xref: /openbmc/linux/fs/ubifs/io.c (revision 545e4006)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similarto the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include <linux/crc32.h>
54 #include "ubifs.h"
55 
56 /**
57  * ubifs_check_node - check node.
58  * @c: UBIFS file-system description object
59  * @buf: node to check
60  * @lnum: logical eraseblock number
61  * @offs: offset within the logical eraseblock
62  * @quiet: print no messages
63  *
64  * This function checks node magic number and CRC checksum. This function also
65  * validates node length to prevent UBIFS from becoming crazy when an attacker
66  * feeds it a file-system image with incorrect nodes. For example, too large
67  * node length in the common header could cause UBIFS to read memory outside of
68  * allocated buffer when checking the CRC checksum.
69  *
70  * This function returns zero in case of success %-EUCLEAN in case of bad CRC
71  * or magic.
72  */
73 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
74 		     int offs, int quiet)
75 {
76 	int err = -EINVAL, type, node_len;
77 	uint32_t crc, node_crc, magic;
78 	const struct ubifs_ch *ch = buf;
79 
80 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
81 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
82 
83 	magic = le32_to_cpu(ch->magic);
84 	if (magic != UBIFS_NODE_MAGIC) {
85 		if (!quiet)
86 			ubifs_err("bad magic %#08x, expected %#08x",
87 				  magic, UBIFS_NODE_MAGIC);
88 		err = -EUCLEAN;
89 		goto out;
90 	}
91 
92 	type = ch->node_type;
93 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
94 		if (!quiet)
95 			ubifs_err("bad node type %d", type);
96 		goto out;
97 	}
98 
99 	node_len = le32_to_cpu(ch->len);
100 	if (node_len + offs > c->leb_size)
101 		goto out_len;
102 
103 	if (c->ranges[type].max_len == 0) {
104 		if (node_len != c->ranges[type].len)
105 			goto out_len;
106 	} else if (node_len < c->ranges[type].min_len ||
107 		   node_len > c->ranges[type].max_len)
108 		goto out_len;
109 
110 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
111 	node_crc = le32_to_cpu(ch->crc);
112 	if (crc != node_crc) {
113 		if (!quiet)
114 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
115 				  crc, node_crc);
116 		err = -EUCLEAN;
117 		goto out;
118 	}
119 
120 	return 0;
121 
122 out_len:
123 	if (!quiet)
124 		ubifs_err("bad node length %d", node_len);
125 out:
126 	if (!quiet) {
127 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
128 		dbg_dump_node(c, buf);
129 		dbg_dump_stack();
130 	}
131 	return err;
132 }
133 
134 /**
135  * ubifs_pad - pad flash space.
136  * @c: UBIFS file-system description object
137  * @buf: buffer to put padding to
138  * @pad: how many bytes to pad
139  *
140  * The flash media obliges us to write only in chunks of %c->min_io_size and
141  * when we have to write less data we add padding node to the write-buffer and
142  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
143  * media is being scanned. If the amount of wasted space is not enough to fit a
144  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
145  * pattern (%UBIFS_PADDING_BYTE).
146  *
147  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
148  * used.
149  */
150 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
151 {
152 	uint32_t crc;
153 
154 	ubifs_assert(pad >= 0 && !(pad & 7));
155 
156 	if (pad >= UBIFS_PAD_NODE_SZ) {
157 		struct ubifs_ch *ch = buf;
158 		struct ubifs_pad_node *pad_node = buf;
159 
160 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
161 		ch->node_type = UBIFS_PAD_NODE;
162 		ch->group_type = UBIFS_NO_NODE_GROUP;
163 		ch->padding[0] = ch->padding[1] = 0;
164 		ch->sqnum = 0;
165 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
166 		pad -= UBIFS_PAD_NODE_SZ;
167 		pad_node->pad_len = cpu_to_le32(pad);
168 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
169 		ch->crc = cpu_to_le32(crc);
170 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
171 	} else if (pad > 0)
172 		/* Too little space, padding node won't fit */
173 		memset(buf, UBIFS_PADDING_BYTE, pad);
174 }
175 
176 /**
177  * next_sqnum - get next sequence number.
