xref: /openbmc/linux/fs/ubifs/io.c (revision b6dcefde)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include <linux/crc32.h>
54 #include "ubifs.h"
55 
56 /**
57  * ubifs_ro_mode - switch UBIFS to read read-only mode.
58  * @c: UBIFS file-system description object
59  * @err: error code which is the reason of switching to R/O mode
60  */
61 void ubifs_ro_mode(struct ubifs_info *c, int err)
62 {
63 	if (!c->ro_media) {
64 		c->ro_media = 1;
65 		c->no_chk_data_crc = 0;
66 		ubifs_warn("switched to read-only mode, error %d", err);
67 		dbg_dump_stack();
68 	}
69 }
70 
71 /**
72  * ubifs_check_node - check node.
73  * @c: UBIFS file-system description object
74  * @buf: node to check
75  * @lnum: logical eraseblock number
76  * @offs: offset within the logical eraseblock
77  * @quiet: print no messages
78  * @must_chk_crc: indicates whether to always check the CRC
79  *
80  * This function checks node magic number and CRC checksum. This function also
81  * validates node length to prevent UBIFS from becoming crazy when an attacker
82  * feeds it a file-system image with incorrect nodes. For example, too large
83  * node length in the common header could cause UBIFS to read memory outside of
84  * allocated buffer when checking the CRC checksum.
85  *
86  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
87  * true, which is controlled by corresponding UBIFS mount option. However, if
88  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
89  * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
90  * ignored and CRC is checked.
91  *
92  * This function returns zero in case of success and %-EUCLEAN in case of bad
93  * CRC or magic.
94  */
95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
96 		     int offs, int quiet, int must_chk_crc)
97 {
98 	int err = -EINVAL, type, node_len;
99 	uint32_t crc, node_crc, magic;
100 	const struct ubifs_ch *ch = buf;
101 
102 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
103 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
104 
105 	magic = le32_to_cpu(ch->magic);
106 	if (magic != UBIFS_NODE_MAGIC) {
107 		if (!quiet)
108 			ubifs_err("bad magic %#08x, expected %#08x",
109 				  magic, UBIFS_NODE_MAGIC);
110 		err = -EUCLEAN;
111 		goto out;
112 	}
113 
114 	type = ch->node_type;
115 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
116 		if (!quiet)
117 			ubifs_err("bad node type %d", type);
118 		goto out;
119 	}
120 
121 	node_len = le32_to_cpu(ch->len);
122 	if (node_len + offs > c->leb_size)
123 		goto out_len;
124 
125 	if (c->ranges[type].max_len == 0) {
126 		if (node_len != c->ranges[type].len)
127 			goto out_len;
128 	} else if (node_len < c->ranges[type].min_len ||
129 		   node_len > c->ranges[type].max_len)
130 		goto out_len;
131 
132 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
133 	     c->no_chk_data_crc)
134 		return 0;
135 
136 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
137 	node_crc = le32_to_cpu(ch->crc);
138 	if (crc != node_crc) {
139 		if (!quiet)
140 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
141 				  crc, node_crc);
142 		err = -EUCLEAN;
143 		goto out;
144 	}
145 
146 	return 0;
147 
148 out_len:
149 	if (!quiet)
150 		ubifs_err("bad node length %d", node_len);
151 out:
152 	if (!quiet) {
153 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
154 		dbg_dump_node(c, buf);
155 		dbg_dump_stack();
156 	}
157 	return err;
158 }
159 
160 /**
161  * ubifs_pad - pad flash space.
162  * @c: UBIFS file-system description object
163  * @buf: buffer to put padding to
164  * @pad: how many bytes to pad
165  *
166  * The flash media obliges us to write only in chunks of %c->min_io_size and
167  * when we have to write less data we add padding node to the write-buffer and
168  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
169  * media is being scanned. If the amount of wasted space is not enough to fit a
170  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
171  * pattern (%UBIFS_PADDING_BYTE).
172  *
173  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
174  * used.
175  */
176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
177 {
178 	uint32_t crc;
179 
180 	ubifs_assert(pad >= 0 && !(pad & 7));
181 
182 	if (pad >= UBIFS_PAD_NODE_SZ) {
183 		struct ubifs_ch *ch = buf;
184 		struct ubifs_pad_node *pad_node = buf;
185 
186 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
187 		ch->node_type = UBIFS_PAD_NODE;
188 		ch->group_type = UBIFS_NO_NODE_GROUP;
189 		ch->padding[0] = ch->padding[1] = 0;
190 		ch->sqnum = 0;
191 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
192 		pad -= UBIFS_PAD_NODE_SZ;
193 		pad_node->pad_len = cpu_to_le32(pad);
194 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
195 		ch->crc = cpu_to_le32(crc);
196 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
197 	} else if (pad > 0)
198 		/* Too little space, padding node won't fit */
199 		memset(buf, UBIFS_PADDING_BYTE, pad);
200 }
201 
202 /**
203  * next_sqnum - get next sequence number.
