xref: /openbmc/linux/fs/ubifs/gc.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60 
61 /*
62  * GC may need to move more than one LEB to make progress. The below constants
63  * define "soft" and "hard" limits on the number of LEBs the garbage collector
64  * may move.
65  */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68 
69 /**
70  * switch_gc_head - switch the garbage collection journal head.
71  * @c: UBIFS file-system description object
72  * @buf: buffer to write
73  * @len: length of the buffer to write
74  * @lnum: LEB number written is returned here
75  * @offs: offset written is returned here
76  *
77  * This function switch the GC head to the next LEB which is reserved in
78  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79  * and other negative error code in case of failures.
80  */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 	int err, gc_lnum = c->gc_lnum;
84 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85 
86 	ubifs_assert(gc_lnum != -1);
87 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 	       c->leb_size - wbuf->offs - wbuf->used);
90 
91 	err = ubifs_wbuf_sync_nolock(wbuf);
92 	if (err)
93 		return err;
94 
95 	/*
96 	 * The GC write-buffer was synchronized, we may safely unmap
97 	 * 'c->gc_lnum'.
98 	 */
99 	err = ubifs_leb_unmap(c, gc_lnum);
100 	if (err)
101 		return err;
102 
103 	err = ubifs_wbuf_sync_nolock(wbuf);
104 	if (err)
105 		return err;
106 
107 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
108 	if (err)
109 		return err;
110 
111 	c->gc_lnum = -1;
112 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
113 	return err;
114 }
115 
116 /**
117  * data_nodes_cmp - compare 2 data nodes.
118  * @priv: UBIFS file-system description object
119  * @a: first data node
120  * @a: second data node
121  *
122  * This function compares data nodes @a and @b. Returns %1 if @a has greater
123  * inode or block number, and %-1 otherwise.
124  */
125 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
126 {
127 	ino_t inuma, inumb;
128 	struct ubifs_info *c = priv;
129 	struct ubifs_scan_node *sa, *sb;
130 
131 	cond_resched();
132 	if (a == b)
133 		return 0;
134 
135 	sa = list_entry(a, struct ubifs_scan_node, list);
136 	sb = list_entry(b, struct ubifs_scan_node, list);
137 
138 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
139 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
140 	ubifs_assert(sa->type == UBIFS_DATA_NODE);
141 	ubifs_assert(sb->type == UBIFS_DATA_NODE);
142 
143 	inuma = key_inum(c, &sa->key);
144 	inumb = key_inum(c, &sb->key);
145 
146 	if (inuma == inumb) {
147 		unsigned int blka = key_block(c, &sa->key);
148 		unsigned int blkb = key_block(c, &sb->key);
149 
150 		if (blka <= blkb)
151 			return -1;
152 	} else if (inuma <= inumb)
153 		return -1;
154 
155 	return 1;
156 }
157 
158 /*
159  * nondata_nodes_cmp - compare 2 non-data nodes.
160  * @priv: UBIFS file-system description object
161  * @a: first node
162  * @a: second node
163  *
164  * This function compares nodes @a and @b. It makes sure that inode nodes go
165  * first and sorted by length in descending order. Directory entry nodes go
166  * after inode nodes and are sorted in ascending hash valuer order.
