1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * Copyright (C) 2006, 2007 University of Szeged, Hungary 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 * Zoltan Sogor 11 */ 12 13 /* 14 * This file implements UBIFS I/O subsystem which provides various I/O-related 15 * helper functions (reading/writing/checking/validating nodes) and implements 16 * write-buffering support. Write buffers help to save space which otherwise 17 * would have been wasted for padding to the nearest minimal I/O unit boundary. 18 * Instead, data first goes to the write-buffer and is flushed when the 19 * buffer is full or when it is not used for some time (by timer). This is 20 * similar to the mechanism is used by JFFS2. 21 * 22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 23 * write size (@c->max_write_size). The latter is the maximum amount of bytes 24 * the underlying flash is able to program at a time, and writing in 25 * @c->max_write_size units should presumably be faster. Obviously, 26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 27 * @c->max_write_size bytes in size for maximum performance. However, when a 28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 29 * boundary) which contains data is written, not the whole write-buffer, 30 * because this is more space-efficient. 31 * 32 * This optimization adds few complications to the code. Indeed, on the one 33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 34 * also means aligning writes at the @c->max_write_size bytes offsets. On the 35 * other hand, we do not want to waste space when synchronizing the write 36 * buffer, so during synchronization we writes in smaller chunks. And this makes 37 * the next write offset to be not aligned to @c->max_write_size bytes. So the 38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 39 * to @c->max_write_size bytes again. We do this by temporarily shrinking 40 * write-buffer size (@wbuf->size). 41 * 42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 43 * mutexes defined inside these objects. Since sometimes upper-level code 44 * has to lock the write-buffer (e.g. journal space reservation code), many 45 * functions related to write-buffers have "nolock" suffix which means that the 46 * caller has to lock the write-buffer before calling this function. 47 * 48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 49 * aligned, UBIFS starts the next node from the aligned address, and the padded 50 * bytes may contain any rubbish. In other words, UBIFS does not put padding 51 * bytes in those small gaps. Common headers of nodes store real node lengths, 52 * not aligned lengths. Indexing nodes also store real lengths in branches. 53 * 54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 55 * uses padding nodes or padding bytes, if the padding node does not fit. 56 * 57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 58 * they are read from the flash media. 59 */ 60 61 #include <linux/crc32.h> 62 #include <linux/slab.h> 63 #include "ubifs.h" 64 65 /** 66 * ubifs_ro_mode - switch UBIFS to read read-only mode. 67 * @c: UBIFS file-system description object 68 * @err: error code which is the reason of switching to R/O mode 69 */ 70 void ubifs_ro_mode(struct ubifs_info *c, int err) 71 { 72 if (!c->ro_error) { 73 c->ro_error = 1; 74 c->no_chk_data_crc = 0; 75 c->vfs_sb->s_flags |= SB_RDONLY; 76 ubifs_warn(c, "switched to read-only mode, error %d", err); 77 dump_stack(); 78 } 79 } 80 81 /* 82 * Below are simple wrappers over UBI I/O functions which include some 83 * additional checks and UBIFS debugging stuff. See corresponding UBI function 84 * for more information. 85 */ 86 87 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 88 int len, int even_ebadmsg) 89 { 90 int err; 91 92 err = ubi_read(c->ubi, lnum, buf, offs, len); 93 /* 94 * In case of %-EBADMSG print the error message only if the 95 * @even_ebadmsg is true. 96 */ 97 if (err && (err != -EBADMSG || even_ebadmsg)) { 98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 99 len, lnum, offs, err); 100 dump_stack(); 101 } 102 return err; 103 } 104 105 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 106 int len) 107 { 108 int err; 109 110 ubifs_assert(c, !c->ro_media && !c->ro_mount); 111 if (c->ro_error) 112 return -EROFS; 113 if (!dbg_is_tst_rcvry(c)) 114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 115 else 116 err = dbg_leb_write(c, lnum, buf, offs, len); 117 if (err) { 118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 119 len, lnum, offs, err); 120 ubifs_ro_mode(c, err); 121 dump_stack(); 122 } 123 return err; 124 } 125 126 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 127 { 128 int err; 129 130 ubifs_assert(c, !c->ro_media && !c->ro_mount); 131 if (c->ro_error) 132 return -EROFS; 133 if (!dbg_is_tst_rcvry(c)) 