xref: /openbmc/linux/fs/ubifs/io.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35  * write size (@c->max_write_size). The latter is the maximum amount of bytes
36  * the underlying flash is able to program at a time, and writing in
37  * @c->max_write_size units should presumably be faster. Obviously,
38  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39  * @c->max_write_size bytes in size for maximum performance. However, when a
40  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41  * boundary) which contains data is written, not the whole write-buffer,
42  * because this is more space-efficient.
43  *
44  * This optimization adds few complications to the code. Indeed, on the one
45  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46  * also means aligning writes at the @c->max_write_size bytes offsets. On the
47  * other hand, we do not want to waste space when synchronizing the write
48  * buffer, so during synchronization we writes in smaller chunks. And this makes
49  * the next write offset to be not aligned to @c->max_write_size bytes. So the
50  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51  * to @c->max_write_size bytes again. We do this by temporarily shrinking
52  * write-buffer size (@wbuf->size).
53  *
54  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55  * mutexes defined inside these objects. Since sometimes upper-level code
56  * has to lock the write-buffer (e.g. journal space reservation code), many
57  * functions related to write-buffers have "nolock" suffix which means that the
58  * caller has to lock the write-buffer before calling this function.
59  *
60  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61  * aligned, UBIFS starts the next node from the aligned address, and the padded
62  * bytes may contain any rubbish. In other words, UBIFS does not put padding
63  * bytes in those small gaps. Common headers of nodes store real node lengths,
64  * not aligned lengths. Indexing nodes also store real lengths in branches.
65  *
66  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67  * uses padding nodes or padding bytes, if the padding node does not fit.
68  *
69  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70  * they are read from the flash media.
71  */
72 
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76 
77 /**
78  * ubifs_ro_mode - switch UBIFS to read read-only mode.
79  * @c: UBIFS file-system description object
80  * @err: error code which is the reason of switching to R/O mode
81  */
82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84 	if (!c->ro_error) {
85 		c->ro_error = 1;
86 		c->no_chk_data_crc = 0;
87 		c->vfs_sb->s_flags |= MS_RDONLY;
88 		ubifs_warn(c, "switched to read-only mode, error %d", err);
89 		dump_stack();
90 	}
91 }
92 
93 /*
94  * Below are simple wrappers over UBI I/O functions which include some
95  * additional checks and UBIFS debugging stuff. See corresponding UBI function
96  * for more information.
97  */
98 
99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 		   int len, int even_ebadmsg)
101 {
102 	int err;
103 
104 	err = ubi_read(c->ubi, lnum, buf, offs, len);
105 	/*
106 	 * In case of %-EBADMSG print the error message only if the
107 	 * @even_ebadmsg is true.
108 	 */
109 	if (err && (err != -EBADMSG || even_ebadmsg)) {
110 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111 			  len, lnum, offs, err);
112 		dump_stack();
113 	}
114 	return err;
115 }
116 
117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 		    int len)
119 {
120 	int err;
121 
122 	ubifs_assert(!c->ro_media && !c->ro_mount);
123 	if (c->ro_error)
124 		return -EROFS;
125 	if (!dbg_is_tst_rcvry(c))
126 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127 	else
128 		err = dbg_leb_write(c, lnum, buf, offs, len);
129 	if (err) {
130 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131 			  len, lnum, offs, err);
132 		ubifs_ro_mode(c, err);
133 		dump_stack();
134 	}
135 	return err;
136 }
137 
138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140 	int err;
141 
142 	ubifs_assert(!c->ro_media && !c->ro_mount);
143 	if (c->ro_error)
144 		return -EROFS;
145 	if (!dbg_is_tst_rcvry(c))
146 		err = ubi_leb_change(c->ubi, lnum, buf, len);
147 	else
148 		err = dbg_leb_change(c, lnum, buf, len);
149 	if (err) {
150 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151 			  len, lnum, err);
152 		ubifs_ro_mode(c, err);
153 		dump_stack();
154 	}
155 	return err;
156 }
157 
158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160 	int err;
161 
162 	ubifs_assert(!c->ro_media && !c->ro_mount);
163 	if (c->ro_error)
164 		return -EROFS;
165 	if (!dbg_is_tst_rcvry(c))
166 		err = ubi_leb_unmap(c->ubi, lnum);
167 	else
168 		err = dbg_leb_unmap(c, lnum);
169 	if (err) {
170 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 		ubifs_ro_mode(c, err);
172 		dump_stack();
173 	}
174 	return err;
175 }
176 
177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 	int err;
180 
181 	ubifs_assert(!c->ro_media && !c->ro_mount);
182 	if (c->ro_error)
183 		return -EROFS;
184 	if (!dbg_is_tst_rcvry(c))
185 		err = ubi_leb_map(c->ubi, lnum);
186 	else
187 		err = dbg_leb_map(c, lnum);
188 	if (err) {
189 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190 		ubifs_ro_mode(c, err);
191 		dump_stack();
192 	}
193 	return err;
194 }
195 
196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198 	int err;
199 
200 	err = ubi_is_mapped(c->ubi, lnum);
201 	if (err < 0) {
202 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203 			  lnum, err);
204 		dump_stack();
205 	}
206 	return err;
207 }
208 
209 /**
210  * ubifs_check_node - check node.
