xref: /openbmc/linux/fs/ubifs/io.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  * Copyright (C) 2006, 2007 University of Szeged, Hungary
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  *          Zoltan Sogor
11  */
12 
13 /*
14  * This file implements UBIFS I/O subsystem which provides various I/O-related
15  * helper functions (reading/writing/checking/validating nodes) and implements
16  * write-buffering support. Write buffers help to save space which otherwise
17  * would have been wasted for padding to the nearest minimal I/O unit boundary.
18  * Instead, data first goes to the write-buffer and is flushed when the
19  * buffer is full or when it is not used for some time (by timer). This is
20  * similar to the mechanism is used by JFFS2.
21  *
22  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23  * write size (@c->max_write_size). The latter is the maximum amount of bytes
24  * the underlying flash is able to program at a time, and writing in
25  * @c->max_write_size units should presumably be faster. Obviously,
26  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27  * @c->max_write_size bytes in size for maximum performance. However, when a
28  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29  * boundary) which contains data is written, not the whole write-buffer,
30  * because this is more space-efficient.
31  *
32  * This optimization adds few complications to the code. Indeed, on the one
33  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34  * also means aligning writes at the @c->max_write_size bytes offsets. On the
35  * other hand, we do not want to waste space when synchronizing the write
36  * buffer, so during synchronization we writes in smaller chunks. And this makes
37  * the next write offset to be not aligned to @c->max_write_size bytes. So the
38  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39  * to @c->max_write_size bytes again. We do this by temporarily shrinking
40  * write-buffer size (@wbuf->size).
41  *
42  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43  * mutexes defined inside these objects. Since sometimes upper-level code
44  * has to lock the write-buffer (e.g. journal space reservation code), many
45  * functions related to write-buffers have "nolock" suffix which means that the
46  * caller has to lock the write-buffer before calling this function.
47  *
48  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49  * aligned, UBIFS starts the next node from the aligned address, and the padded
50  * bytes may contain any rubbish. In other words, UBIFS does not put padding
51  * bytes in those small gaps. Common headers of nodes store real node lengths,
52  * not aligned lengths. Indexing nodes also store real lengths in branches.
53  *
54  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55  * uses padding nodes or padding bytes, if the padding node does not fit.
56  *
57  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58  * they are read from the flash media.
59  */
60 
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
63 #include "ubifs.h"
64 
65 /**
66  * ubifs_ro_mode - switch UBIFS to read read-only mode.
67  * @c: UBIFS file-system description object
68  * @err: error code which is the reason of switching to R/O mode
69  */
70 void ubifs_ro_mode(struct ubifs_info *c, int err)
71 {
72 	if (!c->ro_error) {
73 		c->ro_error = 1;
74 		c->no_chk_data_crc = 0;
75 		c->vfs_sb->s_flags |= SB_RDONLY;
76 		ubifs_warn(c, "switched to read-only mode, error %d", err);
77 		dump_stack();
78 	}
79 }
80 
81 /*
82  * Below are simple wrappers over UBI I/O functions which include some
83  * additional checks and UBIFS debugging stuff. See corresponding UBI function
84  * for more information.
85  */
86 
87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88 		   int len, int even_ebadmsg)
89 {
90 	int err;
91 
92 	err = ubi_read(c->ubi, lnum, buf, offs, len);
93 	/*
94 	 * In case of %-EBADMSG print the error message only if the
95 	 * @even_ebadmsg is true.
96 	 */
97 	if (err && (err != -EBADMSG || even_ebadmsg)) {
98 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99 			  len, lnum, offs, err);
100 		dump_stack();
101 	}
102 	return err;
103 }
104 
105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106 		    int len)
107 {
108 	int err;
109 
110 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
111 	if (c->ro_error)
112 		return -EROFS;
113 	if (!dbg_is_tst_rcvry(c))
114 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115 	else
116 		err = dbg_leb_write(c, lnum, buf, offs, len);
117 	if (err) {
118 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119 			  len, lnum, offs, err);
120 		ubifs_ro_mode(c, err);
121 		dump_stack();
122 	}
123 	return err;
124 }
125 
126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127 {
128 	int err;
129 
130 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
131 	if (c->ro_error)
132 		return -EROFS;
133 	if (!dbg_is_tst_rcvry(c))
134 		err = ubi_leb_change(c->ubi, lnum, buf, len);
135 	else
136 		err = dbg_leb_change(c, lnum, buf, len);
137 	if (err) {
138 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139 			  len, lnum, err);
140 		ubifs_ro_mode(c, err);
141 		dump_stack();
142 	}
143 	return err;
144 }
145 
146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147 {
148 	int err;
149 
150 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
151 	if (c->ro_error)
152 		return -EROFS;
153 	if (!dbg_is_tst_rcvry(c))
154 		err = ubi_leb_unmap(c->ubi, lnum);
155 	else
156 		err = dbg_leb_unmap(c, lnum);
157 	if (err) {
158 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159 		ubifs_ro_mode(c, err);
160 		dump_stack();
161 	}
162 	return err;
163 }
164 
165 int ubifs_leb_map(struct ubifs_info *c, int lnum)
166 {
167 	int err;
168 
169 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
170 	if (c->ro_error)
171 		return -EROFS;
172 	if (!dbg_is_tst_rcvry(c))
173 		err = ubi_leb_map(c->ubi, lnum);
174 	else
175 		err = dbg_leb_map(c, lnum);
176 	if (err) {
177 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178 		ubifs_ro_mode(c, err);
179 		dump_stack();
180 	}
181 	return err;
182 }
183 
184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185 {
186 	int err;
187 
188 	err = ubi_is_mapped(c->ubi, lnum);
189 	if (err < 0) {
190 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191 			  lnum, err);
192 		dump_stack();
193 	}
194 	return err;
195 }
196 
197 /**
198  * ubifs_check_node - check node.
