xref: /openbmc/linux/fs/ubifs/io.c (revision d2ba09c1)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35  * write size (@c->max_write_size). The latter is the maximum amount of bytes
36  * the underlying flash is able to program at a time, and writing in
37  * @c->max_write_size units should presumably be faster. Obviously,
38  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39  * @c->max_write_size bytes in size for maximum performance. However, when a
40  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41  * boundary) which contains data is written, not the whole write-buffer,
42  * because this is more space-efficient.
43  *
44  * This optimization adds few complications to the code. Indeed, on the one
45  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46  * also means aligning writes at the @c->max_write_size bytes offsets. On the
47  * other hand, we do not want to waste space when synchronizing the write
48  * buffer, so during synchronization we writes in smaller chunks. And this makes
49  * the next write offset to be not aligned to @c->max_write_size bytes. So the
50  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51  * to @c->max_write_size bytes again. We do this by temporarily shrinking
52  * write-buffer size (@wbuf->size).
53  *
54  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55  * mutexes defined inside these objects. Since sometimes upper-level code
56  * has to lock the write-buffer (e.g. journal space reservation code), many
57  * functions related to write-buffers have "nolock" suffix which means that the
58  * caller has to lock the write-buffer before calling this function.
59  *
60  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61  * aligned, UBIFS starts the next node from the aligned address, and the padded
62  * bytes may contain any rubbish. In other words, UBIFS does not put padding
63  * bytes in those small gaps. Common headers of nodes store real node lengths,
64  * not aligned lengths. Indexing nodes also store real lengths in branches.
65  *
66  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67  * uses padding nodes or padding bytes, if the padding node does not fit.
68  *
69  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70  * they are read from the flash media.
71  */
72 
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76 
77 /**
78  * ubifs_ro_mode - switch UBIFS to read read-only mode.
79  * @c: UBIFS file-system description object
80  * @err: error code which is the reason of switching to R/O mode
81  */
82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84 	if (!c->ro_error) {
85 		c->ro_error = 1;
86 		c->no_chk_data_crc = 0;
87 		c->vfs_sb->s_flags |= SB_RDONLY;
88 		ubifs_warn(c, "switched to read-only mode, error %d", err);
89 		dump_stack();
90 	}
91 }
92 
93 /*
94  * Below are simple wrappers over UBI I/O functions which include some
95  * additional checks and UBIFS debugging stuff. See corresponding UBI function
96  * for more information.
97  */
98 
99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 		   int len, int even_ebadmsg)
101 {
102 	int err;
103 
104 	err = ubi_read(c->ubi, lnum, buf, offs, len);
105 	/*
106 	 * In case of %-EBADMSG print the error message only if the
107 	 * @even_ebadmsg is true.
108 	 */
109 	if (err && (err != -EBADMSG || even_ebadmsg)) {
110 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111 			  len, lnum, offs, err);
112 		dump_stack();
113 	}
114 	return err;
115 }
116 
117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 		    int len)
119 {
120 	int err;
121 
122 	ubifs_assert(!c->ro_media && !c->ro_mount);
123 	if (c->ro_error)
124 		return -EROFS;
125 	if (!dbg_is_tst_rcvry(c))
126 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127 	else
128 		err = dbg_leb_write(c, lnum, buf, offs, len);
129 	if (err) {
130 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131 			  len, lnum, offs, err);
132 		ubifs_ro_mode(c, err);
133 		dump_stack();
134 	}
135 	return err;
136 }
137 
138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140 	int err;
141 
142 	ubifs_assert(!c->ro_media && !c->ro_mount);
143 	if (c->ro_error)
144 		return -EROFS;
145 	if (!dbg_is_tst_rcvry(c))
146 		err = ubi_leb_change(c->ubi, lnum, buf, len);
147 	else
148 		err = dbg_leb_change(c, lnum, buf, len);
149 	if (err) {
150 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151 			  len, lnum, err);
152 		ubifs_ro_mode(c, err);
153 		dump_stack();
154 	}
155 	return err;
156 }
157 
158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160 	int err;
161 
162 	ubifs_assert(!c->ro_media && !c->ro_mount);
163 	if (c->ro_error)
164 		return -EROFS;
165 	if (!dbg_is_tst_rcvry(c))
166 		err = ubi_leb_unmap(c->ubi, lnum);
167 	else
168 		err = dbg_leb_unmap(c, lnum);
169 	if (err) {
170 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 		ubifs_ro_mode(c, err);
172 		dump_stack();
173 	}
174 	return err;
175 }
176 
177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 	int err;
180 
181 	ubifs_assert(!c->ro_media && !c->ro_mount);
182 	if (c->ro_error)
183 		return -EROFS;
184 	if (!dbg_is_tst_rcvry(c))
185 		err = ubi_leb_map(c->ubi, lnum);
186 	else
187 		err = dbg_leb_map(c, lnum);
188 	if (err) {
189 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190 		ubifs_ro_mode(c, err);
191 		dump_stack();
192 	}
193 	return err;
194 }
195 
196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198 	int err;
199 
200 	err = ubi_is_mapped(c->ubi, lnum);
201 	if (err < 0) {
202 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203 			  lnum, err);
204 		dump_stack();
205 	}
206 	return err;
207 }
208 
209 /**
210  * ubifs_check_node - check node.
