boundary. 30 * Instead, data first goes to the write-buffer and is flushed when the 31 * buffer is full or when it is not used for some time (by timer). This is 32 * similar to the mechanism is used by JFFS2. 33 * 34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 35 * write size (@c->max_write_size). The latter is the maximum amount of bytes 36 * the underlying flash is able to program at a time, and writing in 37 * @c->max_write_size units should presumably be faster. Obviously, 38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 39 * @c->max_write_size bytes in size for maximum performance. However, when a 40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 41 * boundary) which contains data is written, not the whole write-buffer, 42 * because this is more space-efficient. 43 * 44 * This optimization adds few complications to the code. Indeed, on the one 45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 46 * also means aligning writes at the @c->max_write_size bytes offsets. On the 47 * other hand, we do not want to waste space when synchronizing the write 48 * buffer, so during synchronization we writes in smaller chunks. And this makes 49 * the next write offset to be not aligned to @c->max_write_size bytes. So the 50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 51 * to @c->max_write_size bytes again. We do this by temporarily shrinking 52 * write-buffer size (@wbuf->size). 53 * 54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 55 * mutexes defined inside these objects. Since sometimes upper-level code 56 * has to lock the write-buffer (e.g. journal space reservation code), many 57 * functions related to write-buffers have "nolock" suffix which means that the 58 * caller has to lock the write-buffer before calling this function. 59 * 60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 61 * aligned, UBIFS starts the next node from the aligned address, and the padded 62 * bytes may contain any rubbish. In other words, UBIFS does not put padding 63 * bytes in those small gaps. Common headers of nodes store real node lengths, 64 * not aligned lengths. Indexing nodes also store real lengths in branches. 65 * 66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 67 * uses padding nodes or padding bytes, if the padding node does not fit. 68 * 69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 70 * they are read from the flash media. 71 */ 72 73 #include <linux/crc32.h> 74 #include <linux/slab.h> 75 #include "ubifs.h" 76 77 /** 78 * ubifs_ro_mode - switch UBIFS to read read-only mode. 79 * @c: UBIFS file-system description object 80 * @err: error code which is the reason of switching to R/O mode 81 */ 82 void ubifs_ro_mode(struct ubifs_info *c, int err) 83 { 84 if (!c->ro_error) { 85 c->ro_error = 1; 86 c->no_chk_data_crc = 0; 87 c->vfs_sb->s_flags |= MS_RDONLY; 88 ubifs_warn(c, "switched to read-only mode, error %d", err); 89 dump_stack(); 90 } 91 } 92 93 /* 94 * Below are simple wrappers over UBI I/O functions which include some 95 * additional checks and UBIFS debugging stuff. See corresponding UBI function 96 * for more information. 97 */ 98 99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 100 int len, int even_ebadmsg) 101 { 102 int err; 103 104 err = ubi_read(c->ubi, lnum, buf, offs, len); 105 /* 106 * In case of %-EBADMSG print the error message only if the 107 * @even_ebadmsg is true. 108 */ 109 if (err && (err != -EBADMSG || even_ebadmsg)) { 110 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 111 len, lnum, offs, err); 112 dump_stack(); 113 } 114 return err; 115 } 116 117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 118 int len) 119 { 120 int err; 121 122 ubifs_assert(!c->ro_media && !c->ro_mount); 123 if (c->ro_error) 124 return -EROFS; 125 if (!dbg_is_tst_rcvry(c)) 126 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 127 else 128 err = dbg_leb_write(c, lnum, buf, offs, len); 129 if (err) { 130 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 131 len, lnum, offs, err); 132 ubifs_ro_mode(c, err); 133 dump_stack(); 134 } 135 return err; 136 } 137 138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 139 { 140 int err; 141 142 ubifs_assert(!c->ro_media && !c->ro_mount); 143 if (c->ro_error) 144 return -EROFS; 145 if (!dbg_is_tst_rcvry(c)) 146 err = ubi_leb_change(c->ubi, lnum, buf, len); 