1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements garbage collection. The procedure for garbage collection 13 * is different depending on whether a LEB as an index LEB (contains index 14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 16 * nodes to the journal, at which point the garbage-collected LEB is free to be 17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 19 * to be reused. Garbage collection will cause the number of dirty index nodes 20 * to grow, however sufficient space is reserved for the index to ensure the 21 * commit will never run out of space. 22 * 23 * Notes about dead watermark. At current UBIFS implementation we assume that 24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 27 * Garbage Collector has to synchronize the GC head's write buffer before 28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 29 * actually reclaim even very small pieces of dirty space by garbage collecting 30 * enough dirty LEBs, but we do not bother doing this at this implementation. 31 * 32 * Notes about dark watermark. The results of GC work depends on how big are 33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 35 * have to waste large pieces of free space at the end of LEB B, because nodes 36 * from LEB A would not fit. And the worst situation is when all nodes are of 37 * maximum size. So dark watermark is the amount of free + dirty space in LEB 38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so 41 * good, and GC takes extra care when moving them. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/pagemap.h> 46 #include <linux/list_sort.h> 47 #include "ubifs.h" 48 49 /* 50 * GC may need to move more than one LEB to make progress. The below constants 51 * define "soft" and "hard" limits on the number of LEBs the garbage collector 52 * may move. 53 */ 54 #define SOFT_LEBS_LIMIT 4 55 #define HARD_LEBS_LIMIT 32 56 57 /** 58 * switch_gc_head - switch the garbage collection journal head. 59 * @c: UBIFS file-system description object 60 * 61 * This function switch the GC head to the next LEB which is reserved in 62 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 63 * and other negative error code in case of failures. 64 */ 65 static int switch_gc_head(struct ubifs_info *c) 66 { 67 int err, gc_lnum = c->gc_lnum; 68 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 69 70 ubifs_assert(c, gc_lnum != -1); 71 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 72 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 73 c->leb_size - wbuf->offs - wbuf->used); 74 75 err = ubifs_wbuf_sync_nolock(wbuf); 76 if (err) 77 return err; 78 79 /* 80 * The GC write-buffer was synchronized, we may safely unmap 81 * 'c->gc_lnum'. 82 */ 83 err = ubifs_leb_unmap(c, gc_lnum); 84 if (err) 85 return err; 86 87 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 88 if (err) 89 return err; 90 91 c->gc_lnum = -1; 92 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 93 return err; 94 } 95 96 /** 97 * data_nodes_cmp - compare 2 data nodes. 98 * @priv: UBIFS file-system description object 99 * @a: first data node 100 * @b: second data node 101 * 102 * This function compares data nodes @a and @b. Returns %1 if @a has greater 103 * inode or block number, and %-1 otherwise. 104 */ 105 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 106 { 107 ino_t inuma, inumb; 108 struct ubifs_info *c = priv; 109 struct ubifs_scan_node *sa, *sb; 110 111 cond_resched(); 112 if (a == b) 113 return 0; 114 115 sa = list_entry(a, struct ubifs_scan_node, list); 116 sb = list_entry(b, struct ubifs_scan_node, list); 117 118 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY); 119 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY); 120 ubifs_assert(c, sa->type == UBIFS_DATA_NODE); 121 ubifs_assert(c, sb->type == UBIFS_DATA_NODE); 122 123 inuma = key_inum(c, &sa->key); 124 inumb = key_inum(c, &sb->key); 125 126 if (inuma == inumb) { 127 unsigned int blka = key_block(c, &sa->key); 128 unsigned int blkb = key_block(c, &sb->key); 129 130 if (blka <= blkb) 131 return -1; 132 } else if (inuma <= inumb) 133 return -1; 134 135 return 1; 136 } 137 138 /* 139 * nondata_nodes_cmp - compare 2 non-data nodes. 