167  */
168 static int nondata_nodes_cmp(void *priv, struct list_head *a,
169 			     struct list_head *b)
170 {
171 	ino_t inuma, inumb;
172 	struct ubifs_info *c = priv;
173 	struct ubifs_scan_node *sa, *sb;
174 
175 	cond_resched();
176 	if (a == b)
177 		return 0;
178 
179 	sa = list_entry(a, struct ubifs_scan_node, list);
180 	sb = list_entry(b, struct ubifs_scan_node, list);
181 
182 	ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
183 		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
184 	ubifs_assert(sa->type != UBIFS_DATA_NODE &&
185 		     sb->type != UBIFS_DATA_NODE);
186 
187 	/* Inodes go before directory entries */
188 	if (sa->type == UBIFS_INO_NODE) {
189 		if (sb->type == UBIFS_INO_NODE)
190 			return sb->len - sa->len;
191 		return -1;
192 	}
193 	if (sb->type == UBIFS_INO_NODE)
194 		return 1;
195 
196 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
197 		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
198 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
199 		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
200 	ubifs_assert(sa->type == UBIFS_DENT_NODE ||
201 		     sa->type == UBIFS_XENT_NODE);
202 	ubifs_assert(sb->type == UBIFS_DENT_NODE ||
203 		     sb->type == UBIFS_XENT_NODE);
204 
205 	inuma = key_inum(c, &sa->key);
206 	inumb = key_inum(c, &sb->key);
207 
208 	if (inuma == inumb) {
209 		uint32_t hasha = key_hash(c, &sa->key);
210 		uint32_t hashb = key_hash(c, &sb->key);
211 
212 		if (hasha <= hashb)
213 			return -1;
214 	} else if (inuma <= inumb)
215 		return -1;
216 
217 	return 1;
218 }
219 
220 /**
221  * sort_nodes - sort nodes for GC.
222  * @c: UBIFS file-system description object
223  * @sleb: describes nodes to sort and contains the result on exit
224  * @nondata: contains non-data nodes on exit
225  * @min: minimum node size is returned here
226  *
227  * This function sorts the list of inodes to garbage collect. First of all, it
228  * kills obsolete nodes and separates data and non-data nodes to the
229  * @sleb->nodes and @nondata lists correspondingly.
230  *
231  * Data nodes are then sorted in block number order - this is important for
232  * bulk-read; data nodes with lower inode number go before data nodes with
233  * higher inode number, and data nodes with lower block number go before data
234  * nodes with higher block number;
235  *
236  * Non-data nodes are sorted as follows.
237  *   o First go inode nodes - they are sorted in descending length order.
238  *   o Then go directory entry nodes - they are sorted in hash order, which
239  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
240  *     inode number go before direntry nodes with higher parent inode number,
241  *     and direntry nodes with lower name hash values go before direntry nodes
242  *     with higher name hash values.
243  *
244  * This function returns zero in case of success and a negative error code in
245  * case of failure.
246  */
247 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
248 		      struct list_head *nondata, int *min)
249 {
250 	int err;
251 	struct ubifs_scan_node *snod, *tmp;
252 
253 	*min = INT_MAX;
254 
255 	/* Separate data nodes and non-data nodes */
256 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
257 		ubifs_assert(snod->type == UBIFS_INO_NODE  ||
258 			     snod->type == UBIFS_DATA_NODE ||
259 			     snod->type == UBIFS_DENT_NODE ||
260 			     snod->type == UBIFS_XENT_NODE ||
261 			     snod->type == UBIFS_TRUN_NODE);
262 
263 		if (snod->type != UBIFS_INO_NODE  &&
264 		    snod->type != UBIFS_DATA_NODE &&
265 		    snod->type != UBIFS_DENT_NODE &&
266 		    snod->type != UBIFS_XENT_NODE) {
267 			/* Probably truncation node, zap it */
268 			list_del(&snod->list);
269 			kfree(snod);
270 			continue;
271 		}
272 
273 		ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
274 			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
275 			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
276 			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
277 
278 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
279 					 snod->offs, 0);
280 		if (err < 0)
281 			return err;
282 
283 		if (!err) {
284 			/* The node is obsolete, remove it from the list */
285 			list_del(&snod->list);
286 			kfree(snod);
287 			continue;
288 		}
289 
290 		if (snod->len < *min)
291 			*min = snod->len;
292 
293 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
294 			list_move_tail(&snod->list, nondata);
295 	}
296 
297 	/* Sort data and non-data nodes */
298 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
299 	list_sort(c, nondata, &nondata_nodes_cmp);
300 
301 	err = dbg_check_data_nodes_order(c, &sleb->nodes);
302 	if (err)
303 		return err;
304 	err = dbg_check_nondata_nodes_order(c, nondata);
305 	if (err)
306 		return err;
307 	return 0;
308 }
309 
310 /**
311  * move_node - move a node.
