1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * Copyright (C) 2006, 2007 University of Szeged, Hungary 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 * Zoltan Sogor 11 */ 12 13 /* 14 * This file implements UBIFS I/O subsystem which provides various I/O-related 15 * helper functions (reading/writing/checking/validating nodes) and implements 16 * write-buffering support. Write buffers help to save space which otherwise 17 * would have been wasted for padding to the nearest minimal I/O unit boundary. 18 * Instead, data first goes to the write-buffer and is flushed when the 19 * buffer is full or when it is not used for some time (by timer). This is 20 * similar to the mechanism is used by JFFS2. 21 * 22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 23 * write size (@c->max_write_size). The latter is the maximum amount of bytes 24 * the underlying flash is able to program at a time, and writing in 25 * @c->max_write_size units should presumably be faster. Obviously, 26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 27 * @c->max_write_size bytes in size for maximum performance. However, when a 28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 29 * boundary) which contains data is written, not the whole write-buffer, 30 * because this is more space-efficient. 31 * 32 * This optimization adds few complications to the code. Indeed, on the one 33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 34 * also means aligning writes at the @c->max_write_size bytes offsets. On the 35 * other hand, we do not want to waste space when synchronizing the write 36 * buffer, so during synchronization we writes in smaller chunks. And this makes 37 * the next write offset to be not aligned to @c->max_write_size bytes. So the 38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 39 * to @c->max_write_size bytes again. We do this by temporarily shrinking 40 * write-buffer size (@wbuf->size). 41 * 42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 43 * mutexes defined inside these objects. Since sometimes upper-level code 44 * has to lock the write-buffer (e.g. journal space reservation code), many 45 * functions related to write-buffers have "nolock" suffix which means that the 46 * caller has to lock the write-buffer before calling this function. 47 * 48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 49 * aligned, UBIFS starts the next node from the aligned address, and the padded 50 * bytes may contain any rubbish. In other words, UBIFS does not put padding 51 * bytes in those small gaps. Common headers of nodes store real node lengths, 52 * not aligned lengths. Indexing nodes also store real lengths in branches. 53 * 54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 55 * uses padding nodes or padding bytes, if the padding node does not fit. 56 * 57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 58 * they are read from the flash media. 59 */ 60 61 #include <linux/crc32.h> 62 #include <linux/slab.h> 63 #include "ubifs.h" 64 65 /** 66 * ubifs_ro_mode - switch UBIFS to read read-only mode. 67 * @c: UBIFS file-system description object 68 * @err: error code which is the reason of switching to R/O mode 69 */ 70 void ubifs_ro_mode(struct ubifs_info *c, int err) 71 { 72 if (!c->ro_error) { 73 c->ro_error = 1; 74 c->no_chk_data_crc = 0; 75 c->vfs_sb->s_flags |= SB_RDONLY; 76 ubifs_warn(c, "switched to read-only mode, error %d", err); 77 dump_stack(); 78 } 79 } 80 81 /* 82 * Below are simple wrappers over UBI I/O functions which include some 83 * additional checks and UBIFS debugging stuff. See corresponding UBI function 84 * for more information. 85 */ 86 87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 88 int len, int even_ebadmsg) 89 { 90 int err; 91 92 err = ubi_read(c->ubi, lnum, buf, offs, len); 93 /* 94 * In case of %-EBADMSG print the error message only if the 95 * @even_ebadmsg is true. 96 */ 97 if (err && (err != -EBADMSG || even_ebadmsg)) { 98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 99 len, lnum, offs, err); 100 dump_stack(); 101 } 102 return err; 103 } 104 105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 106 int len) 107 { 108 int err; 109 110 ubifs_assert(c, !c->ro_media && !c->ro_mount); 111 if (c->ro_error) 112 return -EROFS; 113 if (!dbg_is_tst_rcvry(c)) 114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 115 else 116 err = dbg_leb_write(c, lnum, buf, offs, len); 117 if (err) { 118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 119 len, lnum, offs, err); 120 ubifs_ro_mode(c, err); 121 dump_stack(); 122 } 123 return err; 124 } 125 126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 127 { 128 int err; 129 130 ubifs_assert(c, !c->ro_media && !c->ro_mount); 131 if (c->ro_error) 