199  * @c: UBIFS file-system description object
200  * @buf: node to check
201  * @lnum: logical eraseblock number
202  * @offs: offset within the logical eraseblock
203  * @quiet: print no messages
204  * @must_chk_crc: indicates whether to always check the CRC
205  *
206  * This function checks node magic number and CRC checksum. This function also
207  * validates node length to prevent UBIFS from becoming crazy when an attacker
208  * feeds it a file-system image with incorrect nodes. For example, too large
209  * node length in the common header could cause UBIFS to read memory outside of
210  * allocated buffer when checking the CRC checksum.
211  *
212  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
213  * true, which is controlled by corresponding UBIFS mount option. However, if
214  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
215  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
216  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
217  * is checked. This is because during mounting or re-mounting from R/O mode to
218  * R/W mode we may read journal nodes (when replying the journal or doing the
219  * recovery) and the journal nodes may potentially be corrupted, so checking is
220  * required.
221  *
222  * This function returns zero in case of success and %-EUCLEAN in case of bad
223  * CRC or magic.
224  */
225 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
226 		     int offs, int quiet, int must_chk_crc)
227 {
228 	int err = -EINVAL, type, node_len, dump_node = 1;
229 	uint32_t crc, node_crc, magic;
230 	const struct ubifs_ch *ch = buf;
231 
232 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
233 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
234 
235 	magic = le32_to_cpu(ch->magic);
236 	if (magic != UBIFS_NODE_MAGIC) {
237 		if (!quiet)
238 			ubifs_err(c, "bad magic %#08x, expected %#08x",
239 				  magic, UBIFS_NODE_MAGIC);
240 		err = -EUCLEAN;
241 		goto out;
242 	}
243 
244 	type = ch->node_type;
245 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
246 		if (!quiet)
247 			ubifs_err(c, "bad node type %d", type);
248 		goto out;
249 	}
250 
251 	node_len = le32_to_cpu(ch->len);
252 	if (node_len + offs > c->leb_size)
253 		goto out_len;
254 
255 	if (c->ranges[type].max_len == 0) {
256 		if (node_len != c->ranges[type].len)
257 			goto out_len;
258 	} else if (node_len < c->ranges[type].min_len ||
259 		   node_len > c->ranges[type].max_len)
260 		goto out_len;
261 
262 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
263 	    !c->remounting_rw && c->no_chk_data_crc)
264 		return 0;
265 
266 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
267 	node_crc = le32_to_cpu(ch->crc);
268 	if (crc != node_crc) {
269 		if (!quiet)
270 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
271 				  crc, node_crc);
272 		err = -EUCLEAN;
273 		goto out;
274 	}
275 
276 	return 0;
277 
278 out_len:
279 	if (!quiet)
280 		ubifs_err(c, "bad node length %d", node_len);
281 	if (type == UBIFS_DATA_NODE && node_len > UBIFS_DATA_NODE_SZ)
282 		dump_node = 0;
283 out:
284 	if (!quiet) {
285 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
286 		if (dump_node) {
287 			ubifs_dump_node(c, buf);
288 		} else {
289 			int safe_len = min3(node_len, c->leb_size - offs,
290 				(int)UBIFS_MAX_DATA_NODE_SZ);
291 			pr_err("\tprevent out-of-bounds memory access\n");
292 			pr_err("\ttruncated data node length      %d\n", safe_len);
293 			pr_err("\tcorrupted data node:\n");
294 			print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
295 					buf, safe_len, 0);
296 		}
297 		dump_stack();
298 	}
299 	return err;
300 }
301 
302 /**
303  * ubifs_pad - pad flash space.
