1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements garbage collection. The procedure for garbage collection 25 * is different depending on whether a LEB as an index LEB (contains index 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 28 * nodes to the journal, at which point the garbage-collected LEB is free to be 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 31 * to be reused. Garbage collection will cause the number of dirty index nodes 32 * to grow, however sufficient space is reserved for the index to ensure the 33 * commit will never run out of space. 34 * 35 * Notes about dead watermark. At current UBIFS implementation we assume that 36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 39 * Garbage Collector has to synchronize the GC head's write buffer before 40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 41 * actually reclaim even very small pieces of dirty space by garbage collecting 42 * enough dirty LEBs, but we do not bother doing this at this implementation. 43 * 44 * Notes about dark watermark. The results of GC work depends on how big are 45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 47 * have to waste large pieces of free space at the end of LEB B, because nodes 48 * from LEB A would not fit. And the worst situation is when all nodes are of 49 * maximum size. So dark watermark is the amount of free + dirty space in LEB 50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so 53 * good, and GC takes extra care when moving them. 54 */ 55 56 #include <linux/slab.h> 57 #include <linux/pagemap.h> 58 #include <linux/list_sort.h> 59 #include "ubifs.h" 60 61 /* 62 * GC may need to move more than one LEB to make progress. The below constants 63 * define "soft" and "hard" limits on the number of LEBs the garbage collector 64 * may move. 65 */ 66 #define SOFT_LEBS_LIMIT 4 67 #define HARD_LEBS_LIMIT 32 68 69 /** 70 * switch_gc_head - switch the garbage collection journal head. 71 * @c: UBIFS file-system description object 72 * @buf: buffer to write 73 * @len: length of the buffer to write 74 * @lnum: LEB number written is returned here 75 * @offs: offset written is returned here 76 * 77 * This function switch the GC head to the next LEB which is reserved in 78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 79 * and other negative error code in case of failures. 80 */ 81 static int switch_gc_head(struct ubifs_info *c) 82 { 83 int err, gc_lnum = c->gc_lnum; 84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 85 86 ubifs_assert(gc_lnum != -1); 87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 89 c->leb_size - wbuf->offs - wbuf->used); 90 91 err = ubifs_wbuf_sync_nolock(wbuf); 92 if (err) 93 return err; 94 95 /* 96 * The GC write-buffer was synchronized, we may safely unmap 97 * 'c->gc_lnum'. 98 */ 99 err = ubifs_leb_unmap(c, gc_lnum); 100 if (err) 101 return err; 102 103 err = ubifs_wbuf_sync_nolock(wbuf); 104 if (err) 105 return err; 106 107 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 108 if (err) 109 return err; 110 111 c->gc_lnum = -1; 112 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 113 return err; 114 } 115 116 /** 117 * data_nodes_cmp - compare 2 data nodes. 118 * @priv: UBIFS file-system description object 119 * @a: first data node 120 * @a: second data node 121 * 122 * This function compares data nodes @a and @b. Returns %1 if @a has greater 123 * inode or block number, and %-1 otherwise. 124 */ 125 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 126 { 127 ino_t inuma, inumb; 128 struct ubifs_info *c = priv; 129 struct ubifs_scan_node *sa, *sb; 130 131 cond_resched(); 132 if (a == b) 133 return 0; 134 135 sa = list_entry(a, struct ubifs_scan_node, list); 136 sb = list_entry(b, struct ubifs_scan_node, list); 137 138 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); 139 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); 140 ubifs_assert(sa->type == UBIFS_DATA_NODE); 141 ubifs_assert(sb->type == UBIFS_DATA_NODE); 142 143 inuma = key_inum(c, &sa->key); 144 inumb = key_inum(c, &sb->key); 145 146 if (inuma == inumb) { 147 unsigned int blka = key_block(c, &sa->key); 148 unsigned int blkb = key_block(c, &sb->key); 149 150 if (blka <= blkb) 151 return -1; 152 } else if (inuma <= inumb) 153 return -1; 154 155 return 1; 156 } 157 158 /* 159 * nondata_nodes_cmp - compare 2 non-data nodes. 