xref: /openbmc/linux/fs/ubifs/io.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  * Copyright (C) 2006, 2007 University of Szeged, Hungary
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  *          Zoltan Sogor
11  */
12 
13 /*
14  * This file implements UBIFS I/O subsystem which provides various I/O-related
15  * helper functions (reading/writing/checking/validating nodes) and implements
16  * write-buffering support. Write buffers help to save space which otherwise
17  * would have been wasted for padding to the nearest minimal I/O unit boundary.
18  * Instead, data first goes to the write-buffer and is flushed when the
19  * buffer is full or when it is not used for some time (by timer). This is
20  * similar to the mechanism is used by JFFS2.
21  *
22  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23  * write size (@c->max_write_size). The latter is the maximum amount of bytes
24  * the underlying flash is able to program at a time, and writing in
25  * @c->max_write_size units should presumably be faster. Obviously,
26  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27  * @c->max_write_size bytes in size for maximum performance. However, when a
28  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29  * boundary) which contains data is written, not the whole write-buffer,
30  * because this is more space-efficient.
31  *
32  * This optimization adds few complications to the code. Indeed, on the one
33  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34  * also means aligning writes at the @c->max_write_size bytes offsets. On the
35  * other hand, we do not want to waste space when synchronizing the write
36  * buffer, so during synchronization we writes in smaller chunks. And this makes
37  * the next write offset to be not aligned to @c->max_write_size bytes. So the
38  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39  * to @c->max_write_size bytes again. We do this by temporarily shrinking
40  * write-buffer size (@wbuf->size).
41  *
42  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43  * mutexes defined inside these objects. Since sometimes upper-level code
44  * has to lock the write-buffer (e.g. journal space reservation code), many
45  * functions related to write-buffers have "nolock" suffix which means that the
46  * caller has to lock the write-buffer before calling this function.
47  *
48  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49  * aligned, UBIFS starts the next node from the aligned address, and the padded
50  * bytes may contain any rubbish. In other words, UBIFS does not put padding
51  * bytes in those small gaps. Common headers of nodes store real node lengths,
52  * not aligned lengths. Indexing nodes also store real lengths in branches.
53  *
54  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55  * uses padding nodes or padding bytes, if the padding node does not fit.
56  *
57  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58  * they are read from the flash media.
59  */
60 
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64 
65 /**
66  * ubifs_ro_mode - switch UBIFS to read read-only mode.
67  * @c: UBIFS file-system description object
68  * @err: error code which is the reason of switching to R/O mode
69  */
70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72 	if (!c->ro_error) {
73 		c->ro_error = 1;
74 		c->no_chk_data_crc = 0;
75 		c->vfs_sb->s_flags |= SB_RDONLY;
76 		ubifs_warn(c, "switched to read-only mode, error %d", err);
77 		dump_stack();
78 	}
79 }
80 
81 /*
82  * Below are simple wrappers over UBI I/O functions which include some
83  * additional checks and UBIFS debugging stuff. See corresponding UBI function
84  * for more information.
85  */
86 
87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 		   int len, int even_ebadmsg)
89 {
90 	int err;
91 
92 	err = ubi_read(c->ubi, lnum, buf, offs, len);
93 	/*
94 	 * In case of %-EBADMSG print the error message only if the
95 	 * @even_ebadmsg is true.
96 	 */
97 	if (err && (err != -EBADMSG || even_ebadmsg)) {
98 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 			  len, lnum, offs, err);
100 		dump_stack();
101 	}
102 	return err;
103 }
104 
105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106 		    int len)
107 {
108 	int err;
109 
110 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
111 	if (c->ro_error)
112 		return -EROFS;
113 	if (!dbg_is_tst_rcvry(c))
114 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115 	else
116 		err = dbg_leb_write(c, lnum, buf, offs, len);
117 	if (err) {
118 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 			  len, lnum, offs, err);
120 		ubifs_ro_mode(c, err);
121 		dump_stack();
122 	}
123 	return err;
124 }
125 
126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128 	int err;
129 
130 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
131 	if (c->ro_error)
132 		return -EROFS;
133 	if (!dbg_is_tst_rcvry(c))
134 		err = ubi_leb_change(c->ubi, lnum, buf, len);
135 	else
136 		err = dbg_leb_change(c, lnum, buf, len);
137 	if (err) {
138 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139 			  len, lnum, err);
140 		ubifs_ro_mode(c, err);
141 		dump_stack();
142 	}
143 	return err;
144 }
145 
146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148 	int err;
149 
150 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
151 	if (c->ro_error)
152 		return -EROFS;
153 	if (!dbg_is_tst_rcvry(c))
154 		err = ubi_leb_unmap(c->ubi, lnum);
155 	else
156 		err = dbg_leb_unmap(c, lnum);
157 	if (err) {
158 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 		ubifs_ro_mode(c, err);
160 		dump_stack();
161 	}
162 	return err;
163 }
164 
165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167 	int err;
168 
169 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
170 	if (c->ro_error)
171 		return -EROFS;
172 	if (!dbg_is_tst_rcvry(c))
173 		err = ubi_leb_map(c->ubi, lnum);
174 	else
175 		err = dbg_leb_map(c, lnum);
176 	if (err) {
177 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 		ubifs_ro_mode(c, err);
179 		dump_stack();
180 	}
181 	return err;
182 }
183 
184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186 	int err;
187 
188 	err = ubi_is_mapped(c->ubi, lnum);
189 	if (err < 0) {
190 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191 			  lnum, err);
192 		dump_stack();
193 	}
194 	return err;
195 }
196 
197 /**
198  * ubifs_check_node - check node.