147 else 148 err = dbg_leb_change(c, lnum, buf, len); 149 if (err) { 150 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 151 len, lnum, err); 152 ubifs_ro_mode(c, err); 153 dump_stack(); 154 } 155 return err; 156 } 157 158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 159 { 160 int err; 161 162 ubifs_assert(!c->ro_media && !c->ro_mount); 163 if (c->ro_error) 164 return -EROFS; 165 if (!dbg_is_tst_rcvry(c)) 166 err = ubi_leb_unmap(c->ubi, lnum); 167 else 168 err = dbg_leb_unmap(c, lnum); 169 if (err) { 170 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 171 ubifs_ro_mode(c, err); 172 dump_stack(); 173 } 174 return err; 175 } 176 177 int ubifs_leb_map(struct ubifs_info *c, int lnum) 178 { 179 int err; 180 181 ubifs_assert(!c->ro_media && !c->ro_mount); 182 if (c->ro_error) 183 return -EROFS; 184 if (!dbg_is_tst_rcvry(c)) 185 err = ubi_leb_map(c->ubi, lnum); 186 else 187 err = dbg_leb_map(c, lnum); 188 if (err) { 189 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 190 ubifs_ro_mode(c, err); 191 dump_stack(); 192 } 193 return err; 194 } 195 196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 197 { 198 int err; 199 200 err = ubi_is_mapped(c->ubi, lnum); 201 if (err < 0) { 202 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 203 lnum, err); 204 dump_stack(); 205 } 206 return err; 207 } 208 209 /** 210 * ubifs_check_node - check node. 211 * @c: UBIFS file-system description object 212 * @buf: node to check 213 * @lnum: logical eraseblock number 214 * @offs: offset within the logical eraseblock 215 * @quiet: print no messages 216 * @must_chk_crc: indicates whether to always check the CRC 217 * 218 * This function checks node magic number and CRC checksum. This function also 219 * validates node length to prevent UBIFS from becoming crazy when an attacker 220 * feeds it a file-system image with incorrect nodes. For example, too large 221 * node length in the common header could cause UBIFS to read memory outside of 222 * allocated buffer when checking the CRC checksum. 223 * 224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 225 * true, which is controlled by corresponding UBIFS mount option. However, if 226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 229 * is checked. This is because during mounting or re-mounting from R/O mode to 230 * R/W mode we may read journal nodes (when replying the journal or doing the 231 * recovery) and the journal nodes may potentially be corrupted, so checking is 232 * required. 233 * 234 * This function returns zero in case of success and %-EUCLEAN in case of bad 235 * CRC or magic. 236 */ 237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 238 int offs, int quiet, int must_chk_crc) 239 { 240 int err = -EINVAL, type, node_len; 241 uint32_t crc, node_crc, magic; 242 const struct ubifs_ch *ch = buf; 243 244 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 245 ubifs_assert(!(offs & 7) && offs < c->leb_size); 246 247 magic = le32_to_cpu(ch->magic); 248 if (magic != UBIFS_NODE_MAGIC) { 249 if (!quiet) 250 ubifs_err(c, "bad magic %#08x, expected %#08x", 251 magic, UBIFS_NODE_MAGIC); 252 err = -EUCLEAN; 253 goto out; 254 } 255 256 type = ch->node_type; 257 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 258 if (!quiet) 259 ubifs_err(c, "bad node type %d", type); 260 goto out; 261 } 262 263 node_len = le32_to_cpu(ch->len); 264 if (node_len + offs > c->leb_size) 265 goto out_len; 266 267 if (c->ranges[type].max_len == 0) { 268 if (node_len != c->ranges[type].len) 269 goto out_len; 270 } else if (node_len < c->ranges[type].min_len || 271 node_len > c->ranges[type].max_len) 272 goto out_len; 273 274 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 275 !c->remounting_rw && c->no_chk_data_crc) 276 return 0; 277 278 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 279 node_crc = le32_to_cpu(ch->crc); 280 if (crc != node_crc) { 281 if (!quiet) 282 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 283 crc, node_crc); 284 err = -EUCLEAN; 285 goto out; 286 } 287 288 return 0; 289 290 out_len: 291 if (!quiet) 292 ubifs_err(c, "bad node length %d", node_len); 293 out: 294 if (!quiet) { 295 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 296 ubifs_dump_node(c, buf); 297 dump_stack(); 298 } 299 return err; 300 } 301 302 /** 303 * ubifs_pad - pad flash space. 