xref: /openbmc/linux/fs/ubifs/gc.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60 
61 /*
62  * GC may need to move more than one LEB to make progress. The below constants
63  * define "soft" and "hard" limits on the number of LEBs the garbage collector
64  * may move.
65  */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68 
69 /**
70  * switch_gc_head - switch the garbage collection journal head.
71  * @c: UBIFS file-system description object
72  * @buf: buffer to write
73  * @len: length of the buffer to write
74  * @lnum: LEB number written is returned here
75  * @offs: offset written is returned here
76  *
77  * This function switch the GC head to the next LEB which is reserved in
78  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79  * and other negative error code in case of failures.
80  */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 	int err, gc_lnum = c->gc_lnum;
84 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85 
86 	ubifs_assert(gc_lnum != -1);
87 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 	       c->leb_size - wbuf->offs - wbuf->used);
90 
91 	err = ubifs_wbuf_sync_nolock(wbuf);
92 	if (err)
93 		return err;
94 
95 	/*
96 	 * The GC write-buffer was synchronized, we may safely unmap
97 	 * 'c->gc_lnum'.
98 	 */
99 	err = ubifs_leb_unmap(c, gc_lnum);
100 	if (err)
101 		return err;
102 
103 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 	if (err)
105 		return err;
106 
107 	c->gc_lnum = -1;
108 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
109 	return err;
110 }
111 
112 /**
113  * data_nodes_cmp - compare 2 data nodes.
114  * @priv: UBIFS file-system description object
115  * @a: first data node
116  * @a: second data node
117  *
118  * This function compares data nodes @a and @b. Returns %1 if @a has greater
119  * inode or block number, and %-1 otherwise.
120  */
121 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 {
123 	ino_t inuma, inumb;
124 	struct ubifs_info *c = priv;
125 	struct ubifs_scan_node *sa, *sb;
126 
127 	cond_resched();
128 	if (a == b)
129 		return 0;
130 
131 	sa = list_entry(a, struct ubifs_scan_node, list);
132 	sb = list_entry(b, struct ubifs_scan_node, list);
133 
134 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
135 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
136 	ubifs_assert(sa->type == UBIFS_DATA_NODE);
137 	ubifs_assert(sb->type == UBIFS_DATA_NODE);
138 
139 	inuma = key_inum(c, &sa->key);
140 	inumb = key_inum(c, &sb->key);
141 
142 	if (inuma == inumb) {
143 		unsigned int blka = key_block(c, &sa->key);
144 		unsigned int blkb = key_block(c, &sb->key);
145 
146 		if (blka <= blkb)
147 			return -1;
148 	} else if (inuma <= inumb)
149 		return -1;
150 
151 	return 1;
152 }
153 
154 /*
155  * nondata_nodes_cmp - compare 2 non-data nodes.
156  * @priv: UBIFS file-system description object
157  * @a: first node
158  * @a: second node
159  *
160  * This function compares nodes @a and @b. It makes sure that inode nodes go
161  * first and sorted by length in descending order. Directory entry nodes go
162  * after inode nodes and are sorted in ascending hash valuer order.
163  */
164 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
165 {
166 	ino_t inuma, inumb;
167 	struct ubifs_info *c = priv;
168 	struct ubifs_scan_node *sa, *sb;
169 
170 	cond_resched();
171 	if (a == b)
172 		return 0;
173 
174 	sa = list_entry(a, struct ubifs_scan_node, list);
175 	sb = list_entry(b, struct ubifs_scan_node, list);
176 
177 	ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
178 		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
179 	ubifs_assert(sa->type != UBIFS_DATA_NODE &&
180 		     sb->type != UBIFS_DATA_NODE);
181 
182 	/* Inodes go before directory entries */
183 	if (sa->type == UBIFS_INO_NODE) {
184 		if (sb->type == UBIFS_INO_NODE)
185 			return sb->len - sa->len;
186 		return -1;
187 	}
188 	if (sb->type == UBIFS_INO_NODE)
189 		return 1;
190 
191 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
192 		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
193 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
194 		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
195 	ubifs_assert(sa->type == UBIFS_DENT_NODE ||
196 		     sa->type == UBIFS_XENT_NODE);
197 	ubifs_assert(sb->type == UBIFS_DENT_NODE ||
198 		     sb->type == UBIFS_XENT_NODE);
199 
200 	inuma = key_inum(c, &sa->key);
201 	inumb = key_inum(c, &sb->key);
202 
203 	if (inuma == inumb) {
204 		uint32_t hasha = key_hash(c, &sa->key);
205 		uint32_t hashb = key_hash(c, &sb->key);
206 
207 		if (hasha <= hashb)
208 			return -1;
209 	} else if (inuma <= inumb)
210 		return -1;
211 
212 	return 1;
213 }
214 
215 /**
216  * sort_nodes - sort nodes for GC.
