xref: /openbmc/linux/fs/ubifs/io.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include <linux/crc32.h>
54 #include <linux/slab.h>
55 #include "ubifs.h"
56 
57 /**
58  * ubifs_ro_mode - switch UBIFS to read read-only mode.
59  * @c: UBIFS file-system description object
60  * @err: error code which is the reason of switching to R/O mode
61  */
62 void ubifs_ro_mode(struct ubifs_info *c, int err)
63 {
64 	if (!c->ro_error) {
65 		c->ro_error = 1;
66 		c->no_chk_data_crc = 0;
67 		c->vfs_sb->s_flags |= MS_RDONLY;
68 		ubifs_warn("switched to read-only mode, error %d", err);
69 		dbg_dump_stack();
70 	}
71 }
72 
73 /**
74  * ubifs_check_node - check node.
75  * @c: UBIFS file-system description object
76  * @buf: node to check
77  * @lnum: logical eraseblock number
78  * @offs: offset within the logical eraseblock
79  * @quiet: print no messages
80  * @must_chk_crc: indicates whether to always check the CRC
81  *
82  * This function checks node magic number and CRC checksum. This function also
83  * validates node length to prevent UBIFS from becoming crazy when an attacker
84  * feeds it a file-system image with incorrect nodes. For example, too large
85  * node length in the common header could cause UBIFS to read memory outside of
86  * allocated buffer when checking the CRC checksum.
87  *
88  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
89  * true, which is controlled by corresponding UBIFS mount option. However, if
90  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
91  * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
92  * ignored and CRC is checked.
93  *
94  * This function returns zero in case of success and %-EUCLEAN in case of bad
95  * CRC or magic.
96  */
97 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
98 		     int offs, int quiet, int must_chk_crc)
99 {
100 	int err = -EINVAL, type, node_len;
101 	uint32_t crc, node_crc, magic;
102 	const struct ubifs_ch *ch = buf;
103 
104 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
105 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
106 
107 	magic = le32_to_cpu(ch->magic);
108 	if (magic != UBIFS_NODE_MAGIC) {
109 		if (!quiet)
110 			ubifs_err("bad magic %#08x, expected %#08x",
111 				  magic, UBIFS_NODE_MAGIC);
112 		err = -EUCLEAN;
113 		goto out;
114 	}
115 
116 	type = ch->node_type;
117 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
118 		if (!quiet)
119 			ubifs_err("bad node type %d", type);
120 		goto out;
121 	}
122 
123 	node_len = le32_to_cpu(ch->len);
124 	if (node_len + offs > c->leb_size)
125 		goto out_len;
126 
127 	if (c->ranges[type].max_len == 0) {
128 		if (node_len != c->ranges[type].len)
129 			goto out_len;
130 	} else if (node_len < c->ranges[type].min_len ||
131 		   node_len > c->ranges[type].max_len)
132 		goto out_len;
133 
134 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
135 	     c->no_chk_data_crc)
136 		return 0;
137 
138 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
139 	node_crc = le32_to_cpu(ch->crc);
140 	if (crc != node_crc) {
141 		if (!quiet)
142 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
143 				  crc, node_crc);
144 		err = -EUCLEAN;
145 		goto out;
146 	}
147 
148 	return 0;
149 
150 out_len:
151 	if (!quiet)
152 		ubifs_err("bad node length %d", node_len);
153 out:
154 	if (!quiet) {
155 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
156 		dbg_dump_node(c, buf);
157 		dbg_dump_stack();
158 	}
159 	return err;
160 }
161 
162 /**
163  * ubifs_pad - pad flash space.
164  * @c: UBIFS file-system description object
165  * @buf: buffer to put padding to
166  * @pad: how many bytes to pad
167  *
168  * The flash media obliges us to write only in chunks of %c->min_io_size and
169  * when we have to write less data we add padding node to the write-buffer and
170  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
171  * media is being scanned. If the amount of wasted space is not enough to fit a
172  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
173  * pattern (%UBIFS_PADDING_BYTE).
