xref: /openbmc/linux/fs/ubifs/gc.c (revision 9ac8d3fb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  */
35 
36 #include <linux/pagemap.h>
37 #include "ubifs.h"
38 
39 /*
40  * GC tries to optimize the way it fit nodes to available space, and it sorts
41  * nodes a little. The below constants are watermarks which define "large",
42  * "medium", and "small" nodes.
43  */
44 #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4)
45 #define SMALL_NODE_WM  UBIFS_MAX_DENT_NODE_SZ
46 
47 /*
48  * GC may need to move more then one LEB to make progress. The below constants
49  * define "soft" and "hard" limits on the number of LEBs the garbage collector
50  * may move.
51  */
52 #define SOFT_LEBS_LIMIT 4
53 #define HARD_LEBS_LIMIT 32
54 
55 /**
56  * switch_gc_head - switch the garbage collection journal head.
57  * @c: UBIFS file-system description object
58  * @buf: buffer to write
59  * @len: length of the buffer to write
60  * @lnum: LEB number written is returned here
61  * @offs: offset written is returned here
62  *
63  * This function switch the GC head to the next LEB which is reserved in
64  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
65  * and other negative error code in case of failures.
66  */
67 static int switch_gc_head(struct ubifs_info *c)
68 {
69 	int err, gc_lnum = c->gc_lnum;
70 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
71 
72 	ubifs_assert(gc_lnum != -1);
73 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
74 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
75 	       c->leb_size - wbuf->offs - wbuf->used);
76 
77 	err = ubifs_wbuf_sync_nolock(wbuf);
78 	if (err)
79 		return err;
80 
81 	/*
82 	 * The GC write-buffer was synchronized, we may safely unmap
83 	 * 'c->gc_lnum'.
84 	 */
85 	err = ubifs_leb_unmap(c, gc_lnum);
86 	if (err)
87 		return err;
88 
89 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
90 	if (err)
91 		return err;
92 
93 	c->gc_lnum = -1;
94 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
95 	return err;
96 }
97 
98 /**
99  * joinup - bring data nodes for an inode together.
100  * @c: UBIFS file-system description object
101  * @sleb: describes scanned LEB
102  * @inum: inode number
103  * @blk: block number
104  * @data: list to which to add data nodes
105  *
106  * This function looks at the first few nodes in the scanned LEB @sleb and adds
107  * them to @data if they are data nodes from @inum and have a larger block
108  * number than @blk. This function returns %0 on success and a negative error
109  * code on failure.
110  */
111 static int joinup(struct ubifs_info *c, struct ubifs_scan_leb *sleb, ino_t inum,
112 		  unsigned int blk, struct list_head *data)
113 {
114 	int err, cnt = 6, lnum = sleb->lnum, offs;
115 	struct ubifs_scan_node *snod, *tmp;
116 	union ubifs_key *key;
117 
118 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
119 		key = &snod->key;
120 		if (key_inum(c, key) == inum &&
121 		    key_type(c, key) == UBIFS_DATA_KEY &&
122 		    key_block(c, key) > blk) {
123 			offs = snod->offs;
124 			err = ubifs_tnc_has_node(c, key, 0, lnum, offs, 0);
125 			if (err < 0)
126 				return err;
127 			list_del(&snod->list);
128 			if (err) {
129 				list_add_tail(&snod->list, data);
130 				blk = key_block(c, key);
131 			} else
132 				kfree(snod);
133 			cnt = 6;
134 		} else if (--cnt == 0)
135 			break;
136 	}
137 	return 0;
138 }
139 
140 /**
141  * move_nodes - move nodes.
142  * @c: UBIFS file-system description object
143  * @sleb: describes nodes to move
144  *
145  * This function moves valid nodes from data LEB described by @sleb to the GC
146  * journal head. The obsolete nodes are dropped.
147  *
148  * When moving nodes we have to deal with classical bin-packing problem: the
149  * space in the current GC journal head LEB and in @c->gc_lnum are the "bins",
150  * where the nodes in the @sleb->nodes list are the elements which should be
151  * fit optimally to the bins. This function uses the "first fit decreasing"
152  * strategy, although it does not really sort the nodes but just split them on
153  * 3 classes - large, medium, and small, so they are roughly sorted.
154  *
155  * This function returns zero in case of success, %-EAGAIN if commit is
156  * required, and other negative error codes in case of other failures.