204  * @c: UBIFS file-system description object
205  */
206 static unsigned long long next_sqnum(struct ubifs_info *c)
207 {
208 	unsigned long long sqnum;
209 
210 	spin_lock(&c->cnt_lock);
211 	sqnum = ++c->max_sqnum;
212 	spin_unlock(&c->cnt_lock);
213 
214 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
215 		if (sqnum >= SQNUM_WATERMARK) {
216 			ubifs_err("sequence number overflow %llu, end of life",
217 				  sqnum);
218 			ubifs_ro_mode(c, -EINVAL);
219 		}
220 		ubifs_warn("running out of sequence numbers, end of life soon");
221 	}
222 
223 	return sqnum;
224 }
225 
226 /**
227  * ubifs_prepare_node - prepare node to be written to flash.
228  * @c: UBIFS file-system description object
229  * @node: the node to pad
230  * @len: node length
231  * @pad: if the buffer has to be padded
232  *
233  * This function prepares node at @node to be written to the media - it
234  * calculates node CRC, fills the common header, and adds proper padding up to
235  * the next minimum I/O unit if @pad is not zero.
236  */
237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
238 {
239 	uint32_t crc;
240 	struct ubifs_ch *ch = node;
241 	unsigned long long sqnum = next_sqnum(c);
242 
243 	ubifs_assert(len >= UBIFS_CH_SZ);
244 
245 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
246 	ch->len = cpu_to_le32(len);
247 	ch->group_type = UBIFS_NO_NODE_GROUP;
248 	ch->sqnum = cpu_to_le64(sqnum);
249 	ch->padding[0] = ch->padding[1] = 0;
250 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
251 	ch->crc = cpu_to_le32(crc);
252 
253 	if (pad) {
254 		len = ALIGN(len, 8);
255 		pad = ALIGN(len, c->min_io_size) - len;
256 		ubifs_pad(c, node + len, pad);
257 	}
258 }
259 
260 /**
261  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
262  * @c: UBIFS file-system description object
263  * @node: the node to pad
264  * @len: node length
265  * @last: indicates the last node of the group
266  *
267  * This function prepares node at @node to be written to the media - it
268  * calculates node CRC and fills the common header.
269  */
270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
271 {
272 	uint32_t crc;
273 	struct ubifs_ch *ch = node;
274 	unsigned long long sqnum = next_sqnum(c);
275 
276 	ubifs_assert(len >= UBIFS_CH_SZ);
277 
278 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
279 	ch->len = cpu_to_le32(len);
280 	if (last)
281 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
282 	else
283 		ch->group_type = UBIFS_IN_NODE_GROUP;
284 	ch->sqnum = cpu_to_le64(sqnum);
285 	ch->padding[0] = ch->padding[1] = 0;
286 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
287 	ch->crc = cpu_to_le32(crc);
288 }
289 
290 /**
291  * wbuf_timer_callback - write-buffer timer callback function.
292  * @data: timer data (write-buffer descriptor)
293  *
294  * This function is called when the write-buffer timer expires.
295  */
296 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
297 {
298 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
299 
300 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
301 	wbuf->need_sync = 1;
302 	wbuf->c->need_wbuf_sync = 1;
303 	ubifs_wake_up_bgt(wbuf->c);
304 	return HRTIMER_NORESTART;
305 }
306 
307 /**
308  * new_wbuf_timer - start new write-buffer timer.
309  * @wbuf: write-buffer descriptor
310  */
311 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
312 {
313 	ubifs_assert(!hrtimer_active(&wbuf->timer));
314 
315 	if (wbuf->no_timer)
316 		return;
317 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
318 	       dbg_jhead(wbuf->jhead),
319 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
320 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
321 		       USEC_PER_SEC));
322 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
323 			       HRTIMER_MODE_REL);
324 }
325 
326 /**
327  * cancel_wbuf_timer - cancel write-buffer timer.