304 * @c: UBIFS file-system description object 305 * @buf: buffer to put padding to 306 * @pad: how many bytes to pad 307 * 308 * The flash media obliges us to write only in chunks of %c->min_io_size and 309 * when we have to write less data we add padding node to the write-buffer and 310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 311 * media is being scanned. If the amount of wasted space is not enough to fit a 312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 313 * pattern (%UBIFS_PADDING_BYTE). 314 * 315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 316 * used. 317 */ 318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 319 { 320 uint32_t crc; 321 322 ubifs_assert(pad >= 0 && !(pad & 7)); 323 324 if (pad >= UBIFS_PAD_NODE_SZ) { 325 struct ubifs_ch *ch = buf; 326 struct ubifs_pad_node *pad_node = buf; 327 328 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 329 ch->node_type = UBIFS_PAD_NODE; 330 ch->group_type = UBIFS_NO_NODE_GROUP; 331 ch->padding[0] = ch->padding[1] = 0; 332 ch->sqnum = 0; 333 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 334 pad -= UBIFS_PAD_NODE_SZ; 335 pad_node->pad_len = cpu_to_le32(pad); 336 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 337 ch->crc = cpu_to_le32(crc); 338 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 339 } else if (pad > 0) 340 /* Too little space, padding node won't fit */ 341 memset(buf, UBIFS_PADDING_BYTE, pad); 342 } 343 344 /** 345 * next_sqnum - get next sequence number. 346 * @c: UBIFS file-system description object 347 */ 348 static unsigned long long next_sqnum(struct ubifs_info *c) 349 { 350 unsigned long long sqnum; 351 352 spin_lock(&c->cnt_lock); 353 sqnum = ++c->max_sqnum; 354 spin_unlock(&c->cnt_lock); 355 356 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 357 if (sqnum >= SQNUM_WATERMARK) { 358 ubifs_err(c, "sequence number overflow %llu, end of life", 359 sqnum); 360 ubifs_ro_mode(c, -EINVAL); 361 } 362 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 363 } 364 365 return sqnum; 366 } 367 368 /** 369 * ubifs_prepare_node - prepare node to be written to flash. 370 * @c: UBIFS file-system description object 371 * @node: the node to pad 372 * @len: node length 373 * @pad: if the buffer has to be padded 374 * 375 * This function prepares node at @node to be written to the media - it 376 * calculates node CRC, fills the common header, and adds proper padding up to 377 * the next minimum I/O unit if @pad is not zero. 378 */ 379 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 380 { 381 uint32_t crc; 382 struct ubifs_ch *ch = node; 383 unsigned long long sqnum = next_sqnum(c); 384 385 ubifs_assert(len >= UBIFS_CH_SZ); 386 387 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 388 ch->len = cpu_to_le32(len); 389 ch->group_type = UBIFS_NO_NODE_GROUP; 390 ch->sqnum = cpu_to_le64(sqnum); 391 ch->padding[0] = ch->padding[1] = 0; 392 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 393 ch->crc = cpu_to_le32(crc); 394 395 if (pad) { 396 len = ALIGN(len, 8); 397 pad = ALIGN(len, c->min_io_size) - len; 398 ubifs_pad(c, node + len, pad); 399 } 400 } 401 402 /** 403 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 404 * @c: UBIFS file-system description object 405 * @node: the node to pad 406 * @len: node length 407 * @last: indicates the last node of the group 408 * 409 * This function prepares node at @node to be written to the media - it 410 * calculates node CRC and fills the common header. 411 */ 412 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 413 { 414 uint32_t crc; 415 struct ubifs_ch *ch = node; 416 unsigned long long sqnum = next_sqnum(c); 417 418 ubifs_assert(len >= UBIFS_CH_SZ); 419 420 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 421 ch->len = cpu_to_le32(len); 422 if (last) 423 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 424 else 425 ch->group_type = UBIFS_IN_NODE_GROUP; 426 ch->sqnum = cpu_to_le64(sqnum); 427 ch->padding[0] = ch->padding[1] = 0; 428 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 429 ch->crc = cpu_to_le32(crc); 430 } 431 432 /** 433 * wbuf_timer_callback - write-buffer timer callback function. 434 * @timer: timer data (write-buffer descriptor) 435 * 436 * This function is called when the write-buffer timer expires. 