312  * @c: UBIFS file-system description object
313  * @sleb: describes the LEB to move nodes from
314  * @snod: the mode to move
315  * @wbuf: write-buffer to move node to
316  *
317  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
318  * destroys @snod. Returns zero in case of success and a negative error code in
319  * case of failure.
320  */
321 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
322 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
323 {
324 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
325 
326 	cond_resched();
327 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
328 	if (err)
329 		return err;
330 
331 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
332 				snod->offs, new_lnum, new_offs,
333 				snod->len);
334 	list_del(&snod->list);
335 	kfree(snod);
336 	return err;
337 }
338 
339 /**
340  * move_nodes - move nodes.
341  * @c: UBIFS file-system description object
342  * @sleb: describes the LEB to move nodes from
343  *
344  * This function moves valid nodes from data LEB described by @sleb to the GC
345  * journal head. This function returns zero in case of success, %-EAGAIN if
346  * commit is required, and other negative error codes in case of other
347  * failures.
348  */
349 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
350 {
351 	int err, min;
352 	LIST_HEAD(nondata);
353 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
354 
355 	if (wbuf->lnum == -1) {
356 		/*
357 		 * The GC journal head is not set, because it is the first GC
358 		 * invocation since mount.
359 		 */
360 		err = switch_gc_head(c);
361 		if (err)
362 			return err;
363 	}
364 
365 	err = sort_nodes(c, sleb, &nondata, &min);
366 	if (err)
367 		goto out;
368 
369 	/* Write nodes to their new location. Use the first-fit strategy */
370 	while (1) {
371 		int avail;
372 		struct ubifs_scan_node *snod, *tmp;
373 
374 		/* Move data nodes */
375 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
376 			avail = c->leb_size - wbuf->offs - wbuf->used;
377 			if  (snod->len > avail)
378 				/*
379 				 * Do not skip data nodes in order to optimize
380 				 * bulk-read.
381 				 */
382 				break;
383 
384 			err = move_node(c, sleb, snod, wbuf);
385 			if (err)
386 				goto out;
387 		}
388 
389 		/* Move non-data nodes */
390 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
391 			avail = c->leb_size - wbuf->offs - wbuf->used;
392 			if (avail < min)
393 				break;
394 
395 			if  (snod->len > avail) {
396 				/*
397 				 * Keep going only if this is an inode with
398 				 * some data. Otherwise stop and switch the GC
399 				 * head. IOW, we assume that data-less inode
400 				 * nodes and direntry nodes are roughly of the
401 				 * same size.
402 				 */
403 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
404 				    snod->len == UBIFS_INO_NODE_SZ)
405 					break;
406 				continue;
407 			}
408 
409 			err = move_node(c, sleb, snod, wbuf);
410 			if (err)
411 				goto out;
412 		}
413 
414 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
415 			break;
416 
417 		/*
418 		 * Waste the rest of the space in the LEB and switch to the
419 		 * next LEB.
420 		 */
421 		err = switch_gc_head(c);
422 		if (err)
423 			goto out;
424 	}
425 
426 	return 0;
427 
428 out:
429 	list_splice_tail(&nondata, &sleb->nodes);
430 	return err;
431 }
432 
433 /**
434  * gc_sync_wbufs - sync write-buffers for GC.
435  * @c: UBIFS file-system description object
436  *
437  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
438  * be in a write-buffer instead. That is, a node could be written to a
439  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
440  * erased before the write-buffer is sync'd and then there is an unclean
441  * unmount, then an existing node is lost. To avoid this, we sync all
442  * write-buffers.
443  *
444  * This function returns %0 on success or a negative error code on failure.
445  */
446 static int gc_sync_wbufs(struct ubifs_info *c)
447 {
448 	int err, i;
449 
450 	for (i = 0; i < c->jhead_cnt; i++) {
451 		if (i == GCHD)
452 			continue;
453 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
454 		if (err)
455 			return err;
456 	}
457 	return 0;
458 }
459 
460 /**
461  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
462  * @c: UBIFS file-system description object
463  * @lp: describes the LEB to garbage collect
464  *
465  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
466  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
467  * required, and other negative error codes in case of failures.