140 * @priv: UBIFS file-system description object 141 * @a: first node 142 * @a: second node 143 * 144 * This function compares nodes @a and @b. It makes sure that inode nodes go 145 * first and sorted by length in descending order. Directory entry nodes go 146 * after inode nodes and are sorted in ascending hash valuer order. 147 */ 148 static int nondata_nodes_cmp(void *priv, struct list_head *a, 149 struct list_head *b) 150 { 151 ino_t inuma, inumb; 152 struct ubifs_info *c = priv; 153 struct ubifs_scan_node *sa, *sb; 154 155 cond_resched(); 156 if (a == b) 157 return 0; 158 159 sa = list_entry(a, struct ubifs_scan_node, list); 160 sb = list_entry(b, struct ubifs_scan_node, list); 161 162 ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY && 163 key_type(c, &sb->key) != UBIFS_DATA_KEY); 164 ubifs_assert(c, sa->type != UBIFS_DATA_NODE && 165 sb->type != UBIFS_DATA_NODE); 166 167 /* Inodes go before directory entries */ 168 if (sa->type == UBIFS_INO_NODE) { 169 if (sb->type == UBIFS_INO_NODE) 170 return sb->len - sa->len; 171 return -1; 172 } 173 if (sb->type == UBIFS_INO_NODE) 174 return 1; 175 176 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY || 177 key_type(c, &sa->key) == UBIFS_XENT_KEY); 178 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY || 179 key_type(c, &sb->key) == UBIFS_XENT_KEY); 180 ubifs_assert(c, sa->type == UBIFS_DENT_NODE || 181 sa->type == UBIFS_XENT_NODE); 182 ubifs_assert(c, sb->type == UBIFS_DENT_NODE || 183 sb->type == UBIFS_XENT_NODE); 184 185 inuma = key_inum(c, &sa->key); 186 inumb = key_inum(c, &sb->key); 187 188 if (inuma == inumb) { 189 uint32_t hasha = key_hash(c, &sa->key); 190 uint32_t hashb = key_hash(c, &sb->key); 191 192 if (hasha <= hashb) 193 return -1; 194 } else if (inuma <= inumb) 195 return -1; 196 197 return 1; 198 } 199 200 /** 201 * sort_nodes - sort nodes for GC. 202 * @c: UBIFS file-system description object 203 * @sleb: describes nodes to sort and contains the result on exit 204 * @nondata: contains non-data nodes on exit 205 * @min: minimum node size is returned here 206 * 207 * This function sorts the list of inodes to garbage collect. First of all, it 208 * kills obsolete nodes and separates data and non-data nodes to the 209 * @sleb->nodes and @nondata lists correspondingly. 210 * 211 * Data nodes are then sorted in block number order - this is important for 212 * bulk-read; data nodes with lower inode number go before data nodes with 213 * higher inode number, and data nodes with lower block number go before data 214 * nodes with higher block number; 215 * 216 * Non-data nodes are sorted as follows. 217 * o First go inode nodes - they are sorted in descending length order. 218 * o Then go directory entry nodes - they are sorted in hash order, which 219 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 220 * inode number go before direntry nodes with higher parent inode number, 221 * and direntry nodes with lower name hash values go before direntry nodes 222 * with higher name hash values. 223 * 224 * This function returns zero in case of success and a negative error code in 225 * case of failure. 226 */ 227 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 228 struct list_head *nondata, int *min) 229 { 230 int err; 231 struct ubifs_scan_node *snod, *tmp; 232 233 *min = INT_MAX; 234 235 /* Separate data nodes and non-data nodes */ 236 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 237 ubifs_assert(c, snod->type == UBIFS_INO_NODE || 238 snod->type == UBIFS_DATA_NODE || 239 snod->type == UBIFS_DENT_NODE || 240 snod->type == UBIFS_XENT_NODE || 241 snod->type == UBIFS_TRUN_NODE || 242 snod->type == UBIFS_AUTH_NODE); 243 244 if (snod->type != UBIFS_INO_NODE && 245 snod->type != UBIFS_DATA_NODE && 246 snod->type != UBIFS_DENT_NODE && 247 snod->type != UBIFS_XENT_NODE) { 248 /* Probably truncation node, zap it */ 249 list_del(&snod->list); 250 kfree(snod); 251 continue; 252 } 253 254 ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY || 255 key_type(c, &snod->key) == UBIFS_INO_KEY || 256 key_type(c, &snod->key) == UBIFS_DENT_KEY || 257 key_type(c, &snod->key) == UBIFS_XENT_KEY); 258 259 