199  * @c: UBIFS file-system description object
200  * @buf: node to check
201  * @lnum: logical eraseblock number
202  * @offs: offset within the logical eraseblock
203  * @quiet: print no messages
204  * @must_chk_crc: indicates whether to always check the CRC
205  *
206  * This function checks node magic number and CRC checksum. This function also
207  * validates node length to prevent UBIFS from becoming crazy when an attacker
208  * feeds it a file-system image with incorrect nodes. For example, too large
209  * node length in the common header could cause UBIFS to read memory outside of
210  * allocated buffer when checking the CRC checksum.
211  *
212  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
213  * true, which is controlled by corresponding UBIFS mount option. However, if
214  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
215  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
216  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
217  * is checked. This is because during mounting or re-mounting from R/O mode to
218  * R/W mode we may read journal nodes (when replying the journal or doing the
219  * recovery) and the journal nodes may potentially be corrupted, so checking is
220  * required.
221  *
222  * This function returns zero in case of success and %-EUCLEAN in case of bad
223  * CRC or magic.
224  */
225 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
226 		     int offs, int quiet, int must_chk_crc)
227 {
228 	int err = -EINVAL, type, node_len;
229 	uint32_t crc, node_crc, magic;
230 	const struct ubifs_ch *ch = buf;
231 
232 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
233 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
234 
235 	magic = le32_to_cpu(ch->magic);
236 	if (magic != UBIFS_NODE_MAGIC) {
237 		if (!quiet)
238 			ubifs_err(c, "bad magic %#08x, expected %#08x",
239 				  magic, UBIFS_NODE_MAGIC);
240 		err = -EUCLEAN;
241 		goto out;
242 	}
243 
244 	type = ch->node_type;
245 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
246 		if (!quiet)
247 			ubifs_err(c, "bad node type %d", type);
248 		goto out;
249 	}
250 
251 	node_len = le32_to_cpu(ch->len);
252 	if (node_len + offs > c->leb_size)
253 		goto out_len;
254 
255 	if (c->ranges[type].max_len == 0) {
256 		if (node_len != c->ranges[type].len)
257 			goto out_len;
258 	} else if (node_len < c->ranges[type].min_len ||
259 		   node_len > c->ranges[type].max_len)
260 		goto out_len;
261 
262 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
263 	    !c->remounting_rw && c->no_chk_data_crc)
264 		return 0;
265 
266 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
267 	node_crc = le32_to_cpu(ch->crc);
268 	if (crc != node_crc) {
269 		if (!quiet)
270 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
271 				  crc, node_crc);
272 		err = -EUCLEAN;
273 		goto out;
274 	}
275 
276 	return 0;
277 
278 out_len:
279 	if (!quiet)
280 		ubifs_err(c, "bad node length %d", node_len);
281 out:
282 	if (!quiet) {
283 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
284 		ubifs_dump_node(c, buf);
285 		dump_stack();
286 	}
287 	return err;
288 }
289 
290 /**
291  * ubifs_pad - pad flash space.
292  * @c: UBIFS file-system description object
293  * @buf: buffer to put padding to
294  * @pad: how many bytes to pad
295  *
296  * The flash media obliges us to write only in chunks of %c->min_io_size and
297  * when we have to write less data we add padding node to the write-buffer and
298  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
299  * media is being scanned. If the amount of wasted space is not enough to fit a
300  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
301  * pattern (%UBIFS_PADDING_BYTE).
302  *
303  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
304  * used.