178  * @c: UBIFS file-system description object
179  */
180 static unsigned long long next_sqnum(struct ubifs_info *c)
181 {
182 	unsigned long long sqnum;
183 
184 	spin_lock(&c->cnt_lock);
185 	sqnum = ++c->max_sqnum;
186 	spin_unlock(&c->cnt_lock);
187 
188 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
189 		if (sqnum >= SQNUM_WATERMARK) {
190 			ubifs_err("sequence number overflow %llu, end of life",
191 				  sqnum);
192 			ubifs_ro_mode(c, -EINVAL);
193 		}
194 		ubifs_warn("running out of sequence numbers, end of life soon");
195 	}
196 
197 	return sqnum;
198 }
199 
200 /**
201  * ubifs_prepare_node - prepare node to be written to flash.
202  * @c: UBIFS file-system description object
203  * @node: the node to pad
204  * @len: node length
205  * @pad: if the buffer has to be padded
206  *
207  * This function prepares node at @node to be written to the media - it
208  * calculates node CRC, fills the common header, and adds proper padding up to
209  * the next minimum I/O unit if @pad is not zero.
210  */
211 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
212 {
213 	uint32_t crc;
214 	struct ubifs_ch *ch = node;
215 	unsigned long long sqnum = next_sqnum(c);
216 
217 	ubifs_assert(len >= UBIFS_CH_SZ);
218 
219 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
220 	ch->len = cpu_to_le32(len);
221 	ch->group_type = UBIFS_NO_NODE_GROUP;
222 	ch->sqnum = cpu_to_le64(sqnum);
223 	ch->padding[0] = ch->padding[1] = 0;
224 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
225 	ch->crc = cpu_to_le32(crc);
226 
227 	if (pad) {
228 		len = ALIGN(len, 8);
229 		pad = ALIGN(len, c->min_io_size) - len;
230 		ubifs_pad(c, node + len, pad);
231 	}
232 }
233 
234 /**
235  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
236  * @c: UBIFS file-system description object
237  * @node: the node to pad
238  * @len: node length
239  * @last: indicates the last node of the group
240  *
241  * This function prepares node at @node to be written to the media - it
242  * calculates node CRC and fills the common header.
243  */
244 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
245 {
246 	uint32_t crc;
247 	struct ubifs_ch *ch = node;
248 	unsigned long long sqnum = next_sqnum(c);
249 
250 	ubifs_assert(len >= UBIFS_CH_SZ);
251 
252 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
253 	ch->len = cpu_to_le32(len);
254 	if (last)
255 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
256 	else
257 		ch->group_type = UBIFS_IN_NODE_GROUP;
258 	ch->sqnum = cpu_to_le64(sqnum);
259 	ch->padding[0] = ch->padding[1] = 0;
260 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
261 	ch->crc = cpu_to_le32(crc);
262 }
263 
264 /**
265  * wbuf_timer_callback - write-buffer timer callback function.
266  * @data: timer data (write-buffer descriptor)
267  *
268  * This function is called when the write-buffer timer expires.
269  */
270 static void wbuf_timer_callback_nolock(unsigned long data)
271 {
272 	struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data;
273 
274 	wbuf->need_sync = 1;
275 	wbuf->c->need_wbuf_sync = 1;
276 	ubifs_wake_up_bgt(wbuf->c);
277 }
278 
279 /**
280  * new_wbuf_timer - start new write-buffer timer.
281  * @wbuf: write-buffer descriptor
282  */
283 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
284 {
285 	ubifs_assert(!timer_pending(&wbuf->timer));
286 
287 	if (!wbuf->timeout)
288 		return;
289 
290 	wbuf->timer.expires = jiffies + wbuf->timeout;
291 	add_timer(&wbuf->timer);
292 }
293 
294 /**
295  * cancel_wbuf_timer - cancel write-buffer timer.
296  * @wbuf: write-buffer descriptor
297  */
298 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
299 {
300 	/*
301 	 * If the syncer is waiting for the lock (from the background thread's
302 	 * context) and another task is changing write-buffer then the syncing
303 	 * should be canceled.
304 	 */
305 	wbuf->need_sync = 0;
306 	del_timer(&wbuf->timer);
307 }
308 
309 /**
310  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
311  * @wbuf: write-buffer to synchronize
312  *
313  * This function synchronizes write-buffer @buf and returns zero in case of
314  * success or a negative error code in case of failure.
