1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements garbage collection. The procedure for garbage collection 25 * is different depending on whether a LEB as an index LEB (contains index 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 28 * nodes to the journal, at which point the garbage-collected LEB is free to be 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 31 * to be reused. Garbage collection will cause the number of dirty index nodes 32 * to grow, however sufficient space is reserved for the index to ensure the 33 * commit will never run out of space. 34 * 35 * Notes about dead watermark. At current UBIFS implementation we assume that 36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 39 * Garbage Collector has to synchronize the GC head's write buffer before 40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 41 * actually reclaim even very small pieces of dirty space by garbage collecting 42 * enough dirty LEBs, but we do not bother doing this at this implementation. 43 * 44 * Notes about dark watermark. The results of GC work depends on how big are 45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 47 * have to waste large pieces of free space at the end of LEB B, because nodes 48 * from LEB A would not fit. And the worst situation is when all nodes are of 49 * maximum size. So dark watermark is the amount of free + dirty space in LEB 50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so 53 * good, and GC takes extra care when moving them. 54 */ 55 56 #include <linux/pagemap.h> 57 #include "ubifs.h" 58 59 /* 60 * GC may need to move more than one LEB to make progress. The below constants 61 * define "soft" and "hard" limits on the number of LEBs the garbage collector 62 * may move. 63 */ 64 #define SOFT_LEBS_LIMIT 4 65 #define HARD_LEBS_LIMIT 32 66 67 /** 68 * switch_gc_head - switch the garbage collection journal head. 69 * @c: UBIFS file-system description object 70 * @buf: buffer to write 71 * @len: length of the buffer to write 72 * @lnum: LEB number written is returned here 73 * @offs: offset written is returned here 74 * 75 * This function switch the GC head to the next LEB which is reserved in 76 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 77 * and other negative error code in case of failures. 78 */ 79 static int switch_gc_head(struct ubifs_info *c) 80 { 81 int err, gc_lnum = c->gc_lnum; 82 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 83 84 ubifs_assert(gc_lnum != -1); 85 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 86 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 87 c->leb_size - wbuf->offs - wbuf->used); 88 89 err = ubifs_wbuf_sync_nolock(wbuf); 90 if (err) 91 return err; 92 93 /* 94 * The GC write-buffer was synchronized, we may safely unmap 95 * 'c->gc_lnum'. 96 */ 97 err = ubifs_leb_unmap(c, gc_lnum); 98 if (err) 99 return err; 100 101 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 102 if (err) 103 return err; 104 105 c->gc_lnum = -1; 106 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM); 107 return err; 108 } 109 110 /** 111 * list_sort - sort a list. 112 * @priv: private data, passed to @cmp 113 * @head: the list to sort 114 * @cmp: the elements comparison function 115 * 116 * This function has been implemented by Mark J Roberts <mjr@znex.org>. It 117 * implements "merge sort" which has O(nlog(n)) complexity. The list is sorted 118 * in ascending order. 119 * 120 * The comparison function @cmp is supposed to return a negative value if @a is 121 * than @b, and a positive value if @a is greater than @b. If @a and @b are 122 * equivalent, then it does not matter what this function returns. 