211  * @c: UBIFS file-system description object
212  * @buf: node to check
213  * @lnum: logical eraseblock number
214  * @offs: offset within the logical eraseblock
215  * @quiet: print no messages
216  * @must_chk_crc: indicates whether to always check the CRC
217  *
218  * This function checks node magic number and CRC checksum. This function also
219  * validates node length to prevent UBIFS from becoming crazy when an attacker
220  * feeds it a file-system image with incorrect nodes. For example, too large
221  * node length in the common header could cause UBIFS to read memory outside of
222  * allocated buffer when checking the CRC checksum.
223  *
224  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225  * true, which is controlled by corresponding UBIFS mount option. However, if
226  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229  * is checked. This is because during mounting or re-mounting from R/O mode to
230  * R/W mode we may read journal nodes (when replying the journal or doing the
231  * recovery) and the journal nodes may potentially be corrupted, so checking is
232  * required.
233  *
234  * This function returns zero in case of success and %-EUCLEAN in case of bad
235  * CRC or magic.
236  */
237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238 		     int offs, int quiet, int must_chk_crc)
239 {
240 	int err = -EINVAL, type, node_len;
241 	uint32_t crc, node_crc, magic;
242 	const struct ubifs_ch *ch = buf;
243 
244 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
246 
247 	magic = le32_to_cpu(ch->magic);
248 	if (magic != UBIFS_NODE_MAGIC) {
249 		if (!quiet)
250 			ubifs_err(c, "bad magic %#08x, expected %#08x",
251 				  magic, UBIFS_NODE_MAGIC);
252 		err = -EUCLEAN;
253 		goto out;
254 	}
255 
256 	type = ch->node_type;
257 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258 		if (!quiet)
259 			ubifs_err(c, "bad node type %d", type);
260 		goto out;
261 	}
262 
263 	node_len = le32_to_cpu(ch->len);
264 	if (node_len + offs > c->leb_size)
265 		goto out_len;
266 
267 	if (c->ranges[type].max_len == 0) {
268 		if (node_len != c->ranges[type].len)
269 			goto out_len;
270 	} else if (node_len < c->ranges[type].min_len ||
271 		   node_len > c->ranges[type].max_len)
272 		goto out_len;
273 
274 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275 	    !c->remounting_rw && c->no_chk_data_crc)
276 		return 0;
277 
278 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279 	node_crc = le32_to_cpu(ch->crc);
280 	if (crc != node_crc) {
281 		if (!quiet)
282 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283 				  crc, node_crc);
284 		err = -EUCLEAN;
285 		goto out;
286 	}
287 
288 	return 0;
289 
290 out_len:
291 	if (!quiet)
292 		ubifs_err(c, "bad node length %d", node_len);
293 out:
294 	if (!quiet) {
295 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
296 		ubifs_dump_node(c, buf);
297 		dump_stack();
298 	}
299 	return err;
300 }
301 
302 /**
303  * ubifs_pad - pad flash space.
304  * @c: UBIFS file-system description object
305  * @buf: buffer to put padding to
306  * @pad: how many bytes to pad
307  *
308  * The flash media obliges us to write only in chunks of %c->min_io_size and
309  * when we have to write less data we add padding node to the write-buffer and
310  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311  * media is being scanned. If the amount of wasted space is not enough to fit a
312  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313  * pattern (%UBIFS_PADDING_BYTE).
