xref: /openbmc/linux/fs/ubifs/gc.c (revision 82ced6fd)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/pagemap.h>
57 #include "ubifs.h"
58 
59 /*
60  * GC may need to move more than one LEB to make progress. The below constants
61  * define "soft" and "hard" limits on the number of LEBs the garbage collector
62  * may move.
63  */
64 #define SOFT_LEBS_LIMIT 4
65 #define HARD_LEBS_LIMIT 32
66 
67 /**
68  * switch_gc_head - switch the garbage collection journal head.
69  * @c: UBIFS file-system description object
70  * @buf: buffer to write
71  * @len: length of the buffer to write
72  * @lnum: LEB number written is returned here
73  * @offs: offset written is returned here
74  *
75  * This function switch the GC head to the next LEB which is reserved in
76  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
77  * and other negative error code in case of failures.
78  */
79 static int switch_gc_head(struct ubifs_info *c)
80 {
81 	int err, gc_lnum = c->gc_lnum;
82 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
83 
84 	ubifs_assert(gc_lnum != -1);
85 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
86 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
87 	       c->leb_size - wbuf->offs - wbuf->used);
88 
89 	err = ubifs_wbuf_sync_nolock(wbuf);
90 	if (err)
91 		return err;
92 
93 	/*
94 	 * The GC write-buffer was synchronized, we may safely unmap
95 	 * 'c->gc_lnum'.
96 	 */
97 	err = ubifs_leb_unmap(c, gc_lnum);
98 	if (err)
99 		return err;
100 
101 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
102 	if (err)
103 		return err;
104 
105 	c->gc_lnum = -1;
106 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
107 	return err;
108 }
109 
110 /**
111  * list_sort - sort a list.
112  * @priv: private data, passed to @cmp
113  * @head: the list to sort
114  * @cmp: the elements comparison function
115  *
116  * This function has been implemented by Mark J Roberts <mjr@znex.org>. It
117  * implements "merge sort" which has O(nlog(n)) complexity. The list is sorted
118  * in ascending order.
119  *
120  * The comparison function @cmp is supposed to return a negative value if @a is
121  * than @b, and a positive value if @a is greater than @b. If @a and @b are
122  * equivalent, then it does not matter what this function returns.
123  */
124 static void list_sort(void *priv, struct list_head *head,
125 		      int (*cmp)(void *priv, struct list_head *a,
126 				 struct list_head *b))
127 {
128 	struct list_head *p, *q, *e, *list, *tail, *oldhead;
129 	int insize, nmerges, psize, qsize, i;
130 
131 	if (list_empty(head))
132 		return;
133 
134 	list = head->next;
135 	list_del(head);
136 	insize = 1;
137 	for (;;) {
138 		p = oldhead = list;
139 		list = tail = NULL;
140 		nmerges = 0;
141 
142 		while (p) {
143 			nmerges++;
144 			q = p;
145 			psize = 0;
146 			for (i = 0; i < insize; i++) {
147 				psize++;
148 				q = q->next == oldhead ? NULL : q->next;
149 				if (!q)
150 					break;
151 			}
152 
153 			qsize = insize;
154 			while (psize > 0 || (qsize > 0 && q)) {
155 				if (!psize) {
156 					e = q;
157 					q = q->next;
158 					qsize--;
159 					if (q == oldhead)
160 						q = NULL;
161 				} else if (!qsize || !q) {
162 					e = p;
163 					p = p->next;
164 					psize--;
165 					if (p == oldhead)
166 						p = NULL;
167 				} else if (cmp(priv, p, q) <= 0) {
168 					e = p;
169 					p = p->next;
170 					psize--;
171 					if (p == oldhead)
172 						p = NULL;
173 				} else {
174 					e = q;
175 					q = q->next;
176 					qsize--;
177 					if (q == oldhead)
178 						q = NULL;
179 				}
180 				if (tail)
181 					tail->next = e;
182 				else
183 					list = e;
184 				e->prev = tail;
185 				tail = e;
186 			}
187 			p = q;
188 		}
189 
190 		tail->next = list;
191 		list->prev = tail;
192 
193 		if (nmerges <= 1)
194 			break;
195 
196 		insize *= 2;
197 	}
198 
199 	head->next = list;
200 	head->prev = list->prev;
201 	list->prev->next = head;
202 	list->prev = head;
203 }
204 
205 /**
206  * data_nodes_cmp - compare 2 data nodes.