174  *
175  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
176  * used.
177  */
178 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
179 {
180 	uint32_t crc;
181 
182 	ubifs_assert(pad >= 0 && !(pad & 7));
183 
184 	if (pad >= UBIFS_PAD_NODE_SZ) {
185 		struct ubifs_ch *ch = buf;
186 		struct ubifs_pad_node *pad_node = buf;
187 
188 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
189 		ch->node_type = UBIFS_PAD_NODE;
190 		ch->group_type = UBIFS_NO_NODE_GROUP;
191 		ch->padding[0] = ch->padding[1] = 0;
192 		ch->sqnum = 0;
193 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
194 		pad -= UBIFS_PAD_NODE_SZ;
195 		pad_node->pad_len = cpu_to_le32(pad);
196 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
197 		ch->crc = cpu_to_le32(crc);
198 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
199 	} else if (pad > 0)
200 		/* Too little space, padding node won't fit */
201 		memset(buf, UBIFS_PADDING_BYTE, pad);
202 }
203 
204 /**
205  * next_sqnum - get next sequence number.
206  * @c: UBIFS file-system description object
207  */
208 static unsigned long long next_sqnum(struct ubifs_info *c)
209 {
210 	unsigned long long sqnum;
211 
212 	spin_lock(&c->cnt_lock);
213 	sqnum = ++c->max_sqnum;
214 	spin_unlock(&c->cnt_lock);
215 
216 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
217 		if (sqnum >= SQNUM_WATERMARK) {
218 			ubifs_err("sequence number overflow %llu, end of life",
219 				  sqnum);
220 			ubifs_ro_mode(c, -EINVAL);
221 		}
222 		ubifs_warn("running out of sequence numbers, end of life soon");
223 	}
224 
225 	return sqnum;
226 }
227 
228 /**
229  * ubifs_prepare_node - prepare node to be written to flash.
230  * @c: UBIFS file-system description object
231  * @node: the node to pad
232  * @len: node length
233  * @pad: if the buffer has to be padded
234  *
235  * This function prepares node at @node to be written to the media - it
236  * calculates node CRC, fills the common header, and adds proper padding up to
237  * the next minimum I/O unit if @pad is not zero.
238  */
239 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
240 {
241 	uint32_t crc;
242 	struct ubifs_ch *ch = node;
243 	unsigned long long sqnum = next_sqnum(c);
244 
245 	ubifs_assert(len >= UBIFS_CH_SZ);
246 
247 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
248 	ch->len = cpu_to_le32(len);
249 	ch->group_type = UBIFS_NO_NODE_GROUP;
250 	ch->sqnum = cpu_to_le64(sqnum);
251 	ch->padding[0] = ch->padding[1] = 0;
252 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
253 	ch->crc = cpu_to_le32(crc);
254 
255 	if (pad) {
256 		len = ALIGN(len, 8);
257 		pad = ALIGN(len, c->min_io_size) - len;
258 		ubifs_pad(c, node + len, pad);
259 	}
260 }
261 
262 /**
263  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
264  * @c: UBIFS file-system description object
265  * @node: the node to pad
266  * @len: node length
267  * @last: indicates the last node of the group
268  *
269  * This function prepares node at @node to be written to the media - it
270  * calculates node CRC and fills the common header.
271  */
272 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
273 {
274 	uint32_t crc;
275 	struct ubifs_ch *ch = node;
276 	unsigned long long sqnum = next_sqnum(c);
277 
278 	ubifs_assert(len >= UBIFS_CH_SZ);
279 
280 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
281 	ch->len = cpu_to_le32(len);
282 	if (last)
283 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
284 	else
285 		ch->group_type = UBIFS_IN_NODE_GROUP;
286 	ch->sqnum = cpu_to_le64(sqnum);
287 	ch->padding[0] = ch->padding[1] = 0;
288 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
289 	ch->crc = cpu_to_le32(crc);
290 }
291 
292 /**
293  * wbuf_timer_callback - write-buffer timer callback function.