437 */ 438 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 439 { 440 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 441 442 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 443 wbuf->need_sync = 1; 444 wbuf->c->need_wbuf_sync = 1; 445 ubifs_wake_up_bgt(wbuf->c); 446 return HRTIMER_NORESTART; 447 } 448 449 /** 450 * new_wbuf_timer - start new write-buffer timer. 451 * @wbuf: write-buffer descriptor 452 */ 453 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 454 { 455 ubifs_assert(!hrtimer_active(&wbuf->timer)); 456 457 if (wbuf->no_timer) 458 return; 459 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 460 dbg_jhead(wbuf->jhead), 461 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 462 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 463 USEC_PER_SEC)); 464 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 465 HRTIMER_MODE_REL); 466 } 467 468 /** 469 * cancel_wbuf_timer - cancel write-buffer timer. 470 * @wbuf: write-buffer descriptor 471 */ 472 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 473 { 474 if (wbuf->no_timer) 475 return; 476 wbuf->need_sync = 0; 477 hrtimer_cancel(&wbuf->timer); 478 } 479 480 /** 481 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 482 * @wbuf: write-buffer to synchronize 483 * 484 * This function synchronizes write-buffer @buf and returns zero in case of 485 * success or a negative error code in case of failure. 486 * 487 * Note, although write-buffers are of @c->max_write_size, this function does 488 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 489 * if the write-buffer is only partially filled with data, only the used part 490 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 491 * This way we waste less space. 492 */ 493 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 494 { 495 struct ubifs_info *c = wbuf->c; 496 int err, dirt, sync_len; 497 498 cancel_wbuf_timer_nolock(wbuf); 499 if (!wbuf->used || wbuf->lnum == -1) 500 /* Write-buffer is empty or not seeked */ 501 return 0; 502 503 dbg_io("LEB %d:%d, %d bytes, jhead %s", 504 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 505 ubifs_assert(!(wbuf->avail & 7)); 506 ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size); 507 ubifs_assert(wbuf->size >= c->min_io_size); 508 ubifs_assert(wbuf->size <= c->max_write_size); 509 ubifs_assert(wbuf->size % c->min_io_size == 0); 510 ubifs_assert(!c->ro_media && !c->ro_mount); 511 if (c->leb_size - wbuf->offs >= c->max_write_size) 512 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 513 514 if (c->ro_error) 515 return -EROFS; 516 517 /* 518 * Do not write whole write buffer but write only the minimum necessary 519 * amount of min. I/O units. 520 */ 521 sync_len = ALIGN(wbuf->used, c->min_io_size); 522 dirt = sync_len - wbuf->used; 523 if (dirt) 524 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 525 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 526 if (err) 527 return err; 528 529 spin_lock(&wbuf->lock); 530 wbuf->offs += sync_len; 531 /* 532 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 533 * But our goal is to optimize writes and make sure we write in 534 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 535 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 536 * sure that @wbuf->offs + @wbuf->size is aligned to 537 * @c->max_write_size. This way we make sure that after next 538 * write-buffer flush we are again at the optimal offset (aligned to 539 * @c->max_write_size). 540 */ 541 if (c->leb_size - wbuf->offs < c->max_write_size) 542 wbuf->size = c->leb_size - wbuf->offs; 543 else if (wbuf->offs & (c->max_write_size - 1)) 544 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 545 else 546 wbuf->size = c->max_write_size; 547 wbuf->avail = wbuf->size; 548 wbuf->used = 0; 549 wbuf->next_ino = 0; 550 spin_unlock(&wbuf->lock); 551 552 if (wbuf->sync_callback) 553 err = wbuf->sync_callback(c, wbuf->lnum, 554 c->leb_size - wbuf->offs, dirt); 555 return err; 556 } 557 558 /** 559 * ubifs_wbuf_seek_nolock - seek write-buffer. 560 * @wbuf: write-buffer 561 * @lnum: logical eraseblock number to seek to 562 * @offs: logical eraseblock offset to seek to 563 * 564 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 565 * The write-buffer has to be empty. Returns zero in case of success and a 566 * negative error code in case of failure. 