xref: /openbmc/linux/fs/ubifs/gc.c (revision 7a9b149212f3716c598afe973b6261fd58453b7a)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/slab.h>
57 #include <linux/pagemap.h>
58 #include <linux/list_sort.h>
59 #include "ubifs.h"
60 
61 /*
62  * GC may need to move more than one LEB to make progress. The below constants
63  * define "soft" and "hard" limits on the number of LEBs the garbage collector
64  * may move.
65  */
66 #define SOFT_LEBS_LIMIT 4
67 #define HARD_LEBS_LIMIT 32
68 
69 /**
70  * switch_gc_head - switch the garbage collection journal head.
71  * @c: UBIFS file-system description object
72  * @buf: buffer to write
73  * @len: length of the buffer to write
74  * @lnum: LEB number written is returned here
75  * @offs: offset written is returned here
76  *
77  * This function switch the GC head to the next LEB which is reserved in
78  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79  * and other negative error code in case of failures.
80  */
81 static int switch_gc_head(struct ubifs_info *c)
82 {
83 	int err, gc_lnum = c->gc_lnum;
84 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85 
86 	ubifs_assert(gc_lnum != -1);
87 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 	       c->leb_size - wbuf->offs - wbuf->used);
90 
91 	err = ubifs_wbuf_sync_nolock(wbuf);
92 	if (err)
93 		return err;
94 
95 	/*
96 	 * The GC write-buffer was synchronized, we may safely unmap
97 	 * 'c->gc_lnum'.
98 	 */
99 	err = ubifs_leb_unmap(c, gc_lnum);
100 	if (err)
101 		return err;
102 
103 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
104 	if (err)
105 		return err;
106 
107 	c->gc_lnum = -1;
108 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
109 	return err;
110 }
111 
112 /**
113  * data_nodes_cmp - compare 2 data nodes.
114  * @priv: UBIFS file-system description object
115  * @a: first data node
116  * @a: second data node
117  *
118  * This function compares data nodes @a and @b. Returns %1 if @a has greater
119  * inode or block number, and %-1 otherwise.
120  */
121 int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
122 {
123 	ino_t inuma, inumb;
124 	struct ubifs_info *c = priv;
125 	struct ubifs_scan_node *sa, *sb;
126 
127 	cond_resched();
128 	sa = list_entry(a, struct ubifs_scan_node, list);
129 	sb = list_entry(b, struct ubifs_scan_node, list);
130 	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
131 	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
132 
133 	inuma = key_inum(c, &sa->key);
134 	inumb = key_inum(c, &sb->key);
135 
136 	if (inuma == inumb) {
137 		unsigned int blka = key_block(c, &sa->key);
138 		unsigned int blkb = key_block(c, &sb->key);
139 
140 		if (blka <= blkb)
141 			return -1;
142 	} else if (inuma <= inumb)
143 		return -1;
144 
145 	return 1;
146 }
147 
148 /*
149  * nondata_nodes_cmp - compare 2 non-data nodes.
150  * @priv: UBIFS file-system description object
151  * @a: first node
152  * @a: second node
153  *
154  * This function compares nodes @a and @b. It makes sure that inode nodes go
155  * first and sorted by length in descending order. Directory entry nodes go
156  * after inode nodes and are sorted in ascending hash valuer order.
157  */
158 int nondata_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
159 {
160 	int typea, typeb;
161 	ino_t inuma, inumb;
162 	struct ubifs_info *c = priv;
163 	struct ubifs_scan_node *sa, *sb;
164 
165 	cond_resched();
166 	sa = list_entry(a, struct ubifs_scan_node, list);
167 	sb = list_entry(b, struct ubifs_scan_node, list);
168 	typea = key_type(c, &sa->key);
169 	typeb = key_type(c, &sb->key);
170 	ubifs_assert(typea != UBIFS_DATA_KEY && typeb != UBIFS_DATA_KEY);
171 
172 	/* Inodes go before directory entries */
173 	if (typea == UBIFS_INO_KEY) {
174 		if (typeb == UBIFS_INO_KEY)
175 			return sb->len - sa->len;
176 		return -1;
177 	}
178 	if (typeb == UBIFS_INO_KEY)
179 		return 1;
180 
181 	ubifs_assert(typea == UBIFS_DENT_KEY && typeb == UBIFS_DENT_KEY);
182 	inuma = key_inum(c, &sa->key);
183 	inumb = key_inum(c, &sb->key);
184 
185 	if (inuma == inumb) {
186 		uint32_t hasha = key_hash(c, &sa->key);
187 		uint32_t hashb = key_hash(c, &sb->key);
188 
189 		if (hasha <= hashb)
190 			return -1;
191 	} else if (inuma <= inumb)
192 		return -1;
193 
194 	return 1;
195 }
196 
197 /**
198  * sort_nodes - sort nodes for GC.