123 */ 124 static void list_sort(void *priv, struct list_head *head, 125 int (*cmp)(void *priv, struct list_head *a, 126 struct list_head *b)) 127 { 128 struct list_head *p, *q, *e, *list, *tail, *oldhead; 129 int insize, nmerges, psize, qsize, i; 130 131 if (list_empty(head)) 132 return; 133 134 list = head->next; 135 list_del(head); 136 insize = 1; 137 for (;;) { 138 p = oldhead = list; 139 list = tail = NULL; 140 nmerges = 0; 141 142 while (p) { 143 nmerges++; 144 q = p; 145 psize = 0; 146 for (i = 0; i < insize; i++) { 147 psize++; 148 q = q->next == oldhead ? NULL : q->next; 149 if (!q) 150 break; 151 } 152 153 qsize = insize; 154 while (psize > 0 || (qsize > 0 && q)) { 155 if (!psize) { 156 e = q; 157 q = q->next; 158 qsize--; 159 if (q == oldhead) 160 q = NULL; 161 } else if (!qsize || !q) { 162 e = p; 163 p = p->next; 164 psize--; 165 if (p == oldhead) 166 p = NULL; 167 } else if (cmp(priv, p, q) <= 0) { 168 e = p; 169 p = p->next; 170 psize--; 171 if (p == oldhead) 172 p = NULL; 173 } else { 174 e = q; 175 q = q->next; 176 qsize--; 177 if (q == oldhead) 178 q = NULL; 179 } 180 if (tail) 181 tail->next = e; 182 else 183 list = e; 184 e->prev = tail; 185 tail = e; 186 } 187 p = q; 188 } 189 190 tail->next = list; 191 list->prev = tail; 192 193 if (nmerges <= 1) 194 break; 195 196 insize *= 2; 197 } 198 199 head->next = list; 200 head->prev = list->prev; 201 list->prev->next = head; 202 list->prev = head; 203 } 204 205 /** 206 * data_nodes_cmp - compare 2 data nodes. 207 * @priv: UBIFS file-system description object 208 * @a: first data node 209 * @a: second data node 210 * 211 * This function compares data nodes @a and @b. Returns %1 if @a has greater 212 * inode or block number, and %-1 otherwise. 213 */ 214 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 215 { 216 ino_t inuma, inumb; 217 struct ubifs_info *c = priv; 218 struct ubifs_scan_node *sa, *sb; 219 220 cond_resched(); 221 sa = list_entry(a, struct ubifs_scan_node, list); 222 sb = list_entry(b, struct ubifs_scan_node, list); 223 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); 224 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); 225 226 inuma = key_inum(c, &sa->key); 227 inumb = key_inum(c, &sb->key); 228 229 if (inuma == inumb) { 230 unsigned int blka = key_block(c, &sa->key); 231 unsigned int blkb = key_block(c, &sb->key); 232 233 if (blka <= blkb) 234 return -1; 235 } else if (inuma <= inumb) 236 return -1; 237 238 return 1; 239 } 240 241 /* 242 * nondata_nodes_cmp - compare 2 non-data nodes. 243 * @priv: UBIFS file-system description object 244 * @a: first node 245 * @a: second node 246 * 247 * This function compares nodes @a and @b. It makes sure that inode nodes go 248 * first and sorted by length in descending order. Directory entry nodes go 249 * after inode nodes and are sorted in ascending hash valuer order. 250 */ 251 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 252 { 253 int typea, typeb; 254 ino_t inuma, inumb; 255 struct ubifs_info *c = priv; 256 struct ubifs_scan_node *sa, *sb; 257 258 cond_resched(); 259 sa = list_entry(a, struct ubifs_scan_node, list); 260 sb = list_entry(b, struct ubifs_scan_node, list); 261 typea = key_type(c, &sa->key); 262 typeb = key_type(c, &sb->key); 263 ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY); 264 265 /* Inodes go before directory entries */ 266 if (typea == UBIFS_INO_KEY) { 267 if (typeb == UBIFS_INO_KEY) 268 return sb->len - sa->len; 269 return -1; 270 } 271 if (typeb == UBIFS_INO_KEY) 272 return 1; 273 274 ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY); 275 inuma = key_inum(c, &sa->key); 276 inumb = key_inum(c, &sb->key); 277 278 if (inuma == inumb) { 279 uint32_t hasha = key_hash(c, &sa->key); 280 uint32_t hashb = key_hash(c, &sb->key); 281 282 if (hasha <= hashb) 283 return -1; 284 } else if (inuma <= inumb) 285 return -1; 286 287 return 1; 288 } 289 290 /** 291 * sort_nodes - sort nodes for GC. 292 * @c: UBIFS file-system description object 293 * @sleb: describes nodes to sort and contains the result on exit 294 * @nondata: contains non-data nodes on exit 295 * @min: minimum node size is returned here 296 * 297 * This function sorts the list of inodes to garbage collect. First of all, it 298 * kills obsolete nodes and separates data and non-data nodes to the 299 * @sleb->nodes and @nondata lists correspondingly. 300 * 301 * Data nodes are then sorted in block number order - this is important for 302 * bulk-read; data nodes with lower inode number go before data nodes with 303 * higher inode number, and data nodes with lower block number go before data 304 * nodes with higher block number; 305 * 306 * Non-data nodes are sorted as follows. 