305  */
306 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
307 {
308 	uint32_t crc;
309 
310 	ubifs_assert(c, pad >= 0 && !(pad & 7));
311 
312 	if (pad >= UBIFS_PAD_NODE_SZ) {
313 		struct ubifs_ch *ch = buf;
314 		struct ubifs_pad_node *pad_node = buf;
315 
316 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
317 		ch->node_type = UBIFS_PAD_NODE;
318 		ch->group_type = UBIFS_NO_NODE_GROUP;
319 		ch->padding[0] = ch->padding[1] = 0;
320 		ch->sqnum = 0;
321 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
322 		pad -= UBIFS_PAD_NODE_SZ;
323 		pad_node->pad_len = cpu_to_le32(pad);
324 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
325 		ch->crc = cpu_to_le32(crc);
326 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
327 	} else if (pad > 0)
328 		/* Too little space, padding node won't fit */
329 		memset(buf, UBIFS_PADDING_BYTE, pad);
330 }
331 
332 /**
333  * next_sqnum - get next sequence number.
334  * @c: UBIFS file-system description object
335  */
336 static unsigned long long next_sqnum(struct ubifs_info *c)
337 {
338 	unsigned long long sqnum;
339 
340 	spin_lock(&c->cnt_lock);
341 	sqnum = ++c->max_sqnum;
342 	spin_unlock(&c->cnt_lock);
343 
344 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
345 		if (sqnum >= SQNUM_WATERMARK) {
346 			ubifs_err(c, "sequence number overflow %llu, end of life",
347 				  sqnum);
348 			ubifs_ro_mode(c, -EINVAL);
349 		}
350 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
351 	}
352 
353 	return sqnum;
354 }
355 
356 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
357 {
358 	struct ubifs_ch *ch = node;
359 	unsigned long long sqnum = next_sqnum(c);
360 
361 	ubifs_assert(c, len >= UBIFS_CH_SZ);
362 
363 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
364 	ch->len = cpu_to_le32(len);
365 	ch->group_type = UBIFS_NO_NODE_GROUP;
366 	ch->sqnum = cpu_to_le64(sqnum);
367 	ch->padding[0] = ch->padding[1] = 0;
368 
369 	if (pad) {
370 		len = ALIGN(len, 8);
371 		pad = ALIGN(len, c->min_io_size) - len;
372 		ubifs_pad(c, node + len, pad);
373 	}
374 }
375 
376 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
377 {
378 	struct ubifs_ch *ch = node;
379 	uint32_t crc;
380 
381 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
382 	ch->crc = cpu_to_le32(crc);
383 }
384 
385 /**
386  * ubifs_prepare_node_hmac - prepare node to be written to flash.
387  * @c: UBIFS file-system description object
388  * @node: the node to pad
389  * @len: node length
390  * @hmac_offs: offset of the HMAC in the node
391  * @pad: if the buffer has to be padded
392  *
393  * This function prepares node at @node to be written to the media - it
394  * calculates node CRC, fills the common header, and adds proper padding up to
395  * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
396  * a HMAC is inserted into the node at the given offset.
397  *
398  * This function returns 0 for success or a negative error code otherwise.
399  */
400 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
401 			    int hmac_offs, int pad)
402 {
403 	int err;
404 
405 	ubifs_init_node(c, node, len, pad);
406 
407 	if (hmac_offs > 0) {
408 		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
409 		if (err)
410 			return err;
411 	}
412 
413 	ubifs_crc_node(c, node, len);
414 
415 	return 0;
416 }
417 
418 /**
419  * ubifs_prepare_node - prepare node to be written to flash.
420  * @c: UBIFS file-system description object
421  * @node: the node to pad
422  * @len: node length
423  * @pad: if the buffer has to be padded
424  *
425  * This function prepares node at @node to be written to the media - it
426  * calculates node CRC, fills the common header, and adds proper padding up to
427  * the next minimum I/O unit if @pad is not zero.
428  */
429 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
430 {
431 	/*
432 	 * Deliberately ignore return value since this function can only fail
433 	 * when a hmac offset is given.
434 	 */
435 	ubifs_prepare_node_hmac(c, node, len, 0, pad);
436 }
437 
438 /**
439  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
440  * @c: UBIFS file-system description object
441  * @node: the node to pad
442  * @len: node length
443  * @last: indicates the last node of the group
444  *
445  * This function prepares node at @node to be written to the media - it
446  * calculates node CRC and fills the common header.
