xref: /openbmc/linux/fs/ubifs/gc.c (revision 9fb29c73)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60 
61 /*
62  * GC may need to move more than one LEB to make progress. The below constants
63  * define "soft" and "hard" limits on the number of LEBs the garbage collector
64  * may move.
65  */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68 
69 /**
70  * switch_gc_head - switch the garbage collection journal head.
71  * @c: UBIFS file-system description object
72  * @buf: buffer to write
73  * @len: length of the buffer to write
74  * @lnum: LEB number written is returned here
75  * @offs: offset written is returned here
76  *
77  * This function switch the GC head to the next LEB which is reserved in
78  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79  * and other negative error code in case of failures.
80  */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 	int err, gc_lnum = c->gc_lnum;
84 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85 
86 	ubifs_assert(c, gc_lnum != -1);
87 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 	       c->leb_size - wbuf->offs - wbuf->used);
90 
91 	err = ubifs_wbuf_sync_nolock(wbuf);
92 	if (err)
93 		return err;
94 
95 	/*
96 	 * The GC write-buffer was synchronized, we may safely unmap
97 	 * 'c->gc_lnum'.
98 	 */
99 	err = ubifs_leb_unmap(c, gc_lnum);
100 	if (err)
101 		return err;
102 
103 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 	if (err)
105 		return err;
106 
107 	c->gc_lnum = -1;
108 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
109 	return err;
110 }
111 
112 /**
113  * data_nodes_cmp - compare 2 data nodes.
114  * @priv: UBIFS file-system description object
115  * @a: first data node
116  * @b: second data node
117  *
118  * This function compares data nodes @a and @b. Returns %1 if @a has greater
119  * inode or block number, and %-1 otherwise.
120  */
121 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 {
123 	ino_t inuma, inumb;
124 	struct ubifs_info *c = priv;
125 	struct ubifs_scan_node *sa, *sb;
126 
127 	cond_resched();
128 	if (a == b)
129 		return 0;
130 
131 	sa = list_entry(a, struct ubifs_scan_node, list);
132 	sb = list_entry(b, struct ubifs_scan_node, list);
133 
134 	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY);
135 	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY);
136 	ubifs_assert(c, sa->type == UBIFS_DATA_NODE);
137 	ubifs_assert(c, sb->type == UBIFS_DATA_NODE);
138 
139 	inuma = key_inum(c, &sa->key);
140 	inumb = key_inum(c, &sb->key);
141 
142 	if (inuma == inumb) {
143 		unsigned int blka = key_block(c, &sa->key);
144 		unsigned int blkb = key_block(c, &sb->key);
145 
146 		if (blka <= blkb)
147 			return -1;
148 	} else if (inuma <= inumb)
149 		return -1;
150 
151 	return 1;
152 }
153 
154 /*
155  * nondata_nodes_cmp - compare 2 non-data nodes.
156  * @priv: UBIFS file-system description object
157  * @a: first node
158  * @a: second node
159  *
160  * This function compares nodes @a and @b. It makes sure that inode nodes go
161  * first and sorted by length in descending order. Directory entry nodes go
162  * after inode nodes and are sorted in ascending hash valuer order.
163  */
164 static int nondata_nodes_cmp(void *priv, struct list_head *a,
165 			     struct list_head *b)
166 {
167 	ino_t inuma, inumb;
168 	struct ubifs_info *c = priv;
169 	struct ubifs_scan_node *sa, *sb;
170 
171 	cond_resched();
172 	if (a == b)
173 		return 0;
174 
175 	sa = list_entry(a, struct ubifs_scan_node, list);
176 	sb = list_entry(b, struct ubifs_scan_node, list);
177 
178 	ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY &&
179 		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
180 	ubifs_assert(c, sa->type != UBIFS_DATA_NODE &&
181 		     sb->type != UBIFS_DATA_NODE);
182 
183 	/* Inodes go before directory entries */
184 	if (sa->type == UBIFS_INO_NODE) {
185 		if (sb->type == UBIFS_INO_NODE)
186 			return sb->len - sa->len;
187 		return -1;
188 	}
189 	if (sb->type == UBIFS_INO_NODE)
190 		return 1;
191 
192 	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY ||
193 		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
194 	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY ||
195 		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
196 	ubifs_assert(c, sa->type == UBIFS_DENT_NODE ||
197 		     sa->type == UBIFS_XENT_NODE);
198 	ubifs_assert(c, sb->type == UBIFS_DENT_NODE ||
199 		     sb->type == UBIFS_XENT_NODE);
200 
201 	inuma = key_inum(c, &sa->key);
202 	inumb = key_inum(c, &sb->key);
203 
204 	if (inuma == inumb) {
205 		uint32_t hasha = key_hash(c, &sa->key);
206 		uint32_t hashb = key_hash(c, &sb->key);
207 
208 		if (hasha <= hashb)
209 			return -1;
210 	} else if (inuma <= inumb)
211 		return -1;
212 
213 	return 1;
214 }
215 
216 /**
217  * sort_nodes - sort nodes for GC.