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 260 snod->offs, 0); 261 if (err < 0) 262 return err; 263 264 if (!err) { 265 /* The node is obsolete, remove it from the list */ 266 list_del(&snod->list); 267 kfree(snod); 268 continue; 269 } 270 271 if (snod->len < *min) 272 *min = snod->len; 273 274 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 275 list_move_tail(&snod->list, nondata); 276 } 277 278 /* Sort data and non-data nodes */ 279 list_sort(c, &sleb->nodes, &data_nodes_cmp); 280 list_sort(c, nondata, &nondata_nodes_cmp); 281 282 err = dbg_check_data_nodes_order(c, &sleb->nodes); 283 if (err) 284 return err; 285 err = dbg_check_nondata_nodes_order(c, nondata); 286 if (err) 287 return err; 288 return 0; 289 } 290 291 /** 292 * move_node - move a node. 293 * @c: UBIFS file-system description object 294 * @sleb: describes the LEB to move nodes from 295 * @snod: the mode to move 296 * @wbuf: write-buffer to move node to 297 * 298 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 299 * destroys @snod. Returns zero in case of success and a negative error code in 300 * case of failure. 301 */ 302 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 303 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 304 { 305 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 306 307 cond_resched(); 308 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 309 if (err) 310 return err; 311 312 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 313 snod->offs, new_lnum, new_offs, 314 snod->len); 315 list_del(&snod->list); 316 kfree(snod); 317 return err; 318 } 319 320 /** 321 * move_nodes - move nodes. 322 * @c: UBIFS file-system description object 323 * @sleb: describes the LEB to move nodes from 324 * 325 * This function moves valid nodes from data LEB described by @sleb to the GC 326 * journal head. This function returns zero in case of success, %-EAGAIN if 327 * commit is required, and other negative error codes in case of other 328 * failures. 329 */ 330 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 331 { 332 int err, min; 333 LIST_HEAD(nondata); 334 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 335 336 if (wbuf->lnum == -1) { 337 /* 338 * The GC journal head is not set, because it is the first GC 339 * invocation since mount. 340 */ 341 err = switch_gc_head(c); 342 if (err) 343 return err; 344 } 345 346 err = sort_nodes(c, sleb, &nondata, &min); 347 if (err) 348 goto out; 349 350 /* Write nodes to their new location. Use the first-fit strategy */ 351 while (1) { 352 int avail, moved = 0; 353 struct ubifs_scan_node *snod, *tmp; 354 355 /* Move data nodes */ 356 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 357 avail = c->leb_size - wbuf->offs - wbuf->used - 358 ubifs_auth_node_sz(c); 359 if (snod->len > avail) 360 /* 361 * Do not skip data nodes in order to optimize 362 * bulk-read. 363 */ 364 break; 365 366 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 367 snod->node, snod->len); 368 if (err) 369 goto out; 370 371 err = move_node(c, sleb, snod, wbuf); 372 if (err) 373 goto out; 374 moved = 1; 375 } 376 377 /* Move non-data nodes */ 378 list_for_each_entry_safe(snod, tmp, &nondata, list) { 379 avail = c->leb_size - wbuf->offs - wbuf->used - 380 ubifs_auth_node_sz(c); 381 if (avail < min) 382 break; 383 384 if (snod->len > avail) { 385 /* 386 * Keep going only if this is an inode with 387 * some data. Otherwise stop and switch the GC 388 * head. IOW, we assume that data-less inode 389 * nodes and direntry nodes are roughly of the 390 * same size. 391 */ 392 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 393 snod->len == UBIFS_INO_NODE_SZ) 394 break; 395 continue; 396 } 397 398 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 399 snod->node, snod->len); 400 if (err) 401 goto out; 402 403 err = move_node(c, sleb, snod, wbuf); 404 if (err) 405 goto out; 406 moved = 1; 407 } 408 409 if (ubifs_authenticated(c) && moved) { 410 struct ubifs_auth_node *auth; 411 412 auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS); 413 if (!auth) { 414 err = -ENOMEM; 415 goto out; 416 } 417 418 err = ubifs_prepare_auth_node(c, auth, 419 c->jheads[GCHD].log_hash); 420 if (err) { 421 kfree(auth); 422 goto out; 423 } 424 425 err = ubifs_wbuf_write_nolock(wbuf, auth, 426 ubifs_auth_node_sz(c)); 427 if (err) { 428 kfree(auth); 429 goto out; 430 } 431 432 ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c)); 433 } 434 435 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 436 break; 437 438 /* 439 * Waste the rest of the space in the LEB and switch to the 440 * next LEB. 441 */ 442 err = switch_gc_head(c); 443 if (err) 444 goto out; 445 } 446 447 return 0; 448 449 out: 450 list_splice_tail(&nondata, &sleb->nodes); 451 return err; 452 } 453 454 /** 455 * gc_sync_wbufs - sync write-buffers for GC. 456 * @c: UBIFS file-system description object 457 * 458 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 459 * be in a write-buffer instead. That is, a node could be written to a 460 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 461 * erased before the write-buffer is sync'd and then there is an unclean 462 * unmount, then an existing node is lost. To avoid this, we sync all 463 * write-buffers. 464 * 465 * This function returns %0 on success or a negative error code on failure. 466 */ 467 static int gc_sync_wbufs(struct ubifs_info *c) 468 { 469 int err, i; 470 471 for (i = 0; i < c->jhead_cnt; i++) { 472 if (i == GCHD) 473 continue; 474 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 475 if (err) 476 return err; 477 } 478 return 0; 479 } 480 481 /** 482 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 483 * @c: UBIFS file-system description object 484 * @lp: describes the LEB to garbage collect 485 * 486 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 487 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 488 * required, and other negative error codes in case of failures. 489 */ 490 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 491 { 492 struct ubifs_scan_leb *sleb; 493 struct ubifs_scan_node *snod; 494 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 495 int err = 0, lnum = lp->lnum; 496 497 ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 498 c->need_recovery); 499 ubifs_assert(c, c->gc_lnum != lnum); 500 ubifs_assert(c, wbuf->lnum != lnum); 501 502 if (lp->free + lp->dirty == c->leb_size) { 503 /* Special case - a free LEB */ 504 dbg_gc("LEB %d is free, return it", lp->lnum); 505 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 506 507 if (lp->free != c->leb_size) { 508 /* 509 * Write buffers must be sync'd before unmapping 510 * freeable LEBs, because one of them may contain data 511 * which obsoletes something in 'lp->lnum'. 512 */ 513 err = gc_sync_wbufs(c); 514 if (err) 515 return err; 516 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 517 0, 0, 0, 0); 518 if (err) 519 return err; 520 } 521 err = ubifs_leb_unmap(c, lp->lnum); 522 if (err) 523 return err; 524 525 if (c->gc_lnum == -1) { 526 c->gc_lnum = lnum; 527 return LEB_RETAINED; 528 } 529 530 return LEB_FREED; 531 } 532 533 /* 534 * We scan the entire LEB even though we only really need to scan up to 535 * (c->leb_size - lp->free). 536 */ 537 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 538 if (IS_ERR(sleb)) 539 return PTR_ERR(sleb); 540 541 ubifs_assert(c, !list_empty(&sleb->nodes)); 542 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 543 544 if (snod->type == UBIFS_IDX_NODE) { 545 struct ubifs_gced_idx_leb *idx_gc; 546 547 dbg_gc("indexing LEB %d (free %d, dirty %d)", 548 lnum, lp->free, lp->dirty); 549 list_for_each_entry(snod, &sleb->nodes, list) { 550 struct ubifs_idx_node *idx = snod->node; 551 int level = le16_to_cpu(idx->level); 552 553 ubifs_assert(c, snod->type == UBIFS_IDX_NODE); 554 key_read(c, ubifs_idx_key(c, idx), &snod->key); 555 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 556 snod->offs); 557 if (err) 558 goto out; 559 } 560 561 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 562 if (!idx_gc) { 563 err = -ENOMEM; 564 goto out; 565 } 566 567 idx_gc->lnum = lnum; 568 idx_gc->unmap = 0; 569 list_add(&idx_gc->list, &c->idx_gc); 570 571 /* 572 * Don't release the LEB until after the next commit, because 573 * it may contain data which is needed for recovery. So 574 * although we freed this LEB, it will become usable only after 575 * the commit. 