304  * @c: UBIFS file-system description object
305  * @buf: buffer to put padding to
306  * @pad: how many bytes to pad
307  *
308  * The flash media obliges us to write only in chunks of %c->min_io_size and
309  * when we have to write less data we add padding node to the write-buffer and
310  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311  * media is being scanned. If the amount of wasted space is not enough to fit a
312  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313  * pattern (%UBIFS_PADDING_BYTE).
314  *
315  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
316  * used.
317  */
318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
319 {
320 	uint32_t crc;
321 
322 	ubifs_assert(c, pad >= 0 && !(pad & 7));
323 
324 	if (pad >= UBIFS_PAD_NODE_SZ) {
325 		struct ubifs_ch *ch = buf;
326 		struct ubifs_pad_node *pad_node = buf;
327 
328 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
329 		ch->node_type = UBIFS_PAD_NODE;
330 		ch->group_type = UBIFS_NO_NODE_GROUP;
331 		ch->padding[0] = ch->padding[1] = 0;
332 		ch->sqnum = 0;
333 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
334 		pad -= UBIFS_PAD_NODE_SZ;
335 		pad_node->pad_len = cpu_to_le32(pad);
336 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
337 		ch->crc = cpu_to_le32(crc);
338 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
339 	} else if (pad > 0)
340 		/* Too little space, padding node won't fit */
341 		memset(buf, UBIFS_PADDING_BYTE, pad);
342 }
343 
344 /**
345  * next_sqnum - get next sequence number.
346  * @c: UBIFS file-system description object
347  */
348 static unsigned long long next_sqnum(struct ubifs_info *c)
349 {
350 	unsigned long long sqnum;
351 
352 	spin_lock(&c->cnt_lock);
353 	sqnum = ++c->max_sqnum;
354 	spin_unlock(&c->cnt_lock);
355 
356 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
357 		if (sqnum >= SQNUM_WATERMARK) {
358 			ubifs_err(c, "sequence number overflow %llu, end of life",
359 				  sqnum);
360 			ubifs_ro_mode(c, -EINVAL);
361 		}
362 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
363 	}
364 
365 	return sqnum;
366 }
367 
368 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
369 {
370 	struct ubifs_ch *ch = node;
371 	unsigned long long sqnum = next_sqnum(c);
372 
373 	ubifs_assert(c, len >= UBIFS_CH_SZ);
374 
375 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
376 	ch->len = cpu_to_le32(len);
377 	ch->group_type = UBIFS_NO_NODE_GROUP;
378 	ch->sqnum = cpu_to_le64(sqnum);
379 	ch->padding[0] = ch->padding[1] = 0;
380 
381 	if (pad) {
382 		len = ALIGN(len, 8);
383 		pad = ALIGN(len, c->min_io_size) - len;
384 		ubifs_pad(c, node + len, pad);
385 	}
386 }
387 
388 void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
389 {
390 	struct ubifs_ch *ch = node;
391 	uint32_t crc;
392 
393 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
394 	ch->crc = cpu_to_le32(crc);
395 }
396 
397 /**
398  * ubifs_prepare_node_hmac - prepare node to be written to flash.
399  * @c: UBIFS file-system description object
400  * @node: the node to pad
401  * @len: node length
402  * @hmac_offs: offset of the HMAC in the node
403  * @pad: if the buffer has to be padded
404  *
405  * This function prepares node at @node to be written to the media - it
406  * calculates node CRC, fills the common header, and adds proper padding up to
407  * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
408  * a HMAC is inserted into the node at the given offset.
409  *
410  * This function returns 0 for success or a negative error code otherwise.
411  */
412 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
413 			    int hmac_offs, int pad)
414 {
415 	int err;
416 
417 	ubifs_init_node(c, node, len, pad);
418 
419 	if (hmac_offs > 0) {
420 		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
421 		if (err)
422 			return err;
423 	}
424 
425 	ubifs_crc_node(c, node, len);
426 
427 	return 0;
428 }
429 
430 /**
431  * ubifs_prepare_node - prepare node to be written to flash.
432  * @c: UBIFS file-system description object
433  * @node: the node to pad
434  * @len: node length
435  * @pad: if the buffer has to be padded
436  *
437  * This function prepares node at @node to be written to the media - it
438  * calculates node CRC, fills the common header, and adds proper padding up to
439  * the next minimum I/O unit if @pad is not zero.
440  */
441 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
442 {
443 	/*
444 	 * Deliberately ignore return value since this function can only fail
445 	 * when a hmac offset is given.