218  * @c: UBIFS file-system description object
219  * @sleb: describes nodes to sort and contains the result on exit
220  * @nondata: contains non-data nodes on exit
221  * @min: minimum node size is returned here
222  *
223  * This function sorts the list of inodes to garbage collect. First of all, it
224  * kills obsolete nodes and separates data and non-data nodes to the
225  * @sleb->nodes and @nondata lists correspondingly.
226  *
227  * Data nodes are then sorted in block number order - this is important for
228  * bulk-read; data nodes with lower inode number go before data nodes with
229  * higher inode number, and data nodes with lower block number go before data
230  * nodes with higher block number;
231  *
232  * Non-data nodes are sorted as follows.
233  *   o First go inode nodes - they are sorted in descending length order.
234  *   o Then go directory entry nodes - they are sorted in hash order, which
235  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
236  *     inode number go before direntry nodes with higher parent inode number,
237  *     and direntry nodes with lower name hash values go before direntry nodes
238  *     with higher name hash values.
239  *
240  * This function returns zero in case of success and a negative error code in
241  * case of failure.
242  */
243 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
244 		      struct list_head *nondata, int *min)
245 {
246 	int err;
247 	struct ubifs_scan_node *snod, *tmp;
248 
249 	*min = INT_MAX;
250 
251 	/* Separate data nodes and non-data nodes */
252 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
253 		ubifs_assert(c, snod->type == UBIFS_INO_NODE  ||
254 			     snod->type == UBIFS_DATA_NODE ||
255 			     snod->type == UBIFS_DENT_NODE ||
256 			     snod->type == UBIFS_XENT_NODE ||
257 			     snod->type == UBIFS_TRUN_NODE ||
258 			     snod->type == UBIFS_AUTH_NODE);
259 
260 		if (snod->type != UBIFS_INO_NODE  &&
261 		    snod->type != UBIFS_DATA_NODE &&
262 		    snod->type != UBIFS_DENT_NODE &&
263 		    snod->type != UBIFS_XENT_NODE) {
264 			/* Probably truncation node, zap it */
265 			list_del(&snod->list);
266 			kfree(snod);
267 			continue;
268 		}
269 
270 		ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY ||
271 			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
272 			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
273 			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
274 
275 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
276 					 snod->offs, 0);
277 		if (err < 0)
278 			return err;
279 
280 		if (!err) {
281 			/* The node is obsolete, remove it from the list */
282 			list_del(&snod->list);
283 			kfree(snod);
284 			continue;
285 		}
286 
287 		if (snod->len < *min)
288 			*min = snod->len;
289 
290 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
291 			list_move_tail(&snod->list, nondata);
292 	}
293 
294 	/* Sort data and non-data nodes */
295 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
296 	list_sort(c, nondata, &nondata_nodes_cmp);
297 
298 	err = dbg_check_data_nodes_order(c, &sleb->nodes);
299 	if (err)
300 		return err;
301 	err = dbg_check_nondata_nodes_order(c, nondata);
302 	if (err)
303 		return err;
304 	return 0;
305 }
306 
307 /**
308  * move_node - move a node.
309  * @c: UBIFS file-system description object
310  * @sleb: describes the LEB to move nodes from
311  * @snod: the mode to move
312  * @wbuf: write-buffer to move node to
313  *
314  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
315  * destroys @snod. Returns zero in case of success and a negative error code in
316  * case of failure.