307 * o First go inode nodes - they are sorted in descending length order. 308 * o Then go directory entry nodes - they are sorted in hash order, which 309 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 310 * inode number go before direntry nodes with higher parent inode number, 311 * and direntry nodes with lower name hash values go before direntry nodes 312 * with higher name hash values. 313 * 314 * This function returns zero in case of success and a negative error code in 315 * case of failure. 316 */ 317 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 318 struct list_head *nondata, int *min) 319 { 320 struct ubifs_scan_node *snod, *tmp; 321 322 *min = INT_MAX; 323 324 /* Separate data nodes and non-data nodes */ 325 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 326 int err; 327 328 ubifs_assert(snod->type != UBIFS_IDX_NODE); 329 ubifs_assert(snod->type != UBIFS_REF_NODE); 330 ubifs_assert(snod->type != UBIFS_CS_NODE); 331 332 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 333 snod->offs, 0); 334 if (err < 0) 335 return err; 336 337 if (!err) { 338 /* The node is obsolete, remove it from the list */ 339 list_del(&snod->list); 340 kfree(snod); 341 continue; 342 } 343 344 if (snod->len < *min) 345 *min = snod->len; 346 347 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 348 list_move_tail(&snod->list, nondata); 349 } 350 351 /* Sort data and non-data nodes */ 352 list_sort(c, &sleb->nodes, &data_nodes_cmp); 353 list_sort(c, nondata, &nondata_nodes_cmp); 354 return 0; 355 } 356 357 /** 358 * move_node - move a node. 359 * @c: UBIFS file-system description object 360 * @sleb: describes the LEB to move nodes from 361 * @snod: the mode to move 362 * @wbuf: write-buffer to move node to 363 * 364 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 365 * destroys @snod. Returns zero in case of success and a negative error code in 366 * case of failure. 367 */ 368 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 369 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 370 { 371 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 372 373 cond_resched(); 374 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 375 if (err) 376 return err; 377 378 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 379 snod->offs, new_lnum, new_offs, 380 snod->len); 381 list_del(&snod->list); 382 kfree(snod); 383 return err; 384 } 385 386 /** 387 * move_nodes - move nodes. 388 * @c: UBIFS file-system description object 389 * @sleb: describes the LEB to move nodes from 390 * 391 * This function moves valid nodes from data LEB described by @sleb to the GC 392 * journal head. This function returns zero in case of success, %-EAGAIN if 393 * commit is required, and other negative error codes in case of other 394 * failures. 395 */ 396 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 397 { 398 int err, min; 399 LIST_HEAD(nondata); 400 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 401 402 if (wbuf->lnum == -1) { 403 /* 404 * The GC journal head is not set, because it is the first GC 405 * invocation since mount. 406 */ 407 err = switch_gc_head(c); 408 if (err) 409 return err; 410 } 411 412 err = sort_nodes(c, sleb, &nondata, &min); 413 if (err) 414 goto out; 415 416 /* Write nodes to their new location. Use the first-fit strategy */ 417 while (1) { 418 int avail; 419 struct ubifs_scan_node *snod, *tmp; 420 421 /* Move data nodes */ 422 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 423 avail = c->leb_size - wbuf->offs - wbuf->used; 424 if (snod->len > avail) 425 /* 426 * Do not skip data nodes in order to optimize 427 * bulk-read. 428 */ 429 break; 430 431 err = move_node(c, sleb, snod, wbuf); 432 if (err) 433 goto out; 434 } 435 436 /* Move non-data nodes */ 437 list_for_each_entry_safe(snod, tmp, &nondata, list) { 438 avail = c->leb_size - wbuf->offs - wbuf->used; 439 if (avail < min) 440 break; 441 442 if (snod->len > avail) { 443 /* 444 * Keep going only if this is an inode with 445 * some data. Otherwise stop and switch the GC 446 * head. IOW, we assume that data-less inode 447 * nodes and direntry nodes are roughly of the 448 * same size. 449 */ 450 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 