446 	 */
447 	ubifs_prepare_node_hmac(c, node, len, 0, pad);
448 }
449 
450 /**
451  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
452  * @c: UBIFS file-system description object
453  * @node: the node to pad
454  * @len: node length
455  * @last: indicates the last node of the group
456  *
457  * This function prepares node at @node to be written to the media - it
458  * calculates node CRC and fills the common header.
459  */
460 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
461 {
462 	uint32_t crc;
463 	struct ubifs_ch *ch = node;
464 	unsigned long long sqnum = next_sqnum(c);
465 
466 	ubifs_assert(c, len >= UBIFS_CH_SZ);
467 
468 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
469 	ch->len = cpu_to_le32(len);
470 	if (last)
471 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
472 	else
473 		ch->group_type = UBIFS_IN_NODE_GROUP;
474 	ch->sqnum = cpu_to_le64(sqnum);
475 	ch->padding[0] = ch->padding[1] = 0;
476 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
477 	ch->crc = cpu_to_le32(crc);
478 }
479 
480 /**
481  * wbuf_timer_callback - write-buffer timer callback function.
482  * @timer: timer data (write-buffer descriptor)
483  *
484  * This function is called when the write-buffer timer expires.
485  */
486 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
487 {
488 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
489 
490 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
491 	wbuf->need_sync = 1;
492 	wbuf->c->need_wbuf_sync = 1;
493 	ubifs_wake_up_bgt(wbuf->c);
494 	return HRTIMER_NORESTART;
495 }
496 
497 /**
498  * new_wbuf_timer - start new write-buffer timer.
499  * @c: UBIFS file-system description object
500  * @wbuf: write-buffer descriptor
501  */
502 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
503 {
504 	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
505 	unsigned long long delta = dirty_writeback_interval;
506 
507 	/* centi to milli, milli to nano, then 10% */
508 	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
509 
510 	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
511 	ubifs_assert(c, delta <= ULONG_MAX);
512 
513 	if (wbuf->no_timer)
514 		return;
515 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
516 	       dbg_jhead(wbuf->jhead),
517 	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
518 	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
519 	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
520 			       HRTIMER_MODE_REL);
521 }
522 
523 /**
524  * cancel_wbuf_timer - cancel write-buffer timer.
525  * @wbuf: write-buffer descriptor
526  */
527 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
528 {
529 	if (wbuf->no_timer)
530 		return;
531 	wbuf->need_sync = 0;
532 	hrtimer_cancel(&wbuf->timer);
533 }
534 
535 /**
536  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
537  * @wbuf: write-buffer to synchronize
538  *
539  * This function synchronizes write-buffer @buf and returns zero in case of
540  * success or a negative error code in case of failure.
541  *
542  * Note, although write-buffers are of @c->max_write_size, this function does
543  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
544  * if the write-buffer is only partially filled with data, only the used part
545  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
546  * This way we waste less space.
547  */
548 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
549 {
550 	struct ubifs_info *c = wbuf->c;
551 	int err, dirt, sync_len;
552 
553 	cancel_wbuf_timer_nolock(wbuf);
554 	if (!wbuf->used || wbuf->lnum == -1)
555 		/* Write-buffer is empty or not seeked */
556 		return 0;
557 
558 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
559 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
560 	ubifs_assert(c, !(wbuf->avail & 7));
561 	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
562 	ubifs_assert(c, wbuf->size >= c->min_io_size);
563 	ubifs_assert(c, wbuf->size <= c->max_write_size);
564 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
565 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
566 	if (c->leb_size - wbuf->offs >= c->max_write_size)
567 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
568 
569 	if (c->ro_error)
570 		return -EROFS;
571 
572 	/*
573 	 * Do not write whole write buffer but write only the minimum necessary
574 	 * amount of min. I/O units.
575 	 */
576 	sync_len = ALIGN(wbuf->used, c->min_io_size);
577 	dirt = sync_len - wbuf->used;
578 	if (dirt)
579 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
580 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
581 	if (err)
582 		return err;
583 
584 	spin_lock(&wbuf->lock);
585 	wbuf->offs += sync_len;
586 	/*
587 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
588 	 * But our goal is to optimize writes and make sure we write in
589 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
590 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
591 	 * sure that @wbuf->offs + @wbuf->size is aligned to
592 	 * @c->max_write_size. This way we make sure that after next
593 	 * write-buffer flush we are again at the optimal offset (aligned to
594 	 * @c->max_write_size).