134 err = ubi_leb_change(c->ubi, lnum, buf, len); 135 else 136 err = dbg_leb_change(c, lnum, buf, len); 137 if (err) { 138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 139 len, lnum, err); 140 ubifs_ro_mode(c, err); 141 dump_stack(); 142 } 143 return err; 144 } 145 146 int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 147 { 148 int err; 149 150 ubifs_assert(c, !c->ro_media && !c->ro_mount); 151 if (c->ro_error) 152 return -EROFS; 153 if (!dbg_is_tst_rcvry(c)) 154 err = ubi_leb_unmap(c->ubi, lnum); 155 else 156 err = dbg_leb_unmap(c, lnum); 157 if (err) { 158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 159 ubifs_ro_mode(c, err); 160 dump_stack(); 161 } 162 return err; 163 } 164 165 int ubifs_leb_map(struct ubifs_info *c, int lnum) 166 { 167 int err; 168 169 ubifs_assert(c, !c->ro_media && !c->ro_mount); 170 if (c->ro_error) 171 return -EROFS; 172 if (!dbg_is_tst_rcvry(c)) 173 err = ubi_leb_map(c->ubi, lnum); 174 else 175 err = dbg_leb_map(c, lnum); 176 if (err) { 177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 178 ubifs_ro_mode(c, err); 179 dump_stack(); 180 } 181 return err; 182 } 183 184 int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 185 { 186 int err; 187 188 err = ubi_is_mapped(c->ubi, lnum); 189 if (err < 0) { 190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 191 lnum, err); 192 dump_stack(); 193 } 194 return err; 195 } 196 197 /** 198 * ubifs_check_node - check node. 199 * @c: UBIFS file-system description object 200 * @buf: node to check 201 * @lnum: logical eraseblock number 202 * @offs: offset within the logical eraseblock 203 * @quiet: print no messages 204 * @must_chk_crc: indicates whether to always check the CRC 205 * 206 * This function checks node magic number and CRC checksum. This function also 207 * validates node length to prevent UBIFS from becoming crazy when an attacker 208 * feeds it a file-system image with incorrect nodes. For example, too large 209 * node length in the common header could cause UBIFS to read memory outside of 210 * allocated buffer when checking the CRC checksum. 211 * 212 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 213 * true, which is controlled by corresponding UBIFS mount option. However, if 214 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 215 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 216 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 217 * is checked. This is because during mounting or re-mounting from R/O mode to 218 * R/W mode we may read journal nodes (when replying the journal or doing the 219 * recovery) and the journal nodes may potentially be corrupted, so checking is 220 * required. 221 * 222 * This function returns zero in case of success and %-EUCLEAN in case of bad 223 * CRC or magic. 224 */ 225 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 226 int offs, int quiet, int must_chk_crc) 227 { 228 int err = -EINVAL, type, node_len, dump_node = 1; 229 uint32_t crc, node_crc, magic; 230 const struct ubifs_ch *ch = buf; 231 232 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 233 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 234 235 magic = le32_to_cpu(ch->magic); 236 if (magic != UBIFS_NODE_MAGIC) { 237 if (!quiet) 238 ubifs_err(c, "bad magic %#08x, expected %#08x", 239 magic, UBIFS_NODE_MAGIC); 240 err = -EUCLEAN; 241 goto out; 242 } 243 244 type = ch->node_type; 245 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 246 if (!quiet) 247 ubifs_err(c, "bad node type %d", type); 248 goto out; 249 } 250 251 node_len = le32_to_cpu(ch->len); 252 if (node_len + offs > c->leb_size) 253 goto out_len; 254 255 if (c->ranges[type].max_len == 0) { 256 if (node_len != c->ranges[type].len) 257 goto out_len; 258 } else if (node_len < c->ranges[type].min_len || 259 node_len > c->ranges[type].max_len) 260 goto out_len; 261 262 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 263 !c->remounting_rw && c->no_chk_data_crc) 264 return 0; 265 266 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 267 node_crc = le32_to_cpu(ch->crc); 268 if (crc != node_crc) { 269 if (!quiet) 270 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 271 crc, node_crc); 272 err = -EUCLEAN; 273 goto out; 274 } 275 276 return 0; 277 278 out_len: 279 if (!quiet) 280 ubifs_err(c, "bad node length %d", node_len); 281 if (type == UBIFS_DATA_NODE && node_len > UBIFS_DATA_NODE_SZ) 282 dump_node = 0; 283 out: 284 if (!quiet) { 285 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 286 if (dump_node) { 287 ubifs_dump_node(c, buf); 288 } else { 289 int safe_len = min3(node_len, c->leb_size - offs, 290 (int)UBIFS_MAX_DATA_NODE_SZ); 291 pr_err("\tprevent out-of-bounds memory access\n"); 292 pr_err("\ttruncated data node length %d\n", safe_len); 293 pr_err("\tcorrupted data node:\n"); 294 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 295 buf, safe_len, 0); 296 } 297 dump_stack(); 298 } 299 return err; 300 } 301 302 /** 303 * ubifs_pad - pad flash space. 