132 return -EROFS; 133 if (!dbg_is_tst_rcvry(c)) 134 err = ubi_leb_change(c->ubi, lnum, buf, len); 135 else 136 err = dbg_leb_change(c, lnum, buf, len); 137 if (err) { 138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 139 len, lnum, err); 140 ubifs_ro_mode(c, err); 141 dump_stack(); 142 } 143 return err; 144 } 145 146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 147 { 148 int err; 149 150 ubifs_assert(c, !c->ro_media && !c->ro_mount); 151 if (c->ro_error) 152 return -EROFS; 153 if (!dbg_is_tst_rcvry(c)) 154 err = ubi_leb_unmap(c->ubi, lnum); 155 else 156 err = dbg_leb_unmap(c, lnum); 157 if (err) { 158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 159 ubifs_ro_mode(c, err); 160 dump_stack(); 161 } 162 return err; 163 } 164 165 int ubifs_leb_map(struct ubifs_info *c, int lnum) 166 { 167 int err; 168 169 ubifs_assert(c, !c->ro_media && !c->ro_mount); 170 if (c->ro_error) 171 return -EROFS; 172 if (!dbg_is_tst_rcvry(c)) 173 err = ubi_leb_map(c->ubi, lnum); 174 else 175 err = dbg_leb_map(c, lnum); 176 if (err) { 177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 178 ubifs_ro_mode(c, err); 179 dump_stack(); 180 } 181 return err; 182 } 183 184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 185 { 186 int err; 187 188 err = ubi_is_mapped(c->ubi, lnum); 189 if (err < 0) { 190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 191 lnum, err); 192 dump_stack(); 193 } 194 return err; 195 } 196 197 /** 198 * ubifs_check_node - check node. 199 * @c: UBIFS file-system description object 200 * @buf: node to check 201 * @len: node length 202 * @lnum: logical eraseblock number 203 * @offs: offset within the logical eraseblock 204 * @quiet: print no messages 205 * @must_chk_crc: indicates whether to always check the CRC 206 * 207 * This function checks node magic number and CRC checksum. This function also 208 * validates node length to prevent UBIFS from becoming crazy when an attacker 209 * feeds it a file-system image with incorrect nodes. For example, too large 210 * node length in the common header could cause UBIFS to read memory outside of 211 * allocated buffer when checking the CRC checksum. 212 * 213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 214 * true, which is controlled by corresponding UBIFS mount option. However, if 215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 218 * is checked. This is because during mounting or re-mounting from R/O mode to 219 * R/W mode we may read journal nodes (when replying the journal or doing the 220 * recovery) and the journal nodes may potentially be corrupted, so checking is 221 * required. 222 * 223 * This function returns zero in case of success and %-EUCLEAN in case of bad 224 * CRC or magic. 225 */ 226 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len, 227 int lnum, int offs, int quiet, int must_chk_crc) 228 { 229 int err = -EINVAL, type, node_len; 230 uint32_t crc, node_crc, magic; 231 const struct ubifs_ch *ch = buf; 232 233 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 234 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 235 236 magic = le32_to_cpu(ch->magic); 237 if (magic != UBIFS_NODE_MAGIC) { 238 if (!quiet) 239 ubifs_err(c, "bad magic %#08x, expected %#08x", 240 magic, UBIFS_NODE_MAGIC); 241 err = -EUCLEAN; 242 goto out; 243 } 244 245 type = ch->node_type; 246 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 247 if (!quiet) 248 ubifs_err(c, "bad node type %d", type); 249 goto out; 250 } 251 252 node_len = le32_to_cpu(ch->len); 253 if (node_len + offs > c->leb_size) 254 goto out_len; 255 256 if (c->ranges[type].max_len == 0) { 257 if (node_len != c->ranges[type].len) 258 goto out_len; 259 } else if (node_len < c->ranges[type].min_len || 260 node_len > c->ranges[type].max_len) 261 goto out_len; 262 263 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 264 !c->remounting_rw && c->no_chk_data_crc) 265 return 0; 266 267 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 268 node_crc = le32_to_cpu(ch->crc); 269 if (crc != node_crc) { 270 if (!quiet) 271 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 272 crc, node_crc); 273 err = -EUCLEAN; 274 goto out; 275 } 276 277 return 0; 278 279 out_len: 280 if (!quiet) 281 ubifs_err(c, "bad node length %d", node_len); 282 out: 283 if (!quiet) { 284 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 285 ubifs_dump_node(c, buf, len); 286 dump_stack(); 287 } 288 return err; 289 } 290 291 /** 292 * ubifs_pad - pad flash space. 293 * @c: UBIFS file-system description object 294 * @buf: buffer to put padding to 295 * @pad: how many bytes to pad 296 * 297 * The flash media obliges us to write only in chunks of %c->min_io_size and 298 * when we have to write less data we add padding node to the write-buffer and 299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 300 * media is being scanned. If the amount of wasted space is not enough to fit a 301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 302 * pattern (%UBIFS_PADDING_BYTE). 