595 	 */
596 	if (c->leb_size - wbuf->offs < c->max_write_size)
597 		wbuf->size = c->leb_size - wbuf->offs;
598 	else if (wbuf->offs & (c->max_write_size - 1))
599 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
600 	else
601 		wbuf->size = c->max_write_size;
602 	wbuf->avail = wbuf->size;
603 	wbuf->used = 0;
604 	wbuf->next_ino = 0;
605 	spin_unlock(&wbuf->lock);
606 
607 	if (wbuf->sync_callback)
608 		err = wbuf->sync_callback(c, wbuf->lnum,
609 					  c->leb_size - wbuf->offs, dirt);
610 	return err;
611 }
612 
613 /**
614  * ubifs_wbuf_seek_nolock - seek write-buffer.
615  * @wbuf: write-buffer
616  * @lnum: logical eraseblock number to seek to
617  * @offs: logical eraseblock offset to seek to
618  *
619  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
620  * The write-buffer has to be empty. Returns zero in case of success and a
621  * negative error code in case of failure.
622  */
623 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
624 {
625 	const struct ubifs_info *c = wbuf->c;
626 
627 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
628 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
629 	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
630 	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
631 	ubifs_assert(c, lnum != wbuf->lnum);
632 	ubifs_assert(c, wbuf->used == 0);
633 
634 	spin_lock(&wbuf->lock);
635 	wbuf->lnum = lnum;
636 	wbuf->offs = offs;
637 	if (c->leb_size - wbuf->offs < c->max_write_size)
638 		wbuf->size = c->leb_size - wbuf->offs;
639 	else if (wbuf->offs & (c->max_write_size - 1))
640 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
641 	else
642 		wbuf->size = c->max_write_size;
643 	wbuf->avail = wbuf->size;
644 	wbuf->used = 0;
645 	spin_unlock(&wbuf->lock);
646 
647 	return 0;
648 }
649 
650 /**
651  * ubifs_bg_wbufs_sync - synchronize write-buffers.
652  * @c: UBIFS file-system description object
653  *
654  * This function is called by background thread to synchronize write-buffers.
655  * Returns zero in case of success and a negative error code in case of
656  * failure.
657  */
658 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
659 {
660 	int err, i;
661 
662 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
663 	if (!c->need_wbuf_sync)
664 		return 0;
665 	c->need_wbuf_sync = 0;
666 
667 	if (c->ro_error) {
668 		err = -EROFS;
669 		goto out_timers;
670 	}
671 
672 	dbg_io("synchronize");
673 	for (i = 0; i < c->jhead_cnt; i++) {
674 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
675 
676 		cond_resched();
677 
678 		/*
679 		 * If the mutex is locked then wbuf is being changed, so
680 		 * synchronization is not necessary.
681 		 */
682 		if (mutex_is_locked(&wbuf->io_mutex))
683 			continue;
684 
685 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
686 		if (!wbuf->need_sync) {
687 			mutex_unlock(&wbuf->io_mutex);
688 			continue;
689 		}
690 
691 		err = ubifs_wbuf_sync_nolock(wbuf);
692 		mutex_unlock(&wbuf->io_mutex);
693 		if (err) {
694 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
695 			ubifs_ro_mode(c, err);
696 			goto out_timers;
697 		}
698 	}
699 
700 	return 0;
701 
702 out_timers:
703 	/* Cancel all timers to prevent repeated errors */
704 	for (i = 0; i < c->jhead_cnt; i++) {
705 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
706 
707 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
708 		cancel_wbuf_timer_nolock(wbuf);
709 		mutex_unlock(&wbuf->io_mutex);
710 	}
711 	return err;
712 }
713 
714 /**
715  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
716  * @wbuf: write-buffer
717  * @buf: node to write
718  * @len: node length
719  *
720  * This function writes data to flash via write-buffer @wbuf. This means that
721  * the last piece of the node won't reach the flash media immediately if it
722  * does not take whole max. write unit (@c->max_write_size). Instead, the node
723  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
724  * because more data are appended to the write-buffer).
725  *
726  * This function returns zero in case of success and a negative error code in
727  * case of failure. If the node cannot be written because there is no more
728  * space in this logical eraseblock, %-ENOSPC is returned.
729  */
730 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
731 {
732 	struct ubifs_info *c = wbuf->c;
733 	int err, written, n, aligned_len = ALIGN(len, 8);
734 
735 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
736 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
737 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
738 	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
739 	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
740 	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
741 	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
742 	ubifs_assert(c, wbuf->size >= c->min_io_size);
743 	ubifs_assert(c, wbuf->size <= c->max_write_size);
744 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
745 	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
746 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
747 	ubifs_assert(c, !c->space_fixup);
748 	if (c->leb_size - wbuf->offs >= c->max_write_size)
749 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
750 
751 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
752 		err = -ENOSPC;
753 		goto out;
754 	}
755 
756 	cancel_wbuf_timer_nolock(wbuf);
757 
758 	if (c->ro_error)
759 		return -EROFS;
760 
761 	if (aligned_len <= wbuf->avail) {
762 		/*
763 		 * The node is not very large and fits entirely within
764 		 * write-buffer.