314  *
315  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316  * used.
317  */
318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320 	uint32_t crc;
321 
322 	ubifs_assert(pad >= 0 && !(pad & 7));
323 
324 	if (pad >= UBIFS_PAD_NODE_SZ) {
325 		struct ubifs_ch *ch = buf;
326 		struct ubifs_pad_node *pad_node = buf;
327 
328 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329 		ch->node_type = UBIFS_PAD_NODE;
330 		ch->group_type = UBIFS_NO_NODE_GROUP;
331 		ch->padding[0] = ch->padding[1] = 0;
332 		ch->sqnum = 0;
333 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334 		pad -= UBIFS_PAD_NODE_SZ;
335 		pad_node->pad_len = cpu_to_le32(pad);
336 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337 		ch->crc = cpu_to_le32(crc);
338 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339 	} else if (pad > 0)
340 		/* Too little space, padding node won't fit */
341 		memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343 
344 /**
345  * next_sqnum - get next sequence number.
346  * @c: UBIFS file-system description object
347  */
348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350 	unsigned long long sqnum;
351 
352 	spin_lock(&c->cnt_lock);
353 	sqnum = ++c->max_sqnum;
354 	spin_unlock(&c->cnt_lock);
355 
356 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357 		if (sqnum >= SQNUM_WATERMARK) {
358 			ubifs_err(c, "sequence number overflow %llu, end of life",
359 				  sqnum);
360 			ubifs_ro_mode(c, -EINVAL);
361 		}
362 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
363 	}
364 
365 	return sqnum;
366 }
367 
368 /**
369  * ubifs_prepare_node - prepare node to be written to flash.
370  * @c: UBIFS file-system description object
371  * @node: the node to pad
372  * @len: node length
373  * @pad: if the buffer has to be padded
374  *
375  * This function prepares node at @node to be written to the media - it
376  * calculates node CRC, fills the common header, and adds proper padding up to
377  * the next minimum I/O unit if @pad is not zero.
378  */
379 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
380 {
381 	uint32_t crc;
382 	struct ubifs_ch *ch = node;
383 	unsigned long long sqnum = next_sqnum(c);
384 
385 	ubifs_assert(len >= UBIFS_CH_SZ);
386 
387 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
388 	ch->len = cpu_to_le32(len);
389 	ch->group_type = UBIFS_NO_NODE_GROUP;
390 	ch->sqnum = cpu_to_le64(sqnum);
391 	ch->padding[0] = ch->padding[1] = 0;
392 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
393 	ch->crc = cpu_to_le32(crc);
394 
395 	if (pad) {
396 		len = ALIGN(len, 8);
397 		pad = ALIGN(len, c->min_io_size) - len;
398 		ubifs_pad(c, node + len, pad);
399 	}
400 }
401 
402 /**
403  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404  * @c: UBIFS file-system description object
405  * @node: the node to pad
406  * @len: node length
407  * @last: indicates the last node of the group
408  *
409  * This function prepares node at @node to be written to the media - it
410  * calculates node CRC and fills the common header.
411  */
412 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
413 {
414 	uint32_t crc;
415 	struct ubifs_ch *ch = node;
416 	unsigned long long sqnum = next_sqnum(c);
417 
418 	ubifs_assert(len >= UBIFS_CH_SZ);
419 
420 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
421 	ch->len = cpu_to_le32(len);
422 	if (last)
423 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
424 	else
425 		ch->group_type = UBIFS_IN_NODE_GROUP;
426 	ch->sqnum = cpu_to_le64(sqnum);
427 	ch->padding[0] = ch->padding[1] = 0;
428 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
429 	ch->crc = cpu_to_le32(crc);
430 }
431 
432 /**
433  * wbuf_timer_callback - write-buffer timer callback function.
434  * @timer: timer data (write-buffer descriptor)
435  *
436  * This function is called when the write-buffer timer expires.
437  */
438 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
439 {
440 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
441 
442 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
443 	wbuf->need_sync = 1;
444 	wbuf->c->need_wbuf_sync = 1;
445 	ubifs_wake_up_bgt(wbuf->c);
446 	return HRTIMER_NORESTART;
447 }
448 
449 /**
450  * new_wbuf_timer - start new write-buffer timer.