160 * @priv: UBIFS file-system description object 161 * @a: first node 162 * @a: second node 163 * 164 * This function compares nodes @a and @b. It makes sure that inode nodes go 165 * first and sorted by length in descending order. Directory entry nodes go 166 * after inode nodes and are sorted in ascending hash valuer order. 167 */ 168 static int nondata_nodes_cmp(void *priv, struct list_head *a, 169 struct list_head *b) 170 { 171 ino_t inuma, inumb; 172 struct ubifs_info *c = priv; 173 struct ubifs_scan_node *sa, *sb; 174 175 cond_resched(); 176 if (a == b) 177 return 0; 178 179 sa = list_entry(a, struct ubifs_scan_node, list); 180 sb = list_entry(b, struct ubifs_scan_node, list); 181 182 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && 183 key_type(c, &sb->key) != UBIFS_DATA_KEY); 184 ubifs_assert(sa->type != UBIFS_DATA_NODE && 185 sb->type != UBIFS_DATA_NODE); 186 187 /* Inodes go before directory entries */ 188 if (sa->type == UBIFS_INO_NODE) { 189 if (sb->type == UBIFS_INO_NODE) 190 return sb->len - sa->len; 191 return -1; 192 } 193 if (sb->type == UBIFS_INO_NODE) 194 return 1; 195 196 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || 197 key_type(c, &sa->key) == UBIFS_XENT_KEY); 198 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || 199 key_type(c, &sb->key) == UBIFS_XENT_KEY); 200 ubifs_assert(sa->type == UBIFS_DENT_NODE || 201 sa->type == UBIFS_XENT_NODE); 202 ubifs_assert(sb->type == UBIFS_DENT_NODE || 203 sb->type == UBIFS_XENT_NODE); 204 205 inuma = key_inum(c, &sa->key); 206 inumb = key_inum(c, &sb->key); 207 208 if (inuma == inumb) { 209 uint32_t hasha = key_hash(c, &sa->key); 210 uint32_t hashb = key_hash(c, &sb->key); 211 212 if (hasha <= hashb) 213 return -1; 214 } else if (inuma <= inumb) 215 return -1; 216 217 return 1; 218 } 219 220 /** 221 * sort_nodes - sort nodes for GC. 222 * @c: UBIFS file-system description object 223 * @sleb: describes nodes to sort and contains the result on exit 224 * @nondata: contains non-data nodes on exit 225 * @min: minimum node size is returned here 226 * 227 * This function sorts the list of inodes to garbage collect. First of all, it 228 * kills obsolete nodes and separates data and non-data nodes to the 229 * @sleb->nodes and @nondata lists correspondingly. 230 * 231 * Data nodes are then sorted in block number order - this is important for 232 * bulk-read; data nodes with lower inode number go before data nodes with 233 * higher inode number, and data nodes with lower block number go before data 234 * nodes with higher block number; 235 * 236 * Non-data nodes are sorted as follows. 237 * o First go inode nodes - they are sorted in descending length order. 238 * o Then go directory entry nodes - they are sorted in hash order, which 239 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 240 * inode number go before direntry nodes with higher parent inode number, 241 * and direntry nodes with lower name hash values go before direntry nodes 242 * with higher name hash values. 243 * 244 * This function returns zero in case of success and a negative error code in 245 * case of failure. 246 */ 247 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 248 struct list_head *nondata, int *min) 249 { 250 int err; 251 struct ubifs_scan_node *snod, *tmp; 252 253 *min = INT_MAX; 254 255 /* Separate data nodes and non-data nodes */ 256 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 257 ubifs_assert(snod->type == UBIFS_INO_NODE || 258 snod->type == UBIFS_DATA_NODE || 259 snod->type == UBIFS_DENT_NODE || 260 snod->type == UBIFS_XENT_NODE || 261 snod->type == UBIFS_TRUN_NODE); 262 263 if (snod->type != UBIFS_INO_NODE && 264 snod->type != UBIFS_DATA_NODE && 265 snod->type != UBIFS_DENT_NODE && 266 snod->type != UBIFS_XENT_NODE) { 267 /* Probably truncation