1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements garbage collection. The procedure for garbage collection 13 * is different depending on whether a LEB as an index LEB (contains index 14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 16 * nodes to the journal, at which point the garbage-collected LEB is free to be 17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 19 * to be reused. Garbage collection will cause the number of dirty index nodes 20 * to grow, however sufficient space is reserved for the index to ensure the 21 * commit will never run out of space. 22 * 23 * Notes about dead watermark. At current UBIFS implementation we assume that 24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 27 * Garbage Collector has to synchronize the GC head's write buffer before 28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 29 * actually reclaim even very small pieces of dirty space by garbage collecting 30 * enough dirty LEBs, but we do not bother doing this at this implementation. 31 * 32 * Notes about dark watermark. The results of GC work depends on how big are 33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 35 * have to waste large pieces of free space at the end of LEB B, because nodes 36 * from LEB A would not fit. And the worst situation is when all nodes are of 37 * maximum size. So dark watermark is the amount of free + dirty space in LEB 38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so 41 * good, and GC takes extra care when moving them. 42 */ 43 44 #include <linux/slab.h> 45 #include <linux/pagemap.h> 46 #include <linux/list_sort.h> 47 #include "ubifs.h" 48 49 /* 50 * GC may need to move more than one LEB to make progress. The below constants 51 * define "soft" and "hard" limits on the number of LEBs the garbage collector 52 * may move. 53 */ 54 #define SOFT_LEBS_LIMIT 4 55 #define HARD_LEBS_LIMIT 32 56 57 /** 58 * switch_gc_head - switch the garbage collection journal head. 59 * @c: UBIFS file-system description object 60 * @buf: buffer to write 61 * @len: length of the buffer to write 62 * @lnum: LEB number written is returned here 63 * @offs: offset written is returned here 64 * 65 * This function switch the GC head to the next LEB which is reserved in 66 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 67 * and other negative error code in case of failures. 68 */ 69 static int switch_gc_head(struct ubifs_info *c) 70 { 71 int err, gc_lnum = c->gc_lnum; 72 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 73 74 ubifs_assert(c, gc_lnum != -1); 75 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 76 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 77 c->leb_size - wbuf->offs - wbuf->used); 78 79 err = ubifs_wbuf_sync_nolock(wbuf); 80 if (err) 81 return err; 82 83 /* 84 * The GC write-buffer was synchronized, we may safely unmap 85 * 'c->gc_lnum'. 86 */ 87 err = ubifs_leb_unmap(c, gc_lnum); 88 if (err) 89 return err; 90 91 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 92 if (err) 93 return err; 94 95 c->gc_lnum = -1; 96 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 97 return err; 98 } 99 100 /** 101 * data_nodes_cmp - compare 2 data nodes. 102 * @priv: UBIFS file-system description object 103 * @a: first data node 104 * @b: second data node 105 * 106 * This function compares data nodes @a and @b. Returns %1 if @a has greater 107 * inode or block number, and %-1 otherwise. 108 */ 109 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 110 { 111 ino_t inuma, inumb; 112 struct ubifs_info *c = priv; 113 struct ubifs_scan_node *sa, *sb; 114 115 cond_resched(); 116 if (a == b) 117 return 0; 118 119 sa = list_entry(a, struct ubifs_scan_node, list); 120 sb = list_entry(b, struct ubifs_scan_node, list); 121 122 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY); 123 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY); 124 ubifs_assert(c, sa->type == UBIFS_DATA_NODE); 125 ubifs_assert(c, sb->type == UBIFS_DATA_NODE); 126 127 inuma = key_inum(c, &sa->key); 128 inumb = key_inum(c, &sb->key); 129 130 if (inuma == inumb) { 131 unsigned int blka = key_block(c, &sa->key); 132 unsigned int blkb = key_block(c, &sb->key); 133 134 if (blka <= blkb) 135 return -1; 136 } else if (inuma <= inumb) 137 return -1; 138 139 return 1; 140 } 141 142 /* 143 * nondata_nodes_cmp - compare 2 non-data nodes. 