315  */
316 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
317 {
318 	struct ubifs_info *c = wbuf->c;
319 	int err, dirt;
320 
321 	cancel_wbuf_timer_nolock(wbuf);
322 	if (!wbuf->used || wbuf->lnum == -1)
323 		/* Write-buffer is empty or not seeked */
324 		return 0;
325 
326 	dbg_io("LEB %d:%d, %d bytes",
327 	       wbuf->lnum, wbuf->offs, wbuf->used);
328 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
329 	ubifs_assert(!(wbuf->avail & 7));
330 	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
331 
332 	if (c->ro_media)
333 		return -EROFS;
334 
335 	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
336 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
337 			    c->min_io_size, wbuf->dtype);
338 	if (err) {
339 		ubifs_err("cannot write %d bytes to LEB %d:%d",
340 			  c->min_io_size, wbuf->lnum, wbuf->offs);
341 		dbg_dump_stack();
342 		return err;
343 	}
344 
345 	dirt = wbuf->avail;
346 
347 	spin_lock(&wbuf->lock);
348 	wbuf->offs += c->min_io_size;
349 	wbuf->avail = c->min_io_size;
350 	wbuf->used = 0;
351 	wbuf->next_ino = 0;
352 	spin_unlock(&wbuf->lock);
353 
354 	if (wbuf->sync_callback)
355 		err = wbuf->sync_callback(c, wbuf->lnum,
356 					  c->leb_size - wbuf->offs, dirt);
357 	return err;
358 }
359 
360 /**
361  * ubifs_wbuf_seek_nolock - seek write-buffer.
362  * @wbuf: write-buffer
363  * @lnum: logical eraseblock number to seek to
364  * @offs: logical eraseblock offset to seek to
365  * @dtype: data type
366  *
367  * This function targets the write buffer to logical eraseblock @lnum:@offs.
368  * The write-buffer is synchronized if it is not empty. Returns zero in case of
369  * success and a negative error code in case of failure.
370  */
371 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
372 			   int dtype)
373 {
374 	const struct ubifs_info *c = wbuf->c;
375 
376 	dbg_io("LEB %d:%d", lnum, offs);
377 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
378 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
379 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
380 	ubifs_assert(lnum != wbuf->lnum);
381 
382 	if (wbuf->used > 0) {
383 		int err = ubifs_wbuf_sync_nolock(wbuf);
384 
385 		if (err)
386 			return err;
387 	}
388 
389 	spin_lock(&wbuf->lock);
390 	wbuf->lnum = lnum;
391 	wbuf->offs = offs;
392 	wbuf->avail = c->min_io_size;
393 	wbuf->used = 0;
394 	spin_unlock(&wbuf->lock);
395 	wbuf->dtype = dtype;
396 
397 	return 0;
398 }
399 
400 /**
401  * ubifs_bg_wbufs_sync - synchronize write-buffers.
402  * @c: UBIFS file-system description object
403  *
404  * This function is called by background thread to synchronize write-buffers.
405  * Returns zero in case of success and a negative error code in case of
406  * failure.
407  */
408 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
409 {
410 	int err, i;
411 
412 	if (!c->need_wbuf_sync)
413 		return 0;
414 	c->need_wbuf_sync = 0;
415 
416 	if (c->ro_media) {
417 		err = -EROFS;
418 		goto out_timers;
419 	}
420 
421 	dbg_io("synchronize");
422 	for (i = 0; i < c->jhead_cnt; i++) {
423 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
424 
425 		cond_resched();
426 
427 		/*
428 		 * If the mutex is locked then wbuf is being changed, so
429 		 * synchronization is not necessary.
430 		 */
431 		if (mutex_is_locked(&wbuf->io_mutex))
432 			continue;
433 
434 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
435 		if (!wbuf->need_sync) {
436 			mutex_unlock(&wbuf->io_mutex);
437 			continue;
438 		}
439 
440 		err = ubifs_wbuf_sync_nolock(wbuf);
441 		mutex_unlock(&wbuf->io_mutex);
442 		if (err) {
443 			ubifs_err("cannot sync write-buffer, error %d", err);
444 			ubifs_ro_mode(c, err);
445 			goto out_timers;
446 		}
447 	}
448 
449 	return 0;
450 
451 out_timers:
452 	/* Cancel all timers to prevent repeated errors */
453 	for (i = 0; i < c->jhead_cnt; i++) {
454 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
455 
456 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
457 		cancel_wbuf_timer_nolock(wbuf);
458 		mutex_unlock(&wbuf->io_mutex);
459 	}
460 	return err;
461 }
462 
463 /**
464  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
465  * @wbuf: write-buffer
466  * @buf: node to write
467  * @len: node length
468  *
469  * This function writes data to flash via write-buffer @wbuf. This means that
470  * the last piece of the node won't reach the flash media immediately if it
471  * does not take whole minimal I/O unit. Instead, the node will sit in RAM
472  * until the write-buffer is synchronized (e.g., by timer).