217  * @c: UBIFS file-system description object
218  * @sleb: describes nodes to sort and contains the result on exit
219  * @nondata: contains non-data nodes on exit
220  * @min: minimum node size is returned here
221  *
222  * This function sorts the list of inodes to garbage collect. First of all, it
223  * kills obsolete nodes and separates data and non-data nodes to the
224  * @sleb->nodes and @nondata lists correspondingly.
225  *
226  * Data nodes are then sorted in block number order - this is important for
227  * bulk-read; data nodes with lower inode number go before data nodes with
228  * higher inode number, and data nodes with lower block number go before data
229  * nodes with higher block number;
230  *
231  * Non-data nodes are sorted as follows.
232  *   o First go inode nodes - they are sorted in descending length order.
233  *   o Then go directory entry nodes - they are sorted in hash order, which
234  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
235  *     inode number go before direntry nodes with higher parent inode number,
236  *     and direntry nodes with lower name hash values go before direntry nodes
237  *     with higher name hash values.
238  *
239  * This function returns zero in case of success and a negative error code in
240  * case of failure.
241  */
242 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
243 		      struct list_head *nondata, int *min)
244 {
245 	int err;
246 	struct ubifs_scan_node *snod, *tmp;
247 
248 	*min = INT_MAX;
249 
250 	/* Separate data nodes and non-data nodes */
251 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
252 		ubifs_assert(snod->type == UBIFS_INO_NODE  ||
253 			     snod->type == UBIFS_DATA_NODE ||
254 			     snod->type == UBIFS_DENT_NODE ||
255 			     snod->type == UBIFS_XENT_NODE ||
256 			     snod->type == UBIFS_TRUN_NODE);
257 
258 		if (snod->type != UBIFS_INO_NODE  &&
259 		    snod->type != UBIFS_DATA_NODE &&
260 		    snod->type != UBIFS_DENT_NODE &&
261 		    snod->type != UBIFS_XENT_NODE) {
262 			/* Probably truncation node, zap it */
263 			list_del(&snod->list);
264 			kfree(snod);
265 			continue;
266 		}
267 
268 		ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
269 			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
270 			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
271 			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
272 
273 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
274 					 snod->offs, 0);
275 		if (err < 0)
276 			return err;
277 
278 		if (!err) {
279 			/* The node is obsolete, remove it from the list */
280 			list_del(&snod->list);
281 			kfree(snod);
282 			continue;
283 		}
284 
285 		if (snod->len < *min)
286 			*min = snod->len;
287 
288 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
289 			list_move_tail(&snod->list, nondata);
290 	}
291 
292 	/* Sort data and non-data nodes */
293 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
294 	list_sort(c, nondata, &nondata_nodes_cmp);
295 
296 	err = dbg_check_data_nodes_order(c, &sleb->nodes);
297 	if (err)
298 		return err;
299 	err = dbg_check_nondata_nodes_order(c, nondata);
300 	if (err)
301 		return err;
302 	return 0;
303 }
304 
305 /**
306  * move_node - move a node.
307  * @c: UBIFS file-system description object
308  * @sleb: describes the LEB to move nodes from
309  * @snod: the mode to move
310  * @wbuf: write-buffer to move node to
311  *
312  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
313  * destroys @snod. Returns zero in case of success and a negative error code in
314  * case of failure.