144 * @priv: UBIFS file-system description object 145 * @a: first node 146 * @a: second node 147 * 148 * This function compares nodes @a and @b. It makes sure that inode nodes go 149 * first and sorted by length in descending order. Directory entry nodes go 150 * after inode nodes and are sorted in ascending hash valuer order. 151 */ 152 static int nondata_nodes_cmp(void *priv, struct list_head *a, 153 struct list_head *b) 154 { 155 ino_t inuma, inumb; 156 struct ubifs_info *c = priv; 157 struct ubifs_scan_node *sa, *sb; 158 159 cond_resched(); 160 if (a == b) 161 return 0; 162 163 sa = list_entry(a, struct ubifs_scan_node, list); 164 sb = list_entry(b, struct ubifs_scan_node, list); 165 166 ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY && 167 key_type(c, &sb->key) != UBIFS_DATA_KEY); 168 ubifs_assert(c, sa->type != UBIFS_DATA_NODE && 169 sb->type != UBIFS_DATA_NODE); 170 171 /* Inodes go before directory entries */ 172 if (sa->type == UBIFS_INO_NODE) { 173 if (sb->type == UBIFS_INO_NODE) 174 return sb->len - sa->len; 175 return -1; 176 } 177 if (sb->type == UBIFS_INO_NODE) 178 return 1; 179 180 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY || 181 key_type(c, &sa->key) == UBIFS_XENT_KEY); 182 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY || 183 key_type(c, &sb->key) == UBIFS_XENT_KEY); 184 ubifs_assert(c, sa->type == UBIFS_DENT_NODE || 185 sa->type == UBIFS_XENT_NODE); 186 ubifs_assert(c, sb->type == UBIFS_DENT_NODE || 187 sb->type == UBIFS_XENT_NODE); 188 189 inuma = key_inum(c, &sa->key); 190 inumb = key_inum(c, &sb->key); 191 192 if (inuma == inumb) { 193 uint32_t hasha = key_hash(c, &sa->key); 194 uint32_t hashb = key_hash(c, &sb->key); 195 196 if (hasha <= hashb) 197 return -1; 198 } else if (inuma <= inumb) 199 return -1; 200 201 return 1; 202 } 203 204 /** 205 * sort_nodes - sort nodes for GC. 206 * @c: UBIFS file-system description object 207 * @sleb: describes nodes to sort and contains the result on exit 208 * @nondata: contains non-data nodes on exit 209 * @min: minimum node size is returned here 210 * 211 * This function sorts the list of inodes to garbage collect. First of all, it 212 * kills obsolete nodes and separates data and non-data nodes to the 213 * @sleb->nodes and @nondata lists correspondingly. 214 * 215 * Data nodes are then sorted in block number order - this is important for 216 * bulk-read; data nodes with lower inode number go before data nodes with 217 * higher inode number, and data nodes with lower block number go before data 218 * nodes with higher block number; 219 * 220 * Non-data nodes are sorted as follows. 221 * o First go inode nodes - they are sorted in descending length order. 222 * o Then go directory entry nodes - they are sorted in hash order, which 223 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 224 * inode number go before direntry nodes with higher parent inode number, 225 * and direntry nodes with lower name hash values go before direntry nodes 226 * with higher name hash values. 227 * 228 * This function returns zero in case of success and a negative error code in 229 * case of failure. 230 */ 231 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 232 struct list_head *nondata, int *min) 233 { 234 int err; 235 struct ubifs_scan_node *snod, *tmp; 236 237 *min = INT_MAX; 238 239 /* Separate data nodes and non-data nodes */ 240 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 241 ubifs_assert(c, snod->type == UBIFS_INO_NODE || 242 snod->type == UBIFS_DATA_NODE || 243 snod->type == UBIFS_DENT_NODE || 244 snod->type == UBIFS_XENT_NODE || 245 snod->type == UBIFS_TRUN_NODE || 246 snod->type == UBIFS_AUTH_NODE); 247 248 if (snod->type != UBIFS_INO_NODE && 249 snod->type != UBIFS_DATA_NODE && 250 snod->type != UBIFS_DENT_NODE && 251 snod->type != UBIFS_XENT_NODE) { 252 /* Probably truncation node, zap it */ 253 list_del(&snod->list); 254 kfree(snod); 255 continue; 256 } 257 258 ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY || 259 key_type(c, &snod->key) == UBIFS_INO_KEY || 260 