468  */
469 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
470 {
471 	struct ubifs_scan_leb *sleb;
472 	struct ubifs_scan_node *snod;
473 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
474 	int err = 0, lnum = lp->lnum;
475 
476 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
477 		     c->need_recovery);
478 	ubifs_assert(c->gc_lnum != lnum);
479 	ubifs_assert(wbuf->lnum != lnum);
480 
481 	if (lp->free + lp->dirty == c->leb_size) {
482 		/* Special case - a free LEB  */
483 		dbg_gc("LEB %d is free, return it", lp->lnum);
484 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
485 
486 		if (lp->free != c->leb_size) {
487 			/*
488 			 * Write buffers must be sync'd before unmapping
489 			 * freeable LEBs, because one of them may contain data
490 			 * which obsoletes something in 'lp->pnum'.
491 			 */
492 			err = gc_sync_wbufs(c);
493 			if (err)
494 				return err;
495 			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
496 						  0, 0, 0, 0);
497 			if (err)
498 				return err;
499 		}
500 		err = ubifs_leb_unmap(c, lp->lnum);
501 		if (err)
502 			return err;
503 
504 		if (c->gc_lnum == -1) {
505 			c->gc_lnum = lnum;
506 			return LEB_RETAINED;
507 		}
508 
509 		return LEB_FREED;
510 	}
511 
512 	/*
513 	 * We scan the entire LEB even though we only really need to scan up to
514 	 * (c->leb_size - lp->free).
515 	 */
516 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
517 	if (IS_ERR(sleb))
518 		return PTR_ERR(sleb);
519 
520 	ubifs_assert(!list_empty(&sleb->nodes));
521 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
522 
523 	if (snod->type == UBIFS_IDX_NODE) {
524 		struct ubifs_gced_idx_leb *idx_gc;
525 
526 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
527 		       lnum, lp->free, lp->dirty);
528 		list_for_each_entry(snod, &sleb->nodes, list) {
529 			struct ubifs_idx_node *idx = snod->node;
530 			int level = le16_to_cpu(idx->level);
531 
532 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
533 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
534 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
535 						   snod->offs);
536 			if (err)
537 				goto out;
538 		}
539 
540 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
541 		if (!idx_gc) {
542 			err = -ENOMEM;
543 			goto out;
544 		}
545 
546 		idx_gc->lnum = lnum;
547 		idx_gc->unmap = 0;
548 		list_add(&idx_gc->list, &c->idx_gc);
549 
550 		/*
551 		 * Don't release the LEB until after the next commit, because
552 		 * it may contain data which is needed for recovery. So
553 		 * although we freed this LEB, it will become usable only after
554 		 * the commit.
555 		 */
556 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
557 					  LPROPS_INDEX, 1);
558 		if (err)
559 			goto out;
560 		err = LEB_FREED_IDX;
561 	} else {
562 		dbg_gc("data LEB %d (free %d, dirty %d)",
563 		       lnum, lp->free, lp->dirty);
564 
565 		err = move_nodes(c, sleb);
566 		if (err)
567 			goto out_inc_seq;
568 
569 		err = gc_sync_wbufs(c);
570 		if (err)
571 			goto out_inc_seq;
572 
573 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
574 		if (err)
575 			goto out_inc_seq;
576 
577 		/* Allow for races with TNC */
578 		c->gced_lnum = lnum;
579 		smp_wmb();
580 		c->gc_seq += 1;
581 		smp_wmb();
582 
583 		if (c->gc_lnum == -1) {
584 			c->gc_lnum = lnum;
585 			err = LEB_RETAINED;
586 		} else {
587 			err = ubifs_wbuf_sync_nolock(wbuf);
588 			if (err)
589 				goto out;
590 
591 			err = ubifs_leb_unmap(c, lnum);
592 			if (err)
593 				goto out;
594 
595 			err = LEB_FREED;
596 		}
597 	}
598 
599 out:
600 	ubifs_scan_destroy(sleb);
601 	return err;
602 
603 out_inc_seq:
604 	/* We may have moved at least some nodes so allow for races with TNC */
605 	c->gced_lnum = lnum;
606 	smp_wmb();
607 	c->gc_seq += 1;
608 	smp_wmb();
609 	goto out;
610 }
611 
612 /**
613  * ubifs_garbage_collect - UBIFS garbage collector.