315  */
316 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
317 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
318 {
319 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
320 
321 	cond_resched();
322 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
323 	if (err)
324 		return err;
325 
326 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
327 				snod->offs, new_lnum, new_offs,
328 				snod->len);
329 	list_del(&snod->list);
330 	kfree(snod);
331 	return err;
332 }
333 
334 /**
335  * move_nodes - move nodes.
336  * @c: UBIFS file-system description object
337  * @sleb: describes the LEB to move nodes from
338  *
339  * This function moves valid nodes from data LEB described by @sleb to the GC
340  * journal head. This function returns zero in case of success, %-EAGAIN if
341  * commit is required, and other negative error codes in case of other
342  * failures.
343  */
344 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
345 {
346 	int err, min;
347 	LIST_HEAD(nondata);
348 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
349 
350 	if (wbuf->lnum == -1) {
351 		/*
352 		 * The GC journal head is not set, because it is the first GC
353 		 * invocation since mount.
354 		 */
355 		err = switch_gc_head(c);
356 		if (err)
357 			return err;
358 	}
359 
360 	err = sort_nodes(c, sleb, &nondata, &min);
361 	if (err)
362 		goto out;
363 
364 	/* Write nodes to their new location. Use the first-fit strategy */
365 	while (1) {
366 		int avail;
367 		struct ubifs_scan_node *snod, *tmp;
368 
369 		/* Move data nodes */
370 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
371 			avail = c->leb_size - wbuf->offs - wbuf->used;
372 			if  (snod->len > avail)
373 				/*
374 				 * Do not skip data nodes in order to optimize
375 				 * bulk-read.
376 				 */
377 				break;
378 
379 			err = move_node(c, sleb, snod, wbuf);
380 			if (err)
381 				goto out;
382 		}
383 
384 		/* Move non-data nodes */
385 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
386 			avail = c->leb_size - wbuf->offs - wbuf->used;
387 			if (avail < min)
388 				break;
389 
390 			if  (snod->len > avail) {
391 				/*
392 				 * Keep going only if this is an inode with
393 				 * some data. Otherwise stop and switch the GC
394 				 * head. IOW, we assume that data-less inode
395 				 * nodes and direntry nodes are roughly of the
396 				 * same size.
397 				 */
398 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
399 				    snod->len == UBIFS_INO_NODE_SZ)
400 					break;
401 				continue;
402 			}
403 
404 			err = move_node(c, sleb, snod, wbuf);
405 			if (err)
406 				goto out;
407 		}
408 
409 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
410 			break;
411 
412 		/*
413 		 * Waste the rest of the space in the LEB and switch to the
414 		 * next LEB.
415 		 */
416 		err = switch_gc_head(c);
417 		if (err)
418 			goto out;
419 	}
420 
421 	return 0;
422 
423 out:
424 	list_splice_tail(&nondata, &sleb->nodes);
425 	return err;
426 }
427 
428 /**
429  * gc_sync_wbufs - sync write-buffers for GC.
430  * @c: UBIFS file-system description object
431  *
432  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
433  * be in a write-buffer instead. That is, a node could be written to a
434  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
435  * erased before the write-buffer is sync'd and then there is an unclean
436  * unmount, then an existing node is lost. To avoid this, we sync all
437  * write-buffers.
438  *
439  * This function returns %0 on success or a negative error code on failure.
440  */
441 static int gc_sync_wbufs(struct ubifs_info *c)
442 {
443 	int err, i;
444 
445 	for (i = 0; i < c->jhead_cnt; i++) {
446 		if (i == GCHD)
447 			continue;
448 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
449 		if (err)
450 			return err;
451 	}
452 	return 0;
453 }
454 
455 /**
456  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
457  * @c: UBIFS file-system description object
458  * @lp: describes the LEB to garbage collect
459  *
460  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
461  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
462  * required, and other negative error codes in case of failures.