key_type(c, &snod->key) == UBIFS_DENT_KEY || 261 key_type(c, &snod->key) == UBIFS_XENT_KEY); 262 263 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 264 snod->offs, 0); 265 if (err < 0) 266 return err; 267 268 if (!err) { 269 /* The node is obsolete, remove it from the list */ 270 list_del(&snod->list); 271 kfree(snod); 272 continue; 273 } 274 275 if (snod->len < *min) 276 *min = snod->len; 277 278 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 279 list_move_tail(&snod->list, nondata); 280 } 281 282 /* Sort data and non-data nodes */ 283 list_sort(c, &sleb->nodes, &data_nodes_cmp); 284 list_sort(c, nondata, &nondata_nodes_cmp); 285 286 err = dbg_check_data_nodes_order(c, &sleb->nodes); 287 if (err) 288 return err; 289 err = dbg_check_nondata_nodes_order(c, nondata); 290 if (err) 291 return err; 292 return 0; 293 } 294 295 /** 296 * move_node - move a node. 297 * @c: UBIFS file-system description object 298 * @sleb: describes the LEB to move nodes from 299 * @snod: the mode to move 300 * @wbuf: write-buffer to move node to 301 * 302 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 303 * destroys @snod. Returns zero in case of success and a negative error code in 304 * case of failure. 305 */ 306 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 307 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 308 { 309 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 310 311 cond_resched(); 312 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 313 if (err) 314 return err; 315 316 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 317 snod->offs, new_lnum, new_offs, 318 snod->len); 319 list_del(&snod->list); 320 kfree(snod); 321 return err; 322 } 323 324 /** 325 * move_nodes - move nodes. 326 * @c: UBIFS file-system description object 327 * @sleb: describes the LEB to move nodes from 328 * 329 * This function moves valid nodes from data LEB described by @sleb to the GC 330 * journal head. This function returns zero in case of success, %-EAGAIN if 331 * commit is required, and other negative error codes in case of other 332 * failures. 333 */ 334 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 335 { 336 int err, min; 337 LIST_HEAD(nondata); 338 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 339 340 if (wbuf->lnum == -1) { 341 /* 342 * The GC journal head is not set, because it is the first GC 343 * invocation since mount. 344 */ 345 err = switch_gc_head(c); 346 if (err) 347 return err; 348 } 349 350 err = sort_nodes(c, sleb, &nondata, &min); 351 if (err) 352 goto out; 353 354 /* Write nodes to their new location. Use the first-fit strategy */ 355 while (1) { 356 int avail, moved = 0; 357 struct ubifs_scan_node *snod, *tmp; 358 359 /* Move data nodes */ 360 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 361 avail = c->leb_size - wbuf->offs - wbuf->used - 362 ubifs_auth_node_sz(c); 363 if (snod->len > avail) 364 /* 365 * Do not skip data nodes in order to optimize 366 * bulk-read. 367 */ 368 break; 369 370 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 371 snod->node, snod->len); 372 if (err) 373 goto out; 374 375 err = move_node(c, sleb, snod, wbuf); 376 if (err) 377 goto out; 378 moved = 1; 379 } 380 381 /* Move non-data nodes */ 382 list_for_each_entry_safe(snod, tmp, &nondata, list) { 383 avail = c->leb_size - wbuf->offs - wbuf->used - 384 ubifs_auth_node_sz(c); 385 if (avail < min) 386 break; 387 388 if (snod->len > avail) { 389 /* 390 * Keep going only if this is an inode with 391 * some data. Otherwise stop and switch the GC 392 * head. IOW, we assume that data-less inode 393 * nodes and direntry nodes are roughly of the 394 * same size. 395 */ 396 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 397 snod->len == UBIFS_INO_NODE_SZ) 398 break; 399 continue; 400 } 401 402 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 403 snod->node, snod->len); 404 if (err) 405 goto out; 406 407 err = move_node(c, sleb, snod, wbuf); 408 if (err) 409 goto out; 410 moved = 1; 411 } 412 413 if (ubifs_authenticated(c) && moved) { 414 struct ubifs_auth_node *auth; 415 416 auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS); 417 if (!auth) { 418 err = -ENOMEM; 419 goto out; 