211  * @c: UBIFS file-system description object
212  * @buf: node to check
213  * @lnum: logical eraseblock number
214  * @offs: offset within the logical eraseblock
215  * @quiet: print no messages
216  * @must_chk_crc: indicates whether to always check the CRC
217  *
218  * This function checks node magic number and CRC checksum. This function also
219  * validates node length to prevent UBIFS from becoming crazy when an attacker
220  * feeds it a file-system image with incorrect nodes. For example, too large
221  * node length in the common header could cause UBIFS to read memory outside of
222  * allocated buffer when checking the CRC checksum.
223  *
224  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225  * true, which is controlled by corresponding UBIFS mount option. However, if
226  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229  * is checked. This is because during mounting or re-mounting from R/O mode to
230  * R/W mode we may read journal nodes (when replying the journal or doing the
231  * recovery) and the journal nodes may potentially be corrupted, so checking is
232  * required.
233  *
234  * This function returns zero in case of success and %-EUCLEAN in case of bad
235  * CRC or magic.
236  */
237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238 		     int offs, int quiet, int must_chk_crc)
239 {
240 	int err = -EINVAL, type, node_len;
241 	uint32_t crc, node_crc, magic;
242 	const struct ubifs_ch *ch = buf;
243 
244 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
246 
247 	magic = le32_to_cpu(ch->magic);
248 	if (magic != UBIFS_NODE_MAGIC) {
249 		if (!quiet)
250 			ubifs_err(c, "bad magic %#08x, expected %#08x",
251 				  magic, UBIFS_NODE_MAGIC);
252 		err = -EUCLEAN;
253 		goto out;
254 	}
255 
256 	type = ch->node_type;
257 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258 		if (!quiet)
259 			ubifs_err(c, "bad node type %d", type);
260 		goto out;
261 	}
262 
263 	node_len = le32_to_cpu(ch->len);
264 	if (node_len + offs > c->leb_size)
265 		goto out_len;
266 
267 	if (c->ranges[type].max_len == 0) {
268 		if (node_len != c->ranges[type].len)
269 			goto out_len;
270 	} else if (node_len < c->ranges[type].min_len ||
271 		   node_len > c->ranges[type].max_len)
272 		goto out_len;
273 
274 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275 	    !c->remounting_rw && c->no_chk_data_crc)
276 		return 0;
277 
278 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279 	node_crc = le32_to_cpu(ch->crc);
280 	if (crc != node_crc) {
281 		if (!quiet)
282 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283 				  crc, node_crc);
284 		err = -EUCLEAN;
285 		goto out;
286 	}
287 
288 	return 0;
289 
290 out_len:
291 	if (!quiet)
292 		ubifs_err(c, "bad node length %d", node_len);
293 out:
294 	if (!quiet) {
295 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
296 		ubifs_dump_node(c, buf);
297 		dump_stack();
298 	}
299 	return err;
300 }
301 
302 /**
303  * ubifs_pad - pad flash space.
304  * @c: UBIFS file-system description object
305  * @buf: buffer to put padding to
306  * @pad: how many bytes to pad
307  *
308  * The flash media obliges us to write only in chunks of %c->min_io_size and
309  * when we have to write less data we add padding node to the write-buffer and
310  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311  * media is being scanned. If the amount of wasted space is not enough to fit a
312  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313  * pattern (%UBIFS_PADDING_BYTE).