447  */
448 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
449 {
450 	uint32_t crc;
451 	struct ubifs_ch *ch = node;
452 	unsigned long long sqnum = next_sqnum(c);
453 
454 	ubifs_assert(c, len >= UBIFS_CH_SZ);
455 
456 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
457 	ch->len = cpu_to_le32(len);
458 	if (last)
459 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
460 	else
461 		ch->group_type = UBIFS_IN_NODE_GROUP;
462 	ch->sqnum = cpu_to_le64(sqnum);
463 	ch->padding[0] = ch->padding[1] = 0;
464 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
465 	ch->crc = cpu_to_le32(crc);
466 }
467 
468 /**
469  * wbuf_timer_callback - write-buffer timer callback function.
470  * @timer: timer data (write-buffer descriptor)
471  *
472  * This function is called when the write-buffer timer expires.
473  */
474 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
475 {
476 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
477 
478 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
479 	wbuf->need_sync = 1;
480 	wbuf->c->need_wbuf_sync = 1;
481 	ubifs_wake_up_bgt(wbuf->c);
482 	return HRTIMER_NORESTART;
483 }
484 
485 /**
486  * new_wbuf_timer - start new write-buffer timer.
487  * @c: UBIFS file-system description object
488  * @wbuf: write-buffer descriptor
489  */
490 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
491 {
492 	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
493 	unsigned long long delta = dirty_writeback_interval;
494 
495 	/* centi to milli, milli to nano, then 10% */
496 	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
497 
498 	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
499 	ubifs_assert(c, delta <= ULONG_MAX);
500 
501 	if (wbuf->no_timer)
502 		return;
503 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
504 	       dbg_jhead(wbuf->jhead),
505 	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
506 	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
507 	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
508 			       HRTIMER_MODE_REL);
509 }
510 
511 /**
512  * cancel_wbuf_timer - cancel write-buffer timer.
513  * @wbuf: write-buffer descriptor
514  */
515 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
516 {
517 	if (wbuf->no_timer)
518 		return;
519 	wbuf->need_sync = 0;
520 	hrtimer_cancel(&wbuf->timer);
521 }
522 
523 /**
524  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
525  * @wbuf: write-buffer to synchronize
526  *
527  * This function synchronizes write-buffer @buf and returns zero in case of
528  * success or a negative error code in case of failure.
529  *
530  * Note, although write-buffers are of @c->max_write_size, this function does
531  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
532  * if the write-buffer is only partially filled with data, only the used part
533  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
534  * This way we waste less space.
535  */
536 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
537 {
538 	struct ubifs_info *c = wbuf->c;
539 	int err, dirt, sync_len;
540 
541 	cancel_wbuf_timer_nolock(wbuf);
542 	if (!wbuf->used || wbuf->lnum == -1)
543 		/* Write-buffer is empty or not seeked */
544 		return 0;
545 
546 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
547 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
548 	ubifs_assert(c, !(wbuf->avail & 7));
549 	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
550 	ubifs_assert(c, wbuf->size >= c->min_io_size);
551 	ubifs_assert(c, wbuf->size <= c->max_write_size);
552 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
553 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
554 	if (c->leb_size - wbuf->offs >= c->max_write_size)
555 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
556 
557 	if (c->ro_error)
558 		return -EROFS;
559 
560 	/*
561 	 * Do not write whole write buffer but write only the minimum necessary
562 	 * amount of min. I/O units.
563 	 */
564 	sync_len = ALIGN(wbuf->used, c->min_io_size);
565 	dirt = sync_len - wbuf->used;
566 	if (dirt)
567 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
568 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
569 	if (err)
570 		return err;
571 
572 	spin_lock(&wbuf->lock);
573 	wbuf->offs += sync_len;
574 	/*
575 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
576 	 * But our goal is to optimize writes and make sure we write in
577 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
578 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
579 	 * sure that @wbuf->offs + @wbuf->size is aligned to
580 	 * @c->max_write_size. This way we make sure that after next
581 	 * write-buffer flush we are again at the optimal offset (aligned to
582 	 * @c->max_write_size).
583 	 */
584 	if (c->leb_size - wbuf->offs < c->max_write_size)
585 		wbuf->size = c->leb_size - wbuf->offs;
586 	else if (wbuf->offs & (c->max_write_size - 1))
587 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
588 	else
589 		wbuf->size = c->max_write_size;
590 	wbuf->avail = wbuf->size;
591 	wbuf->used = 0;
592 	wbuf->next_ino = 0;
593 	spin_unlock(&wbuf->lock);
594 
595 	if (wbuf->sync_callback)
596 		err = wbuf->sync_callback(c, wbuf->lnum,
597 					  c->leb_size - wbuf->offs, dirt);
598 	return err;
599 }
600 
601 /**
602  * ubifs_wbuf_seek_nolock - seek write-buffer.