294  * @data: timer data (write-buffer descriptor)
295  *
296  * This function is called when the write-buffer timer expires.
297  */
298 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
299 {
300 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
301 
302 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
303 	wbuf->need_sync = 1;
304 	wbuf->c->need_wbuf_sync = 1;
305 	ubifs_wake_up_bgt(wbuf->c);
306 	return HRTIMER_NORESTART;
307 }
308 
309 /**
310  * new_wbuf_timer - start new write-buffer timer.
311  * @wbuf: write-buffer descriptor
312  */
313 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
314 {
315 	ubifs_assert(!hrtimer_active(&wbuf->timer));
316 
317 	if (wbuf->no_timer)
318 		return;
319 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
320 	       dbg_jhead(wbuf->jhead),
321 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
322 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
323 		       USEC_PER_SEC));
324 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
325 			       HRTIMER_MODE_REL);
326 }
327 
328 /**
329  * cancel_wbuf_timer - cancel write-buffer timer.
330  * @wbuf: write-buffer descriptor
331  */
332 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
333 {
334 	if (wbuf->no_timer)
335 		return;
336 	wbuf->need_sync = 0;
337 	hrtimer_cancel(&wbuf->timer);
338 }
339 
340 /**
341  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
342  * @wbuf: write-buffer to synchronize
343  *
344  * This function synchronizes write-buffer @buf and returns zero in case of
345  * success or a negative error code in case of failure.
346  */
347 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
348 {
349 	struct ubifs_info *c = wbuf->c;
350 	int err, dirt;
351 
352 	cancel_wbuf_timer_nolock(wbuf);
353 	if (!wbuf->used || wbuf->lnum == -1)
354 		/* Write-buffer is empty or not seeked */
355 		return 0;
356 
357 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
358 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
359 	ubifs_assert(!(wbuf->avail & 7));
360 	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
361 	ubifs_assert(!c->ro_media && !c->ro_mount);
362 
363 	if (c->ro_error)
364 		return -EROFS;
365 
366 	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
367 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
368 			    c->min_io_size, wbuf->dtype);
369 	if (err) {
370 		ubifs_err("cannot write %d bytes to LEB %d:%d",
371 			  c->min_io_size, wbuf->lnum, wbuf->offs);
372 		dbg_dump_stack();
373 		return err;
374 	}
375 
376 	dirt = wbuf->avail;
377 
378 	spin_lock(&wbuf->lock);
379 	wbuf->offs += c->min_io_size;
380 	wbuf->avail = c->min_io_size;
381 	wbuf->used = 0;
382 	wbuf->next_ino = 0;
383 	spin_unlock(&wbuf->lock);
384 
385 	if (wbuf->sync_callback)
386 		err = wbuf->sync_callback(c, wbuf->lnum,
387 					  c->leb_size - wbuf->offs, dirt);
388 	return err;
389 }
390 
391 /**
392  * ubifs_wbuf_seek_nolock - seek write-buffer.
393  * @wbuf: write-buffer
394  * @lnum: logical eraseblock number to seek to
395  * @offs: logical eraseblock offset to seek to
396  * @dtype: data type
397  *
398  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
399  * The write-buffer is synchronized if it is not empty. Returns zero in case of
400  * success and a negative error code in case of failure.
401  */
402 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
403 			   int dtype)
404 {
405 	const struct ubifs_info *c = wbuf->c;
406 
407 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
408 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
409 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
410 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
411 	ubifs_assert(lnum != wbuf->lnum);
412 
413 	if (wbuf->used > 0) {
414 		int err = ubifs_wbuf_sync_nolock(wbuf);
415 
416 		if (err)
417 			return err;
418 	}
419 
420 	spin_lock(&wbuf->lock);
421 	wbuf->lnum = lnum;
422 	wbuf->offs = offs;
423 	wbuf->avail = c->min_io_size;
424 	wbuf->used = 0;
425 	spin_unlock(&wbuf->lock);
426 	wbuf->dtype = dtype;
427 
428 	return 0;
429 }
430 
431 /**
432  * ubifs_bg_wbufs_sync - synchronize write-buffers.