614  * @c: UBIFS file-system description object
615  * @anyway: do GC even if there are free LEBs
616  *
617  * This function does out-of-place garbage collection. The return codes are:
618  *   o positive LEB number if the LEB has been freed and may be used;
619  *   o %-EAGAIN if the caller has to run commit;
620  *   o %-ENOSPC if GC failed to make any progress;
621  *   o other negative error codes in case of other errors.
622  *
623  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
624  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
625  * commit may be required. But commit cannot be run from inside GC, because the
626  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
627  * And this error code means that the caller has to run commit, and re-run GC
628  * if there is still no free space.
629  *
630  * There are many reasons why this function may return %-EAGAIN:
631  * o the log is full and there is no space to write an LEB reference for
632  *   @c->gc_lnum;
633  * o the journal is too large and exceeds size limitations;
634  * o GC moved indexing LEBs, but they can be used only after the commit;
635  * o the shrinker fails to find clean znodes to free and requests the commit;
636  * o etc.
637  *
638  * Note, if the file-system is close to be full, this function may return
639  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
640  * the function. E.g., this happens if the limits on the journal size are too
641  * tough and GC writes too much to the journal before an LEB is freed. This
642  * might also mean that the journal is too large, and the TNC becomes to big,
643  * so that the shrinker is constantly called, finds not clean znodes to free,
644  * and requests commit. Well, this may also happen if the journal is all right,
645  * but another kernel process consumes too much memory. Anyway, infinite
646  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
647  */
648 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
649 {
650 	int i, err, ret, min_space = c->dead_wm;
651 	struct ubifs_lprops lp;
652 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
653 
654 	ubifs_assert_cmt_locked(c);
655 	ubifs_assert(!c->ro_media && !c->ro_mount);
656 
657 	if (ubifs_gc_should_commit(c))
658 		return -EAGAIN;
659 
660 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
661 
662 	if (c->ro_error) {
663 		ret = -EROFS;
664 		goto out_unlock;
665 	}
666 
667 	/* We expect the write-buffer to be empty on entry */
668 	ubifs_assert(!wbuf->used);
669 
670 	for (i = 0; ; i++) {
671 		int space_before, space_after;
672 
673 		cond_resched();
674 
675 		/* Give the commit an opportunity to run */
676 		if (ubifs_gc_should_commit(c)) {
677 			ret = -EAGAIN;
678 			break;
679 		}
680 
681 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
682 			/*
683 			 * We've done enough iterations. Indexing LEBs were
684 			 * moved and will be available after the commit.
685 			 */
686 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
687 			ubifs_commit_required(c);
688 			ret = -EAGAIN;
689 			break;
690 		}
691 
692 		if (i > HARD_LEBS_LIMIT) {
693 			/*
694 			 * We've moved too many LEBs and have not made
695 			 * progress, give up.
696 			 */
697 			dbg_gc("hard limit, -ENOSPC");
698 			ret = -ENOSPC;
699 			break;
700 		}
701 
702 		/*
703 		 * Empty and freeable LEBs can turn up while we waited for
704 		 * the wbuf lock, or while we have been running GC. In that
705 		 * case, we should just return one of those instead of
706 		 * continuing to GC dirty LEBs. Hence we request
707 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
708 		 */
709 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
710 		if (ret) {
711 			if (ret == -ENOSPC)
712 				dbg_gc("no more dirty LEBs");
713 			break;
714 		}
715 
716 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
717 		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
718 		       min_space);
719 
720 		space_before = c->leb_size - wbuf->offs - wbuf->used;
721 		if (wbuf->lnum == -1)
722 			space_before = 0;
723 
724 		ret = ubifs_garbage_collect_leb(c, &lp);
725 		if (ret < 0) {
726 			if (ret == -EAGAIN) {
727 				/*
728 				 * This is not error, so we have to return the
729 				 * LEB to lprops. But if 'ubifs_return_leb()'
730 				 * fails, its failure code is propagated to the
731 				 * caller instead of the original '-EAGAIN'.