576 */ 577 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 578 LPROPS_INDEX, 1); 579 if (err) 580 goto out; 581 err = LEB_FREED_IDX; 582 } else { 583 dbg_gc("data LEB %d (free %d, dirty %d)", 584 lnum, lp->free, lp->dirty); 585 586 err = move_nodes(c, sleb); 587 if (err) 588 goto out_inc_seq; 589 590 err = gc_sync_wbufs(c); 591 if (err) 592 goto out_inc_seq; 593 594 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 595 if (err) 596 goto out_inc_seq; 597 598 /* Allow for races with TNC */ 599 c->gced_lnum = lnum; 600 smp_wmb(); 601 c->gc_seq += 1; 602 smp_wmb(); 603 604 if (c->gc_lnum == -1) { 605 c->gc_lnum = lnum; 606 err = LEB_RETAINED; 607 } else { 608 err = ubifs_wbuf_sync_nolock(wbuf); 609 if (err) 610 goto out; 611 612 err = ubifs_leb_unmap(c, lnum); 613 if (err) 614 goto out; 615 616 err = LEB_FREED; 617 } 618 } 619 620 out: 621 ubifs_scan_destroy(sleb); 622 return err; 623 624 out_inc_seq: 625 /* We may have moved at least some nodes so allow for races with TNC */ 626 c->gced_lnum = lnum; 627 smp_wmb(); 628 c->gc_seq += 1; 629 smp_wmb(); 630 goto out; 631 } 632 633 /** 634 * ubifs_garbage_collect - UBIFS garbage collector. 635 * @c: UBIFS file-system description object 636 * @anyway: do GC even if there are free LEBs 637 * 638 * This function does out-of-place garbage collection. The return codes are: 639 * o positive LEB number if the LEB has been freed and may be used; 640 * o %-EAGAIN if the caller has to run commit; 641 * o %-ENOSPC if GC failed to make any progress; 642 * o other negative error codes in case of other errors. 643 * 644 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 645 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 646 * commit may be required. But commit cannot be run from inside GC, because the 647 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 648 * And this error code means that the caller has to run commit, and re-run GC 649 * if there is still no free space. 650 * 651 * There are many reasons why this function may return %-EAGAIN: 652 * o the log is full and there is no space to write an LEB reference for 653 * @c->gc_lnum; 654 * o the journal is too large and exceeds size limitations; 655 * o GC moved indexing LEBs, but they can be used only after the commit; 656 * o the shrinker fails to find clean znodes to free and requests the commit; 657 * o etc. 658 * 659 * Note, if the file-system is close to be full, this function may return 660 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 661 * the function. E.g., this happens if the limits on the journal size are too 662 * tough and GC writes too much to the journal before an LEB is freed. This 663 * might also mean that the journal is too large, and the TNC becomes to big, 664 * so that the shrinker is constantly called, finds not clean znodes to free, 665 * and requests commit. Well, this may also happen if the journal is all right, 666 * but another kernel process consumes too much memory. Anyway, infinite 667 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 668 */ 669 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 670 { 671 int i, err, ret, min_space = c->dead_wm; 672 struct ubifs_lprops lp; 673 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 674 675 ubifs_assert_cmt_locked(c); 676 ubifs_assert(c, !c->ro_media && !c->ro_mount); 677 678 if (ubifs_gc_should_commit(c)) 679 return -EAGAIN; 680 681 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 682 683 if (c->ro_error) { 684 ret = -EROFS; 685 goto out_unlock; 686 } 687 688 /* We expect the write-buffer to be empty on entry */ 689 ubifs_assert(c, !wbuf->used); 690 691 for (i = 0; ; i++) { 692 int space_before, space_after; 693 694 cond_resched(); 695 696 /* Give the commit an opportunity to run */ 697 if (ubifs_gc_should_commit(c)) { 698 ret = -EAGAIN; 699 break; 700 } 701 702 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 703 /* 704 * We've done enough iterations. Indexing LEBs were 705 * moved and will be available after the commit. 