433  * @c: UBIFS file-system description object
434  *
435  * This function is called by background thread to synchronize write-buffers.
436  * Returns zero in case of success and a negative error code in case of
437  * failure.
438  */
439 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
440 {
441 	int err, i;
442 
443 	ubifs_assert(!c->ro_media && !c->ro_mount);
444 	if (!c->need_wbuf_sync)
445 		return 0;
446 	c->need_wbuf_sync = 0;
447 
448 	if (c->ro_error) {
449 		err = -EROFS;
450 		goto out_timers;
451 	}
452 
453 	dbg_io("synchronize");
454 	for (i = 0; i < c->jhead_cnt; i++) {
455 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
456 
457 		cond_resched();
458 
459 		/*
460 		 * If the mutex is locked then wbuf is being changed, so
461 		 * synchronization is not necessary.
462 		 */
463 		if (mutex_is_locked(&wbuf->io_mutex))
464 			continue;
465 
466 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
467 		if (!wbuf->need_sync) {
468 			mutex_unlock(&wbuf->io_mutex);
469 			continue;
470 		}
471 
472 		err = ubifs_wbuf_sync_nolock(wbuf);
473 		mutex_unlock(&wbuf->io_mutex);
474 		if (err) {
475 			ubifs_err("cannot sync write-buffer, error %d", err);
476 			ubifs_ro_mode(c, err);
477 			goto out_timers;
478 		}
479 	}
480 
481 	return 0;
482 
483 out_timers:
484 	/* Cancel all timers to prevent repeated errors */
485 	for (i = 0; i < c->jhead_cnt; i++) {
486 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
487 
488 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
489 		cancel_wbuf_timer_nolock(wbuf);
490 		mutex_unlock(&wbuf->io_mutex);
491 	}
492 	return err;
493 }
494 
495 /**
496  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
497  * @wbuf: write-buffer
498  * @buf: node to write
499  * @len: node length
500  *
501  * This function writes data to flash via write-buffer @wbuf. This means that
502  * the last piece of the node won't reach the flash media immediately if it
503  * does not take whole minimal I/O unit. Instead, the node will sit in RAM
504  * until the write-buffer is synchronized (e.g., by timer).
505  *
506  * This function returns zero in case of success and a negative error code in
507  * case of failure. If the node cannot be written because there is no more
508  * space in this logical eraseblock, %-ENOSPC is returned.
509  */
510 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
511 {
512 	struct ubifs_info *c = wbuf->c;
513 	int err, written, n, aligned_len = ALIGN(len, 8), offs;
514 
515 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
516 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
517 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
518 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
519 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
520 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
521 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
522 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
523 	ubifs_assert(!c->ro_media && !c->ro_mount);
524 
525 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
526 		err = -ENOSPC;
527 		goto out;
528 	}
529 
530 	cancel_wbuf_timer_nolock(wbuf);
531 
532 	if (c->ro_error)
533 		return -EROFS;
534 
535 	if (aligned_len <= wbuf->avail) {
536 		/*
537 		 * The node is not very large and fits entirely within
538 		 * write-buffer.