463  */
464 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
465 {
466 	struct ubifs_scan_leb *sleb;
467 	struct ubifs_scan_node *snod;
468 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
469 	int err = 0, lnum = lp->lnum;
470 
471 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
472 		     c->need_recovery);
473 	ubifs_assert(c->gc_lnum != lnum);
474 	ubifs_assert(wbuf->lnum != lnum);
475 
476 	/*
477 	 * We scan the entire LEB even though we only really need to scan up to
478 	 * (c->leb_size - lp->free).
479 	 */
480 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
481 	if (IS_ERR(sleb))
482 		return PTR_ERR(sleb);
483 
484 	ubifs_assert(!list_empty(&sleb->nodes));
485 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
486 
487 	if (snod->type == UBIFS_IDX_NODE) {
488 		struct ubifs_gced_idx_leb *idx_gc;
489 
490 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
491 		       lnum, lp->free, lp->dirty);
492 		list_for_each_entry(snod, &sleb->nodes, list) {
493 			struct ubifs_idx_node *idx = snod->node;
494 			int level = le16_to_cpu(idx->level);
495 
496 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
497 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
498 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
499 						   snod->offs);
500 			if (err)
501 				goto out;
502 		}
503 
504 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
505 		if (!idx_gc) {
506 			err = -ENOMEM;
507 			goto out;
508 		}
509 
510 		idx_gc->lnum = lnum;
511 		idx_gc->unmap = 0;
512 		list_add(&idx_gc->list, &c->idx_gc);
513 
514 		/*
515 		 * Don't release the LEB until after the next commit, because
516 		 * it may contain data which is needed for recovery. So
517 		 * although we freed this LEB, it will become usable only after
518 		 * the commit.
519 		 */
520 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
521 					  LPROPS_INDEX, 1);
522 		if (err)
523 			goto out;
524 		err = LEB_FREED_IDX;
525 	} else {
526 		dbg_gc("data LEB %d (free %d, dirty %d)",
527 		       lnum, lp->free, lp->dirty);
528 
529 		err = move_nodes(c, sleb);
530 		if (err)
531 			goto out_inc_seq;
532 
533 		err = gc_sync_wbufs(c);
534 		if (err)
535 			goto out_inc_seq;
536 
537 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
538 		if (err)
539 			goto out_inc_seq;
540 
541 		/* Allow for races with TNC */
542 		c->gced_lnum = lnum;
543 		smp_wmb();
544 		c->gc_seq += 1;
545 		smp_wmb();
546 
547 		if (c->gc_lnum == -1) {
548 			c->gc_lnum = lnum;
549 			err = LEB_RETAINED;
550 		} else {
551 			err = ubifs_wbuf_sync_nolock(wbuf);
552 			if (err)
553 				goto out;
554 
555 			err = ubifs_leb_unmap(c, lnum);
556 			if (err)
557 				goto out;
558 
559 			err = LEB_FREED;
560 		}
561 	}
562 
563 out:
564 	ubifs_scan_destroy(sleb);
565 	return err;
566 
567 out_inc_seq:
568 	/* We may have moved at least some nodes so allow for races with TNC */
569 	c->gced_lnum = lnum;
570 	smp_wmb();
571 	c->gc_seq += 1;
572 	smp_wmb();
573 	goto out;
574 }
575 
576 /**
577  * ubifs_garbage_collect - UBIFS garbage collector.
578  * @c: UBIFS file-system description object
579  * @anyway: do GC even if there are free LEBs
580  *
581  * This function does out-of-place garbage collection. The return codes are:
582  *   o positive LEB number if the LEB has been freed and may be used;
583  *   o %-EAGAIN if the caller has to run commit;
584  *   o %-ENOSPC if GC failed to make any progress;
585  *   o other negative error codes in case of other errors.
586  *
587  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
588  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
589  * commit may be required. But commit cannot be run from inside GC, because the
590  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
591  * And this error code means that the caller has to run commit, and re-run GC
592  * if there is still no free space.
593  *
594  * There are many reasons why this function may return %-EAGAIN:
595  * o the log is full and there is no space to write an LEB reference for
596  *   @c->gc_lnum;
597  * o the journal is too large and exceeds size limitations;
598  * o GC moved indexing LEBs, but they can be used only after the commit;
599  * o the shrinker fails to find clean znodes to free and requests the commit;
600  * o etc.