157  */
158 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
159 {
160 	struct ubifs_scan_node *snod, *tmp;
161 	struct list_head data, large, medium, small;
162 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
163 	int avail, err, min = INT_MAX;
164 	unsigned int blk = 0;
165 	ino_t inum = 0;
166 
167 	INIT_LIST_HEAD(&data);
168 	INIT_LIST_HEAD(&large);
169 	INIT_LIST_HEAD(&medium);
170 	INIT_LIST_HEAD(&small);
171 
172 	while (!list_empty(&sleb->nodes)) {
173 		struct list_head *lst = sleb->nodes.next;
174 
175 		snod = list_entry(lst, struct ubifs_scan_node, list);
176 
177 		ubifs_assert(snod->type != UBIFS_IDX_NODE);
178 		ubifs_assert(snod->type != UBIFS_REF_NODE);
179 		ubifs_assert(snod->type != UBIFS_CS_NODE);
180 
181 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
182 					 snod->offs, 0);
183 		if (err < 0)
184 			goto out;
185 
186 		list_del(lst);
187 		if (!err) {
188 			/* The node is obsolete, remove it from the list */
189 			kfree(snod);
190 			continue;
191 		}
192 
193 		/*
194 		 * Sort the list of nodes so that data nodes go first, large
195 		 * nodes go second, and small nodes go last.
196 		 */
197 		if (key_type(c, &snod->key) == UBIFS_DATA_KEY) {
198 			if (inum != key_inum(c, &snod->key)) {
199 				if (inum) {
200 					/*
201 					 * Try to move data nodes from the same
202 					 * inode together.
203 					 */
204 					err = joinup(c, sleb, inum, blk, &data);
205 					if (err)
206 						goto out;
207 				}
208 				inum = key_inum(c, &snod->key);
209 				blk = key_block(c, &snod->key);
210 			}
211 			list_add_tail(lst, &data);
212 		} else if (snod->len > MEDIUM_NODE_WM)
213 			list_add_tail(lst, &large);
214 		else if (snod->len > SMALL_NODE_WM)
215 			list_add_tail(lst, &medium);
216 		else
217 			list_add_tail(lst, &small);
218 
219 		/* And find the smallest node */
220 		if (snod->len < min)
221 			min = snod->len;
222 	}
223 
224 	/*
225 	 * Join the tree lists so that we'd have one roughly sorted list
226 	 * ('large' will be the head of the joined list).
227 	 */
228 	list_splice(&data, &large);
229 	list_splice(&medium, large.prev);
230 	list_splice(&small, large.prev);
231 
232 	if (wbuf->lnum == -1) {
233 		/*
234 		 * The GC journal head is not set, because it is the first GC
235 		 * invocation since mount.
236 		 */
237 		err = switch_gc_head(c);
238 		if (err)
239 			goto out;
240 	}
241 
242 	/* Write nodes to their new location. Use the first-fit strategy */
243 	while (1) {
244 		avail = c->leb_size - wbuf->offs - wbuf->used;
245 		list_for_each_entry_safe(snod, tmp, &large, list) {
246 			int new_lnum, new_offs;
247 
248 			if (avail < min)
249 				break;
250 
251 			if (snod->len > avail)
252 				/* This node does not fit */
253 				continue;
254 
255 			cond_resched();
256 
257 			new_lnum = wbuf->lnum;
258 			new_offs = wbuf->offs + wbuf->used;
259 			err = ubifs_wbuf_write_nolock(wbuf, snod->node,
260 						      snod->len);
261 			if (err)
262 				goto out;
263 			err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
264 						snod->offs, new_lnum, new_offs,
265 						snod->len);
266 			if (err)
267 				goto out;
268 
269 			avail = c->leb_size - wbuf->offs - wbuf->used;
270 			list_del(&snod->list);
271 			kfree(snod);
272 		}
273 
274 		if (list_empty(&large))
275 			break;
276 
277 		/*
278 		 * Waste the rest of the space in the LEB and switch to the
279 		 * next LEB.
280 		 */
281 		err = switch_gc_head(c);
282 		if (err)
283 			goto out;
284 	}
285 
286 	return 0;
287 
288 out:
289 	list_for_each_entry_safe(snod, tmp, &large, list) {
290 		list_del(&snod->list);
291 		kfree(snod);
292 	}
293 	return err;
294 }
295 
296 /**
297  * gc_sync_wbufs - sync write-buffers for GC.
