1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program; if not, write to the Free Software Foundation, Inc., 51 18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Authors: Artem Bityutskiy (Битюцкий Артём) 21 * Adrian Hunter 22 * Zoltan Sogor 23 */ 24 25 /* 26 * This file implements UBIFS I/O subsystem which provides various I/O-related 27 * helper functions (reading/writing/checking/validating nodes) and implements 28 * write-buffering support. Write buffers help to save space which otherwise 29 * would have been wasted for padding to the nearest minimal I/O unit boundary. 30 * Instead, data first goes to the write-buffer and is flushed when the 31 * buffer is full or when it is not used for some time (by timer). This is 32 * similar to the mechanism is used by JFFS2. 33 * 34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 35 * mutexes defined inside these objects. Since sometimes upper-level code 36 * has to lock the write-buffer (e.g. journal space reservation code), many 37 * functions related to write-buffers have "nolock" suffix which means that the 38 * caller has to lock the write-buffer before calling this function. 39 * 40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 41 * aligned, UBIFS starts the next node from the aligned address, and the padded 42 * bytes may contain any rubbish. In other words, UBIFS does not put padding 43 * bytes in those small gaps. Common headers of nodes store real node lengths, 44 * not aligned lengths. Indexing nodes also store real lengths in branches. 45 * 46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 47 * uses padding nodes or padding bytes, if the padding node does not fit. 48 * 49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes 50 * every time they are read from the flash media. 51 */ 52 53 #include <linux/crc32.h> 54 #include "ubifs.h" 55 56 /** 57 * ubifs_ro_mode - switch UBIFS to read read-only mode. 58 * @c: UBIFS file-system description object 59 * @err: error code which is the reason of switching to R/O mode 60 */ 61 void ubifs_ro_mode(struct ubifs_info *c, int err) 62 { 63 if (!c->ro_media) { 64 c->ro_media = 1; 65 c->no_chk_data_crc = 0; 66 ubifs_warn("switched to read-only mode, error %d", err); 67 dbg_dump_stack(); 68 } 69 } 70 71 /** 72 * ubifs_check_node - check node. 73 * @c: UBIFS file-system description object 74 * @buf: node to check 75 * @lnum: logical eraseblock number 76 * @offs: offset within the logical eraseblock 77 * @quiet: print no messages 78 * @must_chk_crc: indicates whether to always check the CRC 79 * 80 * This function checks node magic number and CRC checksum. This function also 81 * validates node length to prevent UBIFS from becoming crazy when an attacker 82 * feeds it a file-system image with incorrect nodes. For example, too large 83 * node length in the common header could cause UBIFS to read memory outside of 84 * allocated buffer when checking the CRC checksum. 85 * 86 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 87 * true, which is controlled by corresponding UBIFS mount option. However, if 88 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 89 * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is 90 * ignored and CRC is checked. 91 * 92 * This function returns zero in case of success and %-EUCLEAN in case of bad 93 * CRC or magic. 94 */ 95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 96 int offs, int quiet, int must_chk_crc) 97 { 98 int err = -EINVAL, type, node_len; 99 uint32_t crc, node_crc, magic; 100 const struct ubifs_ch *ch = buf; 101 102 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 103 ubifs_assert(!