706 */ 707 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 708 ubifs_commit_required(c); 709 ret = -EAGAIN; 710 break; 711 } 712 713 if (i > HARD_LEBS_LIMIT) { 714 /* 715 * We've moved too many LEBs and have not made 716 * progress, give up. 717 */ 718 dbg_gc("hard limit, -ENOSPC"); 719 ret = -ENOSPC; 720 break; 721 } 722 723 /* 724 * Empty and freeable LEBs can turn up while we waited for 725 * the wbuf lock, or while we have been running GC. In that 726 * case, we should just return one of those instead of 727 * continuing to GC dirty LEBs. Hence we request 728 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 729 */ 730 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 731 if (ret) { 732 if (ret == -ENOSPC) 733 dbg_gc("no more dirty LEBs"); 734 break; 735 } 736 737 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 738 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 739 min_space); 740 741 space_before = c->leb_size - wbuf->offs - wbuf->used; 742 if (wbuf->lnum == -1) 743 space_before = 0; 744 745 ret = ubifs_garbage_collect_leb(c, &lp); 746 if (ret < 0) { 747 if (ret == -EAGAIN) { 748 /* 749 * This is not error, so we have to return the 750 * LEB to lprops. But if 'ubifs_return_leb()' 751 * fails, its failure code is propagated to the 752 * caller instead of the original '-EAGAIN'. 753 */ 754 err = ubifs_return_leb(c, lp.lnum); 755 if (err) 756 ret = err; 757 break; 758 } 759 goto out; 760 } 761 762 if (ret == LEB_FREED) { 763 /* An LEB has been freed and is ready for use */ 764 dbg_gc("LEB %d freed, return", lp.lnum); 765 ret = lp.lnum; 766 break; 767 } 768 769 if (ret == LEB_FREED_IDX) { 770 /* 771 * This was an indexing LEB and it cannot be 772 * immediately used. And instead of requesting the 773 * commit straight away, we try to garbage collect some 774 * more. 775 */ 776 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 777 continue; 778 } 779 780 ubifs_assert(c, ret == LEB_RETAINED); 781 space_after = c->leb_size - wbuf->offs - wbuf->used; 782 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 783 space_after - space_before); 784 785 if (space_after > space_before) { 786 /* GC makes progress, keep working */ 787 min_space >>= 1; 788 if (min_space < c->dead_wm) 789 min_space = c->dead_wm; 790 continue; 791 } 792 793 dbg_gc("did not make progress"); 794 795 /* 796 * GC moved an LEB bud have not done any progress. This means 797 * that the previous GC head LEB contained too few free space 798 * and the LEB which was GC'ed contained only large nodes which 799 * did not fit that space. 800 * 801 * We can do 2 things: 802 * 1. pick another LEB in a hope it'll contain a small node 803 * which will fit the space we have at the end of current GC 804 * head LEB, but there is no guarantee, so we try this out 805 * unless we have already been working for too long; 806 * 2. request an LEB with more dirty space, which will force 807 * 'ubifs_find_dirty_leb()' to start scanning the lprops 808 * table, instead of just picking one from the heap 809 * (previously it already picked the dirtiest LEB). 810 */ 811 if (i < SOFT_LEBS_LIMIT) { 812 dbg_gc("try again"); 813 continue; 814 } 815 816 min_space <<= 1; 817 if (min_space > c->dark_wm) 818 min_space = c->dark_wm; 819 dbg_gc("set min. space to %d", min_space); 820 } 821 822 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 823 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 824 ubifs_commit_required(c); 825 ret = -EAGAIN; 826 } 827 828 err = ubifs_wbuf_sync_nolock(wbuf); 829 if (!err) 830 err = ubifs_leb_unmap(c, c->gc_lnum); 831 if (err) { 832 ret = err; 833 goto out; 834 } 835 out_unlock: 836 mutex_unlock(&wbuf->io_mutex); 837 return ret; 838 839 out: 840 ubifs_assert(c, ret < 0); 841 ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN); 842 ubifs_wbuf_sync_nolock(wbuf); 843 ubifs_ro_mode(c, ret); 844 mutex_unlock(&wbuf->io_mutex); 845 ubifs_return_leb(c, lp.lnum); 846 return ret; 847 } 848 849 /** 850 * ubifs_gc_start_commit - garbage collection at start of commit. 851 * @c: UBIFS file-system description object 852 * 853 * If a LEB has only dirty and free space, then we may safely unmap it and make 854 * it free. Note, we cannot do this with indexing LEBs because dirty space may 855 * correspond index nodes that are required for recovery. In that case, the 856 * LEB cannot be unmapped until after the next commit. 