420 } 421 422 err = ubifs_prepare_auth_node(c, auth, 423 c->jheads[GCHD].log_hash); 424 if (err) { 425 kfree(auth); 426 goto out; 427 } 428 429 err = ubifs_wbuf_write_nolock(wbuf, auth, 430 ubifs_auth_node_sz(c)); 431 if (err) { 432 kfree(auth); 433 goto out; 434 } 435 436 ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c)); 437 } 438 439 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 440 break; 441 442 /* 443 * Waste the rest of the space in the LEB and switch to the 444 * next LEB. 445 */ 446 err = switch_gc_head(c); 447 if (err) 448 goto out; 449 } 450 451 return 0; 452 453 out: 454 list_splice_tail(&nondata, &sleb->nodes); 455 return err; 456 } 457 458 /** 459 * gc_sync_wbufs - sync write-buffers for GC. 460 * @c: UBIFS file-system description object 461 * 462 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 463 * be in a write-buffer instead. That is, a node could be written to a 464 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 465 * erased before the write-buffer is sync'd and then there is an unclean 466 * unmount, then an existing node is lost. To avoid this, we sync all 467 * write-buffers. 468 * 469 * This function returns %0 on success or a negative error code on failure. 470 */ 471 static int gc_sync_wbufs(struct ubifs_info *c) 472 { 473 int err, i; 474 475 for (i = 0; i < c->jhead_cnt; i++) { 476 if (i == GCHD) 477 continue; 478 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 479 if (err) 480 return err; 481 } 482 return 0; 483 } 484 485 /** 486 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 487 * @c: UBIFS file-system description object 488 * @lp: describes the LEB to garbage collect 489 * 490 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 491 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 492 * required, and other negative error codes in case of failures. 493 */ 494 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 495 { 496 struct ubifs_scan_leb *sleb; 497 struct ubifs_scan_node *snod; 498 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 499 int err = 0, lnum = lp->lnum; 500 501 ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 502 c->need_recovery); 503 ubifs_assert(c, c->gc_lnum != lnum); 504 ubifs_assert(c, wbuf->lnum != lnum); 505 506 if (lp->free + lp->dirty == c->leb_size) { 507 /* Special case - a free LEB */ 508 dbg_gc("LEB %d is free, return it", lp->lnum); 509 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 510 511 if (lp->free != c->leb_size) { 512 /* 513 * Write buffers must be sync'd before unmapping 514 * freeable LEBs, because one of them may contain data 515 * which obsoletes something in 'lp->lnum'. 516 */ 517 err = gc_sync_wbufs(c); 518 if (err) 519 return err; 520 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 521 0, 0, 0, 0); 522 if (err) 523 return err; 524 } 525 err = ubifs_leb_unmap(c, lp->lnum); 526 if (err) 527 return err; 528 529 if (c->gc_lnum == -1) { 530 c->gc_lnum = lnum; 531 return LEB_RETAINED; 532 } 533 534 return LEB_FREED; 535 } 536 537 /* 538 * We scan the entire LEB even though we only really need to scan up to 539 * (c->leb_size - lp->free). 540 */ 541 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 542 if (IS_ERR(sleb)) 543 return PTR_ERR(sleb); 544 545 ubifs_assert(c, !list_empty(&sleb->nodes)); 546 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 547 548 if (snod->type == UBIFS_IDX_NODE) { 549 struct ubifs_gced_idx_leb *idx_gc; 550 551 dbg_gc("indexing LEB %d (free %d, dirty %d)", 552 lnum, lp->free, lp->dirty); 553 list_for_each_entry(snod, &sleb->nodes, list) { 554 struct ubifs_idx_node *idx = snod->node; 555 int level = le16_to_cpu(idx->level); 556 557 ubifs_assert(c, snod->type == UBIFS_IDX_NODE); 558 key_read(c, ubifs_idx_key(c, idx), &snod->key); 559 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 560 snod->offs); 561 if (err) 562 goto out; 563 } 564 565 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 566 if (!idx_gc) { 567 err = -ENOMEM; 568 goto out; 569 } 570 571 idx_gc->lnum = lnum; 572 idx_gc->unmap = 0; 573 list_add(&idx_gc->list, &c->idx_gc); 574 575 /* 576 * Don't release the LEB until after the next commit, because 577 * it may contain data which is needed for recovery. So 578 * although we freed this LEB, it will become usable only after 579 * the commit. 