317  */
318 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
319 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
320 {
321 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
322 
323 	cond_resched();
324 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
325 	if (err)
326 		return err;
327 
328 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
329 				snod->offs, new_lnum, new_offs,
330 				snod->len);
331 	list_del(&snod->list);
332 	kfree(snod);
333 	return err;
334 }
335 
336 /**
337  * move_nodes - move nodes.
338  * @c: UBIFS file-system description object
339  * @sleb: describes the LEB to move nodes from
340  *
341  * This function moves valid nodes from data LEB described by @sleb to the GC
342  * journal head. This function returns zero in case of success, %-EAGAIN if
343  * commit is required, and other negative error codes in case of other
344  * failures.
345  */
346 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
347 {
348 	int err, min;
349 	LIST_HEAD(nondata);
350 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
351 
352 	if (wbuf->lnum == -1) {
353 		/*
354 		 * The GC journal head is not set, because it is the first GC
355 		 * invocation since mount.
356 		 */
357 		err = switch_gc_head(c);
358 		if (err)
359 			return err;
360 	}
361 
362 	err = sort_nodes(c, sleb, &nondata, &min);
363 	if (err)
364 		goto out;
365 
366 	/* Write nodes to their new location. Use the first-fit strategy */
367 	while (1) {
368 		int avail, moved = 0;
369 		struct ubifs_scan_node *snod, *tmp;
370 
371 		/* Move data nodes */
372 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
373 			avail = c->leb_size - wbuf->offs - wbuf->used -
374 					ubifs_auth_node_sz(c);
375 			if  (snod->len > avail)
376 				/*
377 				 * Do not skip data nodes in order to optimize
378 				 * bulk-read.
379 				 */
380 				break;
381 
382 			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
383 						 snod->node, snod->len);
384 			if (err)
385 				goto out;
386 
387 			err = move_node(c, sleb, snod, wbuf);
388 			if (err)
389 				goto out;
390 			moved = 1;
391 		}
392 
393 		/* Move non-data nodes */
394 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
395 			avail = c->leb_size - wbuf->offs - wbuf->used -
396 					ubifs_auth_node_sz(c);
397 			if (avail < min)
398 				break;
399 
400 			if  (snod->len > avail) {
401 				/*
402 				 * Keep going only if this is an inode with
403 				 * some data. Otherwise stop and switch the GC
404 				 * head. IOW, we assume that data-less inode
405 				 * nodes and direntry nodes are roughly of the
406 				 * same size.
407 				 */
408 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
409 				    snod->len == UBIFS_INO_NODE_SZ)
410 					break;
411 				continue;
412 			}
413 
414 			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
415 						 snod->node, snod->len);
416 			if (err)
417 				goto out;
418 
419 			err = move_node(c, sleb, snod, wbuf);
420 			if (err)
421 				goto out;
422 			moved = 1;
423 		}
424 
425 		if (ubifs_authenticated(c) && moved) {
426 			struct ubifs_auth_node *auth;
427 
428 			auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS);
429 			if (!auth) {
430 				err = -ENOMEM;
431 				goto out;
432 			}
433 
434 			err = ubifs_prepare_auth_node(c, auth,
435 						c->jheads[GCHD].log_hash);
436 			if (err) {
437 				kfree(auth);
438 				goto out;
439 			}
440 
441 			err = ubifs_wbuf_write_nolock(wbuf, auth,
442 						      ubifs_auth_node_sz(c));
443 			if (err) {
444 				kfree(auth);
445 				goto out;
446 			}
447 
448 			ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c));
449 		}
450 
451 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
452 			break;
453 
454 		/*
455 		 * Waste the rest of the space in the LEB and switch to the
456 		 * next LEB.
457 		 */
458 		err = switch_gc_head(c);
459 		if (err)
460 			goto out;
461 	}
462 
463 	return 0;
464 
465 out:
466 	list_splice_tail(&nondata, &sleb->nodes);
467 	return err;
468 }
469 
470 /**
471  * gc_sync_wbufs - sync write-buffers for GC.