567 */ 568 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 569 { 570 const struct ubifs_info *c = wbuf->c; 571 572 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 573 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 574 ubifs_assert(offs >= 0 && offs <= c->leb_size); 575 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 576 ubifs_assert(lnum != wbuf->lnum); 577 ubifs_assert(wbuf->used == 0); 578 579 spin_lock(&wbuf->lock); 580 wbuf->lnum = lnum; 581 wbuf->offs = offs; 582 if (c->leb_size - wbuf->offs < c->max_write_size) 583 wbuf->size = c->leb_size - wbuf->offs; 584 else if (wbuf->offs & (c->max_write_size - 1)) 585 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 586 else 587 wbuf->size = c->max_write_size; 588 wbuf->avail = wbuf->size; 589 wbuf->used = 0; 590 spin_unlock(&wbuf->lock); 591 592 return 0; 593 } 594 595 /** 596 * ubifs_bg_wbufs_sync - synchronize write-buffers. 597 * @c: UBIFS file-system description object 598 * 599 * This function is called by background thread to synchronize write-buffers. 600 * Returns zero in case of success and a negative error code in case of 601 * failure. 602 */ 603 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 604 { 605 int err, i; 606 607 ubifs_assert(!c->ro_media && !c->ro_mount); 608 if (!c->need_wbuf_sync) 609 return 0; 610 c->need_wbuf_sync = 0; 611 612 if (c->ro_error) { 613 err = -EROFS; 614 goto out_timers; 615 } 616 617 dbg_io("synchronize"); 618 for (i = 0; i < c->jhead_cnt; i++) { 619 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 620 621 cond_resched(); 622 623 /* 624 * If the mutex is locked then wbuf is being changed, so 625 * synchronization is not necessary. 626 */ 627 if (mutex_is_locked(&wbuf->io_mutex)) 628 continue; 629 630 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 631 if (!wbuf->need_sync) { 632 mutex_unlock(&wbuf->io_mutex); 633 continue; 634 } 635 636 err = ubifs_wbuf_sync_nolock(wbuf); 637 mutex_unlock(&wbuf->io_mutex); 638 if (err) { 639 ubifs_err(c, "cannot sync write-buffer, error %d", err); 640 ubifs_ro_mode(c, err); 641 goto out_timers; 642 } 643 } 644 645 return 0; 646 647 out_timers: 648 /* Cancel all timers to prevent repeated errors */ 649 for (i = 0; i < c->jhead_cnt; i++) { 650 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 651 652 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 653 cancel_wbuf_timer_nolock(wbuf); 654 mutex_unlock(&wbuf->io_mutex); 655 } 656 return err; 657 } 658 659 /** 660 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 661 * @wbuf: write-buffer 662 * @buf: node to write 663 * @len: node length 664 * 665 * This function writes data to flash via write-buffer @wbuf. This means that 666 * the last piece of the node won't reach the flash media immediately if it 667 * does not take whole max. write unit (@c->max_write_size). Instead, the node 668 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 669 * because more data are appended to the write-buffer). 670 * 671 * This function returns zero in case of success and a negative error code in 672 * case of failure. If the node cannot be written because there is no more 673 * space in this logical eraseblock, %-ENOSPC is returned. 674 */ 675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 676 { 677 struct ubifs_info *c = wbuf->c; 678 int err, written, n, aligned_len = ALIGN(len, 8); 679 680 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 681 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 682 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 683 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 684 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 685 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 686 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size); 687 ubifs_assert(wbuf->size >= c->min_io_size); 688 ubifs_assert(wbuf->size <= c->max_write_size); 689 ubifs_assert(wbuf->size % c->min_io_size == 0); 690 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 691 ubifs_assert(!c->ro_media && !c->ro_mount); 692 ubifs_assert(!c->space_fixup); 693 if (c->leb_size - wbuf->offs >= c->max_write_size) 694 ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size)); 695 696 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 697 err = -ENOSPC; 698 goto out; 699 } 700 701 cancel_wbuf_timer_nolock(wbuf); 702 703 if (c->ro_error) 704 return -EROFS; 705 706 if (aligned_len <= wbuf->avail) { 707 /* 708 * The node is not very large and fits entirely within 709 * write-buffer. 