node, zap it */ 268 list_del(&snod->list); 269 kfree(snod); 270 continue; 271 } 272 273 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || 274 key_type(c, &snod->key) == UBIFS_INO_KEY || 275 key_type(c, &snod->key) == UBIFS_DENT_KEY || 276 key_type(c, &snod->key) == UBIFS_XENT_KEY); 277 278 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 279 snod->offs, 0); 280 if (err < 0) 281 return err; 282 283 if (!err) { 284 /* The node is obsolete, remove it from the list */ 285 list_del(&snod->list); 286 kfree(snod); 287 continue; 288 } 289 290 if (snod->len < *min) 291 *min = snod->len; 292 293 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 294 list_move_tail(&snod->list, nondata); 295 } 296 297 /* Sort data and non-data nodes */ 298 list_sort(c, &sleb->nodes, &data_nodes_cmp); 299 list_sort(c, nondata, &nondata_nodes_cmp); 300 301 err = dbg_check_data_nodes_order(c, &sleb->nodes); 302 if (err) 303 return err; 304 err = dbg_check_nondata_nodes_order(c, nondata); 305 if (err) 306 return err; 307 return 0; 308 } 309 310 /** 311 * move_node - move a node. 312 * @c: UBIFS file-system description object 313 * @sleb: describes the LEB to move nodes from 314 * @snod: the mode to move 315 * @wbuf: write-buffer to move node to 316 * 317 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 318 * destroys @snod. Returns zero in case of success and a negative error code in 319 * case of failure. 320 */ 321 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 322 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 323 { 324 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 325 326 cond_resched(); 327 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 328 if (err) 329 return err; 330 331 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 332 snod->offs, new_lnum, new_offs, 333 snod->len); 334 list_del(&snod->list); 335 kfree(snod); 336 return err; 337 } 338 339 /** 340 * move_nodes - move nodes. 341 * @c: UBIFS file-system description object 342 * @sleb: describes the LEB to move nodes from 343 * 344 * This function moves valid nodes from data LEB described by @sleb to the GC 345 * journal head. This function returns zero in case of success, %-EAGAIN if 346 * commit is required, and other negative error codes in case of other 347 * failures. 348 */ 349 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 350 { 351 int err, min; 352 LIST_HEAD(nondata); 353 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 354 355 if (wbuf->lnum == -1) { 356 /* 357 * The GC journal head is not set, because it is the first GC 358 * invocation since mount. 359 */ 360 err = switch_gc_head(c); 361 if (err) 362 return err; 363 } 364 365 err = sort_nodes(c, sleb, &nondata, &min); 366 if (err) 367 goto out; 368 369 /* Write nodes to their new location. Use the first-fit strategy */ 370 while (1) { 371 int avail; 372 struct ubifs_scan_node *snod, *tmp; 373 374 /* Move data nodes */ 375 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 376 avail = c->leb_size - wbuf->offs - wbuf->used; 377 if (snod->len > avail) 378 /* 379 * Do not skip data nodes in order to optimize 380 * bulk-read. 381 */ 382 break; 383 384 err = move_node(c, sleb, snod, wbuf); 385 if (err) 386 goto out; 387 } 388 389 /* Move non-data nodes */ 390 list_for_each_entry_safe(snod, tmp, &nondata, list) { 391 avail = c->leb_size - wbuf->offs - wbuf->used; 392 if (avail < min) 393 break; 394 395 if (snod->len > avail) { 396 /* 397 * Keep going only if this is an inode with 398 * some data. Otherwise stop and switch the GC 399 * head. IOW, we assume that data-less inode 400 * nodes and direntry nodes are roughly of the 401 * same size. 402 */ 403 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 404 snod->len == UBIFS_INO_NODE_SZ) 405 break; 406 continue; 407 } 408 409 err = move_node(c, sleb, snod, wbuf); 410 if (err) 411 goto out; 412 } 413 414 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 415 break; 416 417 /* 418 * Waste the rest of the space in the LEB and switch to the 419 * next LEB. 420 */ 421 err = switch_gc_head(c); 422 if (err) 423 goto out; 424 } 425 426 return 0; 427 428 out: 429 list_splice_tail(&nondata, &sleb->nodes); 430 return err; 431 } 432 433 /** 434 * gc_sync_wbufs - sync write-buffers for GC. 435 * @c: UBIFS file-system description object 436 * 437 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 438 * be in a write-buffer instead. That is, a node could be written to a 439 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 440 * erased before the write-buffer is sync'd and then there is an unclean 441 * unmount, then an existing node is lost. To avoid this, we sync all 442 * write-buffers. 