732 				 */
733 				err = ubifs_return_leb(c, lp.lnum);
734 				if (err)
735 					ret = err;
736 				break;
737 			}
738 			goto out;
739 		}
740 
741 		if (ret == LEB_FREED) {
742 			/* An LEB has been freed and is ready for use */
743 			dbg_gc("LEB %d freed, return", lp.lnum);
744 			ret = lp.lnum;
745 			break;
746 		}
747 
748 		if (ret == LEB_FREED_IDX) {
749 			/*
750 			 * This was an indexing LEB and it cannot be
751 			 * immediately used. And instead of requesting the
752 			 * commit straight away, we try to garbage collect some
753 			 * more.
754 			 */
755 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
756 			continue;
757 		}
758 
759 		ubifs_assert(ret == LEB_RETAINED);
760 		space_after = c->leb_size - wbuf->offs - wbuf->used;
761 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
762 		       space_after - space_before);
763 
764 		if (space_after > space_before) {
765 			/* GC makes progress, keep working */
766 			min_space >>= 1;
767 			if (min_space < c->dead_wm)
768 				min_space = c->dead_wm;
769 			continue;
770 		}
771 
772 		dbg_gc("did not make progress");
773 
774 		/*
775 		 * GC moved an LEB bud have not done any progress. This means
776 		 * that the previous GC head LEB contained too few free space
777 		 * and the LEB which was GC'ed contained only large nodes which
778 		 * did not fit that space.
779 		 *
780 		 * We can do 2 things:
781 		 * 1. pick another LEB in a hope it'll contain a small node
782 		 *    which will fit the space we have at the end of current GC
783 		 *    head LEB, but there is no guarantee, so we try this out
784 		 *    unless we have already been working for too long;
785 		 * 2. request an LEB with more dirty space, which will force
786 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
787 		 *    table, instead of just picking one from the heap
788 		 *    (previously it already picked the dirtiest LEB).
789 		 */
790 		if (i < SOFT_LEBS_LIMIT) {
791 			dbg_gc("try again");
792 			continue;
793 		}
794 
795 		min_space <<= 1;
796 		if (min_space > c->dark_wm)
797 			min_space = c->dark_wm;
798 		dbg_gc("set min. space to %d", min_space);
799 	}
800 
801 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
802 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
803 		ubifs_commit_required(c);
804 		ret = -EAGAIN;
805 	}
806 
807 	err = ubifs_wbuf_sync_nolock(wbuf);
808 	if (!err)
809 		err = ubifs_leb_unmap(c, c->gc_lnum);
810 	if (err) {
811 		ret = err;
812 		goto out;
813 	}
814 out_unlock:
815 	mutex_unlock(&wbuf->io_mutex);
816 	return ret;
817 
818 out:
819 	ubifs_assert(ret < 0);
820 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
821 	ubifs_wbuf_sync_nolock(wbuf);
822 	ubifs_ro_mode(c, ret);
823 	mutex_unlock(&wbuf->io_mutex);
824 	ubifs_return_leb(c, lp.lnum);
825 	return ret;
826 }
827 
828 /**
829  * ubifs_gc_start_commit - garbage collection at start of commit.
830  * @c: UBIFS file-system description object
831  *
832  * If a LEB has only dirty and free space, then we may safely unmap it and make
833  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
834  * correspond index nodes that are required for recovery.  In that case, the
835  * LEB cannot be unmapped until after the next commit.
836  *
837  * This function returns %0 upon success and a negative error code upon failure.