451 snod->len == UBIFS_INO_NODE_SZ) 452 break; 453 continue; 454 } 455 456 err = move_node(c, sleb, snod, wbuf); 457 if (err) 458 goto out; 459 } 460 461 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 462 break; 463 464 /* 465 * Waste the rest of the space in the LEB and switch to the 466 * next LEB. 467 */ 468 err = switch_gc_head(c); 469 if (err) 470 goto out; 471 } 472 473 return 0; 474 475 out: 476 list_splice_tail(&nondata, &sleb->nodes); 477 return err; 478 } 479 480 /** 481 * gc_sync_wbufs - sync write-buffers for GC. 482 * @c: UBIFS file-system description object 483 * 484 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 485 * be in a write-buffer instead. That is, a node could be written to a 486 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 487 * erased before the write-buffer is sync'd and then there is an unclean 488 * unmount, then an existing node is lost. To avoid this, we sync all 489 * write-buffers. 490 * 491 * This function returns %0 on success or a negative error code on failure. 492 */ 493 static int gc_sync_wbufs(struct ubifs_info *c) 494 { 495 int err, i; 496 497 for (i = 0; i < c->jhead_cnt; i++) { 498 if (i == GCHD) 499 continue; 500 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 501 if (err) 502 return err; 503 } 504 return 0; 505 } 506 507 /** 508 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 509 * @c: UBIFS file-system description object 510 * @lp: describes the LEB to garbage collect 511 * 512 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 513 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 514 * required, and other negative error codes in case of failures. 515 */ 516 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 517 { 518 struct ubifs_scan_leb *sleb; 519 struct ubifs_scan_node *snod; 520 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 521 int err = 0, lnum = lp->lnum; 522 523 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 524 c->need_recovery); 525 ubifs_assert(c->gc_lnum != lnum); 526 ubifs_assert(wbuf->lnum != lnum); 527 528 /* 529 * We scan the entire LEB even though we only really need to scan up to 530 * (c->leb_size - lp->free). 531 */ 532 sleb = ubifs_scan(c, lnum, 0, c->sbuf); 533 if (IS_ERR(sleb)) 534 return PTR_ERR(sleb); 535 536 ubifs_assert(!list_empty(&sleb->nodes)); 537 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 538 539 if (snod->type == UBIFS_IDX_NODE) { 540 struct ubifs_gced_idx_leb *idx_gc; 541 542 dbg_gc("indexing LEB %d (free %d, dirty %d)", 543 lnum, lp->free, lp->dirty); 544 list_for_each_entry(snod, &sleb->nodes, list) { 545 struct ubifs_idx_node *idx = snod->node; 546 int level = le16_to_cpu(idx->level); 547 548 ubifs_assert(snod->type == UBIFS_IDX_NODE); 549 key_read(c, ubifs_idx_key(c, idx), &snod->key); 550 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 551 snod->offs); 552 if (err) 553 goto out; 554 } 555 556 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 557 if (!idx_gc) { 558 err = -ENOMEM; 559 goto out; 560 } 561 562 idx_gc->lnum = lnum; 563 idx_gc->unmap = 0; 564 list_add(&idx_gc->list, &c->idx_gc); 565 566 /* 567 * Don't release the LEB until after the next commit, because 568 * it may contain data which is needed for recovery. So 569 * although we freed this LEB, it will become usable only after 570 * the commit. 571 */ 572 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 573 LPROPS_INDEX, 1); 574 if (err) 575 goto out; 576 err = LEB_FREED_IDX; 577 } else { 578 dbg_gc("data LEB %d (free %d, dirty %d)", 579 lnum, lp->free, lp->dirty); 580 581 err = move_nodes(c, sleb); 582 if (err) 583 goto out_inc_seq; 584 585 err = gc_sync_wbufs(c); 586 if (err) 587 goto out_inc_seq; 588 589 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 590 if (err) 591 goto out_inc_seq; 592 593 /* Allow for races with TNC */ 594 c->gced_lnum = lnum; 595 smp_wmb(); 596 c->gc_seq += 1; 597 smp_wmb(); 598 599 if (c->gc_lnum == -1) { 600 c->gc_lnum = lnum; 601 err = LEB_RETAINED; 602 } else { 603 err = ubifs_wbuf_sync_nolock(wbuf); 604 if (err) 605 goto out; 606 607 err = ubifs_leb_unmap(c, lnum); 608 if (err) 609 goto out; 610 611 err = LEB_FREED; 612 } 613 } 614 615 out: 616 ubifs_scan_destroy(sleb); 617 return err; 618 619 out_inc_seq: 620 /* We may have moved at least some nodes so allow for races with TNC */ 621 c->gced_lnum = lnum; 622 smp_wmb(); 623 c->gc_seq += 1; 624 smp_wmb(); 625 goto out; 626 } 627 628 /** 629 * ubifs_garbage_collect - UBIFS garbage collector. 