472  * @c: UBIFS file-system description object
473  *
474  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
475  * be in a write-buffer instead. That is, a node could be written to a
476  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
477  * erased before the write-buffer is sync'd and then there is an unclean
478  * unmount, then an existing node is lost. To avoid this, we sync all
479  * write-buffers.
480  *
481  * This function returns %0 on success or a negative error code on failure.
482  */
483 static int gc_sync_wbufs(struct ubifs_info *c)
484 {
485 	int err, i;
486 
487 	for (i = 0; i < c->jhead_cnt; i++) {
488 		if (i == GCHD)
489 			continue;
490 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
491 		if (err)
492 			return err;
493 	}
494 	return 0;
495 }
496 
497 /**
498  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
499  * @c: UBIFS file-system description object
500  * @lp: describes the LEB to garbage collect
501  *
502  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
503  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
504  * required, and other negative error codes in case of failures.
505  */
506 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
507 {
508 	struct ubifs_scan_leb *sleb;
509 	struct ubifs_scan_node *snod;
510 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
511 	int err = 0, lnum = lp->lnum;
512 
513 	ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
514 		     c->need_recovery);
515 	ubifs_assert(c, c->gc_lnum != lnum);
516 	ubifs_assert(c, wbuf->lnum != lnum);
517 
518 	if (lp->free + lp->dirty == c->leb_size) {
519 		/* Special case - a free LEB  */
520 		dbg_gc("LEB %d is free, return it", lp->lnum);
521 		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
522 
523 		if (lp->free != c->leb_size) {
524 			/*
525 			 * Write buffers must be sync'd before unmapping
526 			 * freeable LEBs, because one of them may contain data
527 			 * which obsoletes something in 'lp->lnum'.
528 			 */
529 			err = gc_sync_wbufs(c);
530 			if (err)
531 				return err;
532 			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
533 						  0, 0, 0, 0);
534 			if (err)
535 				return err;
536 		}
537 		err = ubifs_leb_unmap(c, lp->lnum);
538 		if (err)
539 			return err;
540 
541 		if (c->gc_lnum == -1) {
542 			c->gc_lnum = lnum;
543 			return LEB_RETAINED;
544 		}
545 
546 		return LEB_FREED;
547 	}
548 
549 	/*
550 	 * We scan the entire LEB even though we only really need to scan up to
551 	 * (c->leb_size - lp->free).
552 	 */
553 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
554 	if (IS_ERR(sleb))
555 		return PTR_ERR(sleb);
556 
557 	ubifs_assert(c, !list_empty(&sleb->nodes));
558 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
559 
560 	if (snod->type == UBIFS_IDX_NODE) {
561 		struct ubifs_gced_idx_leb *idx_gc;
562 
563 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
564 		       lnum, lp->free, lp->dirty);
565 		list_for_each_entry(snod, &sleb->nodes, list) {
566 			struct ubifs_idx_node *idx = snod->node;
567 			int level = le16_to_cpu(idx->level);
568 
569 			ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
570 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
571 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
572 						   snod->offs);
573 			if (err)
574 				goto out;
575 		}
576 
577 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
578 		if (!idx_gc) {
579 			err = -ENOMEM;
580 			goto out;
581 		}
582 
583 		idx_gc->lnum = lnum;
584 		idx_gc->unmap = 0;
585 		list_add(&idx_gc->list, &c->idx_gc);
586 
587 		/*
588 		 * Don't release the LEB until after the next commit, because
589 		 * it may contain data which is needed for recovery. So
590 		 * although we freed this LEB, it will become usable only after
591 		 * the commit.