539 		 */
540 		memcpy(wbuf->buf + wbuf->used, buf, len);
541 
542 		if (aligned_len == wbuf->avail) {
543 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
544 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
545 			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
546 					    wbuf->offs, c->min_io_size,
547 					    wbuf->dtype);
548 			if (err)
549 				goto out;
550 
551 			spin_lock(&wbuf->lock);
552 			wbuf->offs += c->min_io_size;
553 			wbuf->avail = c->min_io_size;
554 			wbuf->used = 0;
555 			wbuf->next_ino = 0;
556 			spin_unlock(&wbuf->lock);
557 		} else {
558 			spin_lock(&wbuf->lock);
559 			wbuf->avail -= aligned_len;
560 			wbuf->used += aligned_len;
561 			spin_unlock(&wbuf->lock);
562 		}
563 
564 		goto exit;
565 	}
566 
567 	/*
568 	 * The node is large enough and does not fit entirely within current
569 	 * minimal I/O unit. We have to fill and flush write-buffer and switch
570 	 * to the next min. I/O unit.
571 	 */
572 	dbg_io("flush jhead %s wbuf to LEB %d:%d",
573 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
574 	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
575 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
576 			    c->min_io_size, wbuf->dtype);
577 	if (err)
578 		goto out;
579 
580 	offs = wbuf->offs + c->min_io_size;
581 	len -= wbuf->avail;
582 	aligned_len -= wbuf->avail;
583 	written = wbuf->avail;
584 
585 	/*
586 	 * The remaining data may take more whole min. I/O units, so write the
587 	 * remains multiple to min. I/O unit size directly to the flash media.
588 	 * We align node length to 8-byte boundary because we anyway flash wbuf
589 	 * if the remaining space is less than 8 bytes.
590 	 */
591 	n = aligned_len >> c->min_io_shift;
592 	if (n) {
593 		n <<= c->min_io_shift;
594 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
595 		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
596 				    wbuf->dtype);
597 		if (err)
598 			goto out;
599 		offs += n;
600 		aligned_len -= n;
601 		len -= n;
602 		written += n;
603 	}
604 
605 	spin_lock(&wbuf->lock);
606 	if (aligned_len)
607 		/*
608 		 * And now we have what's left and what does not take whole
609 		 * min. I/O unit, so write it to the write-buffer and we are
610 		 * done.
611 		 */
612 		memcpy(wbuf->buf, buf + written, len);
613 
614 	wbuf->offs = offs;
615 	wbuf->used = aligned_len;
616 	wbuf->avail = c->min_io_size - aligned_len;
617 	wbuf->next_ino = 0;
618 	spin_unlock(&wbuf->lock);
619 
620 exit:
621 	if (wbuf->sync_callback) {
622 		int free = c->leb_size - wbuf->offs - wbuf->used;
623 
624 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
625 		if (err)
626 			goto out;
627 	}
628 
629 	if (wbuf->used)
630 		new_wbuf_timer_nolock(wbuf);
631 
632 	return 0;
633 
634 out:
635 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
636 		  len, wbuf->lnum, wbuf->offs, err);
637 	dbg_dump_node(c, buf);
638 	dbg_dump_stack();
639 	dbg_dump_leb(c, wbuf->lnum);
640 	return err;
641 }
642 
643 /**
644  * ubifs_write_node - write node to the media.
645  * @c: UBIFS file-system description object
646  * @buf: the node to write
647  * @len: node length
648  * @lnum: logical eraseblock number
649  * @offs: offset within the logical eraseblock
650  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
651  *
652  * This function automatically fills node magic number, assigns sequence
653  * number, and calculates node CRC checksum. The length of the @buf buffer has
654  * to be aligned to the minimal I/O unit size. This function automatically
655  * appends padding node and padding bytes if needed. Returns zero in case of
656  * success and a negative error code in case of failure.
657  */
658 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
659 		     int offs, int dtype)
660 {
661 	int err, buf_len = ALIGN(len, c->min_io_size);
662 
663 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
664 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
665 	       buf_len);
666 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
667 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
668 	ubifs_assert(!c->ro_media && !c->ro_mount);
669 
670 	if (c->ro_error)
671 		return -EROFS;
672 
673 	ubifs_prepare_node(c, buf, len, 1);
674 	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
675 	if (err) {
676 		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
677 			  buf_len, lnum, offs, err);
678 		dbg_dump_node(c, buf);
679 		dbg_dump_stack();
680 	}
681 
682 	return err;
683 }
684 
685 /**
686  * ubifs_read_node_wbuf - read node from the media or write-buffer.