451  * @wbuf: write-buffer descriptor
452  */
453 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
454 {
455 	ubifs_assert(!hrtimer_active(&wbuf->timer));
456 
457 	if (wbuf->no_timer)
458 		return;
459 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
460 	       dbg_jhead(wbuf->jhead),
461 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
462 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
463 		       USEC_PER_SEC));
464 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
465 			       HRTIMER_MODE_REL);
466 }
467 
468 /**
469  * cancel_wbuf_timer - cancel write-buffer timer.
470  * @wbuf: write-buffer descriptor
471  */
472 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
473 {
474 	if (wbuf->no_timer)
475 		return;
476 	wbuf->need_sync = 0;
477 	hrtimer_cancel(&wbuf->timer);
478 }
479 
480 /**
481  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
482  * @wbuf: write-buffer to synchronize
483  *
484  * This function synchronizes write-buffer @buf and returns zero in case of
485  * success or a negative error code in case of failure.
486  *
487  * Note, although write-buffers are of @c->max_write_size, this function does
488  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
489  * if the write-buffer is only partially filled with data, only the used part
490  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
491  * This way we waste less space.
492  */
493 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
494 {
495 	struct ubifs_info *c = wbuf->c;
496 	int err, dirt, sync_len;
497 
498 	cancel_wbuf_timer_nolock(wbuf);
499 	if (!wbuf->used || wbuf->lnum == -1)
500 		/* Write-buffer is empty or not seeked */
501 		return 0;
502 
503 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
504 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
505 	ubifs_assert(!(wbuf->avail & 7));
506 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
507 	ubifs_assert(wbuf->size >= c->min_io_size);
508 	ubifs_assert(wbuf->size <= c->max_write_size);
509 	ubifs_assert(wbuf->size % c->min_io_size == 0);
510 	ubifs_assert(!c->ro_media && !c->ro_mount);
511 	if (c->leb_size - wbuf->offs >= c->max_write_size)
512 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
513 
514 	if (c->ro_error)
515 		return -EROFS;
516 
517 	/*
518 	 * Do not write whole write buffer but write only the minimum necessary
519 	 * amount of min. I/O units.
520 	 */
521 	sync_len = ALIGN(wbuf->used, c->min_io_size);
522 	dirt = sync_len - wbuf->used;
523 	if (dirt)
524 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
525 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
526 	if (err)
527 		return err;
528 
529 	spin_lock(&wbuf->lock);
530 	wbuf->offs += sync_len;
531 	/*
532 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
533 	 * But our goal is to optimize writes and make sure we write in
534 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
535 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
536 	 * sure that @wbuf->offs + @wbuf->size is aligned to
537 	 * @c->max_write_size. This way we make sure that after next
538 	 * write-buffer flush we are again at the optimal offset (aligned to
539 	 * @c->max_write_size).
540 	 */
541 	if (c->leb_size - wbuf->offs < c->max_write_size)
542 		wbuf->size = c->leb_size - wbuf->offs;
543 	else if (wbuf->offs & (c->max_write_size - 1))
544 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
545 	else
546 		wbuf->size = c->max_write_size;
547 	wbuf->avail = wbuf->size;
548 	wbuf->used = 0;
549 	wbuf->next_ino = 0;
550 	spin_unlock(&wbuf->lock);
551 
552 	if (wbuf->sync_callback)
553 		err = wbuf->sync_callback(c, wbuf->lnum,
554 					  c->leb_size - wbuf->offs, dirt);
555 	return err;
556 }
557 
558 /**
559  * ubifs_wbuf_seek_nolock - seek write-buffer.
560  * @wbuf: write-buffer
561  * @lnum: logical eraseblock number to seek to
562  * @offs: logical eraseblock offset to seek to
563  *
564  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
565  * The write-buffer has to be empty. Returns zero in case of success and a
566  * negative error code in case of failure.