592 		 */
593 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
594 					  LPROPS_INDEX, 1);
595 		if (err)
596 			goto out;
597 		err = LEB_FREED_IDX;
598 	} else {
599 		dbg_gc("data LEB %d (free %d, dirty %d)",
600 		       lnum, lp->free, lp->dirty);
601 
602 		err = move_nodes(c, sleb);
603 		if (err)
604 			goto out_inc_seq;
605 
606 		err = gc_sync_wbufs(c);
607 		if (err)
608 			goto out_inc_seq;
609 
610 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
611 		if (err)
612 			goto out_inc_seq;
613 
614 		/* Allow for races with TNC */
615 		c->gced_lnum = lnum;
616 		smp_wmb();
617 		c->gc_seq += 1;
618 		smp_wmb();
619 
620 		if (c->gc_lnum == -1) {
621 			c->gc_lnum = lnum;
622 			err = LEB_RETAINED;
623 		} else {
624 			err = ubifs_wbuf_sync_nolock(wbuf);
625 			if (err)
626 				goto out;
627 
628 			err = ubifs_leb_unmap(c, lnum);
629 			if (err)
630 				goto out;
631 
632 			err = LEB_FREED;
633 		}
634 	}
635 
636 out:
637 	ubifs_scan_destroy(sleb);
638 	return err;
639 
640 out_inc_seq:
641 	/* We may have moved at least some nodes so allow for races with TNC */
642 	c->gced_lnum = lnum;
643 	smp_wmb();
644 	c->gc_seq += 1;
645 	smp_wmb();
646 	goto out;
647 }
648 
649 /**
650  * ubifs_garbage_collect - UBIFS garbage collector.
651  * @c: UBIFS file-system description object
652  * @anyway: do GC even if there are free LEBs
653  *
654  * This function does out-of-place garbage collection. The return codes are:
655  *   o positive LEB number if the LEB has been freed and may be used;
656  *   o %-EAGAIN if the caller has to run commit;
657  *   o %-ENOSPC if GC failed to make any progress;
658  *   o other negative error codes in case of other errors.
659  *
660  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
661  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
662  * commit may be required. But commit cannot be run from inside GC, because the
663  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
664  * And this error code means that the caller has to run commit, and re-run GC
665  * if there is still no free space.
666  *
667  * There are many reasons why this function may return %-EAGAIN:
668  * o the log is full and there is no space to write an LEB reference for
669  *   @c->gc_lnum;
670  * o the journal is too large and exceeds size limitations;
671  * o GC moved indexing LEBs, but they can be used only after the commit;
672  * o the shrinker fails to find clean znodes to free and requests the commit;
673  * o etc.
674  *
675  * Note, if the file-system is close to be full, this function may return
676  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
677  * the function. E.g., this happens if the limits on the journal size are too
678  * tough and GC writes too much to the journal before an LEB is freed. This
679  * might also mean that the journal is too large, and the TNC becomes to big,
680  * so that the shrinker is constantly called, finds not clean znodes to free,
681  * and requests commit. Well, this may also happen if the journal is all right,
682  * but another kernel process consumes too much memory. Anyway, infinite
683  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
684  */
685 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
686 {
687 	int i, err, ret, min_space = c->dead_wm;
688 	struct ubifs_lprops lp;
689 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
690 
691 	ubifs_assert_cmt_locked(c);
692 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
693 
694 	if (ubifs_gc_should_commit(c))
695 		return -EAGAIN;
696 
697 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
698 
699 	if (c->ro_error) {
700 		ret = -EROFS;
701 		goto out_unlock;
702 	}
703 
704 	/* We expect the write-buffer to be empty on entry */
705 	ubifs_assert(c, !wbuf->used);
706 
707 	for (i = 0; ; i++) {
708 		int space_before, space_after;
709 
710 		cond_resched();
711 
712 		/* Give the commit an opportunity to run */
713 		if (ubifs_gc_should_commit(c)) {
714 			ret = -EAGAIN;
715 			break;
716 		}
717 
718 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
719 			/*
720 			 * We've done enough iterations. Indexing LEBs were
721 			 * moved and will be available after the commit.
722 			 */
723 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
724 			ubifs_commit_required(c);
725 			ret = -EAGAIN;
726 			break;
727 		}
728 
729 		if (i > HARD_LEBS_LIMIT) {
730 			/*
731 			 * We've moved too many LEBs and have not made
732 			 * progress, give up.