328  * @wbuf: write-buffer descriptor
329  */
330 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
331 {
332 	if (wbuf->no_timer)
333 		return;
334 	wbuf->need_sync = 0;
335 	hrtimer_cancel(&wbuf->timer);
336 }
337 
338 /**
339  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
340  * @wbuf: write-buffer to synchronize
341  *
342  * This function synchronizes write-buffer @buf and returns zero in case of
343  * success or a negative error code in case of failure.
344  */
345 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
346 {
347 	struct ubifs_info *c = wbuf->c;
348 	int err, dirt;
349 
350 	cancel_wbuf_timer_nolock(wbuf);
351 	if (!wbuf->used || wbuf->lnum == -1)
352 		/* Write-buffer is empty or not seeked */
353 		return 0;
354 
355 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
356 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
357 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
358 	ubifs_assert(!(wbuf->avail & 7));
359 	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
360 
361 	if (c->ro_media)
362 		return -EROFS;
363 
364 	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
365 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
366 			    c->min_io_size, wbuf->dtype);
367 	if (err) {
368 		ubifs_err("cannot write %d bytes to LEB %d:%d",
369 			  c->min_io_size, wbuf->lnum, wbuf->offs);
370 		dbg_dump_stack();
371 		return err;
372 	}
373 
374 	dirt = wbuf->avail;
375 
376 	spin_lock(&wbuf->lock);
377 	wbuf->offs += c->min_io_size;
378 	wbuf->avail = c->min_io_size;
379 	wbuf->used = 0;
380 	wbuf->next_ino = 0;
381 	spin_unlock(&wbuf->lock);
382 
383 	if (wbuf->sync_callback)
384 		err = wbuf->sync_callback(c, wbuf->lnum,
385 					  c->leb_size - wbuf->offs, dirt);
386 	return err;
387 }
388 
389 /**
390  * ubifs_wbuf_seek_nolock - seek write-buffer.
391  * @wbuf: write-buffer
392  * @lnum: logical eraseblock number to seek to
393  * @offs: logical eraseblock offset to seek to
394  * @dtype: data type
395  *
396  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
397  * The write-buffer is synchronized if it is not empty. Returns zero in case of
398  * success and a negative error code in case of failure.
399  */
400 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
401 			   int dtype)
402 {
403 	const struct ubifs_info *c = wbuf->c;
404 
405 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
406 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
407 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
408 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
409 	ubifs_assert(lnum != wbuf->lnum);
410 
411 	if (wbuf->used > 0) {
412 		int err = ubifs_wbuf_sync_nolock(wbuf);
413 
414 		if (err)
415 			return err;
416 	}
417 
418 	spin_lock(&wbuf->lock);
419 	wbuf->lnum = lnum;
420 	wbuf->offs = offs;
421 	wbuf->avail = c->min_io_size;
422 	wbuf->used = 0;
423 	spin_unlock(&wbuf->lock);
424 	wbuf->dtype = dtype;
425 
426 	return 0;
427 }
428 
429 /**
430  * ubifs_bg_wbufs_sync - synchronize write-buffers.
431  * @c: UBIFS file-system description object
432  *
433  * This function is called by background thread to synchronize write-buffers.
434  * Returns zero in case of success and a negative error code in case of
435  * failure.
436  */
437 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
438 {
439 	int err, i;
440 
441 	if (!c->need_wbuf_sync)
442 		return 0;
443 	c->need_wbuf_sync = 0;
444 
445 	if (c->ro_media) {
446 		err = -EROFS;
447 		goto out_timers;
448 	}
449 
450 	dbg_io("synchronize");
451 	for (i = 0; i < c->jhead_cnt; i++) {
452 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
453 
454 		cond_resched();
455 
456 		/*
457 		 * If the mutex is locked then wbuf is being changed, so
458 		 * synchronization is not necessary.
459 		 */
460 		if (mutex_is_locked(&wbuf->io_mutex))
461 			continue;
462 
463 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
464 		if (!wbuf->need_sync) {
465 			mutex_unlock(&wbuf->io_mutex);
466 			continue;
467 		}
468 
469 		err = ubifs_wbuf_sync_nolock(wbuf);
470 		mutex_unlock(&wbuf->io_mutex);
471 		if (err) {
472 			ubifs_err("cannot sync write-buffer, error %d", err);
473 			ubifs_ro_mode(c, err);
474 			goto out_timers;
475 		}
476 	}
477 
478 	return 0;
479 
480 out_timers:
481 	/* Cancel all timers to prevent repeated errors */
482 	for (i = 0; i < c->jhead_cnt; i++) {
483 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
484 
485 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
486 		cancel_wbuf_timer_nolock(wbuf);
487 		mutex_unlock(&wbuf->io_mutex);
488 	}
489 	return err;
490 }
491 
492 /**
493  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
494  * @wbuf: write-buffer
495  * @buf: node to write
496  * @len: node length
497  *
498  * This function writes data to flash via write-buffer @wbuf. This means that
499  * the last piece of the node won't reach the flash media immediately if it
500  * does not take whole minimal I/O unit. Instead, the node will sit in RAM
501  * until the write-buffer is synchronized (e.g., by timer).