298  * @c: UBIFS file-system description object
299  *
300  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
301  * be in a write-buffer instead. That is, a node could be written to a
302  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
303  * erased before the write-buffer is sync'd and then there is an unclean
304  * unmount, then an existing node is lost. To avoid this, we sync all
305  * write-buffers.
306  *
307  * This function returns %0 on success or a negative error code on failure.
308  */
309 static int gc_sync_wbufs(struct ubifs_info *c)
310 {
311 	int err, i;
312 
313 	for (i = 0; i < c->jhead_cnt; i++) {
314 		if (i == GCHD)
315 			continue;
316 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
317 		if (err)
318 			return err;
319 	}
320 	return 0;
321 }
322 
323 /**
324  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
325  * @c: UBIFS file-system description object
326  * @lp: describes the LEB to garbage collect
327  *
328  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
329  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
330  * required, and other negative error codes in case of failures.
331  */
332 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
333 {
334 	struct ubifs_scan_leb *sleb;
335 	struct ubifs_scan_node *snod;
336 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
337 	int err = 0, lnum = lp->lnum;
338 
339 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
340 		     c->need_recovery);
341 	ubifs_assert(c->gc_lnum != lnum);
342 	ubifs_assert(wbuf->lnum != lnum);
343 
344 	/*
345 	 * We scan the entire LEB even though we only really need to scan up to
346 	 * (c->leb_size - lp->free).
347 	 */
348 	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
349 	if (IS_ERR(sleb))
350 		return PTR_ERR(sleb);
351 
352 	ubifs_assert(!list_empty(&sleb->nodes));
353 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
354 
355 	if (snod->type == UBIFS_IDX_NODE) {
356 		struct ubifs_gced_idx_leb *idx_gc;
357 
358 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
359 		       lnum, lp->free, lp->dirty);
360 		list_for_each_entry(snod, &sleb->nodes, list) {
361 			struct ubifs_idx_node *idx = snod->node;
362 			int level = le16_to_cpu(idx->level);
363 
364 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
365 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
366 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
367 						   snod->offs);
368 			if (err)
369 				goto out;
370 		}
371 
372 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
373 		if (!idx_gc) {
374 			err = -ENOMEM;
375 			goto out;
376 		}
377 
378 		idx_gc->lnum = lnum;
379 		idx_gc->unmap = 0;
380 		list_add(&idx_gc->list, &c->idx_gc);
381 
382 		/*
383 		 * Don't release the LEB until after the next commit, because
384 		 * it may contain date which is needed for recovery. So
385 		 * although we freed this LEB, it will become usable only after
386 		 * the commit.
387 		 */
388 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
389 					  LPROPS_INDEX, 1);
390 		if (err)
391 			goto out;
392 		err = LEB_FREED_IDX;
393 	} else {
394 		dbg_gc("data LEB %d (free %d, dirty %d)",
395 		       lnum, lp->free, lp->dirty);
396 
397 		err = move_nodes(c, sleb);
398 		if (err)
399 			goto out_inc_seq;
400 
401 		err = gc_sync_wbufs(c);
402 		if (err)
403 			goto out_inc_seq;
404 
405 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
406 		if (err)
407 			goto out_inc_seq;
408 
409 		/* Allow for races with TNC */
410 		c->gced_lnum = lnum;
411 		smp_wmb();
412 		c->gc_seq += 1;
413 		smp_wmb();
414 
415 		if (c->gc_lnum == -1) {
416 			c->gc_lnum = lnum;
417 			err = LEB_RETAINED;
418 		} else {
419 			err = ubifs_wbuf_sync_nolock(wbuf);
420 			if (err)
421 				goto out;
422 
423 			err = ubifs_leb_unmap(c, lnum);
424 			if (err)
425 				goto out;
426 
427 			err = LEB_FREED;
428 		}
429 	}
430 
431 out:
432 	ubifs_scan_destroy(sleb);
433 	return err;
434 
435 out_inc_seq:
436 	/* We may have moved at least some nodes so allow for races with TNC */
437 	c->gced_lnum = lnum;
438 	smp_wmb();
439 	c->gc_seq += 1;
440 	smp_wmb();
441 	goto out;
442 }
443 
444 /**
445  * ubifs_garbage_collect - UBIFS garbage collector.