303 * 304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 305 * used. 306 */ 307 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 308 { 309 uint32_t crc; 310 311 ubifs_assert(c, pad >= 0); 312 313 if (pad >= UBIFS_PAD_NODE_SZ) { 314 struct ubifs_ch *ch = buf; 315 struct ubifs_pad_node *pad_node = buf; 316 317 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 318 ch->node_type = UBIFS_PAD_NODE; 319 ch->group_type = UBIFS_NO_NODE_GROUP; 320 ch->padding[0] = ch->padding[1] = 0; 321 ch->sqnum = 0; 322 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 323 pad -= UBIFS_PAD_NODE_SZ; 324 pad_node->pad_len = cpu_to_le32(pad); 325 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 326 ch->crc = cpu_to_le32(crc); 327 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 328 } else if (pad > 0) 329 /* Too little space, padding node won't fit */ 330 memset(buf, UBIFS_PADDING_BYTE, pad); 331 } 332 333 /** 334 * next_sqnum - get next sequence number. 335 * @c: UBIFS file-system description object 336 */ 337 static unsigned long long next_sqnum(struct ubifs_info *c) 338 { 339 unsigned long long sqnum; 340 341 spin_lock(&c->cnt_lock); 342 sqnum = ++c->max_sqnum; 343 spin_unlock(&c->cnt_lock); 344 345 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 346 if (sqnum >= SQNUM_WATERMARK) { 347 ubifs_err(c, "sequence number overflow %llu, end of life", 348 sqnum); 349 ubifs_ro_mode(c, -EINVAL); 350 } 351 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 352 } 353 354 return sqnum; 355 } 356 357 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad) 358 { 359 struct ubifs_ch *ch = node; 360 unsigned long long sqnum = next_sqnum(c); 361 362 ubifs_assert(c, len >= UBIFS_CH_SZ); 363 364 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 365 ch->len = cpu_to_le32(len); 366 ch->group_type = UBIFS_NO_NODE_GROUP; 367 ch->sqnum = cpu_to_le64(sqnum); 368 ch->padding[0] = ch->padding[1] = 0; 369 370 if (pad) { 371 len = ALIGN(len, 8); 372 pad = ALIGN(len, c->min_io_size) - len; 373 ubifs_pad(c, node + len, pad); 374 } 375 } 376 377 void ubifs_crc_node(struct ubifs_info *c, void *node, int len) 378 { 379 struct ubifs_ch *ch = node; 380 uint32_t crc; 381 382 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 383 ch->crc = cpu_to_le32(crc); 384 } 385 386 /** 387 * ubifs_prepare_node_hmac - prepare node to be written to flash. 388 * @c: UBIFS file-system description object 389 * @node: the node to pad 390 * @len: node length 391 * @hmac_offs: offset of the HMAC in the node 392 * @pad: if the buffer has to be padded 393 * 394 * This function prepares node at @node to be written to the media - it 395 * calculates node CRC, fills the common header, and adds proper padding up to 396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then 397 * a HMAC is inserted into the node at the given offset. 398 * 399 * This function returns 0 for success or a negative error code otherwise. 400 */ 401 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, 402 int hmac_offs, int pad) 403 { 404 int err; 405 406 ubifs_init_node(c, node, len, pad); 407 408 if (hmac_offs > 0) { 409 err = ubifs_node_insert_hmac(c, node, len, hmac_offs); 410 if (err) 411 return err; 412 } 413 414 ubifs_crc_node(c, node, len); 415 416 return 0; 417 } 418 419 /** 420 * ubifs_prepare_node - prepare node to be written to flash. 421 * @c: UBIFS file-system description object 422 * @node: the node to pad 423 * @len: node length 424 * @pad: if the buffer has to be padded 425 * 426 * This function prepares node at @node to be written to the media - it 427 * calculates node CRC, fills the common header, and adds proper padding up to 428 * the next minimum I/O unit if @pad is not zero. 429 */ 430 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 431 { 432 /* 433 * Deliberately ignore return value since this function can only fail 434 * when a hmac offset is given. 435 */ 436 ubifs_prepare_node_hmac(c, node, len, 0, pad); 437 } 438 439 /** 440 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 441 * @c: UBIFS file-system description object 442 * @node: the node to pad 443 * @len: node length 444 * @last: indicates the last node of the group 445 * 446 * This function prepares node at @node to be written to the media - it 447 * calculates node CRC and fills the common header. 