304 * @c: UBIFS file-system description object 305 * @buf: buffer to put padding to 306 * @pad: how many bytes to pad 307 * 308 * The flash media obliges us to write only in chunks of %c->min_io_size and 309 * when we have to write less data we add padding node to the write-buffer and 310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 311 * media is being scanned. If the amount of wasted space is not enough to fit a 312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 313 * pattern (%UBIFS_PADDING_BYTE). 314 * 315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 316 * used. 317 */ 318 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 319 { 320 uint32_t crc; 321 322 ubifs_assert(c, pad >= 0 && !(pad & 7)); 323 324 if (pad >= UBIFS_PAD_NODE_SZ) { 325 struct ubifs_ch *ch = buf; 326 struct ubifs_pad_node *pad_node = buf; 327 328 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 329 ch->node_type = UBIFS_PAD_NODE; 330 ch->group_type = UBIFS_NO_NODE_GROUP; 331 ch->padding[0] = ch->padding[1] = 0; 332 ch->sqnum = 0; 333 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 334 pad -= UBIFS_PAD_NODE_SZ; 335 pad_node->pad_len = cpu_to_le32(pad); 336 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 337 ch->crc = cpu_to_le32(crc); 338 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 339 } else if (pad > 0) 340 /* Too little space, padding node won't fit */ 341 memset(buf, UBIFS_PADDING_BYTE, pad); 342 } 343 344 /** 345 * next_sqnum - get next sequence number. 346 * @c: UBIFS file-system description object 347 */ 348 static unsigned long long next_sqnum(struct ubifs_info *c) 349 { 350 unsigned long long sqnum; 351 352 spin_lock(&c->cnt_lock); 353 sqnum = ++c->max_sqnum; 354 spin_unlock(&c->cnt_lock); 355 356 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 357 if (sqnum >= SQNUM_WATERMARK) { 358 ubifs_err(c, "sequence number overflow %llu, end of life", 359 sqnum); 360 ubifs_ro_mode(c, -EINVAL); 361 } 362 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 363 } 364 365 return sqnum; 366 } 367 368 void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad) 369 { 370 struct ubifs_ch *ch = node; 371 unsigned long long sqnum = next_sqnum(c); 372 373 ubifs_assert(c, len >= UBIFS_CH_SZ); 374 375 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 376 ch->len = cpu_to_le32(len); 377 ch->group_type = UBIFS_NO_NODE_GROUP; 378 ch->sqnum = cpu_to_le64(sqnum); 379 ch->padding[0] = ch->padding[1] = 0; 380 381 if (pad) { 382 len = ALIGN(len, 8); 383 pad = ALIGN(len, c->min_io_size) - len; 384 ubifs_pad(c, node + len, pad); 385 } 386 } 387 388 void ubifs_crc_node(struct ubifs_info *c, void *node, int len) 389 { 390 struct ubifs_ch *ch = node; 391 uint32_t crc; 392 393 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 394 ch->crc = cpu_to_le32(crc); 395 } 396 397 /** 398 * ubifs_prepare_node_hmac - prepare node to be written to flash. 399 * @c: UBIFS file-system description object 400 * @node: the node to pad 401 * @len: node length 402 * @hmac_offs: offset of the HMAC in the node 403 * @pad: if the buffer has to be padded 404 * 405 * This function prepares node at @node to be written to the media - it 406 * calculates node CRC, fills the common header, and adds proper padding up to 407 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then 408 * a HMAC is inserted into the node at the given offset. 409 * 410 * This function returns 0 for success or a negative error code otherwise. 411 */ 412 int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, 413 int hmac_offs, int pad) 414 { 415 int err; 416 417 ubifs_init_node(c, node, len, pad); 418 419 if (hmac_offs > 0) { 420 err = ubifs_node_insert_hmac(c, node, len, hmac_offs); 421 if (err) 422 return err; 423 } 424 425 ubifs_crc_node(c, node, len); 426 427 return 0; 428 } 429 430 /** 431 * ubifs_prepare_node - prepare node to be written to flash. 432 * @c: UBIFS file-system description object 433 * @node: the node to pad 434 * @len: node length 435 * @pad: if the buffer has to be padded 436 * 437 * This function prepares node at @node to be written to the media - it 438 * calculates node CRC, fills the common header, and adds proper padding up to 439 * the next minimum I/O unit if @pad is not zero. 440 */ 441 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 442 { 443 /* 444 * Deliberately ignore return value since this function can only fail 445 * when a hmac offset is given. 