1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements garbage collection. The procedure for garbage collection 25 * is different depending on whether a LEB as an index LEB (contains index 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 28 * nodes to the journal, at which point the garbage-collected LEB is free to be 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 31 * to be reused. Garbage collection will cause the number of dirty index nodes 32 * to grow, however sufficient space is reserved for the index to ensure the 33 * commit will never run out of space. 34 */ 35 36 #include <linux/pagemap.h> 37 #include "ubifs.h" 38 39 /* 40 * GC tries to optimize the way it fit nodes to available space, and it sorts 41 * nodes a little. The below constants are watermarks which define "large", 42 * "medium", and "small" nodes. 43 */ 44 #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4) 45 #define SMALL_NODE_WM UBIFS_MAX_DENT_NODE_SZ 46 47 /* 48 * GC may need to move more then one LEB to make progress. The below constants 49 * define "soft" and "hard" limits on the number of LEBs the garbage collector 50 * may move. 51 */ 52 #define SOFT_LEBS_LIMIT 4 53 #define HARD_LEBS_LIMIT 32 54 55 /** 56 * switch_gc_head - switch the garbage collection journal head. 57 * @c: UBIFS file-system description object 58 * @buf: buffer to write 59 * @len: length of the buffer to write 60 * @lnum: LEB number written is returned here 61 * @offs: offset written is returned here 62 * 63 * This function switch the GC head to the next LEB which is reserved in 64 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 65 * and other negative error code in case of failures. 66 */ 67 static int switch_gc_head(struct ubifs_info *c) 68 { 69 int err, gc_lnum = c->gc_lnum; 70 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 71 72 ubifs_assert(gc_lnum != -1); 73 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 74 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 75 c->leb_size - wbuf->offs - wbuf->used); 76 77 err = ubifs_wbuf_sync_nolock(wbuf); 78 if (err) 79 return err; 80 81 /* 82 * The GC write-buffer was synchronized, we may safely unmap 83 * 'c->gc_lnum'. 84 */ 85 err = ubifs_leb_unmap(c, gc_lnum); 86 if (err) 87 return err; 88 89 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 90 if (err) 91 return err; 92 93 c->gc_lnum = -1; 94 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM); 95 return err; 96 } 97 98 /** 99 * move_nodes - move nodes. 100 * @c: UBIFS file-system description object 101 * @sleb: describes nodes to move 102 * 103 * This function moves valid nodes from data LEB described by @sleb to the GC 104 * journal head. The obsolete nodes are dropped. 105 * 106 * When moving nodes we have to deal with classical bin-packing problem: the 107 * space in the current GC journal head LEB and in @c->gc_lnum are the "bins", 108 * where the nodes in the @sleb->nodes list are the elements which should be 109 * fit optimally to the bins. This function uses the "first fit decreasing" 110 * strategy, although it does not really sort the nodes but just split them on 111 * 3 classes - large, medium, and small, so they are roughly sorted. 112 * 113 * This function returns zero in case of success, %-EAGAIN if commit is 114 * required, and other negative error codes in case of other failures. 115 */ 116 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 117 { 118 struct ubifs_scan_node *snod, *tmp; 119 struct list_head large, medium, small; 120 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 121 int avail, err, min = INT_MAX; 122 123 INIT_LIST_HEAD(&large); 124 INIT_LIST_HEAD(&medium); 125 INIT_LIST_HEAD(&small); 126 127 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 128 struct list_head *lst; 129 130 ubifs_assert(snod->type != UBIFS_IDX_NODE); 131 ubifs_assert(snod->type != UBIFS_REF_NODE); 132 ubifs_assert(snod->type != UBIFS_CS_NODE); 133 134 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 135 snod->offs, 0); 136 if (err < 0) 137 goto out; 138 139 lst = &snod->list; 140 list_del(lst); 141 if (!err) { 142 /* The node is obsolete, remove it from the list */ 143 kfree(snod); 144 continue; 145 } 146 147 /* 148 * Sort the list of nodes so that large nodes go first, and 149 * small nodes go last. 150 */ 151 if (snod->len > MEDIUM_NODE_WM) 152 list_add(lst, &large); 153 else if (snod->len > SMALL_NODE_WM) 154 list_add(lst, &medium); 155 else 156 list_add(lst, &small); 157 158 /* And find the smallest node */ 159 if (snod->len < min) 160 min = snod->len; 161 } 162 163 /* 164 * Join the tree lists so that we'd have one roughly sorted list 165 * ('large' will be the head of the joined list). 