443 * 444 * This function returns %0 on success or a negative error code on failure. 445 */ 446 static int gc_sync_wbufs(struct ubifs_info *c) 447 { 448 int err, i; 449 450 for (i = 0; i < c->jhead_cnt; i++) { 451 if (i == GCHD) 452 continue; 453 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 454 if (err) 455 return err; 456 } 457 return 0; 458 } 459 460 /** 461 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 462 * @c: UBIFS file-system description object 463 * @lp: describes the LEB to garbage collect 464 * 465 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 466 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 467 * required, and other negative error codes in case of failures. 468 */ 469 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 470 { 471 struct ubifs_scan_leb *sleb; 472 struct ubifs_scan_node *snod; 473 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 474 int err = 0, lnum = lp->lnum; 475 476 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 477 c->need_recovery); 478 ubifs_assert(c->gc_lnum != lnum); 479 ubifs_assert(wbuf->lnum != lnum); 480 481 if (lp->free + lp->dirty == c->leb_size) { 482 /* Special case - a free LEB */ 483 dbg_gc("LEB %d is free, return it", lp->lnum); 484 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 485 486 if (lp->free != c->leb_size) { 487 /* 488 * Write buffers must be sync'd before unmapping 489 * freeable LEBs, because one of them may contain data 490 * which obsoletes something in 'lp->pnum'. 491 */ 492 err = gc_sync_wbufs(c); 493 if (err) 494 return err; 495 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 496 0, 0, 0, 0); 497 if (err) 498 return err; 499 } 500 err = ubifs_leb_unmap(c, lp->lnum); 501 if (err) 502 return err; 503 504 if (c->gc_lnum == -1) { 505 c->gc_lnum = lnum; 506 return LEB_RETAINED; 507 } 508 509 return LEB_FREED; 510 } 511 512 /* 513 * We scan the entire LEB even though we only really need to scan up to 514 * (c->leb_size - lp->free). 515 */ 516 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 517 if (IS_ERR(sleb)) 518 return PTR_ERR(sleb); 519 520 ubifs_assert(!list_empty(&sleb->nodes)); 521 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 522 523 if (snod->type == UBIFS_IDX_NODE) { 524 struct ubifs_gced_idx_leb *idx_gc; 525 526 dbg_gc("indexing LEB %d (free %d, dirty %d)", 527 lnum, lp->free, lp->dirty); 528 list_for_each_entry(snod, &sleb->nodes, list) { 529 struct ubifs_idx_node *idx = snod->node; 530 int level = le16_to_cpu(idx->level); 531 532 ubifs_assert(snod->type == UBIFS_IDX_NODE); 533 key_read(c, ubifs_idx_key(c, idx), &snod->key); 534 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 535 snod->offs); 536 if (err) 537 goto out; 538 } 539 540 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 541 if (!idx_gc) { 542 err = -ENOMEM; 543 goto out; 544 } 545 546 idx_gc->lnum = lnum; 547 idx_gc->unmap = 0; 548 list_add(&idx_gc->list, &c->idx_gc); 549 550 /* 551 * Don't release the LEB until after the next commit, because 552 * it may contain data which is needed for recovery. So 553 * although we freed this LEB, it will become usable only after 554 * the commit. 