733 			 */
734 			dbg_gc("hard limit, -ENOSPC");
735 			ret = -ENOSPC;
736 			break;
737 		}
738 
739 		/*
740 		 * Empty and freeable LEBs can turn up while we waited for
741 		 * the wbuf lock, or while we have been running GC. In that
742 		 * case, we should just return one of those instead of
743 		 * continuing to GC dirty LEBs. Hence we request
744 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
745 		 */
746 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
747 		if (ret) {
748 			if (ret == -ENOSPC)
749 				dbg_gc("no more dirty LEBs");
750 			break;
751 		}
752 
753 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
754 		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
755 		       min_space);
756 
757 		space_before = c->leb_size - wbuf->offs - wbuf->used;
758 		if (wbuf->lnum == -1)
759 			space_before = 0;
760 
761 		ret = ubifs_garbage_collect_leb(c, &lp);
762 		if (ret < 0) {
763 			if (ret == -EAGAIN) {
764 				/*
765 				 * This is not error, so we have to return the
766 				 * LEB to lprops. But if 'ubifs_return_leb()'
767 				 * fails, its failure code is propagated to the
768 				 * caller instead of the original '-EAGAIN'.
769 				 */
770 				err = ubifs_return_leb(c, lp.lnum);
771 				if (err)
772 					ret = err;
773 				break;
774 			}
775 			goto out;
776 		}
777 
778 		if (ret == LEB_FREED) {
779 			/* An LEB has been freed and is ready for use */
780 			dbg_gc("LEB %d freed, return", lp.lnum);
781 			ret = lp.lnum;
782 			break;
783 		}
784 
785 		if (ret == LEB_FREED_IDX) {
786 			/*
787 			 * This was an indexing LEB and it cannot be
788 			 * immediately used. And instead of requesting the
789 			 * commit straight away, we try to garbage collect some
790 			 * more.
791 			 */
792 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
793 			continue;
794 		}
795 
796 		ubifs_assert(c, ret == LEB_RETAINED);
797 		space_after = c->leb_size - wbuf->offs - wbuf->used;
798 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
799 		       space_after - space_before);
800 
801 		if (space_after > space_before) {
802 			/* GC makes progress, keep working */
803 			min_space >>= 1;
804 			if (min_space < c->dead_wm)
805 				min_space = c->dead_wm;
806 			continue;
807 		}
808 
809 		dbg_gc("did not make progress");
810 
811 		/*
812 		 * GC moved an LEB bud have not done any progress. This means
813 		 * that the previous GC head LEB contained too few free space
814 		 * and the LEB which was GC'ed contained only large nodes which
815 		 * did not fit that space.
816 		 *
817 		 * We can do 2 things:
818 		 * 1. pick another LEB in a hope it'll contain a small node
819 		 *    which will fit the space we have at the end of current GC
820 		 *    head LEB, but there is no guarantee, so we try this out
821 		 *    unless we have already been working for too long;
822 		 * 2. request an LEB with more dirty space, which will force
823 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
824 		 *    table, instead of just picking one from the heap
825 		 *    (previously it already picked the dirtiest LEB).
826 		 */
827 		if (i < SOFT_LEBS_LIMIT) {
828 			dbg_gc("try again");
829 			continue;
830 		}
831 
832 		min_space <<= 1;
833 		if (min_space > c->dark_wm)
834 			min_space = c->dark_wm;
835 		dbg_gc("set min. space to %d", min_space);
836 	}
837 
838 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
839 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
840 		ubifs_commit_required(c);
841 		ret = -EAGAIN;
842 	}
843 
844 	err = ubifs_wbuf_sync_nolock(wbuf);
845 	if (!err)
846 		err = ubifs_leb_unmap(c, c->gc_lnum);
847 	if (err) {
848 		ret = err;
849 		goto out;
850 	}
851 out_unlock:
852 	mutex_unlock(&wbuf->io_mutex);
853 	return ret;
854 
855 out:
856 	ubifs_assert(c, ret < 0);
857 	ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN);
858 	ubifs_wbuf_sync_nolock(wbuf);
859 	ubifs_ro_mode(c, ret);
860 	mutex_unlock(&wbuf->io_mutex);
861 	ubifs_return_leb(c, lp.lnum);
862 	return ret;
863 }
864 
865 /**
866  * ubifs_gc_start_commit - garbage collection at start of commit.
867  * @c: UBIFS file-system description object
868  *
869  * If a LEB has only dirty and free space, then we may safely unmap it and make
870  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
871  * correspond index nodes that are required for recovery.  In that case, the
872  * LEB cannot be unmapped until after the next commit.
873  *
874  * This function returns %0 upon success and a negative error code upon failure.