207  * @priv: UBIFS file-system description object
208  * @a: first data node
209  * @a: second data node
210  *
211  * This function compares data nodes @a and @b. Returns %1 if @a has greater
212  * inode or block number, and %-1 otherwise.
213  */
214 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
215 {
216 	ino_t inuma, inumb;
217 	struct ubifs_info *c = priv;
218 	struct ubifs_scan_node *sa, *sb;
219 
220 	cond_resched();
221 	sa = list_entry(a, struct ubifs_scan_node, list);
222 	sb = list_entry(b, struct ubifs_scan_node, list);
223 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
224 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
225 
226 	inuma = key_inum(c, &sa->key);
227 	inumb = key_inum(c, &sb->key);
228 
229 	if (inuma == inumb) {
230 		unsigned int blka = key_block(c, &sa->key);
231 		unsigned int blkb = key_block(c, &sb->key);
232 
233 		if (blka <= blkb)
234 			return -1;
235 	} else if (inuma <= inumb)
236 		return -1;
237 
238 	return 1;
239 }
240 
241 /*
242  * nondata_nodes_cmp - compare 2 non-data nodes.
243  * @priv: UBIFS file-system description object
244  * @a: first node
245  * @a: second node
246  *
247  * This function compares nodes @a and @b. It makes sure that inode nodes go
248  * first and sorted by length in descending order. Directory entry nodes go
249  * after inode nodes and are sorted in ascending hash valuer order.
250  */
251 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
252 {
253 	int typea, typeb;
254 	ino_t inuma, inumb;
255 	struct ubifs_info *c = priv;
256 	struct ubifs_scan_node *sa, *sb;
257 
258 	cond_resched();
259 	sa = list_entry(a, struct ubifs_scan_node, list);
260 	sb = list_entry(b, struct ubifs_scan_node, list);
261 	typea = key_type(c, &sa->key);
262 	typeb = key_type(c, &sb->key);
263 	ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY);
264 
265 	/* Inodes go before directory entries */
266 	if (typea == UBIFS_INO_KEY) {
267 		if (typeb == UBIFS_INO_KEY)
268 			return sb->len - sa->len;
269 		return -1;
270 	}
271 	if (typeb == UBIFS_INO_KEY)
272 		return 1;
273 
274 	ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY);
275 	inuma = key_inum(c, &sa->key);
276 	inumb = key_inum(c, &sb->key);
277 
278 	if (inuma == inumb) {
279 		uint32_t hasha = key_hash(c, &sa->key);
280 		uint32_t hashb = key_hash(c, &sb->key);
281 
282 		if (hasha <= hashb)
283 			return -1;
284 	} else if (inuma <= inumb)
285 		return -1;
286 
287 	return 1;
288 }
289 
290 /**
291  * sort_nodes - sort nodes for GC.
292  * @c: UBIFS file-system description object
293  * @sleb: describes nodes to sort and contains the result on exit
294  * @nondata: contains non-data nodes on exit
295  * @min: minimum node size is returned here
296  *
297  * This function sorts the list of inodes to garbage collect. First of all, it
298  * kills obsolete nodes and separates data and non-data nodes to the
299  * @sleb->nodes and @nondata lists correspondingly.
300  *
301  * Data nodes are then sorted in block number order - this is important for
302  * bulk-read; data nodes with lower inode number go before data nodes with
303  * higher inode number, and data nodes with lower block number go before data
304  * nodes with higher block number;
305  *
306  * Non-data nodes are sorted as follows.
307  *   o First go inode nodes - they are sorted in descending length order.
308  *   o Then go directory entry nodes - they are sorted in hash order, which
309  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
310  *     inode number go before direntry nodes with higher parent inode number,
311  *     and direntry nodes with lower name hash values go before direntry nodes
312  *     with higher name hash values.
313  *
314  * This function returns zero in case of success and a negative error code in
315  * case of failure.