473  *
474  * This function returns zero in case of success and a negative error code in
475  * case of failure. If the node cannot be written because there is no more
476  * space in this logical eraseblock, %-ENOSPC is returned.
477  */
478 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
479 {
480 	struct ubifs_info *c = wbuf->c;
481 	int err, written, n, aligned_len = ALIGN(len, 8), offs;
482 
483 	dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len,
484 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum,
485 	       wbuf->offs + wbuf->used);
486 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
487 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
488 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
489 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
490 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
491 
492 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
493 		err = -ENOSPC;
494 		goto out;
495 	}
496 
497 	cancel_wbuf_timer_nolock(wbuf);
498 
499 	if (c->ro_media)
500 		return -EROFS;
501 
502 	if (aligned_len <= wbuf->avail) {
503 		/*
504 		 * The node is not very large and fits entirely within
505 		 * write-buffer.
506 		 */
507 		memcpy(wbuf->buf + wbuf->used, buf, len);
508 
509 		if (aligned_len == wbuf->avail) {
510 			dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum,
511 				wbuf->offs);
512 			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
513 					    wbuf->offs, c->min_io_size,
514 					    wbuf->dtype);
515 			if (err)
516 				goto out;
517 
518 			spin_lock(&wbuf->lock);
519 			wbuf->offs += c->min_io_size;
520 			wbuf->avail = c->min_io_size;
521 			wbuf->used = 0;
522 			wbuf->next_ino = 0;
523 			spin_unlock(&wbuf->lock);
524 		} else {
525 			spin_lock(&wbuf->lock);
526 			wbuf->avail -= aligned_len;
527 			wbuf->used += aligned_len;
528 			spin_unlock(&wbuf->lock);
529 		}
530 
531 		goto exit;
532 	}
533 
534 	/*
535 	 * The node is large enough and does not fit entirely within current
536 	 * minimal I/O unit. We have to fill and flush write-buffer and switch
537 	 * to the next min. I/O unit.
538 	 */
539 	dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs);
540 	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
541 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
542 			    c->min_io_size, wbuf->dtype);
543 	if (err)
544 		goto out;
545 
546 	offs = wbuf->offs + c->min_io_size;
547 	len -= wbuf->avail;
548 	aligned_len -= wbuf->avail;
549 	written = wbuf->avail;
550 
551 	/*
552 	 * The remaining data may take more whole min. I/O units, so write the
553 	 * remains multiple to min. I/O unit size directly to the flash media.
554 	 * We align node length to 8-byte boundary because we anyway flash wbuf
555 	 * if the remaining space is less than 8 bytes.
556 	 */
557 	n = aligned_len >> c->min_io_shift;
558 	if (n) {
559 		n <<= c->min_io_shift;
560 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
561 		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
562 				    wbuf->dtype);
563 		if (err)
564 			goto out;
565 		offs += n;
566 		aligned_len -= n;
567 		len -= n;
568 		written += n;
569 	}
570 
571 	spin_lock(&wbuf->lock);
572 	if (aligned_len)
573 		/*
574 		 * And now we have what's left and what does not take whole
575 		 * min. I/O unit, so write it to the write-buffer and we are
576 		 * done.
577 		 */
578 		memcpy(wbuf->buf, buf + written, len);
579 
580 	wbuf->offs = offs;
581 	wbuf->used = aligned_len;
582 	wbuf->avail = c->min_io_size - aligned_len;
583 	wbuf->next_ino = 0;
584 	spin_unlock(&wbuf->lock);
585 
586 exit:
587 	if (wbuf->sync_callback) {
588 		int free = c->leb_size - wbuf->offs - wbuf->used;
589 
590 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
591 		if (err)
592 			goto out;
593 	}
594 
595 	if (wbuf->used)
596 		new_wbuf_timer_nolock(wbuf);
597 
598 	return 0;
599 
600 out:
601 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
602 		  len, wbuf->lnum, wbuf->offs, err);
603 	dbg_dump_node(c, buf);
604 	dbg_dump_stack();
605 	dbg_dump_leb(c, wbuf->lnum);
606 	return err;
607 }
608 
609 /**
610  * ubifs_write_node - write node to the media.