580 */ 581 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 582 LPROPS_INDEX, 1); 583 if (err) 584 goto out; 585 err = LEB_FREED_IDX; 586 } else { 587 dbg_gc("data LEB %d (free %d, dirty %d)", 588 lnum, lp->free, lp->dirty); 589 590 err = move_nodes(c, sleb); 591 if (err) 592 goto out_inc_seq; 593 594 err = gc_sync_wbufs(c); 595 if (err) 596 goto out_inc_seq; 597 598 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 599 if (err) 600 goto out_inc_seq; 601 602 /* Allow for races with TNC */ 603 c->gced_lnum = lnum; 604 smp_wmb(); 605 c->gc_seq += 1; 606 smp_wmb(); 607 608 if (c->gc_lnum == -1) { 609 c->gc_lnum = lnum; 610 err = LEB_RETAINED; 611 } else { 612 err = ubifs_wbuf_sync_nolock(wbuf); 613 if (err) 614 goto out; 615 616 err = ubifs_leb_unmap(c, lnum); 617 if (err) 618 goto out; 619 620 err = LEB_FREED; 621 } 622 } 623 624 out: 625 ubifs_scan_destroy(sleb); 626 return err; 627 628 out_inc_seq: 629 /* We may have moved at least some nodes so allow for races with TNC */ 630 c->gced_lnum = lnum; 631 smp_wmb(); 632 c->gc_seq += 1; 633 smp_wmb(); 634 goto out; 635 } 636 637 /** 638 * ubifs_garbage_collect - UBIFS garbage collector. 639 * @c: UBIFS file-system description object 640 * @anyway: do GC even if there are free LEBs 641 * 642 * This function does out-of-place garbage collection. The return codes are: 643 * o positive LEB number if the LEB has been freed and may be used; 644 * o %-EAGAIN if the caller has to run commit; 645 * o %-ENOSPC if GC failed to make any progress; 646 * o other negative error codes in case of other errors. 647 * 648 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 649 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 650 * commit may be required. But commit cannot be run from inside GC, because the 651 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 652 * And this error code means that the caller has to run commit, and re-run GC 653 * if there is still no free space. 654 * 655 * There are many reasons why this function may return %-EAGAIN: 656 * o the log is full and there is no space to write an LEB reference for 657 * @c->gc_lnum; 658 * o the journal is too large and exceeds size limitations; 659 * o GC moved indexing LEBs, but they can be used only after the commit; 660 * o the shrinker fails to find clean znodes to free and requests the commit; 661 * o etc. 662 * 663 * Note, if the file-system is close to be full, this function may return 664 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 665 * the function. E.g., this happens if the limits on the journal size are too 666 * tough and GC writes too much to the journal before an LEB is freed. This 667 * might also mean that the journal is too large, and the TNC becomes to big, 668 * so that the shrinker is constantly called, finds not clean znodes to free, 669 * and requests commit. Well, this may also happen if the journal is all right, 670 * but another kernel process consumes too much memory. Anyway, infinite 671 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 672 */ 673 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 674 { 675 int i, err, ret, min_space = c->dead_wm; 676 struct ubifs_lprops lp; 677 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 678 679 ubifs_assert_cmt_locked(c); 680 ubifs_assert(c, !c->ro_media && !c->ro_mount); 681 682 if (ubifs_gc_should_commit(c)) 683 return -EAGAIN; 684 685 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 686 687 if (c->ro_error) { 688 ret = -EROFS; 689 goto out_unlock; 690 } 691 692 /* We expect the write-buffer to be empty on entry */ 693 ubifs_assert(c, !wbuf->used); 694 695 for (i = 0; ; i++) { 696 int space_before, space_after; 697 698 cond_resched(); 699 700 /* Give the commit an opportunity to run */ 701 if (ubifs_gc_should_commit(c)) { 702 ret = -EAGAIN; 703 break; 704 } 705 706 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 707 /* 708 * We've done enough iterations. Indexing LEBs were 709 * moved and will be available after the commit. 