316  */
317 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
318 		      struct list_head *nondata, int *min)
319 {
320 	struct ubifs_scan_node *snod, *tmp;
321 
322 	*min = INT_MAX;
323 
324 	/* Separate data nodes and non-data nodes */
325 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
326 		int err;
327 
328 		ubifs_assert(snod->type != UBIFS_IDX_NODE);
329 		ubifs_assert(snod->type != UBIFS_REF_NODE);
330 		ubifs_assert(snod->type != UBIFS_CS_NODE);
331 
332 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
333 					 snod->offs, 0);
334 		if (err < 0)
335 			return err;
336 
337 		if (!err) {
338 			/* The node is obsolete, remove it from the list */
339 			list_del(&snod->list);
340 			kfree(snod);
341 			continue;
342 		}
343 
344 		if (snod->len < *min)
345 			*min = snod->len;
346 
347 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
348 			list_move_tail(&snod->list, nondata);
349 	}
350 
351 	/* Sort data and non-data nodes */
352 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
353 	list_sort(c, nondata, &nondata_nodes_cmp);
354 	return 0;
355 }
356 
357 /**
358  * move_node - move a node.
359  * @c: UBIFS file-system description object
360  * @sleb: describes the LEB to move nodes from
361  * @snod: the mode to move
362  * @wbuf: write-buffer to move node to
363  *
364  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
365  * destroys @snod. Returns zero in case of success and a negative error code in
366  * case of failure.
367  */
368 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
369 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
370 {
371 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
372 
373 	cond_resched();
374 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
375 	if (err)
376 		return err;
377 
378 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
379 				snod->offs, new_lnum, new_offs,
380 				snod->len);
381 	list_del(&snod->list);
382 	kfree(snod);
383 	return err;
384 }
385 
386 /**
387  * move_nodes - move nodes.
388  * @c: UBIFS file-system description object
389  * @sleb: describes the LEB to move nodes from
390  *
391  * This function moves valid nodes from data LEB described by @sleb to the GC
392  * journal head. This function returns zero in case of success, %-EAGAIN if
393  * commit is required, and other negative error codes in case of other
394  * failures.
395  */
396 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
397 {
398 	int err, min;
399 	LIST_HEAD(nondata);
400 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
401 
402 	if (wbuf->lnum == -1) {
403 		/*
404 		 * The GC journal head is not set, because it is the first GC
405 		 * invocation since mount.
406 		 */
407 		err = switch_gc_head(c);
408 		if (err)
409 			return err;
410 	}
411 
412 	err = sort_nodes(c, sleb, &nondata, &min);
413 	if (err)
414 		goto out;
415 
416 	/* Write nodes to their new location. Use the first-fit strategy */
417 	while (1) {
418 		int avail;
419 		struct ubifs_scan_node *snod, *tmp;
420 
421 		/* Move data nodes */
422 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
423 			avail = c->leb_size - wbuf->offs - wbuf->used;
424 			if  (snod->len > avail)
425 				/*
426 				 * Do not skip data nodes in order to optimize
427 				 * bulk-read.
428 				 */
429 				break;
430 
431 			err = move_node(c, sleb, snod, wbuf);
432 			if (err)
433 				goto out;
434 		}
435 
436 		/* Move non-data nodes */
437 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
438 			avail = c->leb_size - wbuf->offs - wbuf->used;
439 			if (avail < min)
440 				break;
441 
442 			if  (snod->len > avail) {
443 				/*
444 				 * Keep going only if this is an inode with
445 				 * some data. Otherwise stop and switch the GC
446 				 * head. IOW, we assume that data-less inode
447 				 * nodes and direntry nodes are roughly of the
448 				 * same size.
449 				 */
450 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
451 				    snod->len == UBIFS_INO_NODE_SZ)
452 					break;
453 				continue;
454 			}
455 
456 			err = move_node(c, sleb, snod, wbuf);
457 			if (err)
458 				goto out;
459 		}
460 
461 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
462 			break;
463 
464 		/*
465 		 * Waste the rest of the space in the LEB and switch to the
466 		 * next LEB.
467 		 */
468 		err = switch_gc_head(c);
469 		if (err)
470 			goto out;
471 	}
472 
473 	return 0;
474 
475 out:
476 	list_splice_tail(&nondata, &sleb->nodes);
477 	return err;
478 }
479 
480 /**
481  * gc_sync_wbufs - sync write-buffers for GC.
482  * @c: UBIFS file-system description object
483  *
484  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
485  * be in a write-buffer instead. That is, a node could be written to a
486  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
487  * erased before the write-buffer is sync'd and then there is an unclean
488  * unmount, then an existing node is lost. To avoid this, we sync all
489  * write-buffers.