567  */
568 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
569 {
570 	const struct ubifs_info *c = wbuf->c;
571 
572 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
573 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
574 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
575 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
576 	ubifs_assert(lnum != wbuf->lnum);
577 	ubifs_assert(wbuf->used == 0);
578 
579 	spin_lock(&wbuf->lock);
580 	wbuf->lnum = lnum;
581 	wbuf->offs = offs;
582 	if (c->leb_size - wbuf->offs < c->max_write_size)
583 		wbuf->size = c->leb_size - wbuf->offs;
584 	else if (wbuf->offs & (c->max_write_size - 1))
585 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
586 	else
587 		wbuf->size = c->max_write_size;
588 	wbuf->avail = wbuf->size;
589 	wbuf->used = 0;
590 	spin_unlock(&wbuf->lock);
591 
592 	return 0;
593 }
594 
595 /**
596  * ubifs_bg_wbufs_sync - synchronize write-buffers.
597  * @c: UBIFS file-system description object
598  *
599  * This function is called by background thread to synchronize write-buffers.
600  * Returns zero in case of success and a negative error code in case of
601  * failure.
602  */
603 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
604 {
605 	int err, i;
606 
607 	ubifs_assert(!c->ro_media && !c->ro_mount);
608 	if (!c->need_wbuf_sync)
609 		return 0;
610 	c->need_wbuf_sync = 0;
611 
612 	if (c->ro_error) {
613 		err = -EROFS;
614 		goto out_timers;
615 	}
616 
617 	dbg_io("synchronize");
618 	for (i = 0; i < c->jhead_cnt; i++) {
619 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
620 
621 		cond_resched();
622 
623 		/*
624 		 * If the mutex is locked then wbuf is being changed, so
625 		 * synchronization is not necessary.
626 		 */
627 		if (mutex_is_locked(&wbuf->io_mutex))
628 			continue;
629 
630 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
631 		if (!wbuf->need_sync) {
632 			mutex_unlock(&wbuf->io_mutex);
633 			continue;
634 		}
635 
636 		err = ubifs_wbuf_sync_nolock(wbuf);
637 		mutex_unlock(&wbuf->io_mutex);
638 		if (err) {
639 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
640 			ubifs_ro_mode(c, err);
641 			goto out_timers;
642 		}
643 	}
644 
645 	return 0;
646 
647 out_timers:
648 	/* Cancel all timers to prevent repeated errors */
649 	for (i = 0; i < c->jhead_cnt; i++) {
650 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
651 
652 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
653 		cancel_wbuf_timer_nolock(wbuf);
654 		mutex_unlock(&wbuf->io_mutex);
655 	}
656 	return err;
657 }
658 
659 /**
660  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
661  * @wbuf: write-buffer
662  * @buf: node to write
663  * @len: node length
664  *
665  * This function writes data to flash via write-buffer @wbuf. This means that
666  * the last piece of the node won't reach the flash media immediately if it
667  * does not take whole max. write unit (@c->max_write_size). Instead, the node
668  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
669  * because more data are appended to the write-buffer).
670  *
671  * This function returns zero in case of success and a negative error code in
672  * case of failure. If the node cannot be written because there is no more
673  * space in this logical eraseblock, %-ENOSPC is returned.
674  */
675 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
676 {
677 	struct ubifs_info *c = wbuf->c;
678 	int err, written, n, aligned_len = ALIGN(len, 8);
679 
680 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
681 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
682 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
683 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
684 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
685 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
686 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
687 	ubifs_assert(wbuf->size >= c->min_io_size);
688 	ubifs_assert(wbuf->size <= c->max_write_size);
689 	ubifs_assert(wbuf->size % c->min_io_size == 0);
690 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
691 	ubifs_assert(!c->ro_media && !c->ro_mount);
692 	ubifs_assert(!c->space_fixup);
693 	if (c->leb_size - wbuf->offs >= c->max_write_size)
694 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
695 
696 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
697 		err = -ENOSPC;
698 		goto out;
699 	}
700 
701 	cancel_wbuf_timer_nolock(wbuf);
702 
703 	if (c->ro_error)
704 		return -EROFS;
705 
706 	if (aligned_len <= wbuf->avail) {
707 		/*
708 		 * The node is not very large and fits entirely within
709 		 * write-buffer.