314  *
315  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316  * used.
317  */
318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320 	uint32_t crc;
321 
322 	ubifs_assert(pad >= 0 && !(pad & 7));
323 
324 	if (pad >= UBIFS_PAD_NODE_SZ) {
325 		struct ubifs_ch *ch = buf;
326 		struct ubifs_pad_node *pad_node = buf;
327 
328 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329 		ch->node_type = UBIFS_PAD_NODE;
330 		ch->group_type = UBIFS_NO_NODE_GROUP;
331 		ch->padding[0] = ch->padding[1] = 0;
332 		ch->sqnum = 0;
333 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334 		pad -= UBIFS_PAD_NODE_SZ;
335 		pad_node->pad_len = cpu_to_le32(pad);
336 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337 		ch->crc = cpu_to_le32(crc);
338 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339 	} else if (pad > 0)
340 		/* Too little space, padding node won't fit */
341 		memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343 
344 /**
345  * next_sqnum - get next sequence number.
346  * @c: UBIFS file-system description object
347  */
348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350 	unsigned long long sqnum;
351 
352 	spin_lock(&c->cnt_lock);
353 	sqnum = ++c->max_sqnum;
354 	spin_unlock(&c->cnt_lock);
355 
356 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357 		if (sqnum >= SQNUM_WATERMARK) {
358 			ubifs_err(c, "sequence number overflow %llu, end of life",
359 				  sqnum);
360 			ubifs_ro_mode(c, -EINVAL);
361 		}
362 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
363 	}
364 
365 	return sqnum;
366 }
367 
368 /**
369  * ubifs_prepare_node - prepare node to be written to flash.
370  * @c: UBIFS file-system description object
371  * @node: the node to pad
372  * @len: node length
373  * @pad: if the buffer has to be padded
374  *
375  * This function prepares node at @node to be written to the media - it
376  * calculates node CRC, fills the common header, and adds proper padding up to
377  * the next minimum I/O unit if @pad is not zero.
378  */
379 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
380 {
381 	uint32_t crc;
382 	struct ubifs_ch *ch = node;
383 	unsigned long long sqnum = next_sqnum(c);
384 
385 	ubifs_assert(len >= UBIFS_CH_SZ);
386 
387 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
388 	ch->len = cpu_to_le32(len);
389 	ch->group_type = UBIFS_NO_NODE_GROUP;
390 	ch->sqnum = cpu_to_le64(sqnum);
391 	ch->padding[0] = ch->padding[1] = 0;
392 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
393 	ch->crc = cpu_to_le32(crc);
394 
395 	if (pad) {
396 		len = ALIGN(len, 8);
397 		pad = ALIGN(len, c->min_io_size) - len;
398 		ubifs_pad(c, node + len, pad);
399 	}
400 }
401 
402 /**
403  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404  * @c: UBIFS file-system description object
405  * @node: the node to pad
406  * @len: node length
407  * @last: indicates the last node of the group
408  *
409  * This function prepares node at @node to be written to the media - it
410  * calculates node CRC and fills the common header.
411  */
412 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
413 {
414 	uint32_t crc;
415 	struct ubifs_ch *ch = node;
416 	unsigned long long sqnum = next_sqnum(c);
417 
418 	ubifs_assert(len >= UBIFS_CH_SZ);
419 
420 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
421 	ch->len = cpu_to_le32(len);
422 	if (last)
423 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
424 	else
425 		ch->group_type = UBIFS_IN_NODE_GROUP;
426 	ch->sqnum = cpu_to_le64(sqnum);
427 	ch->padding[0] = ch->padding[1] = 0;
428 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
429 	ch->crc = cpu_to_le32(crc);
430 }
431 
432 /**
433  * wbuf_timer_callback - write-buffer timer callback function.
434  * @timer: timer data (write-buffer descriptor)
435  *
436  * This function is called when the write-buffer timer expires.
437  */
438 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
439 {
440 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
441 
442 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
443 	wbuf->need_sync = 1;
444 	wbuf->c->need_wbuf_sync = 1;
445 	ubifs_wake_up_bgt(wbuf->c);
446 	return HRTIMER_NORESTART;
447 }
448 
449 /**
450  * new_wbuf_timer - start new write-buffer timer.