490  *
491  * This function returns %0 on success or a negative error code on failure.
492  */
493 static int gc_sync_wbufs(struct ubifs_info *c)
494 {
495 	int err, i;
496 
497 	for (i = 0; i < c->jhead_cnt; i++) {
498 		if (i == GCHD)
499 			continue;
500 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
501 		if (err)
502 			return err;
503 	}
504 	return 0;
505 }
506 
507 /**
508  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
509  * @c: UBIFS file-system description object
510  * @lp: describes the LEB to garbage collect
511  *
512  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
513  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
514  * required, and other negative error codes in case of failures.
515  */
516 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
517 {
518 	struct ubifs_scan_leb *sleb;
519 	struct ubifs_scan_node *snod;
520 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
521 	int err = 0, lnum = lp->lnum;
522 
523 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
524 		     c->need_recovery);
525 	ubifs_assert(c->gc_lnum != lnum);
526 	ubifs_assert(wbuf->lnum != lnum);
527 
528 	/*
529 	 * We scan the entire LEB even though we only really need to scan up to
530 	 * (c->leb_size - lp->free).
531 	 */
532 	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
533 	if (IS_ERR(sleb))
534 		return PTR_ERR(sleb);
535 
536 	ubifs_assert(!list_empty(&sleb->nodes));
537 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
538 
539 	if (snod->type == UBIFS_IDX_NODE) {
540 		struct ubifs_gced_idx_leb *idx_gc;
541 
542 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
543 		       lnum, lp->free, lp->dirty);
544 		list_for_each_entry(snod, &sleb->nodes, list) {
545 			struct ubifs_idx_node *idx = snod->node;
546 			int level = le16_to_cpu(idx->level);
547 
548 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
549 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
550 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
551 						   snod->offs);
552 			if (err)
553 				goto out;
554 		}
555 
556 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
557 		if (!idx_gc) {
558 			err = -ENOMEM;
559 			goto out;
560 		}
561 
562 		idx_gc->lnum = lnum;
563 		idx_gc->unmap = 0;
564 		list_add(&idx_gc->list, &c->idx_gc);
565 
566 		/*
567 		 * Don't release the LEB until after the next commit, because
568 		 * it may contain data which is needed for recovery. So
569 		 * although we freed this LEB, it will become usable only after
570 		 * the commit.
571 		 */
572 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
573 					  LPROPS_INDEX, 1);
574 		if (err)
575 			goto out;
576 		err = LEB_FREED_IDX;
577 	} else {
578 		dbg_gc("data LEB %d (free %d, dirty %d)",
579 		       lnum, lp->free, lp->dirty);
580 
581 		err = move_nodes(c, sleb);
582 		if (err)
583 			goto out_inc_seq;
584 
585 		err = gc_sync_wbufs(c);
586 		if (err)
587 			goto out_inc_seq;
588 
589 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
590 		if (err)
591 			goto out_inc_seq;
592 
593 		/* Allow for races with TNC */
594 		c->gced_lnum = lnum;
595 		smp_wmb();
596 		c->gc_seq += 1;
597 		smp_wmb();
598 
599 		if (c->gc_lnum == -1) {
600 			c->gc_lnum = lnum;
601 			err = LEB_RETAINED;
602 		} else {
603 			err = ubifs_wbuf_sync_nolock(wbuf);
604 			if (err)
605 				goto out;
606 
607 			err = ubifs_leb_unmap(c, lnum);
608 			if (err)
609 				goto out;
610 
611 			err = LEB_FREED;
612 		}
613 	}
614 
615 out:
616 	ubifs_scan_destroy(sleb);
617 	return err;
618 
619 out_inc_seq:
620 	/* We may have moved at least some nodes so allow for races with TNC */
621 	c->gced_lnum = lnum;
622 	smp_wmb();
623 	c->gc_seq += 1;
624 	smp_wmb();
625 	goto out;
626 }
627 
628 /**
629  * ubifs_garbage_collect - UBIFS garbage collector.
630  * @c: UBIFS file-system description object
631  * @anyway: do GC even if there are free LEBs
632  *
633  * This function does out-of-place garbage collection. The return codes are:
634  *   o positive LEB number if the LEB has been freed and may be used;
635  *   o %-EAGAIN if the caller has to run commit;
636  *   o %-ENOSPC if GC failed to make any progress;
637  *   o other negative error codes in case of other errors.