199  * @c: UBIFS file-system description object
200  * @sleb: describes nodes to sort and contains the result on exit
201  * @nondata: contains non-data nodes on exit
202  * @min: minimum node size is returned here
203  *
204  * This function sorts the list of inodes to garbage collect. First of all, it
205  * kills obsolete nodes and separates data and non-data nodes to the
206  * @sleb->nodes and @nondata lists correspondingly.
207  *
208  * Data nodes are then sorted in block number order - this is important for
209  * bulk-read; data nodes with lower inode number go before data nodes with
210  * higher inode number, and data nodes with lower block number go before data
211  * nodes with higher block number;
212  *
213  * Non-data nodes are sorted as follows.
214  *   o First go inode nodes - they are sorted in descending length order.
215  *   o Then go directory entry nodes - they are sorted in hash order, which
216  *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
217  *     inode number go before direntry nodes with higher parent inode number,
218  *     and direntry nodes with lower name hash values go before direntry nodes
219  *     with higher name hash values.
220  *
221  * This function returns zero in case of success and a negative error code in
222  * case of failure.
223  */
224 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
225 		      struct list_head *nondata, int *min)
226 {
227 	struct ubifs_scan_node *snod, *tmp;
228 
229 	*min = INT_MAX;
230 
231 	/* Separate data nodes and non-data nodes */
232 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
233 		int err;
234 
235 		ubifs_assert(snod->type != UBIFS_IDX_NODE);
236 		ubifs_assert(snod->type != UBIFS_REF_NODE);
237 		ubifs_assert(snod->type != UBIFS_CS_NODE);
238 
239 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
240 					 snod->offs, 0);
241 		if (err < 0)
242 			return err;
243 
244 		if (!err) {
245 			/* The node is obsolete, remove it from the list */
246 			list_del(&snod->list);
247 			kfree(snod);
248 			continue;
249 		}
250 
251 		if (snod->len < *min)
252 			*min = snod->len;
253 
254 		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
255 			list_move_tail(&snod->list, nondata);
256 	}
257 
258 	/* Sort data and non-data nodes */
259 	list_sort(c, &sleb->nodes, &data_nodes_cmp);
260 	list_sort(c, nondata, &nondata_nodes_cmp);
261 	return 0;
262 }
263 
264 /**
265  * move_node - move a node.
266  * @c: UBIFS file-system description object
267  * @sleb: describes the LEB to move nodes from
268  * @snod: the mode to move
269  * @wbuf: write-buffer to move node to
270  *
271  * This function moves node @snod to @wbuf, changes TNC correspondingly, and
272  * destroys @snod. Returns zero in case of success and a negative error code in
273  * case of failure.
274  */
275 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
276 		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
277 {
278 	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
279 
280 	cond_resched();
281 	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
282 	if (err)
283 		return err;
284 
285 	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
286 				snod->offs, new_lnum, new_offs,
287 				snod->len);
288 	list_del(&snod->list);
289 	kfree(snod);
290 	return err;
291 }
292 
293 /**
294  * move_nodes - move nodes.
295  * @c: UBIFS file-system description object
296  * @sleb: describes the LEB to move nodes from
297  *
298  * This function moves valid nodes from data LEB described by @sleb to the GC
299  * journal head. This function returns zero in case of success, %-EAGAIN if
300  * commit is required, and other negative error codes in case of other
301  * failures.
302  */
303 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
304 {
305 	int err, min;
306 	LIST_HEAD(nondata);
307 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
308 
309 	if (wbuf->lnum == -1) {
310 		/*
311 		 * The GC journal head is not set, because it is the first GC
312 		 * invocation since mount.
313 		 */
314 		err = switch_gc_head(c);
315 		if (err)
316 			return err;
317 	}
318 
319 	err = sort_nodes(c, sleb, &nondata, &min);
320 	if (err)
321 		goto out;
322 
323 	/* Write nodes to their new location. Use the first-fit strategy */
324 	while (1) {
325 		int avail;
326 		struct ubifs_scan_node *snod, *tmp;
327 
328 		/* Move data nodes */
329 		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
330 			avail = c->leb_size - wbuf->offs - wbuf->used;
331 			if  (snod->len > avail)
332 				/*
333 				 * Do not skip data nodes in order to optimize
334 				 * bulk-read.