710 */ 711 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 712 ubifs_commit_required(c); 713 ret = -EAGAIN; 714 break; 715 } 716 717 if (i > HARD_LEBS_LIMIT) { 718 /* 719 * We've moved too many LEBs and have not made 720 * progress, give up. 721 */ 722 dbg_gc("hard limit, -ENOSPC"); 723 ret = -ENOSPC; 724 break; 725 } 726 727 /* 728 * Empty and freeable LEBs can turn up while we waited for 729 * the wbuf lock, or while we have been running GC. In that 730 * case, we should just return one of those instead of 731 * continuing to GC dirty LEBs. Hence we request 732 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 733 */ 734 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 735 if (ret) { 736 if (ret == -ENOSPC) 737 dbg_gc("no more dirty LEBs"); 738 break; 739 } 740 741 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 742 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 743 min_space); 744 745 space_before = c->leb_size - wbuf->offs - wbuf->used; 746 if (wbuf->lnum == -1) 747 space_before = 0; 748 749 ret = ubifs_garbage_collect_leb(c, &lp); 750 if (ret < 0) { 751 if (ret == -EAGAIN) { 752 /* 753 * This is not error, so we have to return the 754 * LEB to lprops. But if 'ubifs_return_leb()' 755 * fails, its failure code is propagated to the 756 * caller instead of the original '-EAGAIN'. 757 */ 758 err = ubifs_return_leb(c, lp.lnum); 759 if (err) 760 ret = err; 761 break; 762 } 763 goto out; 764 } 765 766 if (ret == LEB_FREED) { 767 /* An LEB has been freed and is ready for use */ 768 dbg_gc("LEB %d freed, return", lp.lnum); 769 ret = lp.lnum; 770 break; 771 } 772 773 if (ret == LEB_FREED_IDX) { 774 /* 775 * This was an indexing LEB and it cannot be 776 * immediately used. And instead of requesting the 777 * commit straight away, we try to garbage collect some 778 * more. 779 */ 780 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 781 continue; 782 } 783 784 ubifs_assert(c, ret == LEB_RETAINED); 785 space_after = c->leb_size - wbuf->offs - wbuf->used; 786 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 787 space_after - space_before); 788 789 if (space_after > space_before) { 790 /* GC makes progress, keep working */ 791 min_space >>= 1; 792 if (min_space < c->dead_wm) 793 min_space = c->dead_wm; 794 continue; 795 } 796 797 dbg_gc("did not make progress"); 798 799 /* 800 * GC moved an LEB bud have not done any progress. This means 801 * that the previous GC head LEB contained too few free space 802 * and the LEB which was GC'ed contained only large nodes which 803 * did not fit that space. 804 * 805 * We can do 2 things: 806 * 1. pick another LEB in a hope it'll contain a small node 807 * which will fit the space we have at the end of current GC 808 * head LEB, but there is no guarantee, so we try this out 809 * unless we have already been working for too long; 810 * 2. request an LEB with more dirty space, which will force 811 * 'ubifs_find_dirty_leb()' to start scanning the lprops 812 * table, instead of just picking one from the heap 813 * (previously it already picked the dirtiest LEB). 814 */ 815 if (i < SOFT_LEBS_LIMIT) { 816 dbg_gc("try again"); 817 continue; 818 } 819 820 min_space <<= 1; 821 if (min_space > c->dark_wm) 822 min_space = c->dark_wm; 823 dbg_gc("set min. space to %d", min_space); 824 } 825 826 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 827 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 828 ubifs_commit_required(c); 829 ret = -EAGAIN; 830 } 831 832 err = ubifs_wbuf_sync_nolock(wbuf); 833 if (!err) 834 err = ubifs_leb_unmap(c, c->gc_lnum); 835 if (err) { 836 ret = err; 837 goto out; 838 } 839 out_unlock: 840 mutex_unlock(&wbuf->io_mutex); 841 return ret; 842 843 out: 844 ubifs_assert(c, ret < 0); 845 ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN); 846 ubifs_wbuf_sync_nolock(wbuf); 847 ubifs_ro_mode(c, ret); 848 mutex_unlock(&wbuf->io_mutex); 849 ubifs_return_leb(c, lp.lnum); 850 return ret; 851 } 852 853 /** 854 * ubifs_gc_start_commit - garbage collection at start of commit. 855 * @c: UBIFS file-system description object 856 * 857 * If a LEB has only dirty and free space, then we may safely unmap it and make 858 * it free. Note, we cannot do this with indexing LEBs because dirty space may 859 * correspond index nodes that are required for recovery. In that case, the 860 * LEB cannot be unmapped until after the next commit. 