601  *
602  * Note, if the file-system is close to be full, this function may return
603  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
604  * the function. E.g., this happens if the limits on the journal size are too
605  * tough and GC writes too much to the journal before an LEB is freed. This
606  * might also mean that the journal is too large, and the TNC becomes to big,
607  * so that the shrinker is constantly called, finds not clean znodes to free,
608  * and requests commit. Well, this may also happen if the journal is all right,
609  * but another kernel process consumes too much memory. Anyway, infinite
610  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
611  */
612 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
613 {
614 	int i, err, ret, min_space = c->dead_wm;
615 	struct ubifs_lprops lp;
616 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
617 
618 	ubifs_assert_cmt_locked(c);
619 	ubifs_assert(!c->ro_media && !c->ro_mount);
620 
621 	if (ubifs_gc_should_commit(c))
622 		return -EAGAIN;
623 
624 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
625 
626 	if (c->ro_error) {
627 		ret = -EROFS;
628 		goto out_unlock;
629 	}
630 
631 	/* We expect the write-buffer to be empty on entry */
632 	ubifs_assert(!wbuf->used);
633 
634 	for (i = 0; ; i++) {
635 		int space_before = c->leb_size - wbuf->offs - wbuf->used;
636 		int space_after;
637 
638 		cond_resched();
639 
640 		/* Give the commit an opportunity to run */
641 		if (ubifs_gc_should_commit(c)) {
642 			ret = -EAGAIN;
643 			break;
644 		}
645 
646 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
647 			/*
648 			 * We've done enough iterations. Indexing LEBs were
649 			 * moved and will be available after the commit.
650 			 */
651 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
652 			ubifs_commit_required(c);
653 			ret = -EAGAIN;
654 			break;
655 		}
656 
657 		if (i > HARD_LEBS_LIMIT) {
658 			/*
659 			 * We've moved too many LEBs and have not made
660 			 * progress, give up.
661 			 */
662 			dbg_gc("hard limit, -ENOSPC");
663 			ret = -ENOSPC;
664 			break;
665 		}
666 
667 		/*
668 		 * Empty and freeable LEBs can turn up while we waited for
669 		 * the wbuf lock, or while we have been running GC. In that
670 		 * case, we should just return one of those instead of
671 		 * continuing to GC dirty LEBs. Hence we request
672 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
673 		 */
674 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
675 		if (ret) {
676 			if (ret == -ENOSPC)
677 				dbg_gc("no more dirty LEBs");
678 			break;
679 		}
680 
681 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
682 		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
683 		       lp.free + lp.dirty, min_space);
684 
685 		if (lp.free + lp.dirty == c->leb_size) {
686 			/* An empty LEB was returned */
687 			dbg_gc("LEB %d is free, return it", lp.lnum);
688 			/*
689 			 * ubifs_find_dirty_leb() doesn't return freeable index
690 			 * LEBs.
691 			 */
692 			ubifs_assert(!(lp.flags & LPROPS_INDEX));
693 			if (lp.free != c->leb_size) {
694 				/*
695 				 * Write buffers must be sync'd before
696 				 * unmapping freeable LEBs, because one of them
697 				 * may contain data which obsoletes something
698 				 * in 'lp.pnum'.
699 				 */
700 				ret = gc_sync_wbufs(c);
701 				if (ret)
702 					goto out;
703 				ret = ubifs_change_one_lp(c, lp.lnum,
704 							  c->leb_size, 0, 0, 0,
705 							  0);
706 				if (ret)
707 					goto out;
708 			}
709 			ret = ubifs_leb_unmap(c, lp.lnum);
710 			if (ret)
711 				goto out;
712 			ret = lp.lnum;
713 			break;
714 		}
715 
716 		space_before = c->leb_size - wbuf->offs - wbuf->used;
717 		if (wbuf->lnum == -1)
718 			space_before = 0;
719 
720 		ret = ubifs_garbage_collect_leb(c, &lp);
721 		if (ret < 0) {
722 			if (ret == -EAGAIN) {
723 				/*
724 				 * This is not error, so we have to return the
725 				 * LEB to lprops. But if 'ubifs_return_leb()'
726 				 * fails, its failure code is propagated to the
727 				 * caller instead of the original '-EAGAIN'.