502  *
503  * This function returns zero in case of success and a negative error code in
504  * case of failure. If the node cannot be written because there is no more
505  * space in this logical eraseblock, %-ENOSPC is returned.
506  */
507 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
508 {
509 	struct ubifs_info *c = wbuf->c;
510 	int err, written, n, aligned_len = ALIGN(len, 8), offs;
511 
512 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
513 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
514 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
515 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
516 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
517 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
518 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
519 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
520 
521 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
522 		err = -ENOSPC;
523 		goto out;
524 	}
525 
526 	cancel_wbuf_timer_nolock(wbuf);
527 
528 	if (c->ro_media)
529 		return -EROFS;
530 
531 	if (aligned_len <= wbuf->avail) {
532 		/*
533 		 * The node is not very large and fits entirely within
534 		 * write-buffer.
535 		 */
536 		memcpy(wbuf->buf + wbuf->used, buf, len);
537 
538 		if (aligned_len == wbuf->avail) {
539 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
540 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
541 			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
542 					    wbuf->offs, c->min_io_size,
543 					    wbuf->dtype);
544 			if (err)
545 				goto out;
546 
547 			spin_lock(&wbuf->lock);
548 			wbuf->offs += c->min_io_size;
549 			wbuf->avail = c->min_io_size;
550 			wbuf->used = 0;
551 			wbuf->next_ino = 0;
552 			spin_unlock(&wbuf->lock);
553 		} else {
554 			spin_lock(&wbuf->lock);
555 			wbuf->avail -= aligned_len;
556 			wbuf->used += aligned_len;
557 			spin_unlock(&wbuf->lock);
558 		}
559 
560 		goto exit;
561 	}
562 
563 	/*
564 	 * The node is large enough and does not fit entirely within current
565 	 * minimal I/O unit. We have to fill and flush write-buffer and switch
566 	 * to the next min. I/O unit.
567 	 */
568 	dbg_io("flush jhead %s wbuf to LEB %d:%d",
569 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
570 	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
571 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
572 			    c->min_io_size, wbuf->dtype);
573 	if (err)
574 		goto out;
575 
576 	offs = wbuf->offs + c->min_io_size;
577 	len -= wbuf->avail;
578 	aligned_len -= wbuf->avail;
579 	written = wbuf->avail;
580 
581 	/*
582 	 * The remaining data may take more whole min. I/O units, so write the
583 	 * remains multiple to min. I/O unit size directly to the flash media.
584 	 * We align node length to 8-byte boundary because we anyway flash wbuf
585 	 * if the remaining space is less than 8 bytes.
586 	 */
587 	n = aligned_len >> c->min_io_shift;
588 	if (n) {
589 		n <<= c->min_io_shift;
590 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
591 		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
592 				    wbuf->dtype);
593 		if (err)
594 			goto out;
595 		offs += n;
596 		aligned_len -= n;
597 		len -= n;
598 		written += n;
599 	}
600 
601 	spin_lock(&wbuf->lock);
602 	if (aligned_len)
603 		/*
604 		 * And now we have what's left and what does not take whole
605 		 * min. I/O unit, so write it to the write-buffer and we are
606 		 * done.
607 		 */
608 		memcpy(wbuf->buf, buf + written, len);
609 
610 	wbuf->offs = offs;
611 	wbuf->used = aligned_len;
612 	wbuf->avail = c->min_io_size - aligned_len;
613 	wbuf->next_ino = 0;
614 	spin_unlock(&wbuf->lock);
615 
616 exit:
617 	if (wbuf->sync_callback) {
618 		int free = c->leb_size - wbuf->offs - wbuf->used;
619 
620 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
621 		if (err)
622 			goto out;
623 	}
624 
625 	if (wbuf->used)
626 		new_wbuf_timer_nolock(wbuf);
627 
628 	return 0;
629 
630 out:
631 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
632 		  len, wbuf->lnum, wbuf->offs, err);
633 	dbg_dump_node(c, buf);
634 	dbg_dump_stack();
635 	dbg_dump_leb(c, wbuf->lnum);
636 	return err;
637 }
638 
639 /**
640  * ubifs_write_node - write node to the media.