(offs & 7) && offs < c->leb_size); 104 105 magic = le32_to_cpu(ch->magic); 106 if (magic != UBIFS_NODE_MAGIC) { 107 if (!quiet) 108 ubifs_err("bad magic %#08x, expected %#08x", 109 magic, UBIFS_NODE_MAGIC); 110 err = -EUCLEAN; 111 goto out; 112 } 113 114 type = ch->node_type; 115 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 116 if (!quiet) 117 ubifs_err("bad node type %d", type); 118 goto out; 119 } 120 121 node_len = le32_to_cpu(ch->len); 122 if (node_len + offs > c->leb_size) 123 goto out_len; 124 125 if (c->ranges[type].max_len == 0) { 126 if (node_len != c->ranges[type].len) 127 goto out_len; 128 } else if (node_len < c->ranges[type].min_len || 129 node_len > c->ranges[type].max_len) 130 goto out_len; 131 132 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc && 133 c->no_chk_data_crc) 134 return 0; 135 136 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 137 node_crc = le32_to_cpu(ch->crc); 138 if (crc != node_crc) { 139 if (!quiet) 140 ubifs_err("bad CRC: calculated %#08x, read %#08x", 141 crc, node_crc); 142 err = -EUCLEAN; 143 goto out; 144 } 145 146 return 0; 147 148 out_len: 149 if (!quiet) 150 ubifs_err("bad node length %d", node_len); 151 out: 152 if (!quiet) { 153 ubifs_err("bad node at LEB %d:%d", lnum, offs); 154 dbg_dump_node(c, buf); 155 dbg_dump_stack(); 156 } 157 return err; 158 } 159 160 /** 161 * ubifs_pad - pad flash space. 162 * @c: UBIFS file-system description object 163 * @buf: buffer to put padding to 164 * @pad: how many bytes to pad 165 * 166 * The flash media obliges us to write only in chunks of %c->min_io_size and 167 * when we have to write less data we add padding node to the write-buffer and 168 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 169 * media is being scanned. If the amount of wasted space is not enough to fit a 170 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 171 * pattern (%UBIFS_PADDING_BYTE). 172 * 173 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 174 * used. 175 */ 176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 177 { 178 uint32_t crc; 179 180 ubifs_assert(pad >= 0 && !(pad & 7)); 181 182 if (pad >= UBIFS_PAD_NODE_SZ) { 183 struct ubifs_ch *ch = buf; 184 struct ubifs_pad_node *pad_node = buf; 185 186 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 187 ch->node_type = UBIFS_PAD_NODE; 188 ch->group_type = UBIFS_NO_NODE_GROUP; 189 ch->padding[0] = ch->padding[1] = 0; 190 ch->sqnum = 0; 191 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 192 pad -= UBIFS_PAD_NODE_SZ; 193 pad_node->pad_len = cpu_to_le32(pad); 194 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 195 ch->crc = cpu_to_le32(crc); 196 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 197 } else if (pad > 0) 198 /* Too little space, padding node won't fit */ 199 memset(buf, UBIFS_PADDING_BYTE, pad); 200 } 201 202 /** 203 * next_sqnum - get next sequence number. 204 * @c: UBIFS file-system description object 205 */ 206 static unsigned long long next_sqnum(struct ubifs_info *c) 207 { 208 unsigned long long sqnum; 209 210 spin_lock(&c->cnt_lock); 211 sqnum = ++c->max_sqnum; 212 spin_unlock(&c->cnt_lock); 213 214 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 215 if (sqnum >= SQNUM_WATERMARK) { 216 ubifs_err("sequence number overflow %llu, end of life", 217 sqnum); 218 ubifs_ro_mode(c, -EINVAL); 219 } 220 ubifs_warn("running out of sequence numbers, end of life soon"); 221 } 222 223 return sqnum; 224 } 225 226 /** 227 * ubifs_prepare_node - prepare node to be written to flash. 228 * @c: UBIFS file-system description object 229 * @node: the node to pad 230 * @len: node length 231 * @pad: if the buffer has to be padded 232 * 233 * This function prepares node at @node to be written to the media - it 234 * calculates node CRC, fills the common header, and adds proper padding up to 235 * the next minimum I/O unit if @pad is not zero. 236 */ 237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 238 { 239 uint32_t crc; 240 struct ubifs_ch *ch = node; 241 unsigned long long sqnum = next_sqnum(c); 242 243 ubifs_assert(len >= UBIFS_CH_SZ); 244 245 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 246 ch->len = cpu_to_le32(len); 247 ch->group_type = UBIFS_NO_NODE_GROUP; 248 ch->sqnum = cpu_to_le64(sqnum); 249 