765 		 */
766 		memcpy(wbuf->buf + wbuf->used, buf, len);
767 
768 		if (aligned_len == wbuf->avail) {
769 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
770 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
771 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
772 					      wbuf->offs, wbuf->size);
773 			if (err)
774 				goto out;
775 
776 			spin_lock(&wbuf->lock);
777 			wbuf->offs += wbuf->size;
778 			if (c->leb_size - wbuf->offs >= c->max_write_size)
779 				wbuf->size = c->max_write_size;
780 			else
781 				wbuf->size = c->leb_size - wbuf->offs;
782 			wbuf->avail = wbuf->size;
783 			wbuf->used = 0;
784 			wbuf->next_ino = 0;
785 			spin_unlock(&wbuf->lock);
786 		} else {
787 			spin_lock(&wbuf->lock);
788 			wbuf->avail -= aligned_len;
789 			wbuf->used += aligned_len;
790 			spin_unlock(&wbuf->lock);
791 		}
792 
793 		goto exit;
794 	}
795 
796 	written = 0;
797 
798 	if (wbuf->used) {
799 		/*
800 		 * The node is large enough and does not fit entirely within
801 		 * current available space. We have to fill and flush
802 		 * write-buffer and switch to the next max. write unit.
803 		 */
804 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
805 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
806 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
807 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
808 				      wbuf->size);
809 		if (err)
810 			goto out;
811 
812 		wbuf->offs += wbuf->size;
813 		len -= wbuf->avail;
814 		aligned_len -= wbuf->avail;
815 		written += wbuf->avail;
816 	} else if (wbuf->offs & (c->max_write_size - 1)) {
817 		/*
818 		 * The write-buffer offset is not aligned to
819 		 * @c->max_write_size and @wbuf->size is less than
820 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
821 		 * following writes are done in optimal @c->max_write_size
822 		 * chunks.
823 		 */
824 		dbg_io("write %d bytes to LEB %d:%d",
825 		       wbuf->size, wbuf->lnum, wbuf->offs);
826 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
827 				      wbuf->size);
828 		if (err)
829 			goto out;
830 
831 		wbuf->offs += wbuf->size;
832 		len -= wbuf->size;
833 		aligned_len -= wbuf->size;
834 		written += wbuf->size;
835 	}
836 
837 	/*
838 	 * The remaining data may take more whole max. write units, so write the
839 	 * remains multiple to max. write unit size directly to the flash media.
840 	 * We align node length to 8-byte boundary because we anyway flash wbuf
841 	 * if the remaining space is less than 8 bytes.
842 	 */
843 	n = aligned_len >> c->max_write_shift;
844 	if (n) {
845 		n <<= c->max_write_shift;
846 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
847 		       wbuf->offs);
848 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
849 				      wbuf->offs, n);
850 		if (err)
851 			goto out;
852 		wbuf->offs += n;
853 		aligned_len -= n;
854 		len -= n;
855 		written += n;
856 	}
857 
858 	spin_lock(&wbuf->lock);
859 	if (aligned_len)
860 		/*
861 		 * And now we have what's left and what does not take whole
862 		 * max. write unit, so write it to the write-buffer and we are
863 		 * done.
864 		 */
865 		memcpy(wbuf->buf, buf + written, len);
866 
867 	if (c->leb_size - wbuf->offs >= c->max_write_size)
868 		wbuf->size = c->max_write_size;
869 	else
870 		wbuf->size = c->leb_size - wbuf->offs;
871 	wbuf->avail = wbuf->size - aligned_len;
872 	wbuf->used = aligned_len;
873 	wbuf->next_ino = 0;
874 	spin_unlock(&wbuf->lock);
875 
876 exit:
877 	if (wbuf->sync_callback) {
878 		int free = c->leb_size - wbuf->offs - wbuf->used;
879 
880 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
881 		if (err)
882 			goto out;
883 	}
884 
885 	if (wbuf->used)
886 		new_wbuf_timer_nolock(c, wbuf);
887 
888 	return 0;
889 
890 out:
891 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
892 		  len, wbuf->lnum, wbuf->offs, err);
893 	ubifs_dump_node(c, buf);
894 	dump_stack();
895 	ubifs_dump_leb(c, wbuf->lnum);
896 	return err;
897 }
898 
899 /**
900  * ubifs_write_node_hmac - write node to the media.