555 */ 556 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 557 LPROPS_INDEX, 1); 558 if (err) 559 goto out; 560 err = LEB_FREED_IDX; 561 } else { 562 dbg_gc("data LEB %d (free %d, dirty %d)", 563 lnum, lp->free, lp->dirty); 564 565 err = move_nodes(c, sleb); 566 if (err) 567 goto out_inc_seq; 568 569 err = gc_sync_wbufs(c); 570 if (err) 571 goto out_inc_seq; 572 573 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 574 if (err) 575 goto out_inc_seq; 576 577 /* Allow for races with TNC */ 578 c->gced_lnum = lnum; 579 smp_wmb(); 580 c->gc_seq += 1; 581 smp_wmb(); 582 583 if (c->gc_lnum == -1) { 584 c->gc_lnum = lnum; 585 err = LEB_RETAINED; 586 } else { 587 err = ubifs_wbuf_sync_nolock(wbuf); 588 if (err) 589 goto out; 590 591 err = ubifs_leb_unmap(c, lnum); 592 if (err) 593 goto out; 594 595 err = LEB_FREED; 596 } 597 } 598 599 out: 600 ubifs_scan_destroy(sleb); 601 return err; 602 603 out_inc_seq: 604 /* We may have moved at least some nodes so allow for races with TNC */ 605 c->gced_lnum = lnum; 606 smp_wmb(); 607 c->gc_seq += 1; 608 smp_wmb(); 609 goto out; 610 } 611 612 /** 613 * ubifs_garbage_collect - UBIFS garbage collector. 614 * @c: UBIFS file-system description object 615 * @anyway: do GC even if there are free LEBs 616 * 617 * This function does out-of-place garbage collection. The return codes are: 618 * o positive LEB number if the LEB has been freed and may be used; 619 * o %-EAGAIN if the caller has to run commit; 620 * o %-ENOSPC if GC failed to make any progress; 621 * o other negative error codes in case of other errors. 622 * 623 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 624 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 625 * commit may be required. But commit cannot be run from inside GC, because the 626 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 627 * And this error code means that the caller has to run commit, and re-run GC 628 * if there is still no free space. 629 * 630 * There are many reasons why this function may return %-EAGAIN: 631 * o the log is full and there is no space to write an LEB reference for 632 * @c->gc_lnum; 633 * o the journal is too large and exceeds size limitations; 634 * o GC moved indexing LEBs, but they can be used only after the commit; 635 * o the shrinker fails to find clean znodes to free and requests the commit; 636 * o etc. 637 * 638 * Note, if the file-system is close to be full, this function may return 639 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 640 * the function. E.g., this happens if the limits on the journal size are too 641 * tough and GC writes too much to the journal before an LEB is freed. This 642 * might also mean that the journal is too large, and the TNC becomes to big, 643 * so that the shrinker is constantly called, finds not clean znodes to free, 644 * and requests commit. Well, this may also happen if the journal is all right, 645 * but another kernel process consumes too much memory. Anyway, infinite 646 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 647 */ 648 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 649 { 650 int i, err, ret, min_space = c->dead_wm; 651 struct ubifs_lprops lp; 652 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 653 654 ubifs_assert_cmt_locked(c); 655 ubifs_assert(!c->ro_media && !c->ro_mount); 656 657 if (ubifs_gc_should_commit(c)) 658 return -EAGAIN; 659 660 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 661 662 if (c->ro_error) { 663 ret = -EROFS; 664 goto out_unlock; 665 } 666 667 /* We expect the write-buffer to be empty on entry */ 668 ubifs_assert(!wbuf->used); 669 670 for (i = 0; ; i++) { 671 int space_before = c->leb_size - wbuf->offs - wbuf->used; 672 int space_after; 673 674 cond_resched(); 675 676 /* Give the commit an opportunity to run */ 677 if (ubifs_gc_should_commit(c)) { 678 ret = -EAGAIN; 679 break; 680 } 681 682 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 683 /* 684 * We've done enough iterations. Indexing LEBs were 685 * moved and will be available after the commit. 