446 */ 447 ubifs_prepare_node_hmac(c, node, len, 0, pad); 448 } 449 450 /** 451 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 452 * @c: UBIFS file-system description object 453 * @node: the node to pad 454 * @len: node length 455 * @last: indicates the last node of the group 456 * 457 * This function prepares node at @node to be written to the media - it 458 * calculates node CRC and fills the common header. 459 */ 460 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 461 { 462 uint32_t crc; 463 struct ubifs_ch *ch = node; 464 unsigned long long sqnum = next_sqnum(c); 465 466 ubifs_assert(c, len >= UBIFS_CH_SZ); 467 468 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 469 ch->len = cpu_to_le32(len); 470 if (last) 471 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 472 else 473 ch->group_type = UBIFS_IN_NODE_GROUP; 474 ch->sqnum = cpu_to_le64(sqnum); 475 ch->padding[0] = ch->padding[1] = 0; 476 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 477 ch->crc = cpu_to_le32(crc); 478 } 479 480 /** 481 * wbuf_timer_callback - write-buffer timer callback function. 482 * @timer: timer data (write-buffer descriptor) 483 * 484 * This function is called when the write-buffer timer expires. 485 */ 486 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 487 { 488 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 489 490 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 491 wbuf->need_sync = 1; 492 wbuf->c->need_wbuf_sync = 1; 493 ubifs_wake_up_bgt(wbuf->c); 494 return HRTIMER_NORESTART; 495 } 496 497 /** 498 * new_wbuf_timer - start new write-buffer timer. 499 * @c: UBIFS file-system description object 500 * @wbuf: write-buffer descriptor 501 */ 502 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 503 { 504 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10); 505 unsigned long long delta = dirty_writeback_interval; 506 507 /* centi to milli, milli to nano, then 10% */ 508 delta *= 10ULL * NSEC_PER_MSEC / 10ULL; 509 510 ubifs_assert(c, !hrtimer_active(&wbuf->timer)); 511 ubifs_assert(c, delta <= ULONG_MAX); 512 513 if (wbuf->no_timer) 514 return; 515 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 516 dbg_jhead(wbuf->jhead), 517 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC), 518 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC)); 519 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta, 520 HRTIMER_MODE_REL); 521 } 522 523 /** 524 * cancel_wbuf_timer - cancel write-buffer timer. 525 * @wbuf: write-buffer descriptor 526 */ 527 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 528 { 529 if (wbuf->no_timer) 530 return; 531 wbuf->need_sync = 0; 532 hrtimer_cancel(&wbuf->timer); 533 } 534 535 /** 536 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 537 * @wbuf: write-buffer to synchronize 538 * 539 * This function synchronizes write-buffer @buf and returns zero in case of 540 * success or a negative error code in case of failure. 541 * 542 * Note, although write-buffers are of @c->max_write_size, this function does 543 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 544 * if the write-buffer is only partially filled with data, only the used part 545 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 546 * This way we waste less space. 547 */ 548 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 549 { 550 struct ubifs_info *c = wbuf->c; 551 int err, dirt, sync_len; 552 553 cancel_wbuf_timer_nolock(wbuf); 554 if (!wbuf->used || wbuf->lnum == -1) 555 /* Write-buffer is empty or not seeked */ 556 return 0; 557 558 dbg_io("LEB %d:%d, %d bytes, jhead %s", 559 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 560 ubifs_assert(c, !(wbuf->avail & 7)); 561 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size); 562 ubifs_assert(c, wbuf->size >= c->min_io_size); 563 ubifs_assert(c, wbuf->size <= c->max_write_size); 564 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 565 ubifs_assert(c, !c->ro_media && !c->ro_mount); 566 if (c->leb_size - wbuf->offs >= c->max_write_size) 567 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 568 569 if (c->ro_error) 570 return -EROFS; 571 572 /* 573 * Do not write whole write buffer but write only the minimum necessary 574 * amount of min. I/O units. 575 */ 576 sync_len = ALIGN(wbuf->used, c->min_io_size); 577 dirt = sync_len - wbuf->used; 578 if (dirt) 579 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 580 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 581 if (err) 582 return err; 583 584 spin_lock(&wbuf->lock); 585 wbuf->offs += sync_len; 586 /* 587 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 588 * But our goal is to optimize writes and make sure we write in 589 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 590 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 591 * sure that @wbuf->offs + @wbuf->size is aligned to 592 * @c->max_write_size. This way we make sure that after next 593 * write-buffer flush we are again at the optimal offset (aligned to 594 * @c->max_write_size). 