630 * @c: UBIFS file-system description object 631 * @anyway: do GC even if there are free LEBs 632 * 633 * This function does out-of-place garbage collection. The return codes are: 634 * o positive LEB number if the LEB has been freed and may be used; 635 * o %-EAGAIN if the caller has to run commit; 636 * o %-ENOSPC if GC failed to make any progress; 637 * o other negative error codes in case of other errors. 638 * 639 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 640 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 641 * commit may be required. But commit cannot be run from inside GC, because the 642 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 643 * And this error code means that the caller has to run commit, and re-run GC 644 * if there is still no free space. 645 * 646 * There are many reasons why this function may return %-EAGAIN: 647 * o the log is full and there is no space to write an LEB reference for 648 * @c->gc_lnum; 649 * o the journal is too large and exceeds size limitations; 650 * o GC moved indexing LEBs, but they can be used only after the commit; 651 * o the shrinker fails to find clean znodes to free and requests the commit; 652 * o etc. 653 * 654 * Note, if the file-system is close to be full, this function may return 655 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 656 * the function. E.g., this happens if the limits on the journal size are too 657 * tough and GC writes too much to the journal before an LEB is freed. This 658 * might also mean that the journal is too large, and the TNC becomes to big, 659 * so that the shrinker is constantly called, finds not clean znodes to free, 660 * and requests commit. Well, this may also happen if the journal is all right, 661 * but another kernel process consumes too much memory. Anyway, infinite 662 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 663 */ 664 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 665 { 666 int i, err, ret, min_space = c->dead_wm; 667 struct ubifs_lprops lp; 668 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 669 670 ubifs_assert_cmt_locked(c); 671 672 if (ubifs_gc_should_commit(c)) 673 return -EAGAIN; 674 675 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 676 677 if (c->ro_media) { 678 ret = -EROFS; 679 goto out_unlock; 680 } 681 682 /* We expect the write-buffer to be empty on entry */ 683 ubifs_assert(!wbuf->used); 684 685 for (i = 0; ; i++) { 686 int space_before = c->leb_size - wbuf->offs - wbuf->used; 687 int space_after; 688 689 cond_resched(); 690 691 /* Give the commit an opportunity to run */ 692 if (ubifs_gc_should_commit(c)) { 693 ret = -EAGAIN; 694 break; 695 } 696 697 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 698 /* 699 * We've done enough iterations. Indexing LEBs were 700 * moved and will be available after the commit. 701 */ 702 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 703 ubifs_commit_required(c); 704 ret = -EAGAIN; 705 break; 706 } 707 708 if (i > HARD_LEBS_LIMIT) { 709 /* 710 * We've moved too many LEBs and have not made 711 * progress, give up. 712 */ 713 dbg_gc("hard limit, -ENOSPC"); 714 ret = -ENOSPC; 715 break; 716 } 717 718 /* 719 * Empty and freeable LEBs can turn up while we waited for 720 * the wbuf lock, or while we have been running GC. In that 721 * case, we should just return one of those instead of 722 * continuing to GC dirty LEBs. Hence we request 723 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 724 */ 725 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 726 if (ret) { 727 if (ret == -ENOSPC) 728 dbg_gc("no more dirty LEBs"); 729 break; 730 } 731 732 dbg_gc("found LEB %d: free %d, dirty %d, sum %d " 733 "(min. space %d)", lp.lnum, lp.free, lp.dirty, 734 lp.free + lp.dirty, min_space); 735 736 if (lp.free + lp.dirty == c->leb_size) { 737 /* An empty LEB was returned */ 738 dbg_gc("LEB %d is free, return it", lp.lnum); 739 /* 740 * ubifs_find_dirty_leb() doesn't return freeable index 741 * LEBs. 742 */ 743 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 744 if (lp.free != c->leb_size) { 745 /* 746 * Write buffers must be sync'd before 747 * unmapping freeable LEBs, because one of them 748 * may contain data which obsoletes something 749 * in 'lp.pnum'. 