641  * @c: UBIFS file-system description object
642  * @buf: the node to write
643  * @len: node length
644  * @lnum: logical eraseblock number
645  * @offs: offset within the logical eraseblock
646  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
647  *
648  * This function automatically fills node magic number, assigns sequence
649  * number, and calculates node CRC checksum. The length of the @buf buffer has
650  * to be aligned to the minimal I/O unit size. This function automatically
651  * appends padding node and padding bytes if needed. Returns zero in case of
652  * success and a negative error code in case of failure.
653  */
654 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
655 		     int offs, int dtype)
656 {
657 	int err, buf_len = ALIGN(len, c->min_io_size);
658 
659 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
660 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
661 	       buf_len);
662 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
663 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
664 
665 	if (c->ro_media)
666 		return -EROFS;
667 
668 	ubifs_prepare_node(c, buf, len, 1);
669 	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
670 	if (err) {
671 		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
672 			  buf_len, lnum, offs, err);
673 		dbg_dump_node(c, buf);
674 		dbg_dump_stack();
675 	}
676 
677 	return err;
678 }
679 
680 /**
681  * ubifs_read_node_wbuf - read node from the media or write-buffer.
682  * @wbuf: wbuf to check for un-written data
683  * @buf: buffer to read to
684  * @type: node type
685  * @len: node length
686  * @lnum: logical eraseblock number
687  * @offs: offset within the logical eraseblock
688  *
689  * This function reads a node of known type and length, checks it and stores
690  * in @buf. If the node partially or fully sits in the write-buffer, this
691  * function takes data from the buffer, otherwise it reads the flash media.
692  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
693  * error code in case of failure.
694  */
695 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
696 			 int lnum, int offs)
697 {
698 	const struct ubifs_info *c = wbuf->c;
699 	int err, rlen, overlap;
700 	struct ubifs_ch *ch = buf;
701 
702 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
703 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
704 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
705 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
706 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
707 
708 	spin_lock(&wbuf->lock);
709 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
710 	if (!overlap) {
711 		/* We may safely unlock the write-buffer and read the data */
712 		spin_unlock(&wbuf->lock);
713 		return ubifs_read_node(c, buf, type, len, lnum, offs);
714 	}
715 
716 	/* Don't read under wbuf */
717 	rlen = wbuf->offs - offs;
718 	if (rlen < 0)
719 		rlen = 0;
720 
721 	/* Copy the rest from the write-buffer */
722 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
723 	spin_unlock(&wbuf->lock);
724 
725 	if (rlen > 0) {
726 		/* Read everything that goes before write-buffer */
727 		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
728 		if (err && err != -EBADMSG) {
729 			ubifs_err("failed to read node %d from LEB %d:%d, "
730 				  "error %d", type, lnum, offs, err);
731 			dbg_dump_stack();
732 			return err;
733 		}
734 	}
735 
736 	if (type != ch->node_type) {
737 		ubifs_err("bad node type (%d but expected %d)",
738 			  ch->node_type, type);
739 		goto out;
740 	}
741 
742 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
743 	if (err) {
744 		ubifs_err("expected node type %d", type);
745 		return err;
746 	}
747 
748 	rlen = le32_to_cpu(ch->len);
749 	if (rlen != len) {
750 		ubifs_err("bad node length %d, expected %d", rlen, len);
751 		goto out;
752 	}
753 
754 	return 0;
755 
756 out:
757 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
758 	dbg_dump_node(c, buf);
759 	dbg_dump_stack();
760 	return -EINVAL;
761 }
762 
763 /**
764  * ubifs_read_node - read node.
765  * @c: UBIFS file-system description object
766  * @buf: buffer to read to
767  * @type: node type
768  * @len: node length (not aligned)
769  * @lnum: logical eraseblock number
770  * @offs: offset within the logical eraseblock
771  *
772  * This function reads a node of known type and and length, checks it and
773  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
774  * and a negative error code in case of failure.