638  *
639  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
640  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
641  * commit may be required. But commit cannot be run from inside GC, because the
642  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
643  * And this error code means that the caller has to run commit, and re-run GC
644  * if there is still no free space.
645  *
646  * There are many reasons why this function may return %-EAGAIN:
647  * o the log is full and there is no space to write an LEB reference for
648  *   @c->gc_lnum;
649  * o the journal is too large and exceeds size limitations;
650  * o GC moved indexing LEBs, but they can be used only after the commit;
651  * o the shrinker fails to find clean znodes to free and requests the commit;
652  * o etc.
653  *
654  * Note, if the file-system is close to be full, this function may return
655  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
656  * the function. E.g., this happens if the limits on the journal size are too
657  * tough and GC writes too much to the journal before an LEB is freed. This
658  * might also mean that the journal is too large, and the TNC becomes to big,
659  * so that the shrinker is constantly called, finds not clean znodes to free,
660  * and requests commit. Well, this may also happen if the journal is all right,
661  * but another kernel process consumes too much memory. Anyway, infinite
662  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
663  */
664 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
665 {
666 	int i, err, ret, min_space = c->dead_wm;
667 	struct ubifs_lprops lp;
668 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
669 
670 	ubifs_assert_cmt_locked(c);
671 
672 	if (ubifs_gc_should_commit(c))
673 		return -EAGAIN;
674 
675 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
676 
677 	if (c->ro_media) {
678 		ret = -EROFS;
679 		goto out_unlock;
680 	}
681 
682 	/* We expect the write-buffer to be empty on entry */
683 	ubifs_assert(!wbuf->used);
684 
685 	for (i = 0; ; i++) {
686 		int space_before = c->leb_size - wbuf->offs - wbuf->used;
687 		int space_after;
688 
689 		cond_resched();
690 
691 		/* Give the commit an opportunity to run */
692 		if (ubifs_gc_should_commit(c)) {
693 			ret = -EAGAIN;
694 			break;
695 		}
696 
697 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
698 			/*
699 			 * We've done enough iterations. Indexing LEBs were
700 			 * moved and will be available after the commit.
701 			 */
702 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
703 			ubifs_commit_required(c);
704 			ret = -EAGAIN;
705 			break;
706 		}
707 
708 		if (i > HARD_LEBS_LIMIT) {
709 			/*
710 			 * We've moved too many LEBs and have not made
711 			 * progress, give up.
712 			 */
713 			dbg_gc("hard limit, -ENOSPC");
714 			ret = -ENOSPC;
715 			break;
716 		}
717 
718 		/*
719 		 * Empty and freeable LEBs can turn up while we waited for
720 		 * the wbuf lock, or while we have been running GC. In that
721 		 * case, we should just return one of those instead of
722 		 * continuing to GC dirty LEBs. Hence we request
723 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
724 		 */
725 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
726 		if (ret) {
727 			if (ret == -ENOSPC)
728 				dbg_gc("no more dirty LEBs");
729 			break;
730 		}
731 
732 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
733 		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
734 		       lp.free + lp.dirty, min_space);
735 
736 		if (lp.free + lp.dirty == c->leb_size) {
737 			/* An empty LEB was returned */
738 			dbg_gc("LEB %d is free, return it", lp.lnum);
739 			/*
740 			 * ubifs_find_dirty_leb() doesn't return freeable index
741 			 * LEBs.
742 			 */
743 			ubifs_assert(!(lp.flags & LPROPS_INDEX));
744 			if (lp.free != c->leb_size) {
745 				/*
746 				 * Write buffers must be sync'd before
747 				 * unmapping freeable LEBs, because one of them
748 				 * may contain data which obsoletes something
749 				 * in 'lp.pnum'.