451  * @wbuf: write-buffer descriptor
452  */
453 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
454 {
455 	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
456 	unsigned long long delta = dirty_writeback_interval;
457 
458 	/* centi to milli, milli to nano, then 10% */
459 	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
460 
461 	ubifs_assert(!hrtimer_active(&wbuf->timer));
462 	ubifs_assert(delta <= ULONG_MAX);
463 
464 	if (wbuf->no_timer)
465 		return;
466 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
467 	       dbg_jhead(wbuf->jhead),
468 	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
469 	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
470 	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
471 			       HRTIMER_MODE_REL);
472 }
473 
474 /**
475  * cancel_wbuf_timer - cancel write-buffer timer.
476  * @wbuf: write-buffer descriptor
477  */
478 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
479 {
480 	if (wbuf->no_timer)
481 		return;
482 	wbuf->need_sync = 0;
483 	hrtimer_cancel(&wbuf->timer);
484 }
485 
486 /**
487  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
488  * @wbuf: write-buffer to synchronize
489  *
490  * This function synchronizes write-buffer @buf and returns zero in case of
491  * success or a negative error code in case of failure.
492  *
493  * Note, although write-buffers are of @c->max_write_size, this function does
494  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
495  * if the write-buffer is only partially filled with data, only the used part
496  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
497  * This way we waste less space.
498  */
499 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
500 {
501 	struct ubifs_info *c = wbuf->c;
502 	int err, dirt, sync_len;
503 
504 	cancel_wbuf_timer_nolock(wbuf);
505 	if (!wbuf->used || wbuf->lnum == -1)
506 		/* Write-buffer is empty or not seeked */
507 		return 0;
508 
509 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
510 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
511 	ubifs_assert(!(wbuf->avail & 7));
512 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
513 	ubifs_assert(wbuf->size >= c->min_io_size);
514 	ubifs_assert(wbuf->size <= c->max_write_size);
515 	ubifs_assert(wbuf->size % c->min_io_size == 0);
516 	ubifs_assert(!c->ro_media && !c->ro_mount);
517 	if (c->leb_size - wbuf->offs >= c->max_write_size)
518 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
519 
520 	if (c->ro_error)
521 		return -EROFS;
522 
523 	/*
524 	 * Do not write whole write buffer but write only the minimum necessary
525 	 * amount of min. I/O units.
526 	 */
527 	sync_len = ALIGN(wbuf->used, c->min_io_size);
528 	dirt = sync_len - wbuf->used;
529 	if (dirt)
530 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
531 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
532 	if (err)
533 		return err;
534 
535 	spin_lock(&wbuf->lock);
536 	wbuf->offs += sync_len;
537 	/*
538 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
539 	 * But our goal is to optimize writes and make sure we write in
540 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
541 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
542 	 * sure that @wbuf->offs + @wbuf->size is aligned to
543 	 * @c->max_write_size. This way we make sure that after next
544 	 * write-buffer flush we are again at the optimal offset (aligned to
545 	 * @c->max_write_size).
546 	 */
547 	if (c->leb_size - wbuf->offs < c->max_write_size)
548 		wbuf->size = c->leb_size - wbuf->offs;
549 	else if (wbuf->offs & (c->max_write_size - 1))
550 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
551 	else
552 		wbuf->size = c->max_write_size;
553 	wbuf->avail = wbuf->size;
554 	wbuf->used = 0;
555 	wbuf->next_ino = 0;
556 	spin_unlock(&wbuf->lock);
557 
558 	if (wbuf->sync_callback)
559 		err = wbuf->sync_callback(c, wbuf->lnum,
560 					  c->leb_size - wbuf->offs, dirt);
561 	return err;
562 }
563 
564 /**
565  * ubifs_wbuf_seek_nolock - seek write-buffer.
566  * @wbuf: write-buffer
567  * @lnum: logical eraseblock number to seek to
568  * @offs: logical eraseblock offset to seek to
569  *
570  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
571  * The write-buffer has to be empty. Returns zero in case of success and a
572  * negative error code in case of failure.