750 */ 751 ret = gc_sync_wbufs(c); 752 if (ret) 753 goto out; 754 ret = ubifs_change_one_lp(c, lp.lnum, 755 c->leb_size, 0, 0, 0, 756 0); 757 if (ret) 758 goto out; 759 } 760 ret = ubifs_leb_unmap(c, lp.lnum); 761 if (ret) 762 goto out; 763 ret = lp.lnum; 764 break; 765 } 766 767 space_before = c->leb_size - wbuf->offs - wbuf->used; 768 if (wbuf->lnum == -1) 769 space_before = 0; 770 771 ret = ubifs_garbage_collect_leb(c, &lp); 772 if (ret < 0) { 773 if (ret == -EAGAIN || ret == -ENOSPC) { 774 /* 775 * These codes are not errors, so we have to 776 * return the LEB to lprops. But if the 777 * 'ubifs_return_leb()' function fails, its 778 * failure code is propagated to the caller 779 * instead of the original '-EAGAIN' or 780 * '-ENOSPC'. 781 */ 782 err = ubifs_return_leb(c, lp.lnum); 783 if (err) 784 ret = err; 785 break; 786 } 787 goto out; 788 } 789 790 if (ret == LEB_FREED) { 791 /* An LEB has been freed and is ready for use */ 792 dbg_gc("LEB %d freed, return", lp.lnum); 793 ret = lp.lnum; 794 break; 795 } 796 797 if (ret == LEB_FREED_IDX) { 798 /* 799 * This was an indexing LEB and it cannot be 800 * immediately used. And instead of requesting the 801 * commit straight away, we try to garbage collect some 802 * more. 803 */ 804 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 805 continue; 806 } 807 808 ubifs_assert(ret == LEB_RETAINED); 809 space_after = c->leb_size - wbuf->offs - wbuf->used; 810 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 811 space_after - space_before); 812 813 if (space_after > space_before) { 814 /* GC makes progress, keep working */ 815 min_space >>= 1; 816 if (min_space < c->dead_wm) 817 min_space = c->dead_wm; 818 continue; 819 } 820 821 dbg_gc("did not make progress"); 822 823 /* 824 * GC moved an LEB bud have not done any progress. This means 825 * that the previous GC head LEB contained too few free space 826 * and the LEB which was GC'ed contained only large nodes which 827 * did not fit that space. 828 * 829 * We can do 2 things: 830 * 1. pick another LEB in a hope it'll contain a small node 831 * which will fit the space we have at the end of current GC 832 * head LEB, but there is no guarantee, so we try this out 833 * unless we have already been working for too long; 834 * 2. request an LEB with more dirty space, which will force 835 * 'ubifs_find_dirty_leb()' to start scanning the lprops 836 * table, instead of just picking one from the heap 837 * (previously it already picked the dirtiest LEB). 838 */ 839 if (i < SOFT_LEBS_LIMIT) { 840 dbg_gc("try again"); 841 continue; 842 } 843 844 min_space <<= 1; 845 if (min_space > c->dark_wm) 846 min_space = c->dark_wm; 847 dbg_gc("set min. space to %d", min_space); 848 } 849 850 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 851 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 852 ubifs_commit_required(c); 853 ret = -EAGAIN; 854 } 855 856 err = ubifs_wbuf_sync_nolock(wbuf); 857 if (!err) 858 err = ubifs_leb_unmap(c, c->gc_lnum); 859 if (err) { 860 ret = err; 861 goto out; 862 } 863 out_unlock: 864 mutex_unlock(&wbuf->io_mutex); 865 return ret; 866 867 out: 868 ubifs_assert(ret < 0); 869 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 870 ubifs_ro_mode(c, ret); 871 ubifs_wbuf_sync_nolock(wbuf); 872 mutex_unlock(&wbuf->io_mutex); 873 ubifs_return_leb(c, lp.lnum); 874 return ret; 875 } 876 877 /** 878 * ubifs_gc_start_commit - garbage collection at start of commit. 879 * @c: UBIFS file-system description object 880 * 881 * If a LEB has only dirty and free space, then we may safely unmap it and make 882 * it free. Note, we cannot do this with indexing LEBs because dirty space may 883 * correspond index nodes that are required for recovery. In that case, the 884 * LEB cannot be unmapped until after the next commit. 