595 */ 596 if (c->leb_size - wbuf->offs < c->max_write_size) 597 wbuf->size = c->leb_size - wbuf->offs; 598 else if (wbuf->offs & (c->max_write_size - 1)) 599 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 600 else 601 wbuf->size = c->max_write_size; 602 wbuf->avail = wbuf->size; 603 wbuf->used = 0; 604 wbuf->next_ino = 0; 605 spin_unlock(&wbuf->lock); 606 607 if (wbuf->sync_callback) 608 err = wbuf->sync_callback(c, wbuf->lnum, 609 c->leb_size - wbuf->offs, dirt); 610 return err; 611 } 612 613 /** 614 * ubifs_wbuf_seek_nolock - seek write-buffer. 615 * @wbuf: write-buffer 616 * @lnum: logical eraseblock number to seek to 617 * @offs: logical eraseblock offset to seek to 618 * 619 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 620 * The write-buffer has to be empty. Returns zero in case of success and a 621 * negative error code in case of failure. 622 */ 623 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 624 { 625 const struct ubifs_info *c = wbuf->c; 626 627 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 628 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt); 629 ubifs_assert(c, offs >= 0 && offs <= c->leb_size); 630 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7)); 631 ubifs_assert(c, lnum != wbuf->lnum); 632 ubifs_assert(c, wbuf->used == 0); 633 634 spin_lock(&wbuf->lock); 635 wbuf->lnum = lnum; 636 wbuf->offs = offs; 637 if (c->leb_size - wbuf->offs < c->max_write_size) 638 wbuf->size = c->leb_size - wbuf->offs; 639 else if (wbuf->offs & (c->max_write_size - 1)) 640 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 641 else 642 wbuf->size = c->max_write_size; 643 wbuf->avail = wbuf->size; 644 wbuf->used = 0; 645 spin_unlock(&wbuf->lock); 646 647 return 0; 648 } 649 650 /** 651 * ubifs_bg_wbufs_sync - synchronize write-buffers. 652 * @c: UBIFS file-system description object 653 * 654 * This function is called by background thread to synchronize write-buffers. 655 * Returns zero in case of success and a negative error code in case of 656 * failure. 657 */ 658 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 659 { 660 int err, i; 661 662 ubifs_assert(c, !c->ro_media && !c->ro_mount); 663 if (!c->need_wbuf_sync) 664 return 0; 665 c->need_wbuf_sync = 0; 666 667 if (c->ro_error) { 668 err = -EROFS; 669 goto out_timers; 670 } 671 672 dbg_io("synchronize"); 673 for (i = 0; i < c->jhead_cnt; i++) { 674 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 675 676 cond_resched(); 677 678 /* 679 * If the mutex is locked then wbuf is being changed, so 680 * synchronization is not necessary. 681 */ 682 if (mutex_is_locked(&wbuf->io_mutex)) 683 continue; 684 685 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 686 if (!wbuf->need_sync) { 687 mutex_unlock(&wbuf->io_mutex); 688 continue; 689 } 690 691 err = ubifs_wbuf_sync_nolock(wbuf); 692 mutex_unlock(&wbuf->io_mutex); 693 if (err) { 694 ubifs_err(c, "cannot sync write-buffer, error %d", err); 695 ubifs_ro_mode(c, err); 696 goto out_timers; 697 } 698 } 699 700 return 0; 701 702 out_timers: 703 /* Cancel all timers to prevent repeated errors */ 704 for (i = 0; i < c->jhead_cnt; i++) { 705 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 706 707 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 708 cancel_wbuf_timer_nolock(wbuf); 709 mutex_unlock(&wbuf->io_mutex); 710 } 711 return err; 712 } 713 714 /** 715 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 716 * @wbuf: write-buffer 717 * @buf: node to write 718 * @len: node length 719 * 720 * This function writes data to flash via write-buffer @wbuf. This means that 721 * the last piece of the node won't reach the flash media immediately if it 722 * does not take whole max. write unit (@c->max_write_size). Instead, the node 723 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 724 * because more data are appended to the write-buffer). 725 * 726 * This function returns zero in case of success and a negative error code in 727 * case of failure. If the node cannot be written because there is no more 728 * space in this logical eraseblock, %-ENOSPC is returned. 