611  * @c: UBIFS file-system description object
612  * @buf: the node to write
613  * @len: node length
614  * @lnum: logical eraseblock number
615  * @offs: offset within the logical eraseblock
616  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
617  *
618  * This function automatically fills node magic number, assigns sequence
619  * number, and calculates node CRC checksum. The length of the @buf buffer has
620  * to be aligned to the minimal I/O unit size. This function automatically
621  * appends padding node and padding bytes if needed. Returns zero in case of
622  * success and a negative error code in case of failure.
623  */
624 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
625 		     int offs, int dtype)
626 {
627 	int err, buf_len = ALIGN(len, c->min_io_size);
628 
629 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
630 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
631 	       buf_len);
632 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
633 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
634 
635 	if (c->ro_media)
636 		return -EROFS;
637 
638 	ubifs_prepare_node(c, buf, len, 1);
639 	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
640 	if (err) {
641 		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
642 			  buf_len, lnum, offs, err);
643 		dbg_dump_node(c, buf);
644 		dbg_dump_stack();
645 	}
646 
647 	return err;
648 }
649 
650 /**
651  * ubifs_read_node_wbuf - read node from the media or write-buffer.
652  * @wbuf: wbuf to check for un-written data
653  * @buf: buffer to read to
654  * @type: node type
655  * @len: node length
656  * @lnum: logical eraseblock number
657  * @offs: offset within the logical eraseblock
658  *
659  * This function reads a node of known type and length, checks it and stores
660  * in @buf. If the node partially or fully sits in the write-buffer, this
661  * function takes data from the buffer, otherwise it reads the flash media.
662  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
663  * error code in case of failure.
664  */
665 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
666 			 int lnum, int offs)
667 {
668 	const struct ubifs_info *c = wbuf->c;
669 	int err, rlen, overlap;
670 	struct ubifs_ch *ch = buf;
671 
672 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
673 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
674 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
675 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
676 
677 	spin_lock(&wbuf->lock);
678 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
679 	if (!overlap) {
680 		/* We may safely unlock the write-buffer and read the data */
681 		spin_unlock(&wbuf->lock);
682 		return ubifs_read_node(c, buf, type, len, lnum, offs);
683 	}
684 
685 	/* Don't read under wbuf */
686 	rlen = wbuf->offs - offs;
687 	if (rlen < 0)
688 		rlen = 0;
689 
690 	/* Copy the rest from the write-buffer */
691 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
692 	spin_unlock(&wbuf->lock);
693 
694 	if (rlen > 0) {
695 		/* Read everything that goes before write-buffer */
696 		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
697 		if (err && err != -EBADMSG) {
698 			ubifs_err("failed to read node %d from LEB %d:%d, "
699 				  "error %d", type, lnum, offs, err);
700 			dbg_dump_stack();
701 			return err;
702 		}
703 	}
704 
705 	if (type != ch->node_type) {
706 		ubifs_err("bad node type (%d but expected %d)",
707 			  ch->node_type, type);
708 		goto out;
709 	}
710 
711 	err = ubifs_check_node(c, buf, lnum, offs, 0);
712 	if (err) {
713 		ubifs_err("expected node type %d", type);
714 		return err;
715 	}
716 
717 	rlen = le32_to_cpu(ch->len);
718 	if (rlen != len) {
719 		ubifs_err("bad node length %d, expected %d", rlen, len);
720 		goto out;
721 	}
722 
723 	return 0;
724 
725 out:
726 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
727 	dbg_dump_node(c, buf);
728 	dbg_dump_stack();
729 	return -EINVAL;
730 }
731 
732 /**
733  * ubifs_read_node - read node.
734  * @c: UBIFS file-system description object
735  * @buf: buffer to read to
736  * @type: node type
737  * @len: node length (not aligned)
738  * @lnum: logical eraseblock number
739  * @offs: offset within the logical eraseblock
740  *
741  * This function reads a node of known type and and length, checks it and
742  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
743  * and a negative error code in case of failure.