857 * 858 * This function returns %0 upon success and a negative error code upon failure. 859 */ 860 int ubifs_gc_start_commit(struct ubifs_info *c) 861 { 862 struct ubifs_gced_idx_leb *idx_gc; 863 const struct ubifs_lprops *lp; 864 int err = 0, flags; 865 866 ubifs_get_lprops(c); 867 868 /* 869 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 870 * wbufs are sync'd before this, which is done in 'do_commit()'. 871 */ 872 while (1) { 873 lp = ubifs_fast_find_freeable(c); 874 if (!lp) 875 break; 876 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 877 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 878 err = ubifs_leb_unmap(c, lp->lnum); 879 if (err) 880 goto out; 881 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 882 if (IS_ERR(lp)) { 883 err = PTR_ERR(lp); 884 goto out; 885 } 886 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 887 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 888 } 889 890 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 891 list_for_each_entry(idx_gc, &c->idx_gc, list) 892 idx_gc->unmap = 1; 893 894 /* Record index freeable LEBs for unmapping after commit */ 895 while (1) { 896 lp = ubifs_fast_find_frdi_idx(c); 897 if (IS_ERR(lp)) { 898 err = PTR_ERR(lp); 899 goto out; 900 } 901 if (!lp) 902 break; 903 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 904 if (!idx_gc) { 905 err = -ENOMEM; 906 goto out; 907 } 908 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 909 ubifs_assert(c, lp->flags & LPROPS_INDEX); 910 /* Don't release the LEB until after the next commit */ 911 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 912 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 913 if (IS_ERR(lp)) { 914 err = PTR_ERR(lp); 915 kfree(idx_gc); 916 goto out; 917 } 918 ubifs_assert(c, lp->flags & LPROPS_TAKEN); 919 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 920 idx_gc->lnum = lp->lnum; 921 idx_gc->unmap = 1; 922 list_add(&idx_gc->list, &c->idx_gc); 923 } 924 out: 925 ubifs_release_lprops(c); 926 return err; 927 } 928 929 /** 930 * ubifs_gc_end_commit - garbage collection at end of commit. 931 * @c: UBIFS file-system description object 932 * 933 * This function completes out-of-place garbage collection of index LEBs. 934 */ 935 int ubifs_gc_end_commit(struct ubifs_info *c) 936 { 937 struct ubifs_gced_idx_leb *idx_gc, *tmp; 938 struct ubifs_wbuf *wbuf; 939 int err = 0; 940 941 wbuf = &c->jheads[GCHD].wbuf; 942 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 943 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 944 if (idx_gc->unmap) { 945 dbg_gc("LEB %d", idx_gc->lnum); 946 err = ubifs_leb_unmap(c, idx_gc->lnum); 947 if (err) 948 goto out; 949 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 950 LPROPS_NC, 0, LPROPS_TAKEN, -1); 951 if (err) 952 goto out; 953 list_del(&idx_gc->list); 954 kfree(idx_gc); 955 } 956 out: 957 mutex_unlock(&wbuf->io_mutex); 958 return err; 959 } 960 961 /** 962 * ubifs_destroy_idx_gc - destroy idx_gc list. 963 * @c: UBIFS file-system description object 964 * 965 * This function destroys the @c->idx_gc list. It is called when unmounting 966 * so locks are not needed. Returns zero in case of success and a negative 967 * error code in case of failure. 968 */ 969 void ubifs_destroy_idx_gc(struct ubifs_info *c) 970 { 971 while (!list_empty(&c->idx_gc)) { 972 struct ubifs_gced_idx_leb *idx_gc; 973 974 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 975 list); 976 c->idx_gc_cnt -= 1; 977 list_del(&idx_gc->list); 978 kfree(idx_gc); 979 } 980 } 981 982 /** 983 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 984 * @c: UBIFS file-system description object 985 * 986 * Called during start commit so locks are not needed. 987 */ 988 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 989 { 990 struct ubifs_gced_idx_leb *idx_gc; 991 int lnum; 992 993 if (list_empty(&c->idx_gc)) 994 return -ENOSPC; 995 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 996 lnum = idx_gc->lnum; 997 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 998 list_del(&idx_gc->list); 999 kfree(idx_gc); 1000 return lnum; 1001 } 1002