838  */
839 int ubifs_gc_start_commit(struct ubifs_info *c)
840 {
841 	struct ubifs_gced_idx_leb *idx_gc;
842 	const struct ubifs_lprops *lp;
843 	int err = 0, flags;
844 
845 	ubifs_get_lprops(c);
846 
847 	/*
848 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
849 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
850 	 */
851 	while (1) {
852 		lp = ubifs_fast_find_freeable(c);
853 		if (IS_ERR(lp)) {
854 			err = PTR_ERR(lp);
855 			goto out;
856 		}
857 		if (!lp)
858 			break;
859 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
860 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
861 		err = ubifs_leb_unmap(c, lp->lnum);
862 		if (err)
863 			goto out;
864 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
865 		if (IS_ERR(lp)) {
866 			err = PTR_ERR(lp);
867 			goto out;
868 		}
869 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
870 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
871 	}
872 
873 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
874 	list_for_each_entry(idx_gc, &c->idx_gc, list)
875 		idx_gc->unmap = 1;
876 
877 	/* Record index freeable LEBs for unmapping after commit */
878 	while (1) {
879 		lp = ubifs_fast_find_frdi_idx(c);
880 		if (IS_ERR(lp)) {
881 			err = PTR_ERR(lp);
882 			goto out;
883 		}
884 		if (!lp)
885 			break;
886 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
887 		if (!idx_gc) {
888 			err = -ENOMEM;
889 			goto out;
890 		}
891 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
892 		ubifs_assert(lp->flags & LPROPS_INDEX);
893 		/* Don't release the LEB until after the next commit */
894 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
895 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
896 		if (IS_ERR(lp)) {
897 			err = PTR_ERR(lp);
898 			kfree(idx_gc);
899 			goto out;
900 		}
901 		ubifs_assert(lp->flags & LPROPS_TAKEN);
902 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
903 		idx_gc->lnum = lp->lnum;
904 		idx_gc->unmap = 1;
905 		list_add(&idx_gc->list, &c->idx_gc);
906 	}
907 out:
908 	ubifs_release_lprops(c);
909 	return err;
910 }
911 
912 /**
913  * ubifs_gc_end_commit - garbage collection at end of commit.
914  * @c: UBIFS file-system description object
915  *
916  * This function completes out-of-place garbage collection of index LEBs.
917  */
918 int ubifs_gc_end_commit(struct ubifs_info *c)
919 {
920 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
921 	struct ubifs_wbuf *wbuf;
922 	int err = 0;
923 
924 	wbuf = &c->jheads[GCHD].wbuf;
925 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
926 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
927 		if (idx_gc->unmap) {
928 			dbg_gc("LEB %d", idx_gc->lnum);
929 			err = ubifs_leb_unmap(c, idx_gc->lnum);
930 			if (err)
931 				goto out;
932 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
933 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
934 			if (err)
935 				goto out;
936 			list_del(&idx_gc->list);
937 			kfree(idx_gc);
938 		}
939 out:
940 	mutex_unlock(&wbuf->io_mutex);
941 	return err;
942 }
943 
944 /**
945  * ubifs_destroy_idx_gc - destroy idx_gc list.
946  * @c: UBIFS file-system description object
947  *
948  * This function destroys the @c->idx_gc list. It is called when unmounting
949  * so locks are not needed. Returns zero in case of success and a negative
950  * error code in case of failure.
951  */
952 void ubifs_destroy_idx_gc(struct ubifs_info *c)
953 {
954 	while (!list_empty(&c->idx_gc)) {
955 		struct ubifs_gced_idx_leb *idx_gc;
956 
957 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
958 				    list);
959 		c->idx_gc_cnt -= 1;
960 		list_del(&idx_gc->list);
961 		kfree(idx_gc);
962 	}
963 }
964 
965 /**
966  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
967  * @c: UBIFS file-system description object
968  *
969  * Called during start commit so locks are not needed.
970  */
971 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
972 {
973 	struct ubifs_gced_idx_leb *idx_gc;
974 	int lnum;
975 
976 	if (list_empty(&c->idx_gc))
977 		return -ENOSPC;
978 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
979 	lnum = idx_gc->lnum;
980 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
981 	list_del(&idx_gc->list);
982 	kfree(idx_gc);
983 	return lnum;
984 }
985