861 * 862 * This function returns %0 upon success and a negative error code upon failure. 863 */ 864 int ubifs_gc_start_commit(struct ubifs_info *c) 865 { 866 struct ubifs_gced_idx_leb *idx_gc; 867 const struct ubifs_lprops *lp; 868 int err = 0, flags; 869 870 ubifs_get_lprops(c); 871 872 /* 873 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 874 * wbufs are sync'd before this, which is done in 'do_commit()'. 875 */ 876 while (1) { 877 lp = ubifs_fast_find_freeable(c); 878 if (!lp) 879 break; 880 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 881 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 882 err = ubifs_leb_unmap(c, lp->lnum); 883 if (err) 884 goto out; 885 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 886 if (IS_ERR(lp)) { 887 err = PTR_ERR(lp); 888 goto out; 889 } 890 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 891 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 892 } 893 894 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 895 list_for_each_entry(idx_gc, &c->idx_gc, list) 896 idx_gc->unmap = 1; 897 898 /* Record index freeable LEBs for unmapping after commit */ 899 while (1) { 900 lp = ubifs_fast_find_frdi_idx(c); 901 if (IS_ERR(lp)) { 902 err = PTR_ERR(lp); 903 goto out; 904 } 905 if (!lp) 906 break; 907 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 908 if (!idx_gc) { 909 err = -ENOMEM; 910 goto out; 911 } 912 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 913 ubifs_assert(c, lp->flags & LPROPS_INDEX); 914 /* Don't release the LEB until after the next commit */ 915 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 916 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 917 if (IS_ERR(lp)) { 918 err = PTR_ERR(lp); 919 kfree(idx_gc); 920 goto out; 921 } 922 ubifs_assert(c, lp->flags & LPROPS_TAKEN); 923 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 924 idx_gc->lnum = lp->lnum; 925 idx_gc->unmap = 1; 926 list_add(&idx_gc->list, &c->idx_gc); 927 } 928 out: 929 ubifs_release_lprops(c); 930 return err; 931 } 932 933 /** 934 * ubifs_gc_end_commit - garbage collection at end of commit. 935 * @c: UBIFS file-system description object 936 * 937 * This function completes out-of-place garbage collection of index LEBs. 938 */ 939 int ubifs_gc_end_commit(struct ubifs_info *c) 940 { 941 struct ubifs_gced_idx_leb *idx_gc, *tmp; 942 struct ubifs_wbuf *wbuf; 943 int err = 0; 944 945 wbuf = &c->jheads[GCHD].wbuf; 946 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 947 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 948 if (idx_gc->unmap) { 949 dbg_gc("LEB %d", idx_gc->lnum); 950 err = ubifs_leb_unmap(c, idx_gc->lnum); 951 if (err) 952 goto out; 953 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 954 LPROPS_NC, 0, LPROPS_TAKEN, -1); 955 if (err) 956 goto out; 957 list_del(&idx_gc->list); 958 kfree(idx_gc); 959 } 960 out: 961 mutex_unlock(&wbuf->io_mutex); 962 return err; 963 } 964 965 /** 966 * ubifs_destroy_idx_gc - destroy idx_gc list. 967 * @c: UBIFS file-system description object 968 * 969 * This function destroys the @c->idx_gc list. It is called when unmounting 970 * so locks are not needed. Returns zero in case of success and a negative 971 * error code in case of failure. 972 */ 973 void ubifs_destroy_idx_gc(struct ubifs_info *c) 974 { 975 while (!list_empty(&c->idx_gc)) { 976 struct ubifs_gced_idx_leb *idx_gc; 977 978 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 979 list); 980 c->idx_gc_cnt -= 1; 981 list_del(&idx_gc->list); 982 kfree(idx_gc); 983 } 984 } 985 986 /** 987 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 988 * @c: UBIFS file-system description object 989 * 990 * Called during start commit so locks are not needed. 991 */ 992 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 993 { 994 struct ubifs_gced_idx_leb *idx_gc; 995 int lnum; 996 997 if (list_empty(&c->idx_gc)) 998 return -ENOSPC; 999 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 1000 lnum = idx_gc->lnum; 1001 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 1002 list_del(&idx_gc->list); 1003 kfree(idx_gc); 1004 return lnum; 1005 } 1006