750 				 */
751 				ret = gc_sync_wbufs(c);
752 				if (ret)
753 					goto out;
754 				ret = ubifs_change_one_lp(c, lp.lnum,
755 							  c->leb_size, 0, 0, 0,
756 							  0);
757 				if (ret)
758 					goto out;
759 			}
760 			ret = ubifs_leb_unmap(c, lp.lnum);
761 			if (ret)
762 				goto out;
763 			ret = lp.lnum;
764 			break;
765 		}
766 
767 		space_before = c->leb_size - wbuf->offs - wbuf->used;
768 		if (wbuf->lnum == -1)
769 			space_before = 0;
770 
771 		ret = ubifs_garbage_collect_leb(c, &lp);
772 		if (ret < 0) {
773 			if (ret == -EAGAIN || ret == -ENOSPC) {
774 				/*
775 				 * These codes are not errors, so we have to
776 				 * return the LEB to lprops. But if the
777 				 * 'ubifs_return_leb()' function fails, its
778 				 * failure code is propagated to the caller
779 				 * instead of the original '-EAGAIN' or
780 				 * '-ENOSPC'.
781 				 */
782 				err = ubifs_return_leb(c, lp.lnum);
783 				if (err)
784 					ret = err;
785 				break;
786 			}
787 			goto out;
788 		}
789 
790 		if (ret == LEB_FREED) {
791 			/* An LEB has been freed and is ready for use */
792 			dbg_gc("LEB %d freed, return", lp.lnum);
793 			ret = lp.lnum;
794 			break;
795 		}
796 
797 		if (ret == LEB_FREED_IDX) {
798 			/*
799 			 * This was an indexing LEB and it cannot be
800 			 * immediately used. And instead of requesting the
801 			 * commit straight away, we try to garbage collect some
802 			 * more.
803 			 */
804 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
805 			continue;
806 		}
807 
808 		ubifs_assert(ret == LEB_RETAINED);
809 		space_after = c->leb_size - wbuf->offs - wbuf->used;
810 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
811 		       space_after - space_before);
812 
813 		if (space_after > space_before) {
814 			/* GC makes progress, keep working */
815 			min_space >>= 1;
816 			if (min_space < c->dead_wm)
817 				min_space = c->dead_wm;
818 			continue;
819 		}
820 
821 		dbg_gc("did not make progress");
822 
823 		/*
824 		 * GC moved an LEB bud have not done any progress. This means
825 		 * that the previous GC head LEB contained too few free space
826 		 * and the LEB which was GC'ed contained only large nodes which
827 		 * did not fit that space.
828 		 *
829 		 * We can do 2 things:
830 		 * 1. pick another LEB in a hope it'll contain a small node
831 		 *    which will fit the space we have at the end of current GC
832 		 *    head LEB, but there is no guarantee, so we try this out
833 		 *    unless we have already been working for too long;
834 		 * 2. request an LEB with more dirty space, which will force
835 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
836 		 *    table, instead of just picking one from the heap
837 		 *    (previously it already picked the dirtiest LEB).
838 		 */
839 		if (i < SOFT_LEBS_LIMIT) {
840 			dbg_gc("try again");
841 			continue;
842 		}
843 
844 		min_space <<= 1;
845 		if (min_space > c->dark_wm)
846 			min_space = c->dark_wm;
847 		dbg_gc("set min. space to %d", min_space);
848 	}
849 
850 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
851 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
852 		ubifs_commit_required(c);
853 		ret = -EAGAIN;
854 	}
855 
856 	err = ubifs_wbuf_sync_nolock(wbuf);
857 	if (!err)
858 		err = ubifs_leb_unmap(c, c->gc_lnum);
859 	if (err) {
860 		ret = err;
861 		goto out;
862 	}
863 out_unlock:
864 	mutex_unlock(&wbuf->io_mutex);
865 	return ret;
866 
867 out:
868 	ubifs_assert(ret < 0);
869 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
870 	ubifs_ro_mode(c, ret);
871 	ubifs_wbuf_sync_nolock(wbuf);
872 	mutex_unlock(&wbuf->io_mutex);
873 	ubifs_return_leb(c, lp.lnum);
874 	return ret;
875 }
876 
877 /**
878  * ubifs_gc_start_commit - garbage collection at start of commit.
879  * @c: UBIFS file-system description object
880  *
881  * If a LEB has only dirty and free space, then we may safely unmap it and make
882  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
883  * correspond index nodes that are required for recovery.  In that case, the
884  * LEB cannot be unmapped until after the next commit.
885  *
886  * This function returns %0 upon success and a negative error code upon failure.