729 */ 730 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 731 { 732 struct ubifs_info *c = wbuf->c; 733 int err, written, n, aligned_len = ALIGN(len, 8); 734 735 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 736 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 737 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 738 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 739 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 740 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 741 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size); 742 ubifs_assert(c, wbuf->size >= c->min_io_size); 743 ubifs_assert(c, wbuf->size <= c->max_write_size); 744 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 745 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex)); 746 ubifs_assert(c, !c->ro_media && !c->ro_mount); 747 ubifs_assert(c, !c->space_fixup); 748 if (c->leb_size - wbuf->offs >= c->max_write_size) 749 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 750 751 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 752 err = -ENOSPC; 753 goto out; 754 } 755 756 cancel_wbuf_timer_nolock(wbuf); 757 758 if (c->ro_error) 759 return -EROFS; 760 761 if (aligned_len <= wbuf->avail) { 762 /* 763 * The node is not very large and fits entirely within 764 * write-buffer. 765 */ 766 memcpy(wbuf->buf + wbuf->used, buf, len); 767 768 if (aligned_len == wbuf->avail) { 769 dbg_io("flush jhead %s wbuf to LEB %d:%d", 770 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 771 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 772 wbuf->offs, wbuf->size); 773 if (err) 774 goto out; 775 776 spin_lock(&wbuf->lock); 777 wbuf->offs += wbuf->size; 778 if (c->leb_size - wbuf->offs >= c->max_write_size) 779 wbuf->size = c->max_write_size; 780 else 781 wbuf->size = c->leb_size - wbuf->offs; 782 wbuf->avail = wbuf->size; 783 wbuf->used = 0; 784 wbuf->next_ino = 0; 785 spin_unlock(&wbuf->lock); 786 } else { 787 spin_lock(&wbuf->lock); 788 wbuf->avail -= aligned_len; 789 wbuf->used += aligned_len; 790 spin_unlock(&wbuf->lock); 791 } 792 793 goto exit; 794 } 795 796 written = 0; 797 798 if (wbuf->used) { 799 /* 800 * The node is large enough and does not fit entirely within 801 * current available space. We have to fill and flush 802 * write-buffer and switch to the next max. write unit. 803 */ 804 dbg_io("flush jhead %s wbuf to LEB %d:%d", 805 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 806 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 807 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 808 wbuf->size); 809 if (err) 810 goto out; 811 812 wbuf->offs += wbuf->size; 813 len -= wbuf->avail; 814 aligned_len -= wbuf->avail; 815 written += wbuf->avail; 816 } else if (wbuf->offs & (c->max_write_size - 1)) { 817 /* 818 * The write-buffer offset is not aligned to 819 * @c->max_write_size and @wbuf->size is less than 820 * @c->max_write_size. Write @wbuf->size bytes to make sure the 821 * following writes are done in optimal @c->max_write_size 822 * chunks. 823 */ 824 dbg_io("write %d bytes to LEB %d:%d", 825 wbuf->size, wbuf->lnum, wbuf->offs); 826 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 827 wbuf->size); 828 if (err) 829 goto out; 830 831 wbuf->offs += wbuf->size; 832 len -= wbuf->size; 833 aligned_len -= wbuf->size; 834 written += wbuf->size; 835 } 836 837 /* 838 * The remaining data may take more whole max. write units, so write the 839 * remains multiple to max. write unit size directly to the flash media. 840 * We align node length to 8-byte boundary because we anyway flash wbuf 841 * if the remaining space is less than 8 bytes. 842 */ 843 n = aligned_len >> c->max_write_shift; 844 if (n) { 845 n <<= c->max_write_shift; 846 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 847 wbuf->offs); 848 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 849 wbuf->offs, n); 850 if (err) 851 goto out; 852 wbuf->offs += n; 853 aligned_len -= n; 854 len -= n; 855 written += n; 856 } 857 858 spin_lock(&wbuf->lock); 859 if (aligned_len) 860 /* 861 * And now we have what's left and what does not take whole 862 * max. write unit, so write it to the write-buffer and we are 863 * done. 864 */ 865 memcpy(wbuf->buf, buf + written, len); 866 867 if (c->leb_size - wbuf->offs >= c->max_write_size) 868 wbuf->size = c->max_write_size; 869 else 870 wbuf->size = c->leb_size - wbuf->offs; 871 wbuf->avail = wbuf->size - aligned_len; 872 wbuf->used = aligned_len; 873 wbuf->next_ino = 0; 874 spin_unlock(&wbuf->lock); 875 876 exit: 877 if (wbuf->sync_callback) { 878 int free = c->leb_size - wbuf->offs - wbuf->used; 879 880 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 881 if (err) 882 goto out; 883 } 884 885 if (wbuf->used) 886 new_wbuf_timer_nolock(c, wbuf); 887 888 return 0; 889 890 out: 891 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 892 len, wbuf->lnum, wbuf->offs, err); 893 ubifs_dump_node(c, buf); 894 dump_stack(); 895 ubifs_dump_leb(c, wbuf->lnum); 896 return err; 897 } 898 899 /** 900 * ubifs_write_node_hmac - write node to the media. 901 * @c: UBIFS file-system description object 902 * @buf: the node to write 903 * @len: node length 904 * @lnum: logical eraseblock number 905 * @offs: offset within the logical eraseblock 906 * @hmac_offs: offset of the HMAC within the node 907 * 908 * This function automatically fills node magic number, assigns sequence 909 * number, and calculates node CRC checksum. The length of the @buf buffer has 910 * to be aligned to the minimal I/O unit size. This function automatically 911 * appends padding node and padding bytes if needed. Returns zero in case of 912 * success and a negative error code in case of failure. 