901  * @c: UBIFS file-system description object
902  * @buf: the node to write
903  * @len: node length
904  * @lnum: logical eraseblock number
905  * @offs: offset within the logical eraseblock
906  * @hmac_offs: offset of the HMAC within the node
907  *
908  * This function automatically fills node magic number, assigns sequence
909  * number, and calculates node CRC checksum. The length of the @buf buffer has
910  * to be aligned to the minimal I/O unit size. This function automatically
911  * appends padding node and padding bytes if needed. Returns zero in case of
912  * success and a negative error code in case of failure.
913  */
914 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
915 			  int offs, int hmac_offs)
916 {
917 	int err, buf_len = ALIGN(len, c->min_io_size);
918 
919 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
920 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
921 	       buf_len);
922 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
923 	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
924 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
925 	ubifs_assert(c, !c->space_fixup);
926 
927 	if (c->ro_error)
928 		return -EROFS;
929 
930 	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
931 	if (err)
932 		return err;
933 
934 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
935 	if (err)
936 		ubifs_dump_node(c, buf);
937 
938 	return err;
939 }
940 
941 /**
942  * ubifs_write_node - write node to the media.
943  * @c: UBIFS file-system description object
944  * @buf: the node to write
945  * @len: node length
946  * @lnum: logical eraseblock number
947  * @offs: offset within the logical eraseblock
948  *
949  * This function automatically fills node magic number, assigns sequence
950  * number, and calculates node CRC checksum. The length of the @buf buffer has
951  * to be aligned to the minimal I/O unit size. This function automatically
952  * appends padding node and padding bytes if needed. Returns zero in case of
953  * success and a negative error code in case of failure.
954  */
955 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
956 		     int offs)
957 {
958 	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
959 }
960 
961 /**
962  * ubifs_read_node_wbuf - read node from the media or write-buffer.
963  * @wbuf: wbuf to check for un-written data
964  * @buf: buffer to read to
965  * @type: node type
966  * @len: node length
967  * @lnum: logical eraseblock number
968  * @offs: offset within the logical eraseblock
969  *
970  * This function reads a node of known type and length, checks it and stores
971  * in @buf. If the node partially or fully sits in the write-buffer, this
972  * function takes data from the buffer, otherwise it reads the flash media.
973  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
974  * error code in case of failure.
975  */
976 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
977 			 int lnum, int offs)
978 {
979 	const struct ubifs_info *c = wbuf->c;
980 	int err, rlen, overlap;
981 	struct ubifs_ch *ch = buf;
982 
983 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
984 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
985 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
986 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
987 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
988 
989 	spin_lock(&wbuf->lock);
990 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
991 	if (!overlap) {
992 		/* We may safely unlock the write-buffer and read the data */
993 		spin_unlock(&wbuf->lock);
994 		return ubifs_read_node(c, buf, type, len, lnum, offs);
995 	}
996 
997 	/* Don't read under wbuf */
998 	rlen = wbuf->offs - offs;
999 	if (rlen < 0)
1000 		rlen = 0;
1001 
1002 	/* Copy the rest from the write-buffer */
1003 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1004 	spin_unlock(&wbuf->lock);
1005 
1006 	if (rlen > 0) {
1007 		/* Read everything that goes before write-buffer */
1008 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1009 		if (err && err != -EBADMSG)
1010 			return err;
1011 	}
1012 
1013 	if (type != ch->node_type) {
1014 		ubifs_err(c, "bad node type (%d but expected %d)",
1015 			  ch->node_type, type);
1016 		goto out;
1017 	}
1018 
1019 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1020 	if (err) {
1021 		ubifs_err(c, "expected node type %d", type);
1022 		return err;
1023 	}
1024 
1025 	rlen = le32_to_cpu(ch->len);
1026 	if (rlen != len) {
1027 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1028 		goto out;
1029 	}
1030 
1031 	return 0;
1032 
1033 out:
1034 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1035 	ubifs_dump_node(c, buf);
1036 	dump_stack();
1037 	return -EINVAL;
1038 }
1039 
1040 /**
1041  * ubifs_read_node - read node.
1042  * @c: UBIFS file-system description object
1043  * @buf: buffer to read to
1044  * @type: node type
1045  * @len: node length (not aligned)
1046  * @lnum: logical eraseblock number
1047  * @offs: offset within the logical eraseblock
1048  *
1049  * This function reads a node of known type and and length, checks it and
1050  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1051  * and a negative error code in case of failure.