887  */
888 int ubifs_gc_start_commit(struct ubifs_info *c)
889 {
890 	struct ubifs_gced_idx_leb *idx_gc;
891 	const struct ubifs_lprops *lp;
892 	int err = 0, flags;
893 
894 	ubifs_get_lprops(c);
895 
896 	/*
897 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
898 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
899 	 */
900 	while (1) {
901 		lp = ubifs_fast_find_freeable(c);
902 		if (IS_ERR(lp)) {
903 			err = PTR_ERR(lp);
904 			goto out;
905 		}
906 		if (!lp)
907 			break;
908 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
909 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
910 		err = ubifs_leb_unmap(c, lp->lnum);
911 		if (err)
912 			goto out;
913 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
914 		if (IS_ERR(lp)) {
915 			err = PTR_ERR(lp);
916 			goto out;
917 		}
918 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
919 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
920 	}
921 
922 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
923 	list_for_each_entry(idx_gc, &c->idx_gc, list)
924 		idx_gc->unmap = 1;
925 
926 	/* Record index freeable LEBs for unmapping after commit */
927 	while (1) {
928 		lp = ubifs_fast_find_frdi_idx(c);
929 		if (IS_ERR(lp)) {
930 			err = PTR_ERR(lp);
931 			goto out;
932 		}
933 		if (!lp)
934 			break;
935 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
936 		if (!idx_gc) {
937 			err = -ENOMEM;
938 			goto out;
939 		}
940 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
941 		ubifs_assert(lp->flags & LPROPS_INDEX);
942 		/* Don't release the LEB until after the next commit */
943 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
944 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
945 		if (IS_ERR(lp)) {
946 			err = PTR_ERR(lp);
947 			kfree(idx_gc);
948 			goto out;
949 		}
950 		ubifs_assert(lp->flags & LPROPS_TAKEN);
951 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
952 		idx_gc->lnum = lp->lnum;
953 		idx_gc->unmap = 1;
954 		list_add(&idx_gc->list, &c->idx_gc);
955 	}
956 out:
957 	ubifs_release_lprops(c);
958 	return err;
959 }
960 
961 /**
962  * ubifs_gc_end_commit - garbage collection at end of commit.
963  * @c: UBIFS file-system description object
964  *
965  * This function completes out-of-place garbage collection of index LEBs.
966  */
967 int ubifs_gc_end_commit(struct ubifs_info *c)
968 {
969 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
970 	struct ubifs_wbuf *wbuf;
971 	int err = 0;
972 
973 	wbuf = &c->jheads[GCHD].wbuf;
974 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
975 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
976 		if (idx_gc->unmap) {
977 			dbg_gc("LEB %d", idx_gc->lnum);
978 			err = ubifs_leb_unmap(c, idx_gc->lnum);
979 			if (err)
980 				goto out;
981 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
982 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
983 			if (err)
984 				goto out;
985 			list_del(&idx_gc->list);
986 			kfree(idx_gc);
987 		}
988 out:
989 	mutex_unlock(&wbuf->io_mutex);
990 	return err;
991 }
992 
993 /**
994  * ubifs_destroy_idx_gc - destroy idx_gc list.
995  * @c: UBIFS file-system description object
996  *
997  * This function destroys the @c->idx_gc list. It is called when unmounting
998  * so locks are not needed. Returns zero in case of success and a negative
999  * error code in case of failure.
1000  */
1001 void ubifs_destroy_idx_gc(struct ubifs_info *c)
1002 {
1003 	while (!list_empty(&c->idx_gc)) {
1004 		struct ubifs_gced_idx_leb *idx_gc;
1005 
1006 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
1007 				    list);
1008 		c->idx_gc_cnt -= 1;
1009 		list_del(&idx_gc->list);
1010 		kfree(idx_gc);
1011 	}
1012 }
1013 
1014 /**
1015  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1016  * @c: UBIFS file-system description object
1017  *
1018  * Called during start commit so locks are not needed.
1019  */
1020 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1021 {
1022 	struct ubifs_gced_idx_leb *idx_gc;
1023 	int lnum;
1024 
1025 	if (list_empty(&c->idx_gc))
1026 		return -ENOSPC;
1027 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1028 	lnum = idx_gc->lnum;
1029 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
1030 	list_del(&idx_gc->list);
1031 	kfree(idx_gc);
1032 	return lnum;
1033 }
1034