710 		 */
711 		memcpy(wbuf->buf + wbuf->used, buf, len);
712 
713 		if (aligned_len == wbuf->avail) {
714 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
715 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
716 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
717 					      wbuf->offs, wbuf->size);
718 			if (err)
719 				goto out;
720 
721 			spin_lock(&wbuf->lock);
722 			wbuf->offs += wbuf->size;
723 			if (c->leb_size - wbuf->offs >= c->max_write_size)
724 				wbuf->size = c->max_write_size;
725 			else
726 				wbuf->size = c->leb_size - wbuf->offs;
727 			wbuf->avail = wbuf->size;
728 			wbuf->used = 0;
729 			wbuf->next_ino = 0;
730 			spin_unlock(&wbuf->lock);
731 		} else {
732 			spin_lock(&wbuf->lock);
733 			wbuf->avail -= aligned_len;
734 			wbuf->used += aligned_len;
735 			spin_unlock(&wbuf->lock);
736 		}
737 
738 		goto exit;
739 	}
740 
741 	written = 0;
742 
743 	if (wbuf->used) {
744 		/*
745 		 * The node is large enough and does not fit entirely within
746 		 * current available space. We have to fill and flush
747 		 * write-buffer and switch to the next max. write unit.
748 		 */
749 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
750 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
751 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
752 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
753 				      wbuf->size);
754 		if (err)
755 			goto out;
756 
757 		wbuf->offs += wbuf->size;
758 		len -= wbuf->avail;
759 		aligned_len -= wbuf->avail;
760 		written += wbuf->avail;
761 	} else if (wbuf->offs & (c->max_write_size - 1)) {
762 		/*
763 		 * The write-buffer offset is not aligned to
764 		 * @c->max_write_size and @wbuf->size is less than
765 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
766 		 * following writes are done in optimal @c->max_write_size
767 		 * chunks.
768 		 */
769 		dbg_io("write %d bytes to LEB %d:%d",
770 		       wbuf->size, wbuf->lnum, wbuf->offs);
771 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
772 				      wbuf->size);
773 		if (err)
774 			goto out;
775 
776 		wbuf->offs += wbuf->size;
777 		len -= wbuf->size;
778 		aligned_len -= wbuf->size;
779 		written += wbuf->size;
780 	}
781 
782 	/*
783 	 * The remaining data may take more whole max. write units, so write the
784 	 * remains multiple to max. write unit size directly to the flash media.
785 	 * We align node length to 8-byte boundary because we anyway flash wbuf
786 	 * if the remaining space is less than 8 bytes.
787 	 */
788 	n = aligned_len >> c->max_write_shift;
789 	if (n) {
790 		n <<= c->max_write_shift;
791 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
792 		       wbuf->offs);
793 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
794 				      wbuf->offs, n);
795 		if (err)
796 			goto out;
797 		wbuf->offs += n;
798 		aligned_len -= n;
799 		len -= n;
800 		written += n;
801 	}
802 
803 	spin_lock(&wbuf->lock);
804 	if (aligned_len)
805 		/*
806 		 * And now we have what's left and what does not take whole
807 		 * max. write unit, so write it to the write-buffer and we are
808 		 * done.
809 		 */
810 		memcpy(wbuf->buf, buf + written, len);
811 
812 	if (c->leb_size - wbuf->offs >= c->max_write_size)
813 		wbuf->size = c->max_write_size;
814 	else
815 		wbuf->size = c->leb_size - wbuf->offs;
816 	wbuf->avail = wbuf->size - aligned_len;
817 	wbuf->used = aligned_len;
818 	wbuf->next_ino = 0;
819 	spin_unlock(&wbuf->lock);
820 
821 exit:
822 	if (wbuf->sync_callback) {
823 		int free = c->leb_size - wbuf->offs - wbuf->used;
824 
825 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
826 		if (err)
827 			goto out;
828 	}
829 
830 	if (wbuf->used)
831 		new_wbuf_timer_nolock(wbuf);
832 
833 	return 0;
834 
835 out:
836 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
837 		  len, wbuf->lnum, wbuf->offs, err);
838 	ubifs_dump_node(c, buf);
839 	dump_stack();
840 	ubifs_dump_leb(c, wbuf->lnum);
841 	return err;
842 }
843 
844 /**
845  * ubifs_write_node - write node to the media.