573  */
574 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
575 {
576 	const struct ubifs_info *c = wbuf->c;
577 
578 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
579 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
580 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
581 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
582 	ubifs_assert(lnum != wbuf->lnum);
583 	ubifs_assert(wbuf->used == 0);
584 
585 	spin_lock(&wbuf->lock);
586 	wbuf->lnum = lnum;
587 	wbuf->offs = offs;
588 	if (c->leb_size - wbuf->offs < c->max_write_size)
589 		wbuf->size = c->leb_size - wbuf->offs;
590 	else if (wbuf->offs & (c->max_write_size - 1))
591 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
592 	else
593 		wbuf->size = c->max_write_size;
594 	wbuf->avail = wbuf->size;
595 	wbuf->used = 0;
596 	spin_unlock(&wbuf->lock);
597 
598 	return 0;
599 }
600 
601 /**
602  * ubifs_bg_wbufs_sync - synchronize write-buffers.
603  * @c: UBIFS file-system description object
604  *
605  * This function is called by background thread to synchronize write-buffers.
606  * Returns zero in case of success and a negative error code in case of
607  * failure.
608  */
609 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
610 {
611 	int err, i;
612 
613 	ubifs_assert(!c->ro_media && !c->ro_mount);
614 	if (!c->need_wbuf_sync)
615 		return 0;
616 	c->need_wbuf_sync = 0;
617 
618 	if (c->ro_error) {
619 		err = -EROFS;
620 		goto out_timers;
621 	}
622 
623 	dbg_io("synchronize");
624 	for (i = 0; i < c->jhead_cnt; i++) {
625 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
626 
627 		cond_resched();
628 
629 		/*
630 		 * If the mutex is locked then wbuf is being changed, so
631 		 * synchronization is not necessary.
632 		 */
633 		if (mutex_is_locked(&wbuf->io_mutex))
634 			continue;
635 
636 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
637 		if (!wbuf->need_sync) {
638 			mutex_unlock(&wbuf->io_mutex);
639 			continue;
640 		}
641 
642 		err = ubifs_wbuf_sync_nolock(wbuf);
643 		mutex_unlock(&wbuf->io_mutex);
644 		if (err) {
645 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
646 			ubifs_ro_mode(c, err);
647 			goto out_timers;
648 		}
649 	}
650 
651 	return 0;
652 
653 out_timers:
654 	/* Cancel all timers to prevent repeated errors */
655 	for (i = 0; i < c->jhead_cnt; i++) {
656 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
657 
658 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
659 		cancel_wbuf_timer_nolock(wbuf);
660 		mutex_unlock(&wbuf->io_mutex);
661 	}
662 	return err;
663 }
664 
665 /**
666  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
667  * @wbuf: write-buffer
668  * @buf: node to write
669  * @len: node length
670  *
671  * This function writes data to flash via write-buffer @wbuf. This means that
672  * the last piece of the node won't reach the flash media immediately if it
673  * does not take whole max. write unit (@c->max_write_size). Instead, the node
674  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
675  * because more data are appended to the write-buffer).
676  *
677  * This function returns zero in case of success and a negative error code in
678  * case of failure. If the node cannot be written because there is no more
679  * space in this logical eraseblock, %-ENOSPC is returned.
680  */
681 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
682 {
683 	struct ubifs_info *c = wbuf->c;
684 	int err, written, n, aligned_len = ALIGN(len, 8);
685 
686 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
687 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
688 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
689 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
690 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
691 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
692 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
693 	ubifs_assert(wbuf->size >= c->min_io_size);
694 	ubifs_assert(wbuf->size <= c->max_write_size);
695 	ubifs_assert(wbuf->size % c->min_io_size == 0);
696 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
697 	ubifs_assert(!c->ro_media && !c->ro_mount);
698 	ubifs_assert(!c->space_fixup);
699 	if (c->leb_size - wbuf->offs >= c->max_write_size)
700 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
701 
702 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
703 		err = -ENOSPC;
704 		goto out;
705 	}
706 
707 	cancel_wbuf_timer_nolock(wbuf);
708 
709 	if (c->ro_error)
710 		return -EROFS;
711 
712 	if (aligned_len <= wbuf->avail) {
713 		/*
714 		 * The node is not very large and fits entirely within
715 		 * write-buffer.