728 				 */
729 				err = ubifs_return_leb(c, lp.lnum);
730 				if (err)
731 					ret = err;
732 				break;
733 			}
734 			goto out;
735 		}
736 
737 		if (ret == LEB_FREED) {
738 			/* An LEB has been freed and is ready for use */
739 			dbg_gc("LEB %d freed, return", lp.lnum);
740 			ret = lp.lnum;
741 			break;
742 		}
743 
744 		if (ret == LEB_FREED_IDX) {
745 			/*
746 			 * This was an indexing LEB and it cannot be
747 			 * immediately used. And instead of requesting the
748 			 * commit straight away, we try to garbage collect some
749 			 * more.
750 			 */
751 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
752 			continue;
753 		}
754 
755 		ubifs_assert(ret == LEB_RETAINED);
756 		space_after = c->leb_size - wbuf->offs - wbuf->used;
757 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
758 		       space_after - space_before);
759 
760 		if (space_after > space_before) {
761 			/* GC makes progress, keep working */
762 			min_space >>= 1;
763 			if (min_space < c->dead_wm)
764 				min_space = c->dead_wm;
765 			continue;
766 		}
767 
768 		dbg_gc("did not make progress");
769 
770 		/*
771 		 * GC moved an LEB bud have not done any progress. This means
772 		 * that the previous GC head LEB contained too few free space
773 		 * and the LEB which was GC'ed contained only large nodes which
774 		 * did not fit that space.
775 		 *
776 		 * We can do 2 things:
777 		 * 1. pick another LEB in a hope it'll contain a small node
778 		 *    which will fit the space we have at the end of current GC
779 		 *    head LEB, but there is no guarantee, so we try this out
780 		 *    unless we have already been working for too long;
781 		 * 2. request an LEB with more dirty space, which will force
782 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
783 		 *    table, instead of just picking one from the heap
784 		 *    (previously it already picked the dirtiest LEB).
785 		 */
786 		if (i < SOFT_LEBS_LIMIT) {
787 			dbg_gc("try again");
788 			continue;
789 		}
790 
791 		min_space <<= 1;
792 		if (min_space > c->dark_wm)
793 			min_space = c->dark_wm;
794 		dbg_gc("set min. space to %d", min_space);
795 	}
796 
797 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
798 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
799 		ubifs_commit_required(c);
800 		ret = -EAGAIN;
801 	}
802 
803 	err = ubifs_wbuf_sync_nolock(wbuf);
804 	if (!err)
805 		err = ubifs_leb_unmap(c, c->gc_lnum);
806 	if (err) {
807 		ret = err;
808 		goto out;
809 	}
810 out_unlock:
811 	mutex_unlock(&wbuf->io_mutex);
812 	return ret;
813 
814 out:
815 	ubifs_assert(ret < 0);
816 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
817 	ubifs_wbuf_sync_nolock(wbuf);
818 	ubifs_ro_mode(c, ret);
819 	mutex_unlock(&wbuf->io_mutex);
820 	ubifs_return_leb(c, lp.lnum);
821 	return ret;
822 }
823 
824 /**
825  * ubifs_gc_start_commit - garbage collection at start of commit.
826  * @c: UBIFS file-system description object
827  *
828  * If a LEB has only dirty and free space, then we may safely unmap it and make
829  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
830  * correspond index nodes that are required for recovery.  In that case, the
831  * LEB cannot be unmapped until after the next commit.
832  *
833  * This function returns %0 upon success and a negative error code upon failure.