446  * @c: UBIFS file-system description object
447  * @anyway: do GC even if there are free LEBs
448  *
449  * This function does out-of-place garbage collection. The return codes are:
450  *   o positive LEB number if the LEB has been freed and may be used;
451  *   o %-EAGAIN if the caller has to run commit;
452  *   o %-ENOSPC if GC failed to make any progress;
453  *   o other negative error codes in case of other errors.
454  *
455  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
456  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
457  * commit may be required. But commit cannot be run from inside GC, because the
458  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
459  * And this error code means that the caller has to run commit, and re-run GC
460  * if there is still no free space.
461  *
462  * There are many reasons why this function may return %-EAGAIN:
463  * o the log is full and there is no space to write an LEB reference for
464  *   @c->gc_lnum;
465  * o the journal is too large and exceeds size limitations;
466  * o GC moved indexing LEBs, but they can be used only after the commit;
467  * o the shrinker fails to find clean znodes to free and requests the commit;
468  * o etc.
469  *
470  * Note, if the file-system is close to be full, this function may return
471  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
472  * the function. E.g., this happens if the limits on the journal size are too
473  * tough and GC writes too much to the journal before an LEB is freed. This
474  * might also mean that the journal is too large, and the TNC becomes to big,
475  * so that the shrinker is constantly called, finds not clean znodes to free,
476  * and requests commit. Well, this may also happen if the journal is all right,
477  * but another kernel process consumes too much memory. Anyway, infinite
478  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
479  */
480 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
481 {
482 	int i, err, ret, min_space = c->dead_wm;
483 	struct ubifs_lprops lp;
484 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
485 
486 	ubifs_assert_cmt_locked(c);
487 
488 	if (ubifs_gc_should_commit(c))
489 		return -EAGAIN;
490 
491 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
492 
493 	if (c->ro_media) {
494 		ret = -EROFS;
495 		goto out_unlock;
496 	}
497 
498 	/* We expect the write-buffer to be empty on entry */
499 	ubifs_assert(!wbuf->used);
500 
501 	for (i = 0; ; i++) {
502 		int space_before = c->leb_size - wbuf->offs - wbuf->used;
503 		int space_after;
504 
505 		cond_resched();
506 
507 		/* Give the commit an opportunity to run */
508 		if (ubifs_gc_should_commit(c)) {
509 			ret = -EAGAIN;
510 			break;
511 		}
512 
513 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
514 			/*
515 			 * We've done enough iterations. Indexing LEBs were
516 			 * moved and will be available after the commit.
517 			 */
518 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
519 			ubifs_commit_required(c);
520 			ret = -EAGAIN;
521 			break;
522 		}
523 
524 		if (i > HARD_LEBS_LIMIT) {
525 			/*
526 			 * We've moved too many LEBs and have not made
527 			 * progress, give up.
528 			 */
529 			dbg_gc("hard limit, -ENOSPC");
530 			ret = -ENOSPC;
531 			break;
532 		}
533 
534 		/*
535 		 * Empty and freeable LEBs can turn up while we waited for
536 		 * the wbuf lock, or while we have been running GC. In that
537 		 * case, we should just return one of those instead of
538 		 * continuing to GC dirty LEBs. Hence we request
539 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
540 		 */
541 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
542 		if (ret) {
543 			if (ret == -ENOSPC)
544 				dbg_gc("no more dirty LEBs");
545 			break;
546 		}
547 
548 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
549 		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
550 		       lp.free + lp.dirty, min_space);
551 
552 		if (lp.free + lp.dirty == c->leb_size) {
553 			/* An empty LEB was returned */
554 			dbg_gc("LEB %d is free, return it", lp.lnum);
555 			/*
556 			 * ubifs_find_dirty_leb() doesn't return freeable index
557 			 * LEBs.
558 			 */
559 			ubifs_assert(!(lp.flags & LPROPS_INDEX));
560 			if (lp.free != c->leb_size) {
561 				/*
562 				 * Write buffers must be sync'd before
563 				 * unmapping freeable LEBs, because one of them
564 				 * may contain data which obsoletes something
565 				 * in 'lp.pnum'.