716 		 */
717 		memcpy(wbuf->buf + wbuf->used, buf, len);
718 
719 		if (aligned_len == wbuf->avail) {
720 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
721 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
722 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
723 					      wbuf->offs, wbuf->size);
724 			if (err)
725 				goto out;
726 
727 			spin_lock(&wbuf->lock);
728 			wbuf->offs += wbuf->size;
729 			if (c->leb_size - wbuf->offs >= c->max_write_size)
730 				wbuf->size = c->max_write_size;
731 			else
732 				wbuf->size = c->leb_size - wbuf->offs;
733 			wbuf->avail = wbuf->size;
734 			wbuf->used = 0;
735 			wbuf->next_ino = 0;
736 			spin_unlock(&wbuf->lock);
737 		} else {
738 			spin_lock(&wbuf->lock);
739 			wbuf->avail -= aligned_len;
740 			wbuf->used += aligned_len;
741 			spin_unlock(&wbuf->lock);
742 		}
743 
744 		goto exit;
745 	}
746 
747 	written = 0;
748 
749 	if (wbuf->used) {
750 		/*
751 		 * The node is large enough and does not fit entirely within
752 		 * current available space. We have to fill and flush
753 		 * write-buffer and switch to the next max. write unit.
754 		 */
755 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
756 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
757 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
758 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
759 				      wbuf->size);
760 		if (err)
761 			goto out;
762 
763 		wbuf->offs += wbuf->size;
764 		len -= wbuf->avail;
765 		aligned_len -= wbuf->avail;
766 		written += wbuf->avail;
767 	} else if (wbuf->offs & (c->max_write_size - 1)) {
768 		/*
769 		 * The write-buffer offset is not aligned to
770 		 * @c->max_write_size and @wbuf->size is less than
771 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
772 		 * following writes are done in optimal @c->max_write_size
773 		 * chunks.
774 		 */
775 		dbg_io("write %d bytes to LEB %d:%d",
776 		       wbuf->size, wbuf->lnum, wbuf->offs);
777 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
778 				      wbuf->size);
779 		if (err)
780 			goto out;
781 
782 		wbuf->offs += wbuf->size;
783 		len -= wbuf->size;
784 		aligned_len -= wbuf->size;
785 		written += wbuf->size;
786 	}
787 
788 	/*
789 	 * The remaining data may take more whole max. write units, so write the
790 	 * remains multiple to max. write unit size directly to the flash media.
791 	 * We align node length to 8-byte boundary because we anyway flash wbuf
792 	 * if the remaining space is less than 8 bytes.
793 	 */
794 	n = aligned_len >> c->max_write_shift;
795 	if (n) {
796 		n <<= c->max_write_shift;
797 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
798 		       wbuf->offs);
799 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
800 				      wbuf->offs, n);
801 		if (err)
802 			goto out;
803 		wbuf->offs += n;
804 		aligned_len -= n;
805 		len -= n;
806 		written += n;
807 	}
808 
809 	spin_lock(&wbuf->lock);
810 	if (aligned_len)
811 		/*
812 		 * And now we have what's left and what does not take whole
813 		 * max. write unit, so write it to the write-buffer and we are
814 		 * done.
815 		 */
816 		memcpy(wbuf->buf, buf + written, len);
817 
818 	if (c->leb_size - wbuf->offs >= c->max_write_size)
819 		wbuf->size = c->max_write_size;
820 	else
821 		wbuf->size = c->leb_size - wbuf->offs;
822 	wbuf->avail = wbuf->size - aligned_len;
823 	wbuf->used = aligned_len;
824 	wbuf->next_ino = 0;
825 	spin_unlock(&wbuf->lock);
826 
827 exit:
828 	if (wbuf->sync_callback) {
829 		int free = c->leb_size - wbuf->offs - wbuf->used;
830 
831 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
832 		if (err)
833 			goto out;
834 	}
835 
836 	if (wbuf->used)
837 		new_wbuf_timer_nolock(wbuf);
838 
839 	return 0;
840 
841 out:
842 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
843 		  len, wbuf->lnum, wbuf->offs, err);
844 	ubifs_dump_node(c, buf);
845 	dump_stack();
846 	ubifs_dump_leb(c, wbuf->lnum);
847 	return err;
848 }
849 
850 /**
851  * ubifs_write_node - write node to the media.