448 */ 449 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 450 { 451 uint32_t crc; 452 struct ubifs_ch *ch = node; 453 unsigned long long sqnum = next_sqnum(c); 454 455 ubifs_assert(c, len >= UBIFS_CH_SZ); 456 457 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 458 ch->len = cpu_to_le32(len); 459 if (last) 460 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 461 else 462 ch->group_type = UBIFS_IN_NODE_GROUP; 463 ch->sqnum = cpu_to_le64(sqnum); 464 ch->padding[0] = ch->padding[1] = 0; 465 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 466 ch->crc = cpu_to_le32(crc); 467 } 468 469 /** 470 * wbuf_timer_callback - write-buffer timer callback function. 471 * @timer: timer data (write-buffer descriptor) 472 * 473 * This function is called when the write-buffer timer expires. 474 */ 475 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 476 { 477 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 478 479 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 480 wbuf->need_sync = 1; 481 wbuf->c->need_wbuf_sync = 1; 482 ubifs_wake_up_bgt(wbuf->c); 483 return HRTIMER_NORESTART; 484 } 485 486 /** 487 * new_wbuf_timer - start new write-buffer timer. 488 * @c: UBIFS file-system description object 489 * @wbuf: write-buffer descriptor 490 */ 491 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 492 { 493 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10); 494 unsigned long long delta = dirty_writeback_interval; 495 496 /* centi to milli, milli to nano, then 10% */ 497 delta *= 10ULL * NSEC_PER_MSEC / 10ULL; 498 499 ubifs_assert(c, !hrtimer_active(&wbuf->timer)); 500 ubifs_assert(c, delta <= ULONG_MAX); 501 502 if (wbuf->no_timer) 503 return; 504 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 505 dbg_jhead(wbuf->jhead), 506 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC), 507 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC)); 508 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta, 509 HRTIMER_MODE_REL); 510 } 511 512 /** 513 * cancel_wbuf_timer - cancel write-buffer timer. 514 * @wbuf: write-buffer descriptor 515 */ 516 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 517 { 518 if (wbuf->no_timer) 519 return; 520 wbuf->need_sync = 0; 521 hrtimer_cancel(&wbuf->timer); 522 } 523 524 /** 525 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 526 * @wbuf: write-buffer to synchronize 527 * 528 * This function synchronizes write-buffer @buf and returns zero in case of 529 * success or a negative error code in case of failure. 530 * 531 * Note, although write-buffers are of @c->max_write_size, this function does 532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 533 * if the write-buffer is only partially filled with data, only the used part 534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 535 * This way we waste less space. 536 */ 537 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 538 { 539 struct ubifs_info *c = wbuf->c; 540 int err, dirt, sync_len; 541 542 cancel_wbuf_timer_nolock(wbuf); 543 if (!wbuf->used || wbuf->lnum == -1) 544 /* Write-buffer is empty or not seeked */ 545 return 0; 546 547 dbg_io("LEB %d:%d, %d bytes, jhead %s", 548 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 549 ubifs_assert(c, !(wbuf->avail & 7)); 550 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size); 551 ubifs_assert(c, wbuf->size >= c->min_io_size); 552 ubifs_assert(c, wbuf->size <= c->max_write_size); 553 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 554 ubifs_assert(c, !c->ro_media && !c->ro_mount); 555 if (c->leb_size - wbuf->offs >= c->max_write_size) 556 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 557 558 if (c->ro_error) 559 return -EROFS; 560 561 /* 562 * Do not write whole write buffer but write only the minimum necessary 563 * amount of min. I/O units. 564 */ 565 sync_len = ALIGN(wbuf->used, c->min_io_size); 566 dirt = sync_len - wbuf->used; 567 if (dirt) 568 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 569 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 570 if (err) 571 return err; 572 573 spin_lock(&wbuf->lock); 574 wbuf->offs += sync_len; 575 /* 576 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 577 * But our goal is to optimize writes and make sure we write in 578 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 579 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 580 * sure that @wbuf->offs + @wbuf->size is aligned to 581 * @c->max_write_size. This way we make sure that after next 582 * write-buffer flush we are again at the optimal offset (aligned to 583 * @c->max_write_size). 584 */ 585 if (c->leb_size - wbuf->offs < c->max_write_size) 586 wbuf->size = c->leb_size - wbuf->offs; 587 else if (wbuf->offs & (c->max_write_size - 1)) 588 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 589 else 590 wbuf->size = c->max_write_size; 591 wbuf->avail = wbuf->size; 592 wbuf->used = 0; 593 wbuf->next_ino = 0; 594 spin_unlock(&wbuf->lock); 595 596 if (wbuf->sync_callback) 597 err = wbuf->sync_callback(c, wbuf->lnum, 598 c->leb_size - wbuf->offs, dirt); 599 return err; 600 } 601 602 /** 603 * ubifs_wbuf_seek_nolock - seek write-buffer. 