710 */ 711 memcpy(wbuf->buf + wbuf->used, buf, len); 712 713 if (aligned_len == wbuf->avail) { 714 dbg_io("flush jhead %s wbuf to LEB %d:%d", 715 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 716 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 717 wbuf->offs, wbuf->size); 718 if (err) 719 goto out; 720 721 spin_lock(&wbuf->lock); 722 wbuf->offs += wbuf->size; 723 if (c->leb_size - wbuf->offs >= c->max_write_size) 724 wbuf->size = c->max_write_size; 725 else 726 wbuf->size = c->leb_size - wbuf->offs; 727 wbuf->avail = wbuf->size; 728 wbuf->used = 0; 729 wbuf->next_ino = 0; 730 spin_unlock(&wbuf->lock); 731 } else { 732 spin_lock(&wbuf->lock); 733 wbuf->avail -= aligned_len; 734 wbuf->used += aligned_len; 735 spin_unlock(&wbuf->lock); 736 } 737 738 goto exit; 739 } 740 741 written = 0; 742 743 if (wbuf->used) { 744 /* 745 * The node is large enough and does not fit entirely within 746 * current available space. We have to fill and flush 747 * write-buffer and switch to the next max. write unit. 748 */ 749 dbg_io("flush jhead %s wbuf to LEB %d:%d", 750 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 751 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 752 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 753 wbuf->size); 754 if (err) 755 goto out; 756 757 wbuf->offs += wbuf->size; 758 len -= wbuf->avail; 759 aligned_len -= wbuf->avail; 760 written += wbuf->avail; 761 } else if (wbuf->offs & (c->max_write_size - 1)) { 762 /* 763 * The write-buffer offset is not aligned to 764 * @c->max_write_size and @wbuf->size is less than 765 * @c->max_write_size. Write @wbuf->size bytes to make sure the 766 * following writes are done in optimal @c->max_write_size 767 * chunks. 768 */ 769 dbg_io("write %d bytes to LEB %d:%d", 770 wbuf->size, wbuf->lnum, wbuf->offs); 771 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 772 wbuf->size); 773 if (err) 774 goto out; 775 776 wbuf->offs += wbuf->size; 777 len -= wbuf->size; 778 aligned_len -= wbuf->size; 779 written += wbuf->size; 780 } 781 782 /* 783 * The remaining data may take more whole max. write units, so write the 784 * remains multiple to max. write unit size directly to the flash media. 785 * We align node length to 8-byte boundary because we anyway flash wbuf 786 * if the remaining space is less than 8 bytes. 787 */ 788 n = aligned_len >> c->max_write_shift; 789 if (n) { 790 n <<= c->max_write_shift; 791 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 792 wbuf->offs); 793 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 794 wbuf->offs, n); 795 if (err) 796 goto out; 797 wbuf->offs += n; 798 aligned_len -= n; 799 len -= n; 800 written += n; 801 } 802 803 spin_lock(&wbuf->lock); 804 if (aligned_len) 805 /* 806 * And now we have what's left and what does not take whole 807 * max. write unit, so write it to the write-buffer and we are 808 * done. 809 */ 810 memcpy(wbuf->buf, buf + written, len); 811 812 if (c->leb_size - wbuf->offs >= c->max_write_size) 813 wbuf->size = c->max_write_size; 814 else 815 wbuf->size = c->leb_size - wbuf->offs; 816 wbuf->avail = wbuf->size - aligned_len; 817 wbuf->used = aligned_len; 818 wbuf->next_ino = 0; 819 spin_unlock(&wbuf->lock); 820 821 exit: 822 if (wbuf->sync_callback) { 823 int free = c->leb_size - wbuf->offs - wbuf->used; 824 825 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 826 if (err) 827 goto out; 828 } 829 830 if (wbuf->used) 831 new_wbuf_timer_nolock(wbuf); 832 833 return 0; 834 835 out: 836 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 837 len, wbuf->lnum, wbuf->offs, err); 838 ubifs_dump_node(c, buf); 839 dump_stack(); 840 ubifs_dump_leb(c, wbuf->lnum); 841 return err; 842 } 843 844 /** 845 * ubifs_write_node - write node to the media. 846 * @c: UBIFS file-system description object 847 * @buf: the node to write 848 * @len: node length 849 * @lnum: logical eraseblock number 850 * @offs: offset within the logical eraseblock 851 * 852 * This function automatically fills node magic number, assigns sequence 853 * number, and calculates node CRC checksum. The length of the @buf buffer has 854 * to be aligned to the minimal I/O unit size. This function automatically 855 * appends padding node and padding bytes if needed. Returns zero in case of 856 * success and a negative error code in case of failure. 