686 */ 687 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 688 ubifs_commit_required(c); 689 ret = -EAGAIN; 690 break; 691 } 692 693 if (i > HARD_LEBS_LIMIT) { 694 /* 695 * We've moved too many LEBs and have not made 696 * progress, give up. 697 */ 698 dbg_gc("hard limit, -ENOSPC"); 699 ret = -ENOSPC; 700 break; 701 } 702 703 /* 704 * Empty and freeable LEBs can turn up while we waited for 705 * the wbuf lock, or while we have been running GC. In that 706 * case, we should just return one of those instead of 707 * continuing to GC dirty LEBs. Hence we request 708 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 709 */ 710 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 711 if (ret) { 712 if (ret == -ENOSPC) 713 dbg_gc("no more dirty LEBs"); 714 break; 715 } 716 717 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 718 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 719 min_space); 720 721 space_before = c->leb_size - wbuf->offs - wbuf->used; 722 if (wbuf->lnum == -1) 723 space_before = 0; 724 725 ret = ubifs_garbage_collect_leb(c, &lp); 726 if (ret < 0) { 727 if (ret == -EAGAIN) { 728 /* 729 * This is not error, so we have to return the 730 * LEB to lprops. But if 'ubifs_return_leb()' 731 * fails, its failure code is propagated to the 732 * caller instead of the original '-EAGAIN'. 733 */ 734 err = ubifs_return_leb(c, lp.lnum); 735 if (err) 736 ret = err; 737 break; 738 } 739 goto out; 740 } 741 742 if (ret == LEB_FREED) { 743 /* An LEB has been freed and is ready for use */ 744 dbg_gc("LEB %d freed, return", lp.lnum); 745 ret = lp.lnum; 746 break; 747 } 748 749 if (ret == LEB_FREED_IDX) { 750 /* 751 * This was an indexing LEB and it cannot be 752 * immediately used. And instead of requesting the 753 * commit straight away, we try to garbage collect some 754 * more. 755 */ 756 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 757 continue; 758 } 759 760 ubifs_assert(ret == LEB_RETAINED); 761 space_after = c->leb_size - wbuf->offs - wbuf->used; 762 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 763 space_after - space_before); 764 765 if (space_after > space_before) { 766 /* GC makes progress, keep working */ 767 min_space >>= 1; 768 if (min_space < c->dead_wm) 769 min_space = c->dead_wm; 770 continue; 771 } 772 773 dbg_gc("did not make progress"); 774 775 /* 776 * GC moved an LEB bud have not done any progress. This means 777 * that the previous GC head LEB contained too few free space 778 * and the LEB which was GC'ed contained only large nodes which 779 * did not fit that space. 780 * 781 * We can do 2 things: 782 * 1. pick another LEB in a hope it'll contain a small node 783 * which will fit the space we have at the end of current GC 784 * head LEB, but there is no guarantee, so we try this out 785 * unless we have already been working for too long; 786 * 2. request an LEB with more dirty space, which will force 787 * 'ubifs_find_dirty_leb()' to start scanning the lprops 788 * table, instead of just picking one from the heap 789 * (previously it already picked the dirtiest LEB). 790 */ 791 if (i < SOFT_LEBS_LIMIT) { 792 dbg_gc("try again"); 793 continue; 794 } 795 796 min_space <<= 1; 797 if (min_space > c->dark_wm) 798 min_space = c->dark_wm; 799 dbg_gc("set min. space to %d", min_space); 800 } 801 802 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 803 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 804 ubifs_commit_required(c); 805 ret = -EAGAIN; 806 } 807 808 err = ubifs_wbuf_sync_nolock(wbuf); 809 if (!err) 810 err = ubifs_leb_unmap(c, c->gc_lnum); 811 if (err) { 812 ret = err; 813 goto out; 814 } 815 out_unlock: 816 mutex_unlock(&wbuf->io_mutex); 817 return ret; 818 819 out: 820 ubifs_assert(ret < 0); 821 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 822 ubifs_wbuf_sync_nolock(wbuf); 823 ubifs_ro_mode(c, ret); 824 mutex_unlock(&wbuf->io_mutex); 825 ubifs_return_leb(c, lp.lnum); 826 return ret; 827 } 828 829 /** 830 * ubifs_gc_start_commit - garbage collection at start of commit. 831 * @c: UBIFS file-system description object 832 * 833 * If a LEB has only dirty and free space, then we may safely unmap it and make 834 * it free. Note, we cannot do this with indexing LEBs because dirty space may 835 * correspond index nodes that are required for recovery. In that case, the 836 * LEB cannot be unmapped until after the next commit. 837 * 838 * This function returns %0 upon success and a negative error code upon failure. 