913 */ 914 int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, 915 int offs, int hmac_offs) 916 { 917 int err, buf_len = ALIGN(len, c->min_io_size); 918 919 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 920 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 921 buf_len); 922 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 923 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size); 924 ubifs_assert(c, !c->ro_media && !c->ro_mount); 925 ubifs_assert(c, !c->space_fixup); 926 927 if (c->ro_error) 928 return -EROFS; 929 930 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1); 931 if (err) 932 return err; 933 934 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 935 if (err) 936 ubifs_dump_node(c, buf); 937 938 return err; 939 } 940 941 /** 942 * ubifs_write_node - write node to the media. 943 * @c: UBIFS file-system description object 944 * @buf: the node to write 945 * @len: node length 946 * @lnum: logical eraseblock number 947 * @offs: offset within the logical eraseblock 948 * 949 * This function automatically fills node magic number, assigns sequence 950 * number, and calculates node CRC checksum. The length of the @buf buffer has 951 * to be aligned to the minimal I/O unit size. This function automatically 952 * appends padding node and padding bytes if needed. Returns zero in case of 953 * success and a negative error code in case of failure. 954 */ 955 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 956 int offs) 957 { 958 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1); 959 } 960 961 /** 962 * ubifs_read_node_wbuf - read node from the media or write-buffer. 963 * @wbuf: wbuf to check for un-written data 964 * @buf: buffer to read to 965 * @type: node type 966 * @len: node length 967 * @lnum: logical eraseblock number 968 * @offs: offset within the logical eraseblock 969 * 970 * This function reads a node of known type and length, checks it and stores 971 * in @buf. If the node partially or fully sits in the write-buffer, this 972 * function takes data from the buffer, otherwise it reads the flash media. 973 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 974 * error code in case of failure. 975 */ 976 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 977 int lnum, int offs) 978 { 979 const struct ubifs_info *c = wbuf->c; 980 int err, rlen, overlap; 981 struct ubifs_ch *ch = buf; 982 983 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 984 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 985 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 986 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 987 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 988 989 spin_lock(&wbuf->lock); 990 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 991 if (!overlap) { 992 /* We may safely unlock the write-buffer and read the data */ 993 spin_unlock(&wbuf->lock); 994 return ubifs_read_node(c, buf, type, len, lnum, offs); 995 } 996 997 /* Don't read under wbuf */ 998 rlen = wbuf->offs - offs; 999 if (rlen < 0) 1000 rlen = 0; 1001 1002 /* Copy the rest from the write-buffer */ 1003 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1004 spin_unlock(&wbuf->lock); 1005 1006 if (rlen > 0) { 1007 /* Read everything that goes before write-buffer */ 1008 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1009 if (err && err != -EBADMSG) 1010 return err; 1011 } 1012 1013 if (type != ch->node_type) { 1014 ubifs_err(c, "bad node type (%d but expected %d)", 1015 ch->node_type, type); 1016 goto out; 1017 } 1018 1019 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 1020 if (err) { 1021 ubifs_err(c, "expected node type %d", type); 1022 return err; 1023 } 1024 1025 rlen = le32_to_cpu(ch->len); 1026 if (rlen != len) { 1027 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 1028 goto out; 1029 } 1030 1031 return 0; 1032 1033 out: 1034 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 1035 ubifs_dump_node(c, buf); 1036 dump_stack(); 1037 return -EINVAL; 1038 } 1039 1040 /** 1041 * ubifs_read_node - read node. 1042 * @c: UBIFS file-system description object 1043 * @buf: buffer to read to 1044 * @type: node type 1045 * @len: node length (not aligned) 1046 * @lnum: logical eraseblock number 1047 * @offs: offset within the logical eraseblock 1048 * 1049 * This function reads a node of known type and and length, checks it and 1050 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 1051 * and a negative error code in case of failure. 