603  * @wbuf: write-buffer
604  * @lnum: logical eraseblock number to seek to
605  * @offs: logical eraseblock offset to seek to
606  *
607  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
608  * The write-buffer has to be empty. Returns zero in case of success and a
609  * negative error code in case of failure.
610  */
611 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
612 {
613 	const struct ubifs_info *c = wbuf->c;
614 
615 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
616 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
617 	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
618 	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
619 	ubifs_assert(c, lnum != wbuf->lnum);
620 	ubifs_assert(c, wbuf->used == 0);
621 
622 	spin_lock(&wbuf->lock);
623 	wbuf->lnum = lnum;
624 	wbuf->offs = offs;
625 	if (c->leb_size - wbuf->offs < c->max_write_size)
626 		wbuf->size = c->leb_size - wbuf->offs;
627 	else if (wbuf->offs & (c->max_write_size - 1))
628 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
629 	else
630 		wbuf->size = c->max_write_size;
631 	wbuf->avail = wbuf->size;
632 	wbuf->used = 0;
633 	spin_unlock(&wbuf->lock);
634 
635 	return 0;
636 }
637 
638 /**
639  * ubifs_bg_wbufs_sync - synchronize write-buffers.
640  * @c: UBIFS file-system description object
641  *
642  * This function is called by background thread to synchronize write-buffers.
643  * Returns zero in case of success and a negative error code in case of
644  * failure.
645  */
646 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
647 {
648 	int err, i;
649 
650 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
651 	if (!c->need_wbuf_sync)
652 		return 0;
653 	c->need_wbuf_sync = 0;
654 
655 	if (c->ro_error) {
656 		err = -EROFS;
657 		goto out_timers;
658 	}
659 
660 	dbg_io("synchronize");
661 	for (i = 0; i < c->jhead_cnt; i++) {
662 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
663 
664 		cond_resched();
665 
666 		/*
667 		 * If the mutex is locked then wbuf is being changed, so
668 		 * synchronization is not necessary.
669 		 */
670 		if (mutex_is_locked(&wbuf->io_mutex))
671 			continue;
672 
673 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
674 		if (!wbuf->need_sync) {
675 			mutex_unlock(&wbuf->io_mutex);
676 			continue;
677 		}
678 
679 		err = ubifs_wbuf_sync_nolock(wbuf);
680 		mutex_unlock(&wbuf->io_mutex);
681 		if (err) {
682 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
683 			ubifs_ro_mode(c, err);
684 			goto out_timers;
685 		}
686 	}
687 
688 	return 0;
689 
690 out_timers:
691 	/* Cancel all timers to prevent repeated errors */
692 	for (i = 0; i < c->jhead_cnt; i++) {
693 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
694 
695 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
696 		cancel_wbuf_timer_nolock(wbuf);
697 		mutex_unlock(&wbuf->io_mutex);
698 	}
699 	return err;
700 }
701 
702 /**
703  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
704  * @wbuf: write-buffer
705  * @buf: node to write
706  * @len: node length
707  *
708  * This function writes data to flash via write-buffer @wbuf. This means that
709  * the last piece of the node won't reach the flash media immediately if it
710  * does not take whole max. write unit (@c->max_write_size). Instead, the node
711  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
712  * because more data are appended to the write-buffer).
713  *
714  * This function returns zero in case of success and a negative error code in
715  * case of failure. If the node cannot be written because there is no more
716  * space in this logical eraseblock, %-ENOSPC is returned.
717  */
718 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
719 {
720 	struct ubifs_info *c = wbuf->c;
721 	int err, written, n, aligned_len = ALIGN(len, 8);
722 
723 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
724 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
725 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
726 	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
727 	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
728 	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
729 	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
730 	ubifs_assert(c, wbuf->size >= c->min_io_size);
731 	ubifs_assert(c, wbuf->size <= c->max_write_size);
732 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
733 	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
734 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
735 	ubifs_assert(c, !c->space_fixup);
736 	if (c->leb_size - wbuf->offs >= c->max_write_size)
737 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
738 
739 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
740 		err = -ENOSPC;
741 		goto out;
742 	}
743 
744 	cancel_wbuf_timer_nolock(wbuf);
745 
746 	if (c->ro_error)
747 		return -EROFS;
748 
749 	if (aligned_len <= wbuf->avail) {
750 		/*
751 		 * The node is not very large and fits entirely within
752 		 * write-buffer.