744  */
745 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
746 		    int lnum, int offs)
747 {
748 	int err, l;
749 	struct ubifs_ch *ch = buf;
750 
751 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
752 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
753 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
754 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
755 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
756 
757 	err = ubi_read(c->ubi, lnum, buf, offs, len);
758 	if (err && err != -EBADMSG) {
759 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
760 			  type, lnum, offs, err);
761 		return err;
762 	}
763 
764 	if (type != ch->node_type) {
765 		ubifs_err("bad node type (%d but expected %d)",
766 			  ch->node_type, type);
767 		goto out;
768 	}
769 
770 	err = ubifs_check_node(c, buf, lnum, offs, 0);
771 	if (err) {
772 		ubifs_err("expected node type %d", type);
773 		return err;
774 	}
775 
776 	l = le32_to_cpu(ch->len);
777 	if (l != len) {
778 		ubifs_err("bad node length %d, expected %d", l, len);
779 		goto out;
780 	}
781 
782 	return 0;
783 
784 out:
785 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
786 	dbg_dump_node(c, buf);
787 	dbg_dump_stack();
788 	return -EINVAL;
789 }
790 
791 /**
792  * ubifs_wbuf_init - initialize write-buffer.
793  * @c: UBIFS file-system description object
794  * @wbuf: write-buffer to initialize
795  *
796  * This function initializes write buffer. Returns zero in case of success
797  * %-ENOMEM in case of failure.
798  */
799 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
800 {
801 	size_t size;
802 
803 	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
804 	if (!wbuf->buf)
805 		return -ENOMEM;
806 
807 	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
808 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
809 	if (!wbuf->inodes) {
810 		kfree(wbuf->buf);
811 		wbuf->buf = NULL;
812 		return -ENOMEM;
813 	}
814 
815 	wbuf->used = 0;
816 	wbuf->lnum = wbuf->offs = -1;
817 	wbuf->avail = c->min_io_size;
818 	wbuf->dtype = UBI_UNKNOWN;
819 	wbuf->sync_callback = NULL;
820 	mutex_init(&wbuf->io_mutex);
821 	spin_lock_init(&wbuf->lock);
822 
823 	wbuf->c = c;
824 	init_timer(&wbuf->timer);
825 	wbuf->timer.function = wbuf_timer_callback_nolock;
826 	wbuf->timer.data = (unsigned long)wbuf;
827 	wbuf->timeout = DEFAULT_WBUF_TIMEOUT;
828 	wbuf->next_ino = 0;
829 
830 	return 0;
831 }
832 
833 /**
834  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
835  * @wbuf: the write-buffer whereto add
836  * @inum: the inode number
837  *
838  * This function adds an inode number to the inode array of the write-buffer.
839  */
840 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
841 {
842 	if (!wbuf->buf)
843 		/* NOR flash or something similar */
844 		return;
845 
846 	spin_lock(&wbuf->lock);
847 	if (wbuf->used)
848 		wbuf->inodes[wbuf->next_ino++] = inum;
849 	spin_unlock(&wbuf->lock);
850 }
851 
852 /**
853  * wbuf_has_ino - returns if the wbuf contains data from the inode.
854  * @wbuf: the write-buffer
855  * @inum: the inode number
856  *
857  * This function returns with %1 if the write-buffer contains some data from the
858  * given inode otherwise it returns with %0.
859  */
860 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
861 {
862 	int i, ret = 0;
863 
864 	spin_lock(&wbuf->lock);
865 	for (i = 0; i < wbuf->next_ino; i++)
866 		if (inum == wbuf->inodes[i]) {
867 			ret = 1;
868 			break;
869 		}
870 	spin_unlock(&wbuf->lock);
871 
872 	return ret;
873 }
874 
875 /**
876  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
877  * @c: UBIFS file-system description object
878  * @inode: inode to synchronize
879  *
880  * This function synchronizes write-buffers which contain nodes belonging to
881  * @inode. Returns zero in case of success and a negative error code in case of
882  * failure.
883  */
884 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
885 {
886 	int i, err = 0;
887 
888 	for (i = 0; i < c->jhead_cnt; i++) {
889 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
890 
891 		if (i == GCHD)
892 			/*
893 			 * GC head is special, do not look at it. Even if the
894 			 * head contains something related to this inode, it is
895 			 * a _copy_ of corresponding on-flash node which sits
896 			 * somewhere else.
897 			 */
898 			continue;
899 
900 		if (!wbuf_has_ino(wbuf, inode->i_ino))
901 			continue;
902 
903 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
904 		if (wbuf_has_ino(wbuf, inode->i_ino))
905 			err = ubifs_wbuf_sync_nolock(wbuf);
906 		mutex_unlock(&wbuf->io_mutex);
907 
908 		if (err) {
909 			ubifs_ro_mode(c, err);
910 			return err;
911 		}
912 	}
913 	return 0;
914 }
915