604 * @wbuf: write-buffer 605 * @lnum: logical eraseblock number to seek to 606 * @offs: logical eraseblock offset to seek to 607 * 608 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 609 * The write-buffer has to be empty. Returns zero in case of success and a 610 * negative error code in case of failure. 611 */ 612 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 613 { 614 const struct ubifs_info *c = wbuf->c; 615 616 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 617 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt); 618 ubifs_assert(c, offs >= 0 && offs <= c->leb_size); 619 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7)); 620 ubifs_assert(c, lnum != wbuf->lnum); 621 ubifs_assert(c, wbuf->used == 0); 622 623 spin_lock(&wbuf->lock); 624 wbuf->lnum = lnum; 625 wbuf->offs = offs; 626 if (c->leb_size - wbuf->offs < c->max_write_size) 627 wbuf->size = c->leb_size - wbuf->offs; 628 else if (wbuf->offs & (c->max_write_size - 1)) 629 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 630 else 631 wbuf->size = c->max_write_size; 632 wbuf->avail = wbuf->size; 633 wbuf->used = 0; 634 spin_unlock(&wbuf->lock); 635 636 return 0; 637 } 638 639 /** 640 * ubifs_bg_wbufs_sync - synchronize write-buffers. 641 * @c: UBIFS file-system description object 642 * 643 * This function is called by background thread to synchronize write-buffers. 644 * Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 648 { 649 int err, i; 650 651 ubifs_assert(c, !c->ro_media && !c->ro_mount); 652 if (!c->need_wbuf_sync) 653 return 0; 654 c->need_wbuf_sync = 0; 655 656 if (c->ro_error) { 657 err = -EROFS; 658 goto out_timers; 659 } 660 661 dbg_io("synchronize"); 662 for (i = 0; i < c->jhead_cnt; i++) { 663 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 664 665 cond_resched(); 666 667 /* 668 * If the mutex is locked then wbuf is being changed, so 669 * synchronization is not necessary. 670 */ 671 if (mutex_is_locked(&wbuf->io_mutex)) 672 continue; 673 674 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 675 if (!wbuf->need_sync) { 676 mutex_unlock(&wbuf->io_mutex); 677 continue; 678 } 679 680 err = ubifs_wbuf_sync_nolock(wbuf); 681 mutex_unlock(&wbuf->io_mutex); 682 if (err) { 683 ubifs_err(c, "cannot sync write-buffer, error %d", err); 684 ubifs_ro_mode(c, err); 685 goto out_timers; 686 } 687 } 688 689 return 0; 690 691 out_timers: 692 /* Cancel all timers to prevent repeated errors */ 693 for (i = 0; i < c->jhead_cnt; i++) { 694 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 695 696 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 697 cancel_wbuf_timer_nolock(wbuf); 698 mutex_unlock(&wbuf->io_mutex); 699 } 700 return err; 701 } 702 703 /** 704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 705 * @wbuf: write-buffer 706 * @buf: node to write 707 * @len: node length 708 * 709 * This function writes data to flash via write-buffer @wbuf. This means that 710 * the last piece of the node won't reach the flash media immediately if it 711 * does not take whole max. write unit (@c->max_write_size). Instead, the node 712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 713 * because more data are appended to the write-buffer). 714 * 715 * This function returns zero in case of success and a negative error code in 716 * case of failure. If the node cannot be written because there is no more 717 * space in this logical eraseblock, %-ENOSPC is returned. 718 */ 719 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 720 { 721 struct ubifs_info *c = wbuf->c; 722 int err, n, written = 0, aligned_len = ALIGN(len, 8); 723 724 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 725 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 726 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 727 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 728 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 729 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 730 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size); 731 ubifs_assert(c, wbuf->size >= c->min_io_size); 732 ubifs_assert(c, wbuf->size <= c->max_write_size); 733 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 734 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex)); 735 ubifs_assert(c, !c->ro_media && !c->ro_mount); 736 ubifs_assert(c, !c->space_fixup); 737 if (c->leb_size - wbuf->offs >= c->max_write_size) 738 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 739 740 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 741 err = -ENOSPC; 742 goto out; 743 } 744 745 cancel_wbuf_timer_nolock(wbuf); 746 747 if (c->ro_error) 748 return -EROFS; 749 750 if (aligned_len <= wbuf->avail) { 751 /* 752 * The node is not very large and fits entirely within 753 * write-buffer. 