753 		 */
754 		memcpy(wbuf->buf + wbuf->used, buf, len);
755 
756 		if (aligned_len == wbuf->avail) {
757 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
758 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
759 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
760 					      wbuf->offs, wbuf->size);
761 			if (err)
762 				goto out;
763 
764 			spin_lock(&wbuf->lock);
765 			wbuf->offs += wbuf->size;
766 			if (c->leb_size - wbuf->offs >= c->max_write_size)
767 				wbuf->size = c->max_write_size;
768 			else
769 				wbuf->size = c->leb_size - wbuf->offs;
770 			wbuf->avail = wbuf->size;
771 			wbuf->used = 0;
772 			wbuf->next_ino = 0;
773 			spin_unlock(&wbuf->lock);
774 		} else {
775 			spin_lock(&wbuf->lock);
776 			wbuf->avail -= aligned_len;
777 			wbuf->used += aligned_len;
778 			spin_unlock(&wbuf->lock);
779 		}
780 
781 		goto exit;
782 	}
783 
784 	written = 0;
785 
786 	if (wbuf->used) {
787 		/*
788 		 * The node is large enough and does not fit entirely within
789 		 * current available space. We have to fill and flush
790 		 * write-buffer and switch to the next max. write unit.
791 		 */
792 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
793 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
794 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
795 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
796 				      wbuf->size);
797 		if (err)
798 			goto out;
799 
800 		wbuf->offs += wbuf->size;
801 		len -= wbuf->avail;
802 		aligned_len -= wbuf->avail;
803 		written += wbuf->avail;
804 	} else if (wbuf->offs & (c->max_write_size - 1)) {
805 		/*
806 		 * The write-buffer offset is not aligned to
807 		 * @c->max_write_size and @wbuf->size is less than
808 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
809 		 * following writes are done in optimal @c->max_write_size
810 		 * chunks.
811 		 */
812 		dbg_io("write %d bytes to LEB %d:%d",
813 		       wbuf->size, wbuf->lnum, wbuf->offs);
814 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
815 				      wbuf->size);
816 		if (err)
817 			goto out;
818 
819 		wbuf->offs += wbuf->size;
820 		len -= wbuf->size;
821 		aligned_len -= wbuf->size;
822 		written += wbuf->size;
823 	}
824 
825 	/*
826 	 * The remaining data may take more whole max. write units, so write the
827 	 * remains multiple to max. write unit size directly to the flash media.
828 	 * We align node length to 8-byte boundary because we anyway flash wbuf
829 	 * if the remaining space is less than 8 bytes.
830 	 */
831 	n = aligned_len >> c->max_write_shift;
832 	if (n) {
833 		n <<= c->max_write_shift;
834 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
835 		       wbuf->offs);
836 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
837 				      wbuf->offs, n);
838 		if (err)
839 			goto out;
840 		wbuf->offs += n;
841 		aligned_len -= n;
842 		len -= n;
843 		written += n;
844 	}
845 
846 	spin_lock(&wbuf->lock);
847 	if (aligned_len)
848 		/*
849 		 * And now we have what's left and what does not take whole
850 		 * max. write unit, so write it to the write-buffer and we are
851 		 * done.
852 		 */
853 		memcpy(wbuf->buf, buf + written, len);
854 
855 	if (c->leb_size - wbuf->offs >= c->max_write_size)
856 		wbuf->size = c->max_write_size;
857 	else
858 		wbuf->size = c->leb_size - wbuf->offs;
859 	wbuf->avail = wbuf->size - aligned_len;
860 	wbuf->used = aligned_len;
861 	wbuf->next_ino = 0;
862 	spin_unlock(&wbuf->lock);
863 
864 exit:
865 	if (wbuf->sync_callback) {
866 		int free = c->leb_size - wbuf->offs - wbuf->used;
867 
868 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
869 		if (err)
870 			goto out;
871 	}
872 
873 	if (wbuf->used)
874 		new_wbuf_timer_nolock(c, wbuf);
875 
876 	return 0;
877 
878 out:
879 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
880 		  len, wbuf->lnum, wbuf->offs, err);
881 	ubifs_dump_node(c, buf);
882 	dump_stack();
883 	ubifs_dump_leb(c, wbuf->lnum);
884 	return err;
885 }
886 
887 /**
888  * ubifs_write_node_hmac - write node to the media.