857 */ 858 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 859 int offs) 860 { 861 int err, buf_len = ALIGN(len, c->min_io_size); 862 863 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 864 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 865 buf_len); 866 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 867 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 868 ubifs_assert(!c->ro_media && !c->ro_mount); 869 ubifs_assert(!c->space_fixup); 870 871 if (c->ro_error) 872 return -EROFS; 873 874 ubifs_prepare_node(c, buf, len, 1); 875 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 876 if (err) 877 ubifs_dump_node(c, buf); 878 879 return err; 880 } 881 882 /** 883 * ubifs_read_node_wbuf - read node from the media or write-buffer. 884 * @wbuf: wbuf to check for un-written data 885 * @buf: buffer to read to 886 * @type: node type 887 * @len: node length 888 * @lnum: logical eraseblock number 889 * @offs: offset within the logical eraseblock 890 * 891 * This function reads a node of known type and length, checks it and stores 892 * in @buf. If the node partially or fully sits in the write-buffer, this 893 * function takes data from the buffer, otherwise it reads the flash media. 894 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 895 * error code in case of failure. 896 */ 897 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 898 int lnum, int offs) 899 { 900 const struct ubifs_info *c = wbuf->c; 901 int err, rlen, overlap; 902 struct ubifs_ch *ch = buf; 903 904 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 905 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 906 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 907 ubifs_assert(!(offs & 7) && offs < c->leb_size); 908 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 909 910 spin_lock(&wbuf->lock); 911 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 912 if (!overlap) { 913 /* We may safely unlock the write-buffer and read the data */ 914 spin_unlock(&wbuf->lock); 915 return ubifs_read_node(c, buf, type, len, lnum, offs); 916 } 917 918 /* Don't read under wbuf */ 919 rlen = wbuf->offs - offs; 920 if (rlen < 0) 921 rlen = 0; 922 923 /* Copy the rest from the write-buffer */ 924 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 925 spin_unlock(&wbuf->lock); 926 927 if (rlen > 0) { 928 /* Read everything that goes before write-buffer */ 929 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 930 if (err && err != -EBADMSG) 931 return err; 932 } 933 934 if (type != ch->node_type) { 935 ubifs_err(c, "bad node type (%d but expected %d)", 936 ch->node_type, type); 937 goto out; 938 } 939 940 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 941 if (err) { 942 ubifs_err(c, "expected node type %d", type); 943 return err; 944 } 945 946 rlen = le32_to_cpu(ch->len); 947 if (rlen != len) { 948 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 949 goto out; 950 } 951 952 return 0; 953 954 out: 955 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 956 ubifs_dump_node(c, buf); 957 dump_stack(); 958 return -EINVAL; 959 } 960 961 /** 962 * ubifs_read_node - read node. 963 * @c: UBIFS file-system description object 964 * @buf: buffer to read to 965 * @type: node type 966 * @len: node length (not aligned) 967 * @lnum: logical eraseblock number 968 * @offs: offset within the logical eraseblock 969 * 970 * This function reads a node of known type and and length, checks it and 971 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 972 * and a negative error code in case of failure. 973 */ 974 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 975 int lnum, int offs) 976 { 977 int err, l; 978 struct ubifs_ch *ch = buf; 979 980 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 981 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 982 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 983 ubifs_assert(!