ch->padding[0] = ch->padding[1] = 0; 250 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 251 ch->crc = cpu_to_le32(crc); 252 253 if (pad) { 254 len = ALIGN(len, 8); 255 pad = ALIGN(len, c->min_io_size) - len; 256 ubifs_pad(c, node + len, pad); 257 } 258 } 259 260 /** 261 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 262 * @c: UBIFS file-system description object 263 * @node: the node to pad 264 * @len: node length 265 * @last: indicates the last node of the group 266 * 267 * This function prepares node at @node to be written to the media - it 268 * calculates node CRC and fills the common header. 269 */ 270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 271 { 272 uint32_t crc; 273 struct ubifs_ch *ch = node; 274 unsigned long long sqnum = next_sqnum(c); 275 276 ubifs_assert(len >= UBIFS_CH_SZ); 277 278 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 279 ch->len = cpu_to_le32(len); 280 if (last) 281 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 282 else 283 ch->group_type = UBIFS_IN_NODE_GROUP; 284 ch->sqnum = cpu_to_le64(sqnum); 285 ch->padding[0] = ch->padding[1] = 0; 286 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 287 ch->crc = cpu_to_le32(crc); 288 } 289 290 /** 291 * wbuf_timer_callback - write-buffer timer callback function. 292 * @data: timer data (write-buffer descriptor) 293 * 294 * This function is called when the write-buffer timer expires. 295 */ 296 static void wbuf_timer_callback_nolock(unsigned long data) 297 { 298 struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data; 299 300 wbuf->need_sync = 1; 301 wbuf->c->need_wbuf_sync = 1; 302 ubifs_wake_up_bgt(wbuf->c); 303 } 304 305 /** 306 * new_wbuf_timer - start new write-buffer timer. 307 * @wbuf: write-buffer descriptor 308 */ 309 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 310 { 311 ubifs_assert(!timer_pending(&wbuf->timer)); 312 313 if (!wbuf->timeout) 314 return; 315 316 wbuf->timer.expires = jiffies + wbuf->timeout; 317 add_timer(&wbuf->timer); 318 } 319 320 /** 321 * cancel_wbuf_timer - cancel write-buffer timer. 322 * @wbuf: write-buffer descriptor 323 */ 324 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 325 { 326 /* 327 * If the syncer is waiting for the lock (from the background thread's 328 * context) and another task is changing write-buffer then the syncing 329 * should be canceled. 330 */ 331 wbuf->need_sync = 0; 332 del_timer(&wbuf->timer); 333 } 334 335 /** 336 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 337 * @wbuf: write-buffer to synchronize 338 * 339 * This function synchronizes write-buffer @buf and returns zero in case of 340 * success or a negative error code in case of failure. 341 */ 342 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 343 { 344 struct ubifs_info *c = wbuf->c; 345 int err, dirt; 346 347 cancel_wbuf_timer_nolock(wbuf); 348 if (!wbuf->used || wbuf->lnum == -1) 349 /* Write-buffer is empty or not seeked */ 350 return 0; 351 352 dbg_io("LEB %d:%d, %d bytes", 353 wbuf->lnum, wbuf->offs, wbuf->used); 354 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 355 ubifs_assert(!(wbuf->avail & 7)); 356 ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); 357 358 if (c->ro_media) 359 return -EROFS; 360 361 ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); 362 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 363 c->min_io_size, wbuf->dtype); 364 if (err) { 365 ubifs_err("cannot write %d bytes to LEB %d:%d", 366 c->min_io_size, wbuf->lnum, wbuf->offs); 367 dbg_dump_stack(); 368 return err; 369 } 370 371 dirt = wbuf->avail; 372 373 spin_lock(&wbuf->lock); 374 wbuf->offs += c->min_io_size; 375 wbuf->avail = c->min_io_size; 376 wbuf->used = 0; 377 wbuf->next_ino = 0; 378 spin_unlock(&wbuf->lock); 379 380 if (wbuf->sync_callback) 381 err = wbuf->sync_callback(c, wbuf->lnum, 382 c->leb_size - wbuf->offs, dirt); 383 return err; 384 } 385 386 /** 387 * ubifs_wbuf_seek_nolock - seek write-buffer. 