875  */
876 int ubifs_gc_start_commit(struct ubifs_info *c)
877 {
878 	struct ubifs_gced_idx_leb *idx_gc;
879 	const struct ubifs_lprops *lp;
880 	int err = 0, flags;
881 
882 	ubifs_get_lprops(c);
883 
884 	/*
885 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
886 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
887 	 */
888 	while (1) {
889 		lp = ubifs_fast_find_freeable(c);
890 		if (!lp)
891 			break;
892 		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
893 		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
894 		err = ubifs_leb_unmap(c, lp->lnum);
895 		if (err)
896 			goto out;
897 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
898 		if (IS_ERR(lp)) {
899 			err = PTR_ERR(lp);
900 			goto out;
901 		}
902 		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
903 		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
904 	}
905 
906 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
907 	list_for_each_entry(idx_gc, &c->idx_gc, list)
908 		idx_gc->unmap = 1;
909 
910 	/* Record index freeable LEBs for unmapping after commit */
911 	while (1) {
912 		lp = ubifs_fast_find_frdi_idx(c);
913 		if (IS_ERR(lp)) {
914 			err = PTR_ERR(lp);
915 			goto out;
916 		}
917 		if (!lp)
918 			break;
919 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
920 		if (!idx_gc) {
921 			err = -ENOMEM;
922 			goto out;
923 		}
924 		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
925 		ubifs_assert(c, lp->flags & LPROPS_INDEX);
926 		/* Don't release the LEB until after the next commit */
927 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
928 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
929 		if (IS_ERR(lp)) {
930 			err = PTR_ERR(lp);
931 			kfree(idx_gc);
932 			goto out;
933 		}
934 		ubifs_assert(c, lp->flags & LPROPS_TAKEN);
935 		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
936 		idx_gc->lnum = lp->lnum;
937 		idx_gc->unmap = 1;
938 		list_add(&idx_gc->list, &c->idx_gc);
939 	}
940 out:
941 	ubifs_release_lprops(c);
942 	return err;
943 }
944 
945 /**
946  * ubifs_gc_end_commit - garbage collection at end of commit.
947  * @c: UBIFS file-system description object
948  *
949  * This function completes out-of-place garbage collection of index LEBs.
950  */
951 int ubifs_gc_end_commit(struct ubifs_info *c)
952 {
953 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
954 	struct ubifs_wbuf *wbuf;
955 	int err = 0;
956 
957 	wbuf = &c->jheads[GCHD].wbuf;
958 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
959 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
960 		if (idx_gc->unmap) {
961 			dbg_gc("LEB %d", idx_gc->lnum);
962 			err = ubifs_leb_unmap(c, idx_gc->lnum);
963 			if (err)
964 				goto out;
965 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
966 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
967 			if (err)
968 				goto out;
969 			list_del(&idx_gc->list);
970 			kfree(idx_gc);
971 		}
972 out:
973 	mutex_unlock(&wbuf->io_mutex);
974 	return err;
975 }
976 
977 /**
978  * ubifs_destroy_idx_gc - destroy idx_gc list.
979  * @c: UBIFS file-system description object
980  *
981  * This function destroys the @c->idx_gc list. It is called when unmounting
982  * so locks are not needed. Returns zero in case of success and a negative
983  * error code in case of failure.
984  */
985 void ubifs_destroy_idx_gc(struct ubifs_info *c)
986 {
987 	while (!list_empty(&c->idx_gc)) {
988 		struct ubifs_gced_idx_leb *idx_gc;
989 
990 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
991 				    list);
992 		c->idx_gc_cnt -= 1;
993 		list_del(&idx_gc->list);
994 		kfree(idx_gc);
995 	}
996 }
997 
998 /**
999  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000  * @c: UBIFS file-system description object
1001  *
1002  * Called during start commit so locks are not needed.
1003  */
1004 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1005 {
1006 	struct ubifs_gced_idx_leb *idx_gc;
1007 	int lnum;
1008 
1009 	if (list_empty(&c->idx_gc))
1010 		return -ENOSPC;
1011 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1012 	lnum = idx_gc->lnum;
1013 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014 	list_del(&idx_gc->list);
1015 	kfree(idx_gc);
1016 	return lnum;
1017 }
1018