852  * @c: UBIFS file-system description object
853  * @buf: the node to write
854  * @len: node length
855  * @lnum: logical eraseblock number
856  * @offs: offset within the logical eraseblock
857  *
858  * This function automatically fills node magic number, assigns sequence
859  * number, and calculates node CRC checksum. The length of the @buf buffer has
860  * to be aligned to the minimal I/O unit size. This function automatically
861  * appends padding node and padding bytes if needed. Returns zero in case of
862  * success and a negative error code in case of failure.
863  */
864 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
865 		     int offs)
866 {
867 	int err, buf_len = ALIGN(len, c->min_io_size);
868 
869 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
870 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
871 	       buf_len);
872 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
873 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
874 	ubifs_assert(!c->ro_media && !c->ro_mount);
875 	ubifs_assert(!c->space_fixup);
876 
877 	if (c->ro_error)
878 		return -EROFS;
879 
880 	ubifs_prepare_node(c, buf, len, 1);
881 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
882 	if (err)
883 		ubifs_dump_node(c, buf);
884 
885 	return err;
886 }
887 
888 /**
889  * ubifs_read_node_wbuf - read node from the media or write-buffer.
890  * @wbuf: wbuf to check for un-written data
891  * @buf: buffer to read to
892  * @type: node type
893  * @len: node length
894  * @lnum: logical eraseblock number
895  * @offs: offset within the logical eraseblock
896  *
897  * This function reads a node of known type and length, checks it and stores
898  * in @buf. If the node partially or fully sits in the write-buffer, this
899  * function takes data from the buffer, otherwise it reads the flash media.
900  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
901  * error code in case of failure.
902  */
903 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
904 			 int lnum, int offs)
905 {
906 	const struct ubifs_info *c = wbuf->c;
907 	int err, rlen, overlap;
908 	struct ubifs_ch *ch = buf;
909 
910 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
911 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
912 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
913 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
914 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
915 
916 	spin_lock(&wbuf->lock);
917 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
918 	if (!overlap) {
919 		/* We may safely unlock the write-buffer and read the data */
920 		spin_unlock(&wbuf->lock);
921 		return ubifs_read_node(c, buf, type, len, lnum, offs);
922 	}
923 
924 	/* Don't read under wbuf */
925 	rlen = wbuf->offs - offs;
926 	if (rlen < 0)
927 		rlen = 0;
928 
929 	/* Copy the rest from the write-buffer */
930 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
931 	spin_unlock(&wbuf->lock);
932 
933 	if (rlen > 0) {
934 		/* Read everything that goes before write-buffer */
935 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
936 		if (err && err != -EBADMSG)
937 			return err;
938 	}
939 
940 	if (type != ch->node_type) {
941 		ubifs_err(c, "bad node type (%d but expected %d)",
942 			  ch->node_type, type);
943 		goto out;
944 	}
945 
946 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
947 	if (err) {
948 		ubifs_err(c, "expected node type %d", type);
949 		return err;
950 	}
951 
952 	rlen = le32_to_cpu(ch->len);
953 	if (rlen != len) {
954 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
955 		goto out;
956 	}
957 
958 	return 0;
959 
960 out:
961 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
962 	ubifs_dump_node(c, buf);
963 	dump_stack();
964 	return -EINVAL;
965 }
966 
967 /**
968  * ubifs_read_node - read node.
969  * @c: UBIFS file-system description object
970  * @buf: buffer to read to
971  * @type: node type
972  * @len: node length (not aligned)
973  * @lnum: logical eraseblock number
974  * @offs: offset within the logical eraseblock
975  *
976  * This function reads a node of known type and and length, checks it and
977  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
978  * and a negative error code in case of failure.
979  */
980 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
981 		    int lnum, int offs)
982 {
983 	int err, l;
984 	struct ubifs_ch *ch = buf;
985 
986 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
987 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
988 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
989 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
990 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
991 
992 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
993 	if (err && err != -EBADMSG)
994 		return err;
995 
996 	if (type != ch->node_type) {
997 		ubifs_errc(c, "bad node type (%d but expected %d)",
998 			   ch->node_type, type);
999 		goto out;
1000 	}
1001 
1002 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1003 	if (err) {
1004 		ubifs_errc(c, "expected node type %d", type);
1005 		return err;
1006 	}
1007 
1008 	l = le32_to_cpu(ch->len);
1009 	if (l != len) {
1010 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1011 		goto out;
1012 	}
1013 
1014 	return 0;
1015 
1016 out:
1017 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1018 		   offs, ubi_is_mapped(c->ubi, lnum));
1019 	if (!c->probing) {
1020 		ubifs_dump_node(c, buf);
1021 		dump_stack();
1022 	}
1023 	return -EINVAL;
1024 }
1025 
1026 /**
1027  * ubifs_wbuf_init - initialize write-buffer.