388 * @wbuf: write-buffer 389 * @lnum: logical eraseblock number to seek to 390 * @offs: logical eraseblock offset to seek to 391 * @dtype: data type 392 * 393 * This function targets the write buffer to logical eraseblock @lnum:@offs. 394 * The write-buffer is synchronized if it is not empty. Returns zero in case of 395 * success and a negative error code in case of failure. 396 */ 397 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, 398 int dtype) 399 { 400 const struct ubifs_info *c = wbuf->c; 401 402 dbg_io("LEB %d:%d", lnum, offs); 403 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 404 ubifs_assert(offs >= 0 && offs <= c->leb_size); 405 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 406 ubifs_assert(lnum != wbuf->lnum); 407 408 if (wbuf->used > 0) { 409 int err = ubifs_wbuf_sync_nolock(wbuf); 410 411 if (err) 412 return err; 413 } 414 415 spin_lock(&wbuf->lock); 416 wbuf->lnum = lnum; 417 wbuf->offs = offs; 418 wbuf->avail = c->min_io_size; 419 wbuf->used = 0; 420 spin_unlock(&wbuf->lock); 421 wbuf->dtype = dtype; 422 423 return 0; 424 } 425 426 /** 427 * ubifs_bg_wbufs_sync - synchronize write-buffers. 428 * @c: UBIFS file-system description object 429 * 430 * This function is called by background thread to synchronize write-buffers. 431 * Returns zero in case of success and a negative error code in case of 432 * failure. 433 */ 434 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 435 { 436 int err, i; 437 438 if (!c->need_wbuf_sync) 439 return 0; 440 c->need_wbuf_sync = 0; 441 442 if (c->ro_media) { 443 err = -EROFS; 444 goto out_timers; 445 } 446 447 dbg_io("synchronize"); 448 for (i = 0; i < c->jhead_cnt; i++) { 449 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 450 451 cond_resched(); 452 453 /* 454 * If the mutex is locked then wbuf is being changed, so 455 * synchronization is not necessary. 456 */ 457 if (mutex_is_locked(&wbuf->io_mutex)) 458 continue; 459 460 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 461 if (!wbuf->need_sync) { 462 mutex_unlock(&wbuf->io_mutex); 463 continue; 464 } 465 466 err = ubifs_wbuf_sync_nolock(wbuf); 467 mutex_unlock(&wbuf->io_mutex); 468 if (err) { 469 ubifs_err("cannot sync write-buffer, error %d", err); 470 ubifs_ro_mode(c, err); 471 goto out_timers; 472 } 473 } 474 475 return 0; 476 477 out_timers: 478 /* Cancel all timers to prevent repeated errors */ 479 for (i = 0; i < c->jhead_cnt; i++) { 480 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 481 482 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 483 cancel_wbuf_timer_nolock(wbuf); 484 mutex_unlock(&wbuf->io_mutex); 485 } 486 return err; 487 } 488 489 /** 490 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 491 * @wbuf: write-buffer 492 * @buf: node to write 493 * @len: node length 494 * 495 * This function writes data to flash via write-buffer @wbuf. This means that 496 * the last piece of the node won't reach the flash media immediately if it 497 * does not take whole minimal I/O unit. Instead, the node will sit in RAM 498 * until the write-buffer is synchronized (e.g., by timer). 499 * 500 * This function returns zero in case of success and a negative error code in 501 * case of failure. If the node cannot be written because there is no more 502 * space in this logical eraseblock, %-ENOSPC is returned. 503 */ 504 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 505 { 506 struct ubifs_info *c = wbuf->c; 507 int err, written, n, aligned_len = ALIGN(len, 8), offs; 508 509 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len, 510 dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum, 511 wbuf->offs + wbuf->used); 512 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 513 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 514 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 515 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); 516 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 517 518 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 519 err = -ENOSPC; 520 goto out; 521 } 522 523 cancel_wbuf_timer_nolock(wbuf); 524 525 if (c->ro_media) 526 return -EROFS; 527 528 if (aligned_len <= wbuf->avail) { 529 /* 530 * The node is not very large and fits entirely within 531 * write-buffer. 