885 * 886 * This function returns %0 upon success and a negative error code upon failure. 887 */ 888 int ubifs_gc_start_commit(struct ubifs_info *c) 889 { 890 struct ubifs_gced_idx_leb *idx_gc; 891 const struct ubifs_lprops *lp; 892 int err = 0, flags; 893 894 ubifs_get_lprops(c); 895 896 /* 897 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 898 * wbufs are sync'd before this, which is done in 'do_commit()'. 899 */ 900 while (1) { 901 lp = ubifs_fast_find_freeable(c); 902 if (IS_ERR(lp)) { 903 err = PTR_ERR(lp); 904 goto out; 905 } 906 if (!lp) 907 break; 908 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 909 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 910 err = ubifs_leb_unmap(c, lp->lnum); 911 if (err) 912 goto out; 913 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 914 if (IS_ERR(lp)) { 915 err = PTR_ERR(lp); 916 goto out; 917 } 918 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 919 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 920 } 921 922 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 923 list_for_each_entry(idx_gc, &c->idx_gc, list) 924 idx_gc->unmap = 1; 925 926 /* Record index freeable LEBs for unmapping after commit */ 927 while (1) { 928 lp = ubifs_fast_find_frdi_idx(c); 929 if (IS_ERR(lp)) { 930 err = PTR_ERR(lp); 931 goto out; 932 } 933 if (!lp) 934 break; 935 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 936 if (!idx_gc) { 937 err = -ENOMEM; 938 goto out; 939 } 940 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 941 ubifs_assert(lp->flags & LPROPS_INDEX); 942 /* Don't release the LEB until after the next commit */ 943 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 944 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 945 if (IS_ERR(lp)) { 946 err = PTR_ERR(lp); 947 kfree(idx_gc); 948 goto out; 949 } 950 ubifs_assert(lp->flags & LPROPS_TAKEN); 951 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 952 idx_gc->lnum = lp->lnum; 953 idx_gc->unmap = 1; 954 list_add(&idx_gc->list, &c->idx_gc); 955 } 956 out: 957 ubifs_release_lprops(c); 958 return err; 959 } 960 961 /** 962 * ubifs_gc_end_commit - garbage collection at end of commit. 963 * @c: UBIFS file-system description object 964 * 965 * This function completes out-of-place garbage collection of index LEBs. 966 */ 967 int ubifs_gc_end_commit(struct ubifs_info *c) 968 { 969 struct ubifs_gced_idx_leb *idx_gc, *tmp; 970 struct ubifs_wbuf *wbuf; 971 int err = 0; 972 973 wbuf = &c->jheads[GCHD].wbuf; 974 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 975 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 976 if (idx_gc->unmap) { 977 dbg_gc("LEB %d", idx_gc->lnum); 978 err = ubifs_leb_unmap(c, idx_gc->lnum); 979 if (err) 980 goto out; 981 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 982 LPROPS_NC, 0, LPROPS_TAKEN, -1); 983 if (err) 984 goto out; 985 list_del(&idx_gc->list); 986 kfree(idx_gc); 987 } 988 out: 989 mutex_unlock(&wbuf->io_mutex); 990 return err; 991 } 992 993 /** 994 * ubifs_destroy_idx_gc - destroy idx_gc list. 995 * @c: UBIFS file-system description object 996 * 997 * This function destroys the @c->idx_gc list. It is called when unmounting 998 * so locks are not needed. Returns zero in case of success and a negative 999 * error code in case of failure. 1000 */ 1001 void ubifs_destroy_idx_gc(struct ubifs_info *c) 1002 { 1003 while (!list_empty(&c->idx_gc)) { 1004 struct ubifs_gced_idx_leb *idx_gc; 1005 1006 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 1007 list); 1008 c->idx_gc_cnt -= 1; 1009 list_del(&idx_gc->list); 1010 kfree(idx_gc); 1011 } 1012 } 1013 1014 /** 1015 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 1016 * @c: UBIFS file-system description object 1017 * 1018 * Called during start commit so locks are not needed. 1019 */ 1020 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 1021 { 1022 struct ubifs_gced_idx_leb *idx_gc; 1023 int lnum; 1024 1025 if (list_empty(&c->idx_gc)) 1026 return -ENOSPC; 1027 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 1028 lnum = idx_gc->lnum; 1029 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 1030 list_del(&idx_gc->list); 1031 kfree(idx_gc); 1032 return lnum; 1033 } 1034