1052  */
1053 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1054 		    int lnum, int offs)
1055 {
1056 	int err, l;
1057 	struct ubifs_ch *ch = buf;
1058 
1059 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1060 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1061 	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1062 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1063 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1064 
1065 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1066 	if (err && err != -EBADMSG)
1067 		return err;
1068 
1069 	if (type != ch->node_type) {
1070 		ubifs_errc(c, "bad node type (%d but expected %d)",
1071 			   ch->node_type, type);
1072 		goto out;
1073 	}
1074 
1075 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1076 	if (err) {
1077 		ubifs_errc(c, "expected node type %d", type);
1078 		return err;
1079 	}
1080 
1081 	l = le32_to_cpu(ch->len);
1082 	if (l != len) {
1083 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1084 		goto out;
1085 	}
1086 
1087 	return 0;
1088 
1089 out:
1090 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1091 		   offs, ubi_is_mapped(c->ubi, lnum));
1092 	if (!c->probing) {
1093 		ubifs_dump_node(c, buf);
1094 		dump_stack();
1095 	}
1096 	return -EINVAL;
1097 }
1098 
1099 /**
1100  * ubifs_wbuf_init - initialize write-buffer.
1101  * @c: UBIFS file-system description object
1102  * @wbuf: write-buffer to initialize
1103  *
1104  * This function initializes write-buffer. Returns zero in case of success
1105  * %-ENOMEM in case of failure.
1106  */
1107 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1108 {
1109 	size_t size;
1110 
1111 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1112 	if (!wbuf->buf)
1113 		return -ENOMEM;
1114 
1115 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1116 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1117 	if (!wbuf->inodes) {
1118 		kfree(wbuf->buf);
1119 		wbuf->buf = NULL;
1120 		return -ENOMEM;
1121 	}
1122 
1123 	wbuf->used = 0;
1124 	wbuf->lnum = wbuf->offs = -1;
1125 	/*
1126 	 * If the LEB starts at the max. write size aligned address, then
1127 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1128 	 * set it to something smaller so that it ends at the closest max.
1129 	 * write size boundary.
1130 	 */
1131 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1132 	wbuf->avail = wbuf->size = size;
1133 	wbuf->sync_callback = NULL;
1134 	mutex_init(&wbuf->io_mutex);
1135 	spin_lock_init(&wbuf->lock);
1136 	wbuf->c = c;
1137 	wbuf->next_ino = 0;
1138 
1139 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1140 	wbuf->timer.function = wbuf_timer_callback_nolock;
1141 	return 0;
1142 }
1143 
1144 /**
1145  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1146  * @wbuf: the write-buffer where to add
1147  * @inum: the inode number
1148  *
1149  * This function adds an inode number to the inode array of the write-buffer.
1150  */
1151 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1152 {
1153 	if (!wbuf->buf)
1154 		/* NOR flash or something similar */
1155 		return;
1156 
1157 	spin_lock(&wbuf->lock);
1158 	if (wbuf->used)
1159 		wbuf->inodes[wbuf->next_ino++] = inum;
1160 	spin_unlock(&wbuf->lock);
1161 }
1162 
1163 /**
1164  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1165  * @wbuf: the write-buffer
1166  * @inum: the inode number
1167  *
1168  * This function returns with %1 if the write-buffer contains some data from the
1169  * given inode otherwise it returns with %0.
1170  */
1171 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1172 {
1173 	int i, ret = 0;
1174 
1175 	spin_lock(&wbuf->lock);
1176 	for (i = 0; i < wbuf->next_ino; i++)
1177 		if (inum == wbuf->inodes[i]) {
1178 			ret = 1;
1179 			break;
1180 		}
1181 	spin_unlock(&wbuf->lock);
1182 
1183 	return ret;
1184 }
1185 
1186 /**
1187  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1188  * @c: UBIFS file-system description object
1189  * @inode: inode to synchronize
1190  *
1191  * This function synchronizes write-buffers which contain nodes belonging to
1192  * @inode. Returns zero in case of success and a negative error code in case of
1193  * failure.
1194  */
1195 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1196 {
1197 	int i, err = 0;
1198 
1199 	for (i = 0; i < c->jhead_cnt; i++) {
1200 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1201 
1202 		if (i == GCHD)
1203 			/*
1204 			 * GC head is special, do not look at it. Even if the
1205 			 * head contains something related to this inode, it is
1206 			 * a _copy_ of corresponding on-flash node which sits
1207 			 * somewhere else.
1208 			 */
1209 			continue;
1210 
1211 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1212 			continue;
1213 
1214 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1215 		if (wbuf_has_ino(wbuf, inode->i_ino))
1216 			err = ubifs_wbuf_sync_nolock(wbuf);
1217 		mutex_unlock(&wbuf->io_mutex);
1218 
1219 		if (err) {
1220 			ubifs_ro_mode(c, err);
1221 			return err;
1222 		}
1223 	}
1224 	return 0;
1225 }
1226