532 */ 533 memcpy(wbuf->buf + wbuf->used, buf, len); 534 535 if (aligned_len == wbuf->avail) { 536 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, 537 wbuf->offs); 538 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, 539 wbuf->offs, c->min_io_size, 540 wbuf->dtype); 541 if (err) 542 goto out; 543 544 spin_lock(&wbuf->lock); 545 wbuf->offs += c->min_io_size; 546 wbuf->avail = c->min_io_size; 547 wbuf->used = 0; 548 wbuf->next_ino = 0; 549 spin_unlock(&wbuf->lock); 550 } else { 551 spin_lock(&wbuf->lock); 552 wbuf->avail -= aligned_len; 553 wbuf->used += aligned_len; 554 spin_unlock(&wbuf->lock); 555 } 556 557 goto exit; 558 } 559 560 /* 561 * The node is large enough and does not fit entirely within current 562 * minimal I/O unit. We have to fill and flush write-buffer and switch 563 * to the next min. I/O unit. 564 */ 565 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs); 566 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 567 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 568 c->min_io_size, wbuf->dtype); 569 if (err) 570 goto out; 571 572 offs = wbuf->offs + c->min_io_size; 573 len -= wbuf->avail; 574 aligned_len -= wbuf->avail; 575 written = wbuf->avail; 576 577 /* 578 * The remaining data may take more whole min. I/O units, so write the 579 * remains multiple to min. I/O unit size directly to the flash media. 580 * We align node length to 8-byte boundary because we anyway flash wbuf 581 * if the remaining space is less than 8 bytes. 582 */ 583 n = aligned_len >> c->min_io_shift; 584 if (n) { 585 n <<= c->min_io_shift; 586 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); 587 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, 588 wbuf->dtype); 589 if (err) 590 goto out; 591 offs += n; 592 aligned_len -= n; 593 len -= n; 594 written += n; 595 } 596 597 spin_lock(&wbuf->lock); 598 if (aligned_len) 599 /* 600 * And now we have what's left and what does not take whole 601 * min. I/O unit, so write it to the write-buffer and we are 602 * done. 603 */ 604 memcpy(wbuf->buf, buf + written, len); 605 606 wbuf->offs = offs; 607 wbuf->used = aligned_len; 608 wbuf->avail = c->min_io_size - aligned_len; 609 wbuf->next_ino = 0; 610 spin_unlock(&wbuf->lock); 611 612 exit: 613 if (wbuf->sync_callback) { 614 int free = c->leb_size - wbuf->offs - wbuf->used; 615 616 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 617 if (err) 618 goto out; 619 } 620 621 if (wbuf->used) 622 new_wbuf_timer_nolock(wbuf); 623 624 return 0; 625 626 out: 627 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 628 len, wbuf->lnum, wbuf->offs, err); 629 dbg_dump_node(c, buf); 630 dbg_dump_stack(); 631 dbg_dump_leb(c, wbuf->lnum); 632 return err; 633 } 634 635 /** 636 * ubifs_write_node - write node to the media. 637 * @c: UBIFS file-system description object 638 * @buf: the node to write 639 * @len: node length 640 * @lnum: logical eraseblock number 641 * @offs: offset within the logical eraseblock 642 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) 643 * 644 * This function automatically fills node magic number, assigns sequence 645 * number, and calculates node CRC checksum. The length of the @buf buffer has 646 * to be aligned to the minimal I/O unit size. This function automatically 647 * appends padding node and padding bytes if needed. Returns zero in case of 648 * success and a negative error code in case of failure. 