166 */ 167 list_splice(&medium, large.prev); 168 list_splice(&small, large.prev); 169 170 if (wbuf->lnum == -1) { 171 /* 172 * The GC journal head is not set, because it is the first GC 173 * invocation since mount. 174 */ 175 err = switch_gc_head(c); 176 if (err) 177 goto out; 178 } 179 180 /* Write nodes to their new location. Use the first-fit strategy */ 181 while (1) { 182 avail = c->leb_size - wbuf->offs - wbuf->used; 183 list_for_each_entry_safe(snod, tmp, &large, list) { 184 int new_lnum, new_offs; 185 186 if (avail < min) 187 break; 188 189 if (snod->len > avail) 190 /* This node does not fit */ 191 continue; 192 193 cond_resched(); 194 195 new_lnum = wbuf->lnum; 196 new_offs = wbuf->offs + wbuf->used; 197 err = ubifs_wbuf_write_nolock(wbuf, snod->node, 198 snod->len); 199 if (err) 200 goto out; 201 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 202 snod->offs, new_lnum, new_offs, 203 snod->len); 204 if (err) 205 goto out; 206 207 avail = c->leb_size - wbuf->offs - wbuf->used; 208 list_del(&snod->list); 209 kfree(snod); 210 } 211 212 if (list_empty(&large)) 213 break; 214 215 /* 216 * Waste the rest of the space in the LEB and switch to the 217 * next LEB. 218 */ 219 err = switch_gc_head(c); 220 if (err) 221 goto out; 222 } 223 224 return 0; 225 226 out: 227 list_for_each_entry_safe(snod, tmp, &large, list) { 228 list_del(&snod->list); 229 kfree(snod); 230 } 231 return err; 232 } 233 234 /** 235 * gc_sync_wbufs - sync write-buffers for GC. 236 * @c: UBIFS file-system description object 237 * 238 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 239 * be in a write-buffer instead. That is, a node could be written to a 240 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 241 * erased before the write-buffer is sync'd and then there is an unclean 242 * unmount, then an existing node is lost. To avoid this, we sync all 243 * write-buffers. 244 * 245 * This function returns %0 on success or a negative error code on failure. 246 */ 247 static int gc_sync_wbufs(struct ubifs_info *c) 248 { 249 int err, i; 250 251 for (i = 0; i < c->jhead_cnt; i++) { 252 if (i == GCHD) 253 continue; 254 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 255 if (err) 256 return err; 257 } 258 return 0; 259 } 260 261 /** 262 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 263 * @c: UBIFS file-system description object 264 * @lp: describes the LEB to garbage collect 265 * 266 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 267 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 268 * required, and other negative error codes in case of failures. 269 */ 270 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 271 { 272 struct ubifs_scan_leb *sleb; 273 struct ubifs_scan_node *snod; 274 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 275 int err = 0, lnum = lp->lnum; 276 277 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 278 c->need_recovery); 279 ubifs_assert(c->gc_lnum != lnum); 280 ubifs_assert(wbuf->lnum != lnum); 281 282 /* 283 * We scan the entire LEB even though we only really need to scan up to 284 * (c->leb_size - lp->free). 285 */ 286 sleb = ubifs_scan(c, lnum, 0, c->sbuf); 287 if (IS_ERR(sleb)) 288 return PTR_ERR(sleb); 289 290 ubifs_assert(!list_empty(&sleb->nodes)); 291 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 292 293 if (snod->type == UBIFS_IDX_NODE) { 294 struct ubifs_gced_idx_leb *idx_gc; 295 296 dbg_gc("indexing LEB %d (free %d, dirty %d)", 297 lnum, lp->free, lp->dirty); 298 list_for_each_entry(snod, &sleb->nodes, list) { 299 struct ubifs_idx_node *idx = snod->node; 300 int level = le16_to_cpu(idx->level); 301 302 ubifs_assert(snod->type == UBIFS_IDX_NODE); 303 key_read(c, ubifs_idx_key(c, idx), &snod->key); 304 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 305 snod->offs); 306 if (err) 307 goto out; 308 } 309 310 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 311 if (!idx_gc) { 312 err = -ENOMEM; 313 goto out; 314 } 315 316 idx_gc->lnum = lnum; 317 idx_gc->unmap = 0; 318 list_add(&idx_gc->list, &c->idx_gc); 319 320 /* 321 * Don't release the LEB until after the next commit, because 322 * it may contain date which is needed for recovery. So 323 * although we freed this LEB, it will become usable only after 324 * the commit. 