(offs & 7) && offs < c->leb_size); 984 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 985 986 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 987 if (err && err != -EBADMSG) 988 return err; 989 990 if (type != ch->node_type) { 991 ubifs_errc(c, "bad node type (%d but expected %d)", 992 ch->node_type, type); 993 goto out; 994 } 995 996 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 997 if (err) { 998 ubifs_errc(c, "expected node type %d", type); 999 return err; 1000 } 1001 1002 l = le32_to_cpu(ch->len); 1003 if (l != len) { 1004 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1005 goto out; 1006 } 1007 1008 return 0; 1009 1010 out: 1011 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1012 offs, ubi_is_mapped(c->ubi, lnum)); 1013 if (!c->probing) { 1014 ubifs_dump_node(c, buf); 1015 dump_stack(); 1016 } 1017 return -EINVAL; 1018 } 1019 1020 /** 1021 * ubifs_wbuf_init - initialize write-buffer. 1022 * @c: UBIFS file-system description object 1023 * @wbuf: write-buffer to initialize 1024 * 1025 * This function initializes write-buffer. Returns zero in case of success 1026 * %-ENOMEM in case of failure. 1027 */ 1028 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1029 { 1030 size_t size; 1031 1032 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1033 if (!wbuf->buf) 1034 return -ENOMEM; 1035 1036 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1037 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1038 if (!wbuf->inodes) { 1039 kfree(wbuf->buf); 1040 wbuf->buf = NULL; 1041 return -ENOMEM; 1042 } 1043 1044 wbuf->used = 0; 1045 wbuf->lnum = wbuf->offs = -1; 1046 /* 1047 * If the LEB starts at the max. write size aligned address, then 1048 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1049 * set it to something smaller so that it ends at the closest max. 1050 * write size boundary. 1051 */ 1052 size = c->max_write_size - (c->leb_start % c->max_write_size); 1053 wbuf->avail = wbuf->size = size; 1054 wbuf->sync_callback = NULL; 1055 mutex_init(&wbuf->io_mutex); 1056 spin_lock_init(&wbuf->lock); 1057 wbuf->c = c; 1058 wbuf->next_ino = 0; 1059 1060 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1061 wbuf->timer.function = wbuf_timer_callback_nolock; 1062 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 1063 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 1064 wbuf->delta *= 1000000000ULL; 1065 ubifs_assert(wbuf->delta <= ULONG_MAX); 1066 return 0; 1067 } 1068 1069 /** 1070 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1071 * @wbuf: the write-buffer where to add 1072 * @inum: the inode number 1073 * 1074 * This function adds an inode number to the inode array of the write-buffer. 1075 */ 1076 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1077 { 1078 if (!wbuf->buf) 1079 /* NOR flash or something similar */ 1080 return; 1081 1082 spin_lock(&wbuf->lock); 1083 if (wbuf->used) 1084 wbuf->inodes[wbuf->next_ino++] = inum; 1085 spin_unlock(&wbuf->lock); 1086 } 1087 1088 /** 1089 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1090 * @wbuf: the write-buffer 1091 * @inum: the inode number 1092 * 1093 * This function returns with %1 if the write-buffer contains some data from the 1094 * given inode otherwise it returns with %0. 1095 */ 1096 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1097 { 1098 int i, ret = 0; 1099 1100 spin_lock(&wbuf->lock); 1101 for (i = 0; i < wbuf->next_ino; i++) 1102 if (inum == wbuf->inodes[i]) { 1103 ret = 1; 1104 break; 1105 } 1106 spin_unlock(&wbuf->lock); 1107 1108 return ret; 1109 } 1110 1111 /** 1112 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1113 * @c: UBIFS file-system description object 1114 * @inode: inode to synchronize 1115 * 1116 * This function synchronizes write-buffers which contain nodes belonging to 1117 * @inode. Returns zero in case of success and a negative error code in case of 1118 * failure. 1119 */ 1120 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1121 { 1122 int i, err = 0; 1123 1124 for (i = 0; i < c->jhead_cnt; i++) { 1125 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1126 1127 if (i == GCHD) 1128 /* 1129 * GC head is special, do not look at it. Even if the 1130 * head contains something related to this inode, it is 1131 * a _copy_ of corresponding on-flash node which sits 1132 * somewhere else. 1133 */ 1134 continue; 1135 1136 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1137 continue; 1138 1139 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1140 if (wbuf_has_ino(wbuf, inode->i_ino)) 1141 err = ubifs_wbuf_sync_nolock(wbuf); 1142 mutex_unlock(&wbuf->io_mutex); 1143 1144 if (err) { 1145 ubifs_ro_mode(c, err); 1146 return err; 1147 } 1148 } 1149 return 0; 1150 } 1151