649 */ 650 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 651 int offs, int dtype) 652 { 653 int err, buf_len = ALIGN(len, c->min_io_size); 654 655 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 656 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 657 buf_len); 658 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 659 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 660 661 if (c->ro_media) 662 return -EROFS; 663 664 ubifs_prepare_node(c, buf, len, 1); 665 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype); 666 if (err) { 667 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 668 buf_len, lnum, offs, err); 669 dbg_dump_node(c, buf); 670 dbg_dump_stack(); 671 } 672 673 return err; 674 } 675 676 /** 677 * ubifs_read_node_wbuf - read node from the media or write-buffer. 678 * @wbuf: wbuf to check for un-written data 679 * @buf: buffer to read to 680 * @type: node type 681 * @len: node length 682 * @lnum: logical eraseblock number 683 * @offs: offset within the logical eraseblock 684 * 685 * This function reads a node of known type and length, checks it and stores 686 * in @buf. If the node partially or fully sits in the write-buffer, this 687 * function takes data from the buffer, otherwise it reads the flash media. 688 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 689 * error code in case of failure. 690 */ 691 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 692 int lnum, int offs) 693 { 694 const struct ubifs_info *c = wbuf->c; 695 int err, rlen, overlap; 696 struct ubifs_ch *ch = buf; 697 698 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 699 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 700 ubifs_assert(!(offs & 7) && offs < c->leb_size); 701 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 702 703 spin_lock(&wbuf->lock); 704 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 705 if (!overlap) { 706 /* We may safely unlock the write-buffer and read the data */ 707 spin_unlock(&wbuf->lock); 708 return ubifs_read_node(c, buf, type, len, lnum, offs); 709 } 710 711 /* Don't read under wbuf */ 712 rlen = wbuf->offs - offs; 713 if (rlen < 0) 714 rlen = 0; 715 716 /* Copy the rest from the write-buffer */ 717 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 718 spin_unlock(&wbuf->lock); 719 720 if (rlen > 0) { 721 /* Read everything that goes before write-buffer */ 722 err = ubi_read(c->ubi, lnum, buf, offs, rlen); 723 if (err && err != -EBADMSG) { 724 ubifs_err("failed to read node %d from LEB %d:%d, " 725 "error %d", type, lnum, offs, err); 726 dbg_dump_stack(); 727 return err; 728 } 729 } 730 731 if (type != ch->node_type) { 732 ubifs_err("bad node type (%d but expected %d)", 733 ch->node_type, type); 734 goto out; 735 } 736 737 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 738 if (err) { 739 ubifs_err("expected node type %d", type); 740 return err; 741 } 742 743 rlen = le32_to_cpu(ch->len); 744 if (rlen != len) { 745 ubifs_err("bad node length %d, expected %d", rlen, len); 746 goto out; 747 } 748 749 return 0; 750 751 out: 752 ubifs_err("bad node at LEB %d:%d", lnum, offs); 753 dbg_dump_node(c, buf); 754 dbg_dump_stack(); 755 return -EINVAL; 756 } 757 758 /** 759 * ubifs_read_node - read node. 760 * @c: UBIFS file-system description object 761 * @buf: buffer to read to 762 * @type: node type 763 * @len: node length (not aligned) 764 * @lnum: logical eraseblock number 765 * @offs: offset within the logical eraseblock 766 * 767 * This function reads a node of known type and and length, checks it and 768 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 769 * and a negative error code in case of failure. 770 */ 771 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 772 int lnum, int offs) 773 { 774 int err, l; 775 struct ubifs_ch *ch = buf; 776 777 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 778 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 779 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 780 ubifs_assert(!