325 */ 326 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 327 LPROPS_INDEX, 1); 328 if (err) 329 goto out; 330 err = LEB_FREED_IDX; 331 } else { 332 dbg_gc("data LEB %d (free %d, dirty %d)", 333 lnum, lp->free, lp->dirty); 334 335 err = move_nodes(c, sleb); 336 if (err) 337 goto out; 338 339 err = gc_sync_wbufs(c); 340 if (err) 341 goto out; 342 343 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 344 if (err) 345 goto out; 346 347 if (c->gc_lnum == -1) { 348 c->gc_lnum = lnum; 349 err = LEB_RETAINED; 350 } else { 351 err = ubifs_wbuf_sync_nolock(wbuf); 352 if (err) 353 goto out; 354 355 err = ubifs_leb_unmap(c, lnum); 356 if (err) 357 goto out; 358 359 err = LEB_FREED; 360 } 361 } 362 363 out: 364 ubifs_scan_destroy(sleb); 365 return err; 366 } 367 368 /** 369 * ubifs_garbage_collect - UBIFS garbage collector. 370 * @c: UBIFS file-system description object 371 * @anyway: do GC even if there are free LEBs 372 * 373 * This function does out-of-place garbage collection. The return codes are: 374 * o positive LEB number if the LEB has been freed and may be used; 375 * o %-EAGAIN if the caller has to run commit; 376 * o %-ENOSPC if GC failed to make any progress; 377 * o other negative error codes in case of other errors. 378 * 379 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 380 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 381 * commit may be required. But commit cannot be run from inside GC, because the 382 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 383 * And this error code means that the caller has to run commit, and re-run GC 384 * if there is still no free space. 385 * 386 * There are many reasons why this function may return %-EAGAIN: 387 * o the log is full and there is no space to write an LEB reference for 388 * @c->gc_lnum; 389 * o the journal is too large and exceeds size limitations; 390 * o GC moved indexing LEBs, but they can be used only after the commit; 391 * o the shrinker fails to find clean znodes to free and requests the commit; 392 * o etc. 393 * 394 * Note, if the file-system is close to be full, this function may return 395 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 396 * the function. E.g., this happens if the limits on the journal size are too 397 * tough and GC writes too much to the journal before an LEB is freed. This 398 * might also mean that the journal is too large, and the TNC becomes to big, 399 * so that the shrinker is constantly called, finds not clean znodes to free, 400 * and requests commit. Well, this may also happen if the journal is all right, 401 * but another kernel process consumes too much memory. Anyway, infinite 402 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 403 */ 404 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 405 { 406 int i, err, ret, min_space = c->dead_wm; 407 struct ubifs_lprops lp; 408 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 409 410 ubifs_assert_cmt_locked(c); 411 412 if (ubifs_gc_should_commit(c)) 413 return -EAGAIN; 414 415 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 416 417 if (c->ro_media) { 418 ret = -EROFS; 419 goto out_unlock; 420 } 421 422 /* We expect the write-buffer to be empty on entry */ 423 ubifs_assert(!wbuf->used); 424 425 for (i = 0; ; i++) { 426 int space_before = c->leb_size - wbuf->offs - wbuf->used; 427 int space_after; 428 429 cond_resched(); 430 431 /* Give the commit an opportunity to run */ 432 if (ubifs_gc_should_commit(c)) { 433 ret = -EAGAIN; 434 break; 435 } 436 437 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 438 /* 439 * We've done enough iterations. Indexing LEBs were 440 * moved and will be available after the commit. 