889  * @c: UBIFS file-system description object
890  * @buf: the node to write
891  * @len: node length
892  * @lnum: logical eraseblock number
893  * @offs: offset within the logical eraseblock
894  * @hmac_offs: offset of the HMAC within the node
895  *
896  * This function automatically fills node magic number, assigns sequence
897  * number, and calculates node CRC checksum. The length of the @buf buffer has
898  * to be aligned to the minimal I/O unit size. This function automatically
899  * appends padding node and padding bytes if needed. Returns zero in case of
900  * success and a negative error code in case of failure.
901  */
902 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
903 			  int offs, int hmac_offs)
904 {
905 	int err, buf_len = ALIGN(len, c->min_io_size);
906 
907 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
908 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
909 	       buf_len);
910 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
911 	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
912 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
913 	ubifs_assert(c, !c->space_fixup);
914 
915 	if (c->ro_error)
916 		return -EROFS;
917 
918 	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
919 	if (err)
920 		return err;
921 
922 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
923 	if (err)
924 		ubifs_dump_node(c, buf);
925 
926 	return err;
927 }
928 
929 /**
930  * ubifs_write_node - write node to the media.
931  * @c: UBIFS file-system description object
932  * @buf: the node to write
933  * @len: node length
934  * @lnum: logical eraseblock number
935  * @offs: offset within the logical eraseblock
936  *
937  * This function automatically fills node magic number, assigns sequence
938  * number, and calculates node CRC checksum. The length of the @buf buffer has
939  * to be aligned to the minimal I/O unit size. This function automatically
940  * appends padding node and padding bytes if needed. Returns zero in case of
941  * success and a negative error code in case of failure.
942  */
943 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
944 		     int offs)
945 {
946 	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
947 }
948 
949 /**
950  * ubifs_read_node_wbuf - read node from the media or write-buffer.
951  * @wbuf: wbuf to check for un-written data
952  * @buf: buffer to read to
953  * @type: node type
954  * @len: node length
955  * @lnum: logical eraseblock number
956  * @offs: offset within the logical eraseblock
957  *
958  * This function reads a node of known type and length, checks it and stores
959  * in @buf. If the node partially or fully sits in the write-buffer, this
960  * function takes data from the buffer, otherwise it reads the flash media.
961  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
962  * error code in case of failure.
963  */
964 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
965 			 int lnum, int offs)
966 {
967 	const struct ubifs_info *c = wbuf->c;
968 	int err, rlen, overlap;
969 	struct ubifs_ch *ch = buf;
970 
971 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
972 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
973 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
974 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
975 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
976 
977 	spin_lock(&wbuf->lock);
978 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
979 	if (!overlap) {
980 		/* We may safely unlock the write-buffer and read the data */
981 		spin_unlock(&wbuf->lock);
982 		return ubifs_read_node(c, buf, type, len, lnum, offs);
983 	}
984 
985 	/* Don't read under wbuf */
986 	rlen = wbuf->offs - offs;
987 	if (rlen < 0)
988 		rlen = 0;
989 
990 	/* Copy the rest from the write-buffer */
991 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
992 	spin_unlock(&wbuf->lock);
993 
994 	if (rlen > 0) {
995 		/* Read everything that goes before write-buffer */
996 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
997 		if (err && err != -EBADMSG)
998 			return err;
999 	}
1000 
1001 	if (type != ch->node_type) {
1002 		ubifs_err(c, "bad node type (%d but expected %d)",
1003 			  ch->node_type, type);
1004 		goto out;
1005 	}
1006 
1007 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1008 	if (err) {
1009 		ubifs_err(c, "expected node type %d", type);
1010 		return err;
1011 	}
1012 
1013 	rlen = le32_to_cpu(ch->len);
1014 	if (rlen != len) {
1015 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1016 		goto out;
1017 	}
1018 
1019 	return 0;
1020 
1021 out:
1022 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1023 	ubifs_dump_node(c, buf);
1024 	dump_stack();
1025 	return -EINVAL;
1026 }
1027 
1028 /**
1029  * ubifs_read_node - read node.
1030  * @c: UBIFS file-system description object
1031  * @buf: buffer to read to
1032  * @type: node type
1033  * @len: node length (not aligned)
1034  * @lnum: logical eraseblock number
1035  * @offs: offset within the logical eraseblock
1036  *
1037  * This function reads a node of known type and and length, checks it and
1038  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1039  * and a negative error code in case of failure.