566 				 */
567 				ret = gc_sync_wbufs(c);
568 				if (ret)
569 					goto out;
570 				ret = ubifs_change_one_lp(c, lp.lnum,
571 							  c->leb_size, 0, 0, 0,
572 							  0);
573 				if (ret)
574 					goto out;
575 			}
576 			ret = ubifs_leb_unmap(c, lp.lnum);
577 			if (ret)
578 				goto out;
579 			ret = lp.lnum;
580 			break;
581 		}
582 
583 		space_before = c->leb_size - wbuf->offs - wbuf->used;
584 		if (wbuf->lnum == -1)
585 			space_before = 0;
586 
587 		ret = ubifs_garbage_collect_leb(c, &lp);
588 		if (ret < 0) {
589 			if (ret == -EAGAIN || ret == -ENOSPC) {
590 				/*
591 				 * These codes are not errors, so we have to
592 				 * return the LEB to lprops. But if the
593 				 * 'ubifs_return_leb()' function fails, its
594 				 * failure code is propagated to the caller
595 				 * instead of the original '-EAGAIN' or
596 				 * '-ENOSPC'.
597 				 */
598 				err = ubifs_return_leb(c, lp.lnum);
599 				if (err)
600 					ret = err;
601 				break;
602 			}
603 			goto out;
604 		}
605 
606 		if (ret == LEB_FREED) {
607 			/* An LEB has been freed and is ready for use */
608 			dbg_gc("LEB %d freed, return", lp.lnum);
609 			ret = lp.lnum;
610 			break;
611 		}
612 
613 		if (ret == LEB_FREED_IDX) {
614 			/*
615 			 * This was an indexing LEB and it cannot be
616 			 * immediately used. And instead of requesting the
617 			 * commit straight away, we try to garbage collect some
618 			 * more.
619 			 */
620 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
621 			continue;
622 		}
623 
624 		ubifs_assert(ret == LEB_RETAINED);
625 		space_after = c->leb_size - wbuf->offs - wbuf->used;
626 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
627 		       space_after - space_before);
628 
629 		if (space_after > space_before) {
630 			/* GC makes progress, keep working */
631 			min_space >>= 1;
632 			if (min_space < c->dead_wm)
633 				min_space = c->dead_wm;
634 			continue;
635 		}
636 
637 		dbg_gc("did not make progress");
638 
639 		/*
640 		 * GC moved an LEB bud have not done any progress. This means
641 		 * that the previous GC head LEB contained too few free space
642 		 * and the LEB which was GC'ed contained only large nodes which
643 		 * did not fit that space.
644 		 *
645 		 * We can do 2 things:
646 		 * 1. pick another LEB in a hope it'll contain a small node
647 		 *    which will fit the space we have at the end of current GC
648 		 *    head LEB, but there is no guarantee, so we try this out
649 		 *    unless we have already been working for too long;
650 		 * 2. request an LEB with more dirty space, which will force
651 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
652 		 *    table, instead of just picking one from the heap
653 		 *    (previously it already picked the dirtiest LEB).
654 		 */
655 		if (i < SOFT_LEBS_LIMIT) {
656 			dbg_gc("try again");
657 			continue;
658 		}
659 
660 		min_space <<= 1;
661 		if (min_space > c->dark_wm)
662 			min_space = c->dark_wm;
663 		dbg_gc("set min. space to %d", min_space);
664 	}
665 
666 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
667 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
668 		ubifs_commit_required(c);
669 		ret = -EAGAIN;
670 	}
671 
672 	err = ubifs_wbuf_sync_nolock(wbuf);
673 	if (!err)
674 		err = ubifs_leb_unmap(c, c->gc_lnum);
675 	if (err) {
676 		ret = err;
677 		goto out;
678 	}
679 out_unlock:
680 	mutex_unlock(&wbuf->io_mutex);
681 	return ret;
682 
683 out:
684 	ubifs_assert(ret < 0);
685 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
686 	ubifs_ro_mode(c, ret);
687 	ubifs_wbuf_sync_nolock(wbuf);
688 	mutex_unlock(&wbuf->io_mutex);
689 	ubifs_return_leb(c, lp.lnum);
690 	return ret;
691 }
692 
693 /**
694  * ubifs_gc_start_commit - garbage collection at start of commit.
695  * @c: UBIFS file-system description object
696  *
697  * If a LEB has only dirty and free space, then we may safely unmap it and make
698  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
699  * correspond index nodes that are required for recovery.  In that case, the
700  * LEB cannot be unmapped until after the next commit.