441 */ 442 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 443 ubifs_commit_required(c); 444 ret = -EAGAIN; 445 break; 446 } 447 448 if (i > HARD_LEBS_LIMIT) { 449 /* 450 * We've moved too many LEBs and have not made 451 * progress, give up. 452 */ 453 dbg_gc("hard limit, -ENOSPC"); 454 ret = -ENOSPC; 455 break; 456 } 457 458 /* 459 * Empty and freeable LEBs can turn up while we waited for 460 * the wbuf lock, or while we have been running GC. In that 461 * case, we should just return one of those instead of 462 * continuing to GC dirty LEBs. Hence we request 463 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 464 */ 465 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 466 if (ret) { 467 if (ret == -ENOSPC) 468 dbg_gc("no more dirty LEBs"); 469 break; 470 } 471 472 dbg_gc("found LEB %d: free %d, dirty %d, sum %d " 473 "(min. space %d)", lp.lnum, lp.free, lp.dirty, 474 lp.free + lp.dirty, min_space); 475 476 if (lp.free + lp.dirty == c->leb_size) { 477 /* An empty LEB was returned */ 478 dbg_gc("LEB %d is free, return it", lp.lnum); 479 /* 480 * ubifs_find_dirty_leb() doesn't return freeable index 481 * LEBs. 482 */ 483 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 484 if (lp.free != c->leb_size) { 485 /* 486 * Write buffers must be sync'd before 487 * unmapping freeable LEBs, because one of them 488 * may contain data which obsoletes something 489 * in 'lp.pnum'. 490 */ 491 ret = gc_sync_wbufs(c); 492 if (ret) 493 goto out; 494 ret = ubifs_change_one_lp(c, lp.lnum, 495 c->leb_size, 0, 0, 0, 496 0); 497 if (ret) 498 goto out; 499 } 500 ret = ubifs_leb_unmap(c, lp.lnum); 501 if (ret) 502 goto out; 503 ret = lp.lnum; 504 break; 505 } 506 507 space_before = c->leb_size - wbuf->offs - wbuf->used; 508 if (wbuf->lnum == -1) 509 space_before = 0; 510 511 ret = ubifs_garbage_collect_leb(c, &lp); 512 if (ret < 0) { 513 if (ret == -EAGAIN || ret == -ENOSPC) { 514 /* 515 * These codes are not errors, so we have to 516 * return the LEB to lprops. But if the 517 * 'ubifs_return_leb()' function fails, its 518 * failure code is propagated to the caller 519 * instead of the original '-EAGAIN' or 520 * '-ENOSPC'. 521 */ 522 err = ubifs_return_leb(c, lp.lnum); 523 if (err) 524 ret = err; 525 break; 526 } 527 goto out; 528 } 529 530 if (ret == LEB_FREED) { 531 /* An LEB has been freed and is ready for use */ 532 dbg_gc("LEB %d freed, return", lp.lnum); 533 ret = lp.lnum; 534 break; 535 } 536 537 if (ret == LEB_FREED_IDX) { 538 /* 539 * This was an indexing LEB and it cannot be 540 * immediately used. And instead of requesting the 541 * commit straight away, we try to garbage collect some 542 * more. 543 */ 544 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 545 continue; 546 } 547 548 ubifs_assert(ret == LEB_RETAINED); 549 space_after = c->leb_size - wbuf->offs - wbuf->used; 550 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 551 space_after - space_before); 552 553 if (space_after > space_before) { 554 /* GC makes progress, keep working */ 555 min_space >>= 1; 556 if (min_space < c->dead_wm) 557 min_space = c->dead_wm; 558 continue; 559 } 560 561 dbg_gc("did not make progress"); 562 563 /* 564 * GC moved an LEB bud have not done any progress. This means 565 * that the previous GC head LEB contained too few free space 566 * and the LEB which was GC'ed contained only large nodes which 567 * did not fit that space. 568 * 569 * We can do 2 things: 570 * 1. pick another LEB in a hope it'll contain a small node 571 * which will fit the space we have at the end of current GC 572 * head LEB, but there is no guarantee, so we try this out 573 * unless we have already been working for too long; 574 * 2. request an LEB with more dirty space, which will force 575 * 'ubifs_find_dirty_leb()' to start scanning the lprops 576 * table, instead of just picking one from the heap 577 * (previously it already picked the dirtiest LEB). 578 */ 579 if (i < SOFT_LEBS_LIMIT) { 580 dbg_gc("try again"); 581 continue; 582 } 583 584 min_space <<= 1; 585 if (min_space > c->dark_wm) 586 min_space = c->dark_wm; 587 dbg_gc("set min. space to %d", min_space); 588 } 589 590 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 591 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 592 ubifs_commit_required(c); 593 ret = -EAGAIN; 594 } 595 596 err = ubifs_wbuf_sync_nolock(wbuf); 597 if (!err) 598 err = ubifs_leb_unmap(c, c->gc_lnum); 599 if (err) { 600 ret = err; 601 goto out; 602 } 603 out_unlock: 604 mutex_unlock(&wbuf->io_mutex); 605 return ret; 606 607 out: 608 ubifs_assert(ret < 0); 609 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 610 ubifs_ro_mode(c, ret); 611 ubifs_wbuf_sync_nolock(wbuf); 612 mutex_unlock(&wbuf->io_mutex); 613 ubifs_return_leb(c, lp.lnum); 614 return ret; 615 } 616 617 /** 618 * ubifs_gc_start_commit - garbage collection at start of commit. 