839 */ 840 int ubifs_gc_start_commit(struct ubifs_info *c) 841 { 842 struct ubifs_gced_idx_leb *idx_gc; 843 const struct ubifs_lprops *lp; 844 int err = 0, flags; 845 846 ubifs_get_lprops(c); 847 848 /* 849 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 850 * wbufs are sync'd before this, which is done in 'do_commit()'. 851 */ 852 while (1) { 853 lp = ubifs_fast_find_freeable(c); 854 if (IS_ERR(lp)) { 855 err = PTR_ERR(lp); 856 goto out; 857 } 858 if (!lp) 859 break; 860 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 861 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 862 err = ubifs_leb_unmap(c, lp->lnum); 863 if (err) 864 goto out; 865 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 866 if (IS_ERR(lp)) { 867 err = PTR_ERR(lp); 868 goto out; 869 } 870 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 871 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 872 } 873 874 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 875 list_for_each_entry(idx_gc, &c->idx_gc, list) 876 idx_gc->unmap = 1; 877 878 /* Record index freeable LEBs for unmapping after commit */ 879 while (1) { 880 lp = ubifs_fast_find_frdi_idx(c); 881 if (IS_ERR(lp)) { 882 err = PTR_ERR(lp); 883 goto out; 884 } 885 if (!lp) 886 break; 887 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 888 if (!idx_gc) { 889 err = -ENOMEM; 890 goto out; 891 } 892 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 893 ubifs_assert(lp->flags & LPROPS_INDEX); 894 /* Don't release the LEB until after the next commit */ 895 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 896 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 897 if (IS_ERR(lp)) { 898 err = PTR_ERR(lp); 899 kfree(idx_gc); 900 goto out; 901 } 902 ubifs_assert(lp->flags & LPROPS_TAKEN); 903 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 904 idx_gc->lnum = lp->lnum; 905 idx_gc->unmap = 1; 906 list_add(&idx_gc->list, &c->idx_gc); 907 } 908 out: 909 ubifs_release_lprops(c); 910 return err; 911 } 912 913 /** 914 * ubifs_gc_end_commit - garbage collection at end of commit. 915 * @c: UBIFS file-system description object 916 * 917 * This function completes out-of-place garbage collection of index LEBs. 918 */ 919 int ubifs_gc_end_commit(struct ubifs_info *c) 920 { 921 struct ubifs_gced_idx_leb *idx_gc, *tmp; 922 struct ubifs_wbuf *wbuf; 923 int err = 0; 924 925 wbuf = &c->jheads[GCHD].wbuf; 926 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 927 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 928 if (idx_gc->unmap) { 929 dbg_gc("LEB %d", idx_gc->lnum); 930 err = ubifs_leb_unmap(c, idx_gc->lnum); 931 if (err) 932 goto out; 933 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 934 LPROPS_NC, 0, LPROPS_TAKEN, -1); 935 if (err) 936 goto out; 937 list_del(&idx_gc->list); 938 kfree(idx_gc); 939 } 940 out: 941 mutex_unlock(&wbuf->io_mutex); 942 return err; 943 } 944 945 /** 946 * ubifs_destroy_idx_gc - destroy idx_gc list. 947 * @c: UBIFS file-system description object 948 * 949 * This function destroys the @c->idx_gc list. It is called when unmounting 950 * so locks are not needed. Returns zero in case of success and a negative 951 * error code in case of failure. 952 */ 953 void ubifs_destroy_idx_gc(struct ubifs_info *c) 954 { 955 while (!list_empty(&c->idx_gc)) { 956 struct ubifs_gced_idx_leb *idx_gc; 957 958 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 959 list); 960 c->idx_gc_cnt -= 1; 961 list_del(&idx_gc->list); 962 kfree(idx_gc); 963 } 964 } 965 966 /** 967 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 968 * @c: UBIFS file-system description object 969 * 970 * Called during start commit so locks are not needed. 971 */ 972 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 973 { 974 struct ubifs_gced_idx_leb *idx_gc; 975 int lnum; 976 977 if (list_empty(&c->idx_gc)) 978 return -ENOSPC; 979 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 980 lnum = idx_gc->lnum; 981 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 982 list_del(&idx_gc->list); 983 kfree(idx_gc); 984 return lnum; 985 } 986