754 */ 755 memcpy(wbuf->buf + wbuf->used, buf, len); 756 if (aligned_len > len) { 757 ubifs_assert(c, aligned_len - len < 8); 758 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len); 759 } 760 761 if (aligned_len == wbuf->avail) { 762 dbg_io("flush jhead %s wbuf to LEB %d:%d", 763 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 764 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 765 wbuf->offs, wbuf->size); 766 if (err) 767 goto out; 768 769 spin_lock(&wbuf->lock); 770 wbuf->offs += wbuf->size; 771 if (c->leb_size - wbuf->offs >= c->max_write_size) 772 wbuf->size = c->max_write_size; 773 else 774 wbuf->size = c->leb_size - wbuf->offs; 775 wbuf->avail = wbuf->size; 776 wbuf->used = 0; 777 wbuf->next_ino = 0; 778 spin_unlock(&wbuf->lock); 779 } else { 780 spin_lock(&wbuf->lock); 781 wbuf->avail -= aligned_len; 782 wbuf->used += aligned_len; 783 spin_unlock(&wbuf->lock); 784 } 785 786 goto exit; 787 } 788 789 if (wbuf->used) { 790 /* 791 * The node is large enough and does not fit entirely within 792 * current available space. We have to fill and flush 793 * write-buffer and switch to the next max. write unit. 794 */ 795 dbg_io("flush jhead %s wbuf to LEB %d:%d", 796 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 797 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 798 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 799 wbuf->size); 800 if (err) 801 goto out; 802 803 wbuf->offs += wbuf->size; 804 len -= wbuf->avail; 805 aligned_len -= wbuf->avail; 806 written += wbuf->avail; 807 } else if (wbuf->offs & (c->max_write_size - 1)) { 808 /* 809 * The write-buffer offset is not aligned to 810 * @c->max_write_size and @wbuf->size is less than 811 * @c->max_write_size. Write @wbuf->size bytes to make sure the 812 * following writes are done in optimal @c->max_write_size 813 * chunks. 814 */ 815 dbg_io("write %d bytes to LEB %d:%d", 816 wbuf->size, wbuf->lnum, wbuf->offs); 817 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 818 wbuf->size); 819 if (err) 820 goto out; 821 822 wbuf->offs += wbuf->size; 823 len -= wbuf->size; 824 aligned_len -= wbuf->size; 825 written += wbuf->size; 826 } 827 828 /* 829 * The remaining data may take more whole max. write units, so write the 830 * remains multiple to max. write unit size directly to the flash media. 831 * We align node length to 8-byte boundary because we anyway flash wbuf 832 * if the remaining space is less than 8 bytes. 833 */ 834 n = aligned_len >> c->max_write_shift; 835 if (n) { 836 n <<= c->max_write_shift; 837 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 838 wbuf->offs); 839 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 840 wbuf->offs, n); 841 if (err) 842 goto out; 843 wbuf->offs += n; 844 aligned_len -= n; 845 len -= n; 846 written += n; 847 } 848 849 spin_lock(&wbuf->lock); 850 if (aligned_len) { 851 /* 852 * And now we have what's left and what does not take whole 853 * max. write unit, so write it to the write-buffer and we are 854 * done. 855 */ 856 memcpy(wbuf->buf, buf + written, len); 857 if (aligned_len > len) { 858 ubifs_assert(c, aligned_len - len < 8); 859 ubifs_pad(c, wbuf->buf + len, aligned_len - len); 860 } 861 } 862 863 if (c->leb_size - wbuf->offs >= c->max_write_size) 864 wbuf->size = c->max_write_size; 865 else 866 wbuf->size = c->leb_size - wbuf->offs; 867 wbuf->avail = wbuf->size - aligned_len; 868 wbuf->used = aligned_len; 869 wbuf->next_ino = 0; 870 spin_unlock(&wbuf->lock); 871 872 exit: 873 if (wbuf->sync_callback) { 874 int free = c->leb_size - wbuf->offs - wbuf->used; 875 876 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 877 if (err) 878 goto out; 879 } 880 881 if (wbuf->used) 882 new_wbuf_timer_nolock(c, wbuf); 883 884 return 0; 885 886 out: 887 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 888 len, wbuf->lnum, wbuf->offs, err); 889 ubifs_dump_node(c, buf, written + len); 890 dump_stack(); 891 ubifs_dump_leb(c, wbuf->lnum); 892 return err; 893 } 894 895 /** 896 * ubifs_write_node_hmac - write node to the media. 897 * @c: UBIFS file-system description object 898 * @buf: the node to write 899 * @len: node length 900 * @lnum: logical eraseblock number 901 * @offs: offset within the logical eraseblock 902 * @hmac_offs: offset of the HMAC within the node 903 * 904 * This function automatically fills node magic number, assigns sequence 905 * number, and calculates node CRC checksum. The length of the @buf buffer has 906 * to be aligned to the minimal I/O unit size. This function automatically 907 * appends padding node and padding bytes if needed. Returns zero in case of 908 * success and a negative error code in case of failure. 