701  *
702  * This function returns %0 upon success and a negative error code upon failure.
703  */
704 int ubifs_gc_start_commit(struct ubifs_info *c)
705 {
706 	struct ubifs_gced_idx_leb *idx_gc;
707 	const struct ubifs_lprops *lp;
708 	int err = 0, flags;
709 
710 	ubifs_get_lprops(c);
711 
712 	/*
713 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
714 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
715 	 */
716 	while (1) {
717 		lp = ubifs_fast_find_freeable(c);
718 		if (IS_ERR(lp)) {
719 			err = PTR_ERR(lp);
720 			goto out;
721 		}
722 		if (!lp)
723 			break;
724 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
725 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
726 		err = ubifs_leb_unmap(c, lp->lnum);
727 		if (err)
728 			goto out;
729 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
730 		if (IS_ERR(lp)) {
731 			err = PTR_ERR(lp);
732 			goto out;
733 		}
734 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
735 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
736 	}
737 
738 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
739 	list_for_each_entry(idx_gc, &c->idx_gc, list)
740 		idx_gc->unmap = 1;
741 
742 	/* Record index freeable LEBs for unmapping after commit */
743 	while (1) {
744 		lp = ubifs_fast_find_frdi_idx(c);
745 		if (IS_ERR(lp)) {
746 			err = PTR_ERR(lp);
747 			goto out;
748 		}
749 		if (!lp)
750 			break;
751 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
752 		if (!idx_gc) {
753 			err = -ENOMEM;
754 			goto out;
755 		}
756 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
757 		ubifs_assert(lp->flags & LPROPS_INDEX);
758 		/* Don't release the LEB until after the next commit */
759 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
760 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
761 		if (IS_ERR(lp)) {
762 			err = PTR_ERR(lp);
763 			kfree(idx_gc);
764 			goto out;
765 		}
766 		ubifs_assert(lp->flags & LPROPS_TAKEN);
767 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
768 		idx_gc->lnum = lp->lnum;
769 		idx_gc->unmap = 1;
770 		list_add(&idx_gc->list, &c->idx_gc);
771 	}
772 out:
773 	ubifs_release_lprops(c);
774 	return err;
775 }
776 
777 /**
778  * ubifs_gc_end_commit - garbage collection at end of commit.
779  * @c: UBIFS file-system description object
780  *
781  * This function completes out-of-place garbage collection of index LEBs.
782  */
783 int ubifs_gc_end_commit(struct ubifs_info *c)
784 {
785 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
786 	struct ubifs_wbuf *wbuf;
787 	int err = 0;
788 
789 	wbuf = &c->jheads[GCHD].wbuf;
790 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
791 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
792 		if (idx_gc->unmap) {
793 			dbg_gc("LEB %d", idx_gc->lnum);
794 			err = ubifs_leb_unmap(c, idx_gc->lnum);
795 			if (err)
796 				goto out;
797 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
798 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
799 			if (err)
800 				goto out;
801 			list_del(&idx_gc->list);
802 			kfree(idx_gc);
803 		}
804 out:
805 	mutex_unlock(&wbuf->io_mutex);
806 	return err;
807 }
808 
809 /**
810  * ubifs_destroy_idx_gc - destroy idx_gc list.
811  * @c: UBIFS file-system description object
812  *
813  * This function destroys the idx_gc list. It is called when unmounting or
814  * remounting read-only so locks are not needed.
815  */
816 void ubifs_destroy_idx_gc(struct ubifs_info *c)
817 {
818 	while (!list_empty(&c->idx_gc)) {
819 		struct ubifs_gced_idx_leb *idx_gc;
820 
821 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
822 				    list);
823 		c->idx_gc_cnt -= 1;
824 		list_del(&idx_gc->list);
825 		kfree(idx_gc);
826 	}
827 
828 }
829 
830 /**
831  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
832  * @c: UBIFS file-system description object
833  *
834  * Called during start commit so locks are not needed.
835  */
836 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
837 {
838 	struct ubifs_gced_idx_leb *idx_gc;
839 	int lnum;
840 
841 	if (list_empty(&c->idx_gc))
842 		return -ENOSPC;
843 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
844 	lnum = idx_gc->lnum;
845 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
846 	list_del(&idx_gc->list);
847 	kfree(idx_gc);
848 	return lnum;
849 }
850