335 				 */
336 				break;
337 
338 			err = move_node(c, sleb, snod, wbuf);
339 			if (err)
340 				goto out;
341 		}
342 
343 		/* Move non-data nodes */
344 		list_for_each_entry_safe(snod, tmp, &nondata, list) {
345 			avail = c->leb_size - wbuf->offs - wbuf->used;
346 			if (avail < min)
347 				break;
348 
349 			if  (snod->len > avail) {
350 				/*
351 				 * Keep going only if this is an inode with
352 				 * some data. Otherwise stop and switch the GC
353 				 * head. IOW, we assume that data-less inode
354 				 * nodes and direntry nodes are roughly of the
355 				 * same size.
356 				 */
357 				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
358 				    snod->len == UBIFS_INO_NODE_SZ)
359 					break;
360 				continue;
361 			}
362 
363 			err = move_node(c, sleb, snod, wbuf);
364 			if (err)
365 				goto out;
366 		}
367 
368 		if (list_empty(&sleb->nodes) && list_empty(&nondata))
369 			break;
370 
371 		/*
372 		 * Waste the rest of the space in the LEB and switch to the
373 		 * next LEB.
374 		 */
375 		err = switch_gc_head(c);
376 		if (err)
377 			goto out;
378 	}
379 
380 	return 0;
381 
382 out:
383 	list_splice_tail(&nondata, &sleb->nodes);
384 	return err;
385 }
386 
387 /**
388  * gc_sync_wbufs - sync write-buffers for GC.
389  * @c: UBIFS file-system description object
390  *
391  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
392  * be in a write-buffer instead. That is, a node could be written to a
393  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
394  * erased before the write-buffer is sync'd and then there is an unclean
395  * unmount, then an existing node is lost. To avoid this, we sync all
396  * write-buffers.
397  *
398  * This function returns %0 on success or a negative error code on failure.
399  */
400 static int gc_sync_wbufs(struct ubifs_info *c)
401 {
402 	int err, i;
403 
404 	for (i = 0; i < c->jhead_cnt; i++) {
405 		if (i == GCHD)
406 			continue;
407 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
408 		if (err)
409 			return err;
410 	}
411 	return 0;
412 }
413 
414 /**
415  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
416  * @c: UBIFS file-system description object
417  * @lp: describes the LEB to garbage collect
418  *
419  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
420  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
421  * required, and other negative error codes in case of failures.
422  */
423 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
424 {
425 	struct ubifs_scan_leb *sleb;
426 	struct ubifs_scan_node *snod;
427 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
428 	int err = 0, lnum = lp->lnum;
429 
430 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
431 		     c->need_recovery);
432 	ubifs_assert(c->gc_lnum != lnum);
433 	ubifs_assert(wbuf->lnum != lnum);
434 
435 	/*
436 	 * We scan the entire LEB even though we only really need to scan up to
437 	 * (c->leb_size - lp->free).
438 	 */
439 	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
440 	if (IS_ERR(sleb))
441 		return PTR_ERR(sleb);
442 
443 	ubifs_assert(!list_empty(&sleb->nodes));
444 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
445 
446 	if (snod->type == UBIFS_IDX_NODE) {
447 		struct ubifs_gced_idx_leb *idx_gc;
448 
449 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
450 		       lnum, lp->free, lp->dirty);
451 		list_for_each_entry(snod, &sleb->nodes, list) {
452 			struct ubifs_idx_node *idx = snod->node;
453 			int level = le16_to_cpu(idx->level);
454 
455 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
456 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
457 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
458 						   snod->offs);
459 			if (err)
460 				goto out;
461 		}
462 
463 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
464 		if (!idx_gc) {
465 			err = -ENOMEM;
466 			goto out;
467 		}
468 
469 		idx_gc->lnum = lnum;
470 		idx_gc->unmap = 0;
471 		list_add(&idx_gc->list, &c->idx_gc);
472 
473 		/*
474 		 * Don't release the LEB until after the next commit, because
475 		 * it may contain data which is needed for recovery. So
476 		 * although we freed this LEB, it will become usable only after
477 		 * the commit.