834  */
835 int ubifs_gc_start_commit(struct ubifs_info *c)
836 {
837 	struct ubifs_gced_idx_leb *idx_gc;
838 	const struct ubifs_lprops *lp;
839 	int err = 0, flags;
840 
841 	ubifs_get_lprops(c);
842 
843 	/*
844 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
845 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
846 	 */
847 	while (1) {
848 		lp = ubifs_fast_find_freeable(c);
849 		if (IS_ERR(lp)) {
850 			err = PTR_ERR(lp);
851 			goto out;
852 		}
853 		if (!lp)
854 			break;
855 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
856 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
857 		err = ubifs_leb_unmap(c, lp->lnum);
858 		if (err)
859 			goto out;
860 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
861 		if (IS_ERR(lp)) {
862 			err = PTR_ERR(lp);
863 			goto out;
864 		}
865 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
866 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
867 	}
868 
869 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
870 	list_for_each_entry(idx_gc, &c->idx_gc, list)
871 		idx_gc->unmap = 1;
872 
873 	/* Record index freeable LEBs for unmapping after commit */
874 	while (1) {
875 		lp = ubifs_fast_find_frdi_idx(c);
876 		if (IS_ERR(lp)) {
877 			err = PTR_ERR(lp);
878 			goto out;
879 		}
880 		if (!lp)
881 			break;
882 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
883 		if (!idx_gc) {
884 			err = -ENOMEM;
885 			goto out;
886 		}
887 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
888 		ubifs_assert(lp->flags & LPROPS_INDEX);
889 		/* Don't release the LEB until after the next commit */
890 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
891 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
892 		if (IS_ERR(lp)) {
893 			err = PTR_ERR(lp);
894 			kfree(idx_gc);
895 			goto out;
896 		}
897 		ubifs_assert(lp->flags & LPROPS_TAKEN);
898 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
899 		idx_gc->lnum = lp->lnum;
900 		idx_gc->unmap = 1;
901 		list_add(&idx_gc->list, &c->idx_gc);
902 	}
903 out:
904 	ubifs_release_lprops(c);
905 	return err;
906 }
907 
908 /**
909  * ubifs_gc_end_commit - garbage collection at end of commit.
910  * @c: UBIFS file-system description object
911  *
912  * This function completes out-of-place garbage collection of index LEBs.
913  */
914 int ubifs_gc_end_commit(struct ubifs_info *c)
915 {
916 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
917 	struct ubifs_wbuf *wbuf;
918 	int err = 0;
919 
920 	wbuf = &c->jheads[GCHD].wbuf;
921 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
922 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
923 		if (idx_gc->unmap) {
924 			dbg_gc("LEB %d", idx_gc->lnum);
925 			err = ubifs_leb_unmap(c, idx_gc->lnum);
926 			if (err)
927 				goto out;
928 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
929 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
930 			if (err)
931 				goto out;
932 			list_del(&idx_gc->list);
933 			kfree(idx_gc);
934 		}
935 out:
936 	mutex_unlock(&wbuf->io_mutex);
937 	return err;
938 }
939 
940 /**
941  * ubifs_destroy_idx_gc - destroy idx_gc list.
942  * @c: UBIFS file-system description object
943  *
944  * This function destroys the @c->idx_gc list. It is called when unmounting
945  * so locks are not needed. Returns zero in case of success and a negative
946  * error code in case of failure.
947  */
948 void ubifs_destroy_idx_gc(struct ubifs_info *c)
949 {
950 	while (!list_empty(&c->idx_gc)) {
951 		struct ubifs_gced_idx_leb *idx_gc;
952 
953 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
954 				    list);
955 		c->idx_gc_cnt -= 1;
956 		list_del(&idx_gc->list);
957 		kfree(idx_gc);
958 	}
959 }
960 
961 /**
962  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
963  * @c: UBIFS file-system description object
964  *
965  * Called during start commit so locks are not needed.
966  */
967 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
968 {
969 	struct ubifs_gced_idx_leb *idx_gc;
970 	int lnum;
971 
972 	if (list_empty(&c->idx_gc))
973 		return -ENOSPC;
974 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
975 	lnum = idx_gc->lnum;
976 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
977 	list_del(&idx_gc->list);
978 	kfree(idx_gc);
979 	return lnum;
980 }
981