687  * @wbuf: wbuf to check for un-written data
688  * @buf: buffer to read to
689  * @type: node type
690  * @len: node length
691  * @lnum: logical eraseblock number
692  * @offs: offset within the logical eraseblock
693  *
694  * This function reads a node of known type and length, checks it and stores
695  * in @buf. If the node partially or fully sits in the write-buffer, this
696  * function takes data from the buffer, otherwise it reads the flash media.
697  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
698  * error code in case of failure.
699  */
700 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
701 			 int lnum, int offs)
702 {
703 	const struct ubifs_info *c = wbuf->c;
704 	int err, rlen, overlap;
705 	struct ubifs_ch *ch = buf;
706 
707 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
708 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
709 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
710 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
711 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
712 
713 	spin_lock(&wbuf->lock);
714 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
715 	if (!overlap) {
716 		/* We may safely unlock the write-buffer and read the data */
717 		spin_unlock(&wbuf->lock);
718 		return ubifs_read_node(c, buf, type, len, lnum, offs);
719 	}
720 
721 	/* Don't read under wbuf */
722 	rlen = wbuf->offs - offs;
723 	if (rlen < 0)
724 		rlen = 0;
725 
726 	/* Copy the rest from the write-buffer */
727 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
728 	spin_unlock(&wbuf->lock);
729 
730 	if (rlen > 0) {
731 		/* Read everything that goes before write-buffer */
732 		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
733 		if (err && err != -EBADMSG) {
734 			ubifs_err("failed to read node %d from LEB %d:%d, "
735 				  "error %d", type, lnum, offs, err);
736 			dbg_dump_stack();
737 			return err;
738 		}
739 	}
740 
741 	if (type != ch->node_type) {
742 		ubifs_err("bad node type (%d but expected %d)",
743 			  ch->node_type, type);
744 		goto out;
745 	}
746 
747 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
748 	if (err) {
749 		ubifs_err("expected node type %d", type);
750 		return err;
751 	}
752 
753 	rlen = le32_to_cpu(ch->len);
754 	if (rlen != len) {
755 		ubifs_err("bad node length %d, expected %d", rlen, len);
756 		goto out;
757 	}
758 
759 	return 0;
760 
761 out:
762 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
763 	dbg_dump_node(c, buf);
764 	dbg_dump_stack();
765 	return -EINVAL;
766 }
767 
768 /**
769  * ubifs_read_node - read node.
770  * @c: UBIFS file-system description object
771  * @buf: buffer to read to
772  * @type: node type
773  * @len: node length (not aligned)
774  * @lnum: logical eraseblock number
775  * @offs: offset within the logical eraseblock
776  *
777  * This function reads a node of known type and and length, checks it and
778  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
779  * and a negative error code in case of failure.
780  */
781 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
782 		    int lnum, int offs)
783 {
784 	int err, l;
785 	struct ubifs_ch *ch = buf;
786 
787 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
788 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
789 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
790 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
791 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
792 
793 	err = ubi_read(c->ubi, lnum, buf, offs, len);
794 	if (err && err != -EBADMSG) {
795 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
796 			  type, lnum, offs, err);
797 		return err;
798 	}
799 
800 	if (type != ch->node_type) {
801 		ubifs_err("bad node type (%d but expected %d)",
802 			  ch->node_type, type);
803 		goto out;
804 	}
805 
806 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
807 	if (err) {
808 		ubifs_err("expected node type %d", type);
809 		return err;
810 	}
811 
812 	l = le32_to_cpu(ch->len);
813 	if (l != len) {
814 		ubifs_err("bad node length %d, expected %d", l, len);
815 		goto out;
816 	}
817 
818 	return 0;
819 
820 out:
821 	ubifs_err("bad node at LEB %d:%d, LEB mapping status %d", lnum, offs,
822 		  ubi_is_mapped(c->ubi, lnum));
823 	dbg_dump_node(c, buf);
824 	dbg_dump_stack();
825 	return -EINVAL;
826 }
827 
828 /**
829  * ubifs_wbuf_init - initialize write-buffer.