1052 */ 1053 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 1054 int lnum, int offs) 1055 { 1056 int err, l; 1057 struct ubifs_ch *ch = buf; 1058 1059 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 1060 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1061 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 1062 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1063 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 1064 1065 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1066 if (err && err != -EBADMSG) 1067 return err; 1068 1069 if (type != ch->node_type) { 1070 ubifs_errc(c, "bad node type (%d but expected %d)", 1071 ch->node_type, type); 1072 goto out; 1073 } 1074 1075 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 1076 if (err) { 1077 ubifs_errc(c, "expected node type %d", type); 1078 return err; 1079 } 1080 1081 l = le32_to_cpu(ch->len); 1082 if (l != len) { 1083 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1084 goto out; 1085 } 1086 1087 return 0; 1088 1089 out: 1090 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1091 offs, ubi_is_mapped(c->ubi, lnum)); 1092 if (!c->probing) { 1093 ubifs_dump_node(c, buf); 1094 dump_stack(); 1095 } 1096 return -EINVAL; 1097 } 1098 1099 /** 1100 * ubifs_wbuf_init - initialize write-buffer. 1101 * @c: UBIFS file-system description object 1102 * @wbuf: write-buffer to initialize 1103 * 1104 * This function initializes write-buffer. Returns zero in case of success 1105 * %-ENOMEM in case of failure. 1106 */ 1107 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1108 { 1109 size_t size; 1110 1111 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1112 if (!wbuf->buf) 1113 return -ENOMEM; 1114 1115 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1116 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1117 if (!wbuf->inodes) { 1118 kfree(wbuf->buf); 1119 wbuf->buf = NULL; 1120 return -ENOMEM; 1121 } 1122 1123 wbuf->used = 0; 1124 wbuf->lnum = wbuf->offs = -1; 1125 /* 1126 * If the LEB starts at the max. write size aligned address, then 1127 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1128 * set it to something smaller so that it ends at the closest max. 1129 * write size boundary. 1130 */ 1131 size = c->max_write_size - (c->leb_start % c->max_write_size); 1132 wbuf->avail = wbuf->size = size; 1133 wbuf->sync_callback = NULL; 1134 mutex_init(&wbuf->io_mutex); 1135 spin_lock_init(&wbuf->lock); 1136 wbuf->c = c; 1137 wbuf->next_ino = 0; 1138 1139 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1140 wbuf->timer.function = wbuf_timer_callback_nolock; 1141 return 0; 1142 } 1143 1144 /** 1145 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1146 * @wbuf: the write-buffer where to add 1147 * @inum: the inode number 1148 * 1149 * This function adds an inode number to the inode array of the write-buffer. 1150 */ 1151 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1152 { 1153 if (!wbuf->buf) 1154 /* NOR flash or something similar */ 1155 return; 1156 1157 spin_lock(&wbuf->lock); 1158 if (wbuf->used) 1159 wbuf->inodes[wbuf->next_ino++] = inum; 1160 spin_unlock(&wbuf->lock); 1161 } 1162 1163 /** 1164 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1165 * @wbuf: the write-buffer 1166 * @inum: the inode number 1167 * 1168 * This function returns with %1 if the write-buffer contains some data from the 1169 * given inode otherwise it returns with %0. 1170 */ 1171 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1172 { 1173 int i, ret = 0; 1174 1175 spin_lock(&wbuf->lock); 1176 for (i = 0; i < wbuf->next_ino; i++) 1177 if (inum == wbuf->inodes[i]) { 1178 ret = 1; 1179 break; 1180 } 1181 spin_unlock(&wbuf->lock); 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1188 * @c: UBIFS file-system description object 1189 * @inode: inode to synchronize 1190 * 1191 * This function synchronizes write-buffers which contain nodes belonging to 1192 * @inode. Returns zero in case of success and a negative error code in case of 1193 * failure. 1194 */ 1195 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1196 { 1197 int i, err = 0; 1198 1199 for (i = 0; i < c->jhead_cnt; i++) { 1200 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1201 1202 if (i == GCHD) 1203 /* 1204 * GC head is special, do not look at it. Even if the 1205 * head contains something related to this inode, it is 1206 * a _copy_ of corresponding on-flash node which sits 1207 * somewhere else. 1208 */ 1209 continue; 1210 1211 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1212 continue; 1213 1214 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1215 if (wbuf_has_ino(wbuf, inode->i_ino)) 1216 err = ubifs_wbuf_sync_nolock(wbuf); 1217 mutex_unlock(&wbuf->io_mutex); 1218 1219 if (err) { 1220 ubifs_ro_mode(c, err); 1221 return err; 1222 } 1223 } 1224 return 0; 1225 } 1226