478 		 */
479 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
480 					  LPROPS_INDEX, 1);
481 		if (err)
482 			goto out;
483 		err = LEB_FREED_IDX;
484 	} else {
485 		dbg_gc("data LEB %d (free %d, dirty %d)",
486 		       lnum, lp->free, lp->dirty);
487 
488 		err = move_nodes(c, sleb);
489 		if (err)
490 			goto out_inc_seq;
491 
492 		err = gc_sync_wbufs(c);
493 		if (err)
494 			goto out_inc_seq;
495 
496 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
497 		if (err)
498 			goto out_inc_seq;
499 
500 		/* Allow for races with TNC */
501 		c->gced_lnum = lnum;
502 		smp_wmb();
503 		c->gc_seq += 1;
504 		smp_wmb();
505 
506 		if (c->gc_lnum == -1) {
507 			c->gc_lnum = lnum;
508 			err = LEB_RETAINED;
509 		} else {
510 			err = ubifs_wbuf_sync_nolock(wbuf);
511 			if (err)
512 				goto out;
513 
514 			err = ubifs_leb_unmap(c, lnum);
515 			if (err)
516 				goto out;
517 
518 			err = LEB_FREED;
519 		}
520 	}
521 
522 out:
523 	ubifs_scan_destroy(sleb);
524 	return err;
525 
526 out_inc_seq:
527 	/* We may have moved at least some nodes so allow for races with TNC */
528 	c->gced_lnum = lnum;
529 	smp_wmb();
530 	c->gc_seq += 1;
531 	smp_wmb();
532 	goto out;
533 }
534 
535 /**
536  * ubifs_garbage_collect - UBIFS garbage collector.
537  * @c: UBIFS file-system description object
538  * @anyway: do GC even if there are free LEBs
539  *
540  * This function does out-of-place garbage collection. The return codes are:
541  *   o positive LEB number if the LEB has been freed and may be used;
542  *   o %-EAGAIN if the caller has to run commit;
543  *   o %-ENOSPC if GC failed to make any progress;
544  *   o other negative error codes in case of other errors.
545  *
546  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
547  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
548  * commit may be required. But commit cannot be run from inside GC, because the
549  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
550  * And this error code means that the caller has to run commit, and re-run GC
551  * if there is still no free space.
552  *
553  * There are many reasons why this function may return %-EAGAIN:
554  * o the log is full and there is no space to write an LEB reference for
555  *   @c->gc_lnum;
556  * o the journal is too large and exceeds size limitations;
557  * o GC moved indexing LEBs, but they can be used only after the commit;
558  * o the shrinker fails to find clean znodes to free and requests the commit;
559  * o etc.
560  *
561  * Note, if the file-system is close to be full, this function may return
562  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
563  * the function. E.g., this happens if the limits on the journal size are too
564  * tough and GC writes too much to the journal before an LEB is freed. This
565  * might also mean that the journal is too large, and the TNC becomes to big,
566  * so that the shrinker is constantly called, finds not clean znodes to free,
567  * and requests commit. Well, this may also happen if the journal is all right,
568  * but another kernel process consumes too much memory. Anyway, infinite
569  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
570  */
571 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
572 {
573 	int i, err, ret, min_space = c->dead_wm;
574 	struct ubifs_lprops lp;
575 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
576 
577 	ubifs_assert_cmt_locked(c);
578 
579 	if (ubifs_gc_should_commit(c))
580 		return -EAGAIN;
581 
582 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
583 
584 	if (c->ro_media) {
585 		ret = -EROFS;
586 		goto out_unlock;
587 	}
588 
589 	/* We expect the write-buffer to be empty on entry */
590 	ubifs_assert(!wbuf->used);
591 
592 	for (i = 0; ; i++) {
593 		int space_before = c->leb_size - wbuf->offs - wbuf->used;
594 		int space_after;
595 
596 		cond_resched();
597 
598 		/* Give the commit an opportunity to run */
599 		if (ubifs_gc_should_commit(c)) {
600 			ret = -EAGAIN;
601 			break;
602 		}
603 
604 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
605 			/*
606 			 * We've done enough iterations. Indexing LEBs were
607 			 * moved and will be available after the commit.
608 			 */
609 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
610 			ubifs_commit_required(c);
611 			ret = -EAGAIN;
612 			break;
613 		}
614 
615 		if (i > HARD_LEBS_LIMIT) {
616 			/*
617 			 * We've moved too many LEBs and have not made
618 			 * progress, give up.
619 			 */
620 			dbg_gc("hard limit, -ENOSPC");
621 			ret = -ENOSPC;
622 			break;
623 		}
624 
625 		/*
626 		 * Empty and freeable LEBs can turn up while we waited for
627 		 * the wbuf lock, or while we have been running GC. In that
628 		 * case, we should just return one of those instead of
629 		 * continuing to