1028  * @c: UBIFS file-system description object
1029  * @wbuf: write-buffer to initialize
1030  *
1031  * This function initializes write-buffer. Returns zero in case of success
1032  * %-ENOMEM in case of failure.
1033  */
1034 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1035 {
1036 	size_t size;
1037 
1038 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1039 	if (!wbuf->buf)
1040 		return -ENOMEM;
1041 
1042 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1043 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1044 	if (!wbuf->inodes) {
1045 		kfree(wbuf->buf);
1046 		wbuf->buf = NULL;
1047 		return -ENOMEM;
1048 	}
1049 
1050 	wbuf->used = 0;
1051 	wbuf->lnum = wbuf->offs = -1;
1052 	/*
1053 	 * If the LEB starts at the max. write size aligned address, then
1054 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1055 	 * set it to something smaller so that it ends at the closest max.
1056 	 * write size boundary.
1057 	 */
1058 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1059 	wbuf->avail = wbuf->size = size;
1060 	wbuf->sync_callback = NULL;
1061 	mutex_init(&wbuf->io_mutex);
1062 	spin_lock_init(&wbuf->lock);
1063 	wbuf->c = c;
1064 	wbuf->next_ino = 0;
1065 
1066 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1067 	wbuf->timer.function = wbuf_timer_callback_nolock;
1068 	return 0;
1069 }
1070 
1071 /**
1072  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1073  * @wbuf: the write-buffer where to add
1074  * @inum: the inode number
1075  *
1076  * This function adds an inode number to the inode array of the write-buffer.
1077  */
1078 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1079 {
1080 	if (!wbuf->buf)
1081 		/* NOR flash or something similar */
1082 		return;
1083 
1084 	spin_lock(&wbuf->lock);
1085 	if (wbuf->used)
1086 		wbuf->inodes[wbuf->next_ino++] = inum;
1087 	spin_unlock(&wbuf->lock);
1088 }
1089 
1090 /**
1091  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1092  * @wbuf: the write-buffer
1093  * @inum: the inode number
1094  *
1095  * This function returns with %1 if the write-buffer contains some data from the
1096  * given inode otherwise it returns with %0.
1097  */
1098 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1099 {
1100 	int i, ret = 0;
1101 
1102 	spin_lock(&wbuf->lock);
1103 	for (i = 0; i < wbuf->next_ino; i++)
1104 		if (inum == wbuf->inodes[i]) {
1105 			ret = 1;
1106 			break;
1107 		}
1108 	spin_unlock(&wbuf->lock);
1109 
1110 	return ret;
1111 }
1112 
1113 /**
1114  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1115  * @c: UBIFS file-system description object
1116  * @inode: inode to synchronize
1117  *
1118  * This function synchronizes write-buffers which contain nodes belonging to
1119  * @inode. Returns zero in case of success and a negative error code in case of
1120  * failure.
1121  */
1122 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1123 {
1124 	int i, err = 0;
1125 
1126 	for (i = 0; i < c->jhead_cnt; i++) {
1127 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1128 
1129 		if (i == GCHD)
1130 			/*
1131 			 * GC head is special, do not look at it. Even if the
1132 			 * head contains something related to this inode, it is
1133 			 * a _copy_ of corresponding on-flash node which sits
1134 			 * somewhere else.
1135 			 */
1136 			continue;
1137 
1138 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1139 			continue;
1140 
1141 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1142 		if (wbuf_has_ino(wbuf, inode->i_ino))
1143 			err = ubifs_wbuf_sync_nolock(wbuf);
1144 		mutex_unlock(&wbuf->io_mutex);
1145 
1146 		if (err) {
1147 			ubifs_ro_mode(c, err);
1148 			return err;
1149 		}
1150 	}
1151 	return 0;
1152 }
1153