909 */ 910 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, 911 int offs, int hmac_offs) 912 { 913 int err, buf_len = ALIGN(len, c->min_io_size); 914 915 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 916 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 917 buf_len); 918 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 919 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size); 920 ubifs_assert(c, !c->ro_media && !c->ro_mount); 921 ubifs_assert(c, !c->space_fixup); 922 923 if (c->ro_error) 924 return -EROFS; 925 926 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1); 927 if (err) 928 return err; 929 930 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 931 if (err) 932 ubifs_dump_node(c, buf, len); 933 934 return err; 935 } 936 937 /** 938 * ubifs_write_node - write node to the media. 939 * @c: UBIFS file-system description object 940 * @buf: the node to write 941 * @len: node length 942 * @lnum: logical eraseblock number 943 * @offs: offset within the logical eraseblock 944 * 945 * This function automatically fills node magic number, assigns sequence 946 * number, and calculates node CRC checksum. The length of the @buf buffer has 947 * to be aligned to the minimal I/O unit size. This function automatically 948 * appends padding node and padding bytes if needed. Returns zero in case of 949 * success and a negative error code in case of failure. 950 */ 951 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 952 int offs) 953 { 954 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1); 955 } 956 957 /** 958 * ubifs_read_node_wbuf - read node from the media or write-buffer. 959 * @wbuf: wbuf to check for un-written data 960 * @buf: buffer to read to 961 * @type: node type 962 * @len: node length 963 * @lnum: logical eraseblock number 964 * @offs: offset within the logical eraseblock 965 * 966 * This function reads a node of known type and length, checks it and stores 967 * in @buf. If the node partially or fully sits in the write-buffer, this 968 * function takes data from the buffer, otherwise it reads the flash media. 969 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 970 * error code in case of failure. 971 */ 972 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 973 int lnum, int offs) 974 { 975 const struct ubifs_info *c = wbuf->c; 976 int err, rlen, overlap; 977 struct ubifs_ch *ch = buf; 978 979 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 980 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 981 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 982 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 983 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 984 985 spin_lock(&wbuf->lock); 986 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 987 if (!overlap) { 988 /* We may safely unlock the write-buffer and read the data */ 989 spin_unlock(&wbuf->lock); 990 return ubifs_read_node(c, buf, type, len, lnum, offs); 991 } 992 993 /* Don't read under wbuf */ 994 rlen = wbuf->offs - offs; 995 if (rlen < 0) 996 rlen = 0; 997 998 /* Copy the rest from the write-buffer */ 999 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1000 spin_unlock(&wbuf->lock); 1001 1002 if (rlen > 0) { 1003 /* Read everything that goes before write-buffer */ 1004 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1005 if (err && err != -EBADMSG) 1006 return err; 1007 } 1008 1009 if (type != ch->node_type) { 1010 ubifs_err(c, "bad node type (%d but expected %d)", 1011 ch->node_type, type); 1012 goto out; 1013 } 1014 1015 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); 1016 if (err) { 1017 ubifs_err(c, "expected node type %d", type); 1018 return err; 1019 } 1020 1021 rlen = le32_to_cpu(ch->len); 1022 if (rlen != len) { 1023 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 1024 goto out; 1025 } 1026 1027 return 0; 1028 1029 out: 1030 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 1031 ubifs_dump_node(c, buf, len); 1032 dump_stack(); 1033 return -EINVAL; 1034 } 1035 1036 /** 1037 * ubifs_read_node - read node. 1038 * @c: UBIFS file-system description object 1039 * @buf: buffer to read to 1040 * @type: node type 1041 * @len: node length (not aligned) 1042 * @lnum: logical eraseblock number 1043 * @offs: offset within the logical eraseblock 1044 * 1045 * This function reads a node of known type and length, checks it and 1046 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 1047 * and a negative error code in case of failure. 