619 * @c: UBIFS file-system description object 620 * 621 * If a LEB has only dirty and free space, then we may safely unmap it and make 622 * it free. Note, we cannot do this with indexing LEBs because dirty space may 623 * correspond index nodes that are required for recovery. In that case, the 624 * LEB cannot be unmapped until after the next commit. 625 * 626 * This function returns %0 upon success and a negative error code upon failure. 627 */ 628 int ubifs_gc_start_commit(struct ubifs_info *c) 629 { 630 struct ubifs_gced_idx_leb *idx_gc; 631 const struct ubifs_lprops *lp; 632 int err = 0, flags; 633 634 ubifs_get_lprops(c); 635 636 /* 637 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 638 * wbufs are sync'd before this, which is done in 'do_commit()'. 639 */ 640 while (1) { 641 lp = ubifs_fast_find_freeable(c); 642 if (unlikely(IS_ERR(lp))) { 643 err = PTR_ERR(lp); 644 goto out; 645 } 646 if (!lp) 647 break; 648 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 649 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 650 err = ubifs_leb_unmap(c, lp->lnum); 651 if (err) 652 goto out; 653 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 654 if (unlikely(IS_ERR(lp))) { 655 err = PTR_ERR(lp); 656 goto out; 657 } 658 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 659 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 660 } 661 662 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 663 list_for_each_entry(idx_gc, &c->idx_gc, list) 664 idx_gc->unmap = 1; 665 666 /* Record index freeable LEBs for unmapping after commit */ 667 while (1) { 668 lp = ubifs_fast_find_frdi_idx(c); 669 if (unlikely(IS_ERR(lp))) { 670 err = PTR_ERR(lp); 671 goto out; 672 } 673 if (!lp) 674 break; 675 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 676 if (!idx_gc) { 677 err = -ENOMEM; 678 goto out; 679 } 680 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 681 ubifs_assert(lp->flags & LPROPS_INDEX); 682 /* Don't release the LEB until after the next commit */ 683 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 684 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 685 if (unlikely(IS_ERR(lp))) { 686 err = PTR_ERR(lp); 687 kfree(idx_gc); 688 goto out; 689 } 690 ubifs_assert(lp->flags & LPROPS_TAKEN); 691 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 692 idx_gc->lnum = lp->lnum; 693 idx_gc->unmap = 1; 694 list_add(&idx_gc->list, &c->idx_gc); 695 } 696 out: 697 ubifs_release_lprops(c); 698 return err; 699 } 700 701 /** 702 * ubifs_gc_end_commit - garbage collection at end of commit. 703 * @c: UBIFS file-system description object 704 * 705 * This function completes out-of-place garbage collection of index LEBs. 706 */ 707 int ubifs_gc_end_commit(struct ubifs_info *c) 708 { 709 struct ubifs_gced_idx_leb *idx_gc, *tmp; 710 struct ubifs_wbuf *wbuf; 711 int err = 0; 712 713 wbuf = &c->jheads[GCHD].wbuf; 714 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 715 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 716 if (idx_gc->unmap) { 717 dbg_gc("LEB %d", idx_gc->lnum); 718 err = ubifs_leb_unmap(c, idx_gc->lnum); 719 if (err) 720 goto out; 721 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 722 LPROPS_NC, 0, LPROPS_TAKEN, -1); 723 if (err) 724 goto out; 725 list_del(&idx_gc->list); 726 kfree(idx_gc); 727 } 728 out: 729 mutex_unlock(&wbuf->io_mutex); 730 return err; 731 } 732 733 /** 734 * ubifs_destroy_idx_gc - destroy idx_gc list. 735 * @c: UBIFS file-system description object 736 * 737 * This function destroys the idx_gc list. It is called when unmounting or 738 * remounting read-only so locks are not needed. 739 */ 740 void ubifs_destroy_idx_gc(struct ubifs_info *c) 741 { 742 while (!list_empty(&c->idx_gc)) { 743 struct ubifs_gced_idx_leb *idx_gc; 744 745 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 746 list); 747 c->idx_gc_cnt -= 1; 748 list_del(&idx_gc->list); 749 kfree(idx_gc); 750 } 751 752 } 753 754 /** 755 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 756 * @c: UBIFS file-system description object 757 * 758 * Called during start commit so locks are not needed. 759 */ 760 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 761 { 762 struct ubifs_gced_idx_leb *idx_gc; 763 int lnum; 764 765 if (list_empty(&c->idx_gc)) 766 return -ENOSPC; 767 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 768 lnum = idx_gc->lnum; 769 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 770 list_del(&idx_gc->list); 771 kfree(idx_gc); 772 return lnum; 773 } 774