775  */
776 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
777 		    int lnum, int offs)
778 {
779 	int err, l;
780 	struct ubifs_ch *ch = buf;
781 
782 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
783 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
784 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
785 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
786 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
787 
788 	err = ubi_read(c->ubi, lnum, buf, offs, len);
789 	if (err && err != -EBADMSG) {
790 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
791 			  type, lnum, offs, err);
792 		return err;
793 	}
794 
795 	if (type != ch->node_type) {
796 		ubifs_err("bad node type (%d but expected %d)",
797 			  ch->node_type, type);
798 		goto out;
799 	}
800 
801 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
802 	if (err) {
803 		ubifs_err("expected node type %d", type);
804 		return err;
805 	}
806 
807 	l = le32_to_cpu(ch->len);
808 	if (l != len) {
809 		ubifs_err("bad node length %d, expected %d", l, len);
810 		goto out;
811 	}
812 
813 	return 0;
814 
815 out:
816 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
817 	dbg_dump_node(c, buf);
818 	dbg_dump_stack();
819 	return -EINVAL;
820 }
821 
822 /**
823  * ubifs_wbuf_init - initialize write-buffer.
824  * @c: UBIFS file-system description object
825  * @wbuf: write-buffer to initialize
826  *
827  * This function initializes write-buffer. Returns zero in case of success
828  * %-ENOMEM in case of failure.
829  */
830 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
831 {
832 	size_t size;
833 
834 	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
835 	if (!wbuf->buf)
836 		return -ENOMEM;
837 
838 	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
839 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
840 	if (!wbuf->inodes) {
841 		kfree(wbuf->buf);
842 		wbuf->buf = NULL;
843 		return -ENOMEM;
844 	}
845 
846 	wbuf->used = 0;
847 	wbuf->lnum = wbuf->offs = -1;
848 	wbuf->avail = c->min_io_size;
849 	wbuf->dtype = UBI_UNKNOWN;
850 	wbuf->sync_callback = NULL;
851 	mutex_init(&wbuf->io_mutex);
852 	spin_lock_init(&wbuf->lock);
853 	wbuf->c = c;
854 	wbuf->next_ino = 0;
855 
856 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
857 	wbuf->timer.function = wbuf_timer_callback_nolock;
858 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
859 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
860 	wbuf->delta *= 1000000000ULL;
861 	ubifs_assert(wbuf->delta <= ULONG_MAX);
862 	return 0;
863 }
864 
865 /**
866  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
867  * @wbuf: the write-buffer where to add
868  * @inum: the inode number
869  *
870  * This function adds an inode number to the inode array of the write-buffer.
871  */
872 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
873 {
874 	if (!wbuf->buf)
875 		/* NOR flash or something similar */
876 		return;
877 
878 	spin_lock(&wbuf->lock);
879 	if (wbuf->used)
880 		wbuf->inodes[wbuf->next_ino++] = inum;
881 	spin_unlock(&wbuf->lock);
882 }
883 
884 /**
885  * wbuf_has_ino - returns if the wbuf contains data from the inode.
886  * @wbuf: the write-buffer
887  * @inum: the inode number
888  *
889  * This function returns with %1 if the write-buffer contains some data from the
890  * given inode otherwise it returns with %0.
891  */
892 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
893 {
894 	int i, ret = 0;
895 
896 	spin_lock(&wbuf->lock);
897 	for (i = 0; i < wbuf->next_ino; i++)
898 		if (inum == wbuf->inodes[i]) {
899 			ret = 1;
900 			break;
901 		}
902 	spin_unlock(&wbuf->lock);
903 
904 	return ret;
905 }
906 
907 /**
908  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
909  * @c: UBIFS file-system description object
910  * @inode: inode to synchronize
911  *
912  * This function synchronizes write-buffers which contain nodes belonging to
913  * @inode. Returns zero in case of success and a negative error code in case of
914  * failure.
915  */
916 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
917 {
918 	int i, err = 0;
919 
920 	for (i = 0; i < c->jhead_cnt; i++) {
921 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
922 
923 		if (i == GCHD)
924 			/*
925 			 * GC head is special, do not look at it. Even if the
926 			 * head contains something related to this inode, it is
927 			 * a _copy_ of corresponding on-flash node which sits
928 			 * somewhere else.
929 			 */
930 			continue;
931 
932 		if (!wbuf_has_ino(wbuf, inode->i_ino))
933 			continue;
934 
935 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
936 		if (wbuf_has_ino(wbuf, inode->i_ino))
937 			err = ubifs_wbuf_sync_nolock(wbuf);
938 		mutex_unlock(&wbuf->io_mutex);
939 
940 		if (err) {
941 			ubifs_ro_mode(c, err);
942 			return err;
943 		}
944 	}
945 	return 0;
946 }
947