1048 */ 1049 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 1050 int lnum, int offs) 1051 { 1052 int err, l; 1053 struct ubifs_ch *ch = buf; 1054 1055 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 1056 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1057 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 1058 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1059 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 1060 1061 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1062 if (err && err != -EBADMSG) 1063 return err; 1064 1065 if (type != ch->node_type) { 1066 ubifs_errc(c, "bad node type (%d but expected %d)", 1067 ch->node_type, type); 1068 goto out; 1069 } 1070 1071 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); 1072 if (err) { 1073 ubifs_errc(c, "expected node type %d", type); 1074 return err; 1075 } 1076 1077 l = le32_to_cpu(ch->len); 1078 if (l != len) { 1079 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1080 goto out; 1081 } 1082 1083 return 0; 1084 1085 out: 1086 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1087 offs, ubi_is_mapped(c->ubi, lnum)); 1088 if (!c->probing) { 1089 ubifs_dump_node(c, buf, len); 1090 dump_stack(); 1091 } 1092 return -EINVAL; 1093 } 1094 1095 /** 1096 * ubifs_wbuf_init - initialize write-buffer. 1097 * @c: UBIFS file-system description object 1098 * @wbuf: write-buffer to initialize 1099 * 1100 * This function initializes write-buffer. Returns zero in case of success 1101 * %-ENOMEM in case of failure. 1102 */ 1103 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1104 { 1105 size_t size; 1106 1107 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1108 if (!wbuf->buf) 1109 return -ENOMEM; 1110 1111 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1112 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1113 if (!wbuf->inodes) { 1114 kfree(wbuf->buf); 1115 wbuf->buf = NULL; 1116 return -ENOMEM; 1117 } 1118 1119 wbuf->used = 0; 1120 wbuf->lnum = wbuf->offs = -1; 1121 /* 1122 * If the LEB starts at the max. write size aligned address, then 1123 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1124 * set it to something smaller so that it ends at the closest max. 1125 * write size boundary. 1126 */ 1127 size = c->max_write_size - (c->leb_start % c->max_write_size); 1128 wbuf->avail = wbuf->size = size; 1129 wbuf->sync_callback = NULL; 1130 mutex_init(&wbuf->io_mutex); 1131 spin_lock_init(&wbuf->lock); 1132 wbuf->c = c; 1133 wbuf->next_ino = 0; 1134 1135 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1136 wbuf->timer.function = wbuf_timer_callback_nolock; 1137 return 0; 1138 } 1139 1140 /** 1141 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1142 * @wbuf: the write-buffer where to add 1143 * @inum: the inode number 1144 * 1145 * This function adds an inode number to the inode array of the write-buffer. 1146 */ 1147 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1148 { 1149 if (!wbuf->buf) 1150 /* NOR flash or something similar */ 1151 return; 1152 1153 spin_lock(&wbuf->lock); 1154 if (wbuf->used) 1155 wbuf->inodes[wbuf->next_ino++] = inum; 1156 spin_unlock(&wbuf->lock); 1157 } 1158 1159 /** 1160 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1161 * @wbuf: the write-buffer 1162 * @inum: the inode number 1163 * 1164 * This function returns with %1 if the write-buffer contains some data from the 1165 * given inode otherwise it returns with %0. 1166 */ 1167 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1168 { 1169 int i, ret = 0; 1170 1171 spin_lock(&wbuf->lock); 1172 for (i = 0; i < wbuf->next_ino; i++) 1173 if (inum == wbuf->inodes[i]) { 1174 ret = 1; 1175 break; 1176 } 1177 spin_unlock(&wbuf->lock); 1178 1179 return ret; 1180 } 1181 1182 /** 1183 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1184 * @c: UBIFS file-system description object 1185 * @inode: inode to synchronize 1186 * 1187 * This function synchronizes write-buffers which contain nodes belonging to 1188 * @inode. Returns zero in case of success and a negative error code in case of 1189 * failure. 1190 */ 1191 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1192 { 1193 int i, err = 0; 1194 1195 for (i = 0; i < c->jhead_cnt; i++) { 1196 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1197 1198 if (i == GCHD) 1199 /* 1200 * GC head is special, do not look at it. Even if the 1201 * head contains something related to this inode, it is 1202 * a _copy_ of corresponding on-flash node which sits 1203 * somewhere else. 1204 */ 1205 continue; 1206 1207 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1208 continue; 1209 1210 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1211 if (wbuf_has_ino(wbuf, inode->i_ino)) 1212 err = ubifs_wbuf_sync_nolock(wbuf); 1213 mutex_unlock(&wbuf->io_mutex); 1214 1215 if (err) { 1216 ubifs_ro_mode(c, err); 1217 return err; 1218 } 1219 } 1220 return 0; 1221 } 1222