846  * @c: UBIFS file-system description object
847  * @buf: the node to write
848  * @len: node length
849  * @lnum: logical eraseblock number
850  * @offs: offset within the logical eraseblock
851  *
852  * This function automatically fills node magic number, assigns sequence
853  * number, and calculates node CRC checksum. The length of the @buf buffer has
854  * to be aligned to the minimal I/O unit size. This function automatically
855  * appends padding node and padding bytes if needed. Returns zero in case of
856  * success and a negative error code in case of failure.
857  */
858 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
859 		     int offs)
860 {
861 	int err, buf_len = ALIGN(len, c->min_io_size);
862 
863 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
864 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
865 	       buf_len);
866 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
867 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
868 	ubifs_assert(!c->ro_media && !c->ro_mount);
869 	ubifs_assert(!c->space_fixup);
870 
871 	if (c->ro_error)
872 		return -EROFS;
873 
874 	ubifs_prepare_node(c, buf, len, 1);
875 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
876 	if (err)
877 		ubifs_dump_node(c, buf);
878 
879 	return err;
880 }
881 
882 /**
883  * ubifs_read_node_wbuf - read node from the media or write-buffer.
884  * @wbuf: wbuf to check for un-written data
885  * @buf: buffer to read to
886  * @type: node type
887  * @len: node length
888  * @lnum: logical eraseblock number
889  * @offs: offset within the logical eraseblock
890  *
891  * This function reads a node of known type and length, checks it and stores
892  * in @buf. If the node partially or fully sits in the write-buffer, this
893  * function takes data from the buffer, otherwise it reads the flash media.
894  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
895  * error code in case of failure.
896  */
897 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
898 			 int lnum, int offs)
899 {
900 	const struct ubifs_info *c = wbuf->c;
901 	int err, rlen, overlap;
902 	struct ubifs_ch *ch = buf;
903 
904 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
905 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
906 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
907 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
908 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
909 
910 	spin_lock(&wbuf->lock);
911 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
912 	if (!overlap) {
913 		/* We may safely unlock the write-buffer and read the data */
914 		spin_unlock(&wbuf->lock);
915 		return ubifs_read_node(c, buf, type, len, lnum, offs);
916 	}
917 
918 	/* Don't read under wbuf */
919 	rlen = wbuf->offs - offs;
920 	if (rlen < 0)
921 		rlen = 0;
922 
923 	/* Copy the rest from the write-buffer */
924 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
925 	spin_unlock(&wbuf->lock);
926 
927 	if (rlen > 0) {
928 		/* Read everything that goes before write-buffer */
929 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
930 		if (err && err != -EBADMSG)
931 			return err;
932 	}
933 
934 	if (type != ch->node_type) {
935 		ubifs_err(c, "bad node type (%d but expected %d)",
936 			  ch->node_type, type);
937 		goto out;
938 	}
939 
940 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
941 	if (err) {
942 		ubifs_err(c, "expected node type %d", type);
943 		return err;
944 	}
945 
946 	rlen = le32_to_cpu(ch->len);
947 	if (rlen != len) {
948 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
949 		goto out;
950 	}
951 
952 	return 0;
953 
954 out:
955 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
956 	ubifs_dump_node(c, buf);
957 	dump_stack();
958 	return -EINVAL;
959 }
960 
961 /**
962  * ubifs_read_node - read node.
963  * @c: UBIFS file-system description object
964  * @buf: buffer to read to
965  * @type: node type
966  * @len: node length (not aligned)
967  * @lnum: logical eraseblock number
968  * @offs: offset within the logical eraseblock
969  *
970  * This function reads a node of known type and and length, checks it and
971  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
972  * and a negative error code in case of failure.
973  */
974 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
975 		    int lnum, int offs)
976 {
977 	int err, l;
978 	struct ubifs_ch *ch = buf;
979 
980 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
981 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
982 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
983 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
984 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
985 
986 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
987 	if (err && err != -EBADMSG)
988 		return err;
989 
990 	if (type != ch->node_type) {
991 		ubifs_errc(c, "bad node type (%d but expected %d)",
992 			   ch->node_type, type);
993 		goto out;
994 	}
995 
996 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
997 	if (err) {
998 		ubifs_errc(c, "expected node type %d", type);
999 		return err;
1000 	}
1001 
1002 	l = le32_to_cpu(ch->len);
1003 	if (l != len) {
1004 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1005 		goto out;
1006 	}
1007 
1008 	return 0;
1009 
1010 out:
1011 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1012 		   offs, ubi_is_mapped(c->ubi, lnum));
1013 	if (!c->probing) {
1014 		ubifs_dump_node(c, buf);
1015 		dump_stack();
1016 	}
1017 	return -EINVAL;
1018 }
1019 
1020 /**
1021  * ubifs_wbuf_init - initialize write-buffer.