830  * @c: UBIFS file-system description object
831  * @wbuf: write-buffer to initialize
832  *
833  * This function initializes write-buffer. Returns zero in case of success
834  * %-ENOMEM in case of failure.
835  */
836 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
837 {
838 	size_t size;
839 
840 	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
841 	if (!wbuf->buf)
842 		return -ENOMEM;
843 
844 	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
845 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
846 	if (!wbuf->inodes) {
847 		kfree(wbuf->buf);
848 		wbuf->buf = NULL;
849 		return -ENOMEM;
850 	}
851 
852 	wbuf->used = 0;
853 	wbuf->lnum = wbuf->offs = -1;
854 	wbuf->avail = c->min_io_size;
855 	wbuf->dtype = UBI_UNKNOWN;
856 	wbuf->sync_callback = NULL;
857 	mutex_init(&wbuf->io_mutex);
858 	spin_lock_init(&wbuf->lock);
859 	wbuf->c = c;
860 	wbuf->next_ino = 0;
861 
862 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
863 	wbuf->timer.function = wbuf_timer_callback_nolock;
864 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
865 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
866 	wbuf->delta *= 1000000000ULL;
867 	ubifs_assert(wbuf->delta <= ULONG_MAX);
868 	return 0;
869 }
870 
871 /**
872  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
873  * @wbuf: the write-buffer where to add
874  * @inum: the inode number
875  *
876  * This function adds an inode number to the inode array of the write-buffer.
877  */
878 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
879 {
880 	if (!wbuf->buf)
881 		/* NOR flash or something similar */
882 		return;
883 
884 	spin_lock(&wbuf->lock);
885 	if (wbuf->used)
886 		wbuf->inodes[wbuf->next_ino++] = inum;
887 	spin_unlock(&wbuf->lock);
888 }
889 
890 /**
891  * wbuf_has_ino - returns if the wbuf contains data from the inode.
892  * @wbuf: the write-buffer
893  * @inum: the inode number
894  *
895  * This function returns with %1 if the write-buffer contains some data from the
896  * given inode otherwise it returns with %0.
897  */
898 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
899 {
900 	int i, ret = 0;
901 
902 	spin_lock(&wbuf->lock);
903 	for (i = 0; i < wbuf->next_ino; i++)
904 		if (inum == wbuf->inodes[i]) {
905 			ret = 1;
906 			break;
907 		}
908 	spin_unlock(&wbuf->lock);
909 
910 	return ret;
911 }
912 
913 /**
914  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
915  * @c: UBIFS file-system description object
916  * @inode: inode to synchronize
917  *
918  * This function synchronizes write-buffers which contain nodes belonging to
919  * @inode. Returns zero in case of success and a negative error code in case of
920  * failure.
921  */
922 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
923 {
924 	int i, err = 0;
925 
926 	for (i = 0; i < c->jhead_cnt; i++) {
927 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
928 
929 		if (i == GCHD)
930 			/*
931 			 * GC head is special, do not look at it. Even if the
932 			 * head contains something related to this inode, it is
933 			 * a _copy_ of corresponding on-flash node which sits
934 			 * somewhere else.
935 			 */
936 			continue;
937 
938 		if (!wbuf_has_ino(wbuf, inode->i_ino))
939 			continue;
940 
941 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
942 		if (wbuf_has_ino(wbuf, inode->i_ino))
943 			err = ubifs_wbuf_sync_nolock(wbuf);
944 		mutex_unlock(&wbuf->io_mutex);
945 
946 		if (err) {
947 			ubifs_ro_mode(c, err);
948 			return err;
949 		}
950 	}
951 	return 0;
952 }
953