(offs & 7) && offs < c->leb_size); 781 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 782 783 err = ubi_read(c->ubi, lnum, buf, offs, len); 784 if (err && err != -EBADMSG) { 785 ubifs_err("cannot read node %d from LEB %d:%d, error %d", 786 type, lnum, offs, err); 787 return err; 788 } 789 790 if (type != ch->node_type) { 791 ubifs_err("bad node type (%d but expected %d)", 792 ch->node_type, type); 793 goto out; 794 } 795 796 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 797 if (err) { 798 ubifs_err("expected node type %d", type); 799 return err; 800 } 801 802 l = le32_to_cpu(ch->len); 803 if (l != len) { 804 ubifs_err("bad node length %d, expected %d", l, len); 805 goto out; 806 } 807 808 return 0; 809 810 out: 811 ubifs_err("bad node at LEB %d:%d", lnum, offs); 812 dbg_dump_node(c, buf); 813 dbg_dump_stack(); 814 return -EINVAL; 815 } 816 817 /** 818 * ubifs_wbuf_init - initialize write-buffer. 819 * @c: UBIFS file-system description object 820 * @wbuf: write-buffer to initialize 821 * 822 * This function initializes write buffer. Returns zero in case of success 823 * %-ENOMEM in case of failure. 824 */ 825 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 826 { 827 size_t size; 828 829 wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); 830 if (!wbuf->buf) 831 return -ENOMEM; 832 833 size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 834 wbuf->inodes = kmalloc(size, GFP_KERNEL); 835 if (!wbuf->inodes) { 836 kfree(wbuf->buf); 837 wbuf->buf = NULL; 838 return -ENOMEM; 839 } 840 841 wbuf->used = 0; 842 wbuf->lnum = wbuf->offs = -1; 843 wbuf->avail = c->min_io_size; 844 wbuf->dtype = UBI_UNKNOWN; 845 wbuf->sync_callback = NULL; 846 mutex_init(&wbuf->io_mutex); 847 spin_lock_init(&wbuf->lock); 848 849 wbuf->c = c; 850 init_timer(&wbuf->timer); 851 wbuf->timer.function = wbuf_timer_callback_nolock; 852 wbuf->timer.data = (unsigned long)wbuf; 853 wbuf->timeout = DEFAULT_WBUF_TIMEOUT; 854 wbuf->next_ino = 0; 855 856 return 0; 857 } 858 859 /** 860 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 861 * @wbuf: the write-buffer whereto add 862 * @inum: the inode number 863 * 864 * This function adds an inode number to the inode array of the write-buffer. 865 */ 866 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 867 { 868 if (!wbuf->buf) 869 /* NOR flash or something similar */ 870 return; 871 872 spin_lock(&wbuf->lock); 873 if (wbuf->used) 874 wbuf->inodes[wbuf->next_ino++] = inum; 875 spin_unlock(&wbuf->lock); 876 } 877 878 /** 879 * wbuf_has_ino - returns if the wbuf contains data from the inode. 880 * @wbuf: the write-buffer 881 * @inum: the inode number 882 * 883 * This function returns with %1 if the write-buffer contains some data from the 884 * given inode otherwise it returns with %0. 885 */ 886 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 887 { 888 int i, ret = 0; 889 890 spin_lock(&wbuf->lock); 891 for (i = 0; i < wbuf->next_ino; i++) 892 if (inum == wbuf->inodes[i]) { 893 ret = 1; 894 break; 895 } 896 spin_unlock(&wbuf->lock); 897 898 return ret; 899 } 900 901 /** 902 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 903 * @c: UBIFS file-system description object 904 * @inode: inode to synchronize 905 * 906 * This function synchronizes write-buffers which contain nodes belonging to 907 * @inode. Returns zero in case of success and a negative error code in case of 908 * failure. 909 */ 910 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 911 { 912 int i, err = 0; 913 914 for (i = 0; i < c->jhead_cnt; i++) { 915 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 916 917 if (i == GCHD) 918 /* 919 * GC head is special, do not look at it. Even if the 920 * head contains something related to this inode, it is 921 * a _copy_ of corresponding on-flash node which sits 922 * somewhere else. 923 */ 924 continue; 925 926 if (!wbuf_has_ino(wbuf, inode->i_ino)) 927 continue; 928 929 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 930 if (wbuf_has_ino(wbuf, inode->i_ino)) 931 err = ubifs_wbuf_sync_nolock(wbuf); 932 mutex_unlock(&wbuf->io_mutex); 933 934 if (err) { 935 ubifs_ro_mode(c, err); 936 return err; 937 } 938 } 939 return 0; 940 } 941