1022  * @c: UBIFS file-system description object
1023  * @wbuf: write-buffer to initialize
1024  *
1025  * This function initializes write-buffer. Returns zero in case of success
1026  * %-ENOMEM in case of failure.
1027  */
1028 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1029 {
1030 	size_t size;
1031 
1032 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1033 	if (!wbuf->buf)
1034 		return -ENOMEM;
1035 
1036 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1037 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1038 	if (!wbuf->inodes) {
1039 		kfree(wbuf->buf);
1040 		wbuf->buf = NULL;
1041 		return -ENOMEM;
1042 	}
1043 
1044 	wbuf->used = 0;
1045 	wbuf->lnum = wbuf->offs = -1;
1046 	/*
1047 	 * If the LEB starts at the max. write size aligned address, then
1048 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1049 	 * set it to something smaller so that it ends at the closest max.
1050 	 * write size boundary.
1051 	 */
1052 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1053 	wbuf->avail = wbuf->size = size;
1054 	wbuf->sync_callback = NULL;
1055 	mutex_init(&wbuf->io_mutex);
1056 	spin_lock_init(&wbuf->lock);
1057 	wbuf->c = c;
1058 	wbuf->next_ino = 0;
1059 
1060 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061 	wbuf->timer.function = wbuf_timer_callback_nolock;
1062 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1063 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1064 	wbuf->delta *= 1000000000ULL;
1065 	ubifs_assert(wbuf->delta <= ULONG_MAX);
1066 	return 0;
1067 }
1068 
1069 /**
1070  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1071  * @wbuf: the write-buffer where to add
1072  * @inum: the inode number
1073  *
1074  * This function adds an inode number to the inode array of the write-buffer.
1075  */
1076 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1077 {
1078 	if (!wbuf->buf)
1079 		/* NOR flash or something similar */
1080 		return;
1081 
1082 	spin_lock(&wbuf->lock);
1083 	if (wbuf->used)
1084 		wbuf->inodes[wbuf->next_ino++] = inum;
1085 	spin_unlock(&wbuf->lock);
1086 }
1087 
1088 /**
1089  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1090  * @wbuf: the write-buffer
1091  * @inum: the inode number
1092  *
1093  * This function returns with %1 if the write-buffer contains some data from the
1094  * given inode otherwise it returns with %0.
1095  */
1096 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1097 {
1098 	int i, ret = 0;
1099 
1100 	spin_lock(&wbuf->lock);
1101 	for (i = 0; i < wbuf->next_ino; i++)
1102 		if (inum == wbuf->inodes[i]) {
1103 			ret = 1;
1104 			break;
1105 		}
1106 	spin_unlock(&wbuf->lock);
1107 
1108 	return ret;
1109 }
1110 
1111 /**
1112  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1113  * @c: UBIFS file-system description object
1114  * @inode: inode to synchronize
1115  *
1116  * This function synchronizes write-buffers which contain nodes belonging to
1117  * @inode. Returns zero in case of success and a negative error code in case of
1118  * failure.
1119  */
1120 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1121 {
1122 	int i, err = 0;
1123 
1124 	for (i = 0; i < c->jhead_cnt; i++) {
1125 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1126 
1127 		if (i == GCHD)
1128 			/*
1129 			 * GC head is special, do not look at it. Even if the
1130 			 * head contains something related to this inode, it is
1131 			 * a _copy_ of corresponding on-flash node which sits
1132 			 * somewhere else.
1133 			 */
1134 			continue;
1135 
1136 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1137 			continue;
1138 
1139 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1140 		if (wbuf_has_ino(wbuf, inode->i_ino))
1141 			err = ubifs_wbuf_sync_nolock(wbuf);
1142 		mutex_unlock(&wbuf->io_mutex);
1143 
1144 		if (err) {
1145 			ubifs_ro_mode(c, err);
1146 			return err;
1147 		}
1148 	}
1149 	return 0;
1150 }
1151