1040  */
1041 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1042 		    int lnum, int offs)
1043 {
1044 	int err, l;
1045 	struct ubifs_ch *ch = buf;
1046 
1047 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1048 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1049 	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1050 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1051 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1052 
1053 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1054 	if (err && err != -EBADMSG)
1055 		return err;
1056 
1057 	if (type != ch->node_type) {
1058 		ubifs_errc(c, "bad node type (%d but expected %d)",
1059 			   ch->node_type, type);
1060 		goto out;
1061 	}
1062 
1063 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1064 	if (err) {
1065 		ubifs_errc(c, "expected node type %d", type);
1066 		return err;
1067 	}
1068 
1069 	l = le32_to_cpu(ch->len);
1070 	if (l != len) {
1071 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1072 		goto out;
1073 	}
1074 
1075 	return 0;
1076 
1077 out:
1078 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1079 		   offs, ubi_is_mapped(c->ubi, lnum));
1080 	if (!c->probing) {
1081 		ubifs_dump_node(c, buf);
1082 		dump_stack();
1083 	}
1084 	return -EINVAL;
1085 }
1086 
1087 /**
1088  * ubifs_wbuf_init - initialize write-buffer.
1089  * @c: UBIFS file-system description object
1090  * @wbuf: write-buffer to initialize
1091  *
1092  * This function initializes write-buffer. Returns zero in case of success
1093  * %-ENOMEM in case of failure.
1094  */
1095 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1096 {
1097 	size_t size;
1098 
1099 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1100 	if (!wbuf->buf)
1101 		return -ENOMEM;
1102 
1103 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1104 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1105 	if (!wbuf->inodes) {
1106 		kfree(wbuf->buf);
1107 		wbuf->buf = NULL;
1108 		return -ENOMEM;
1109 	}
1110 
1111 	wbuf->used = 0;
1112 	wbuf->lnum = wbuf->offs = -1;
1113 	/*
1114 	 * If the LEB starts at the max. write size aligned address, then
1115 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1116 	 * set it to something smaller so that it ends at the closest max.
1117 	 * write size boundary.
1118 	 */
1119 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1120 	wbuf->avail = wbuf->size = size;
1121 	wbuf->sync_callback = NULL;
1122 	mutex_init(&wbuf->io_mutex);
1123 	spin_lock_init(&wbuf->lock);
1124 	wbuf->c = c;
1125 	wbuf->next_ino = 0;
1126 
1127 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1128 	wbuf->timer.function = wbuf_timer_callback_nolock;
1129 	return 0;
1130 }
1131 
1132 /**
1133  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1134  * @wbuf: the write-buffer where to add
1135  * @inum: the inode number
1136  *
1137  * This function adds an inode number to the inode array of the write-buffer.
1138  */
1139 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1140 {
1141 	if (!wbuf->buf)
1142 		/* NOR flash or something similar */
1143 		return;
1144 
1145 	spin_lock(&wbuf->lock);
1146 	if (wbuf->used)
1147 		wbuf->inodes[wbuf->next_ino++] = inum;
1148 	spin_unlock(&wbuf->lock);
1149 }
1150 
1151 /**
1152  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1153  * @wbuf: the write-buffer
1154  * @inum: the inode number
1155  *
1156  * This function returns with %1 if the write-buffer contains some data from the
1157  * given inode otherwise it returns with %0.
1158  */
1159 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1160 {
1161 	int i, ret = 0;
1162 
1163 	spin_lock(&wbuf->lock);
1164 	for (i = 0; i < wbuf->next_ino; i++)
1165 		if (inum == wbuf->inodes[i]) {
1166 			ret = 1;
1167 			break;
1168 		}
1169 	spin_unlock(&wbuf->lock);
1170 
1171 	return ret;
1172 }
1173 
1174 /**
1175  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1176  * @c: UBIFS file-system description object
1177  * @inode: inode to synchronize
1178  *
1179  * This function synchronizes write-buffers which contain nodes belonging to
1180  * @inode. Returns zero in case of success and a negative error code in case of
1181  * failure.
1182  */
1183 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1184 {
1185 	int i, err = 0;
1186 
1187 	for (i = 0; i < c->jhead_cnt; i++) {
1188 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1189 
1190 		if (i == GCHD)
1191 			/*
1192 			 * GC head is special, do not look at it. Even if the
1193 			 * head contains something related to this inode, it is
1194 			 * a _copy_ of corresponding on-flash node which sits
1195 			 * somewhere else.
1196 			 */
1197 			continue;
1198 
1199 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1200 			continue;
1201 
1202 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1203 		if (wbuf_has_ino(wbuf, inode->i_ino))
1204 			err = ubifs_wbuf_sync_nolock(wbuf);
1205 		mutex_unlock(&wbuf->io_mutex);
1206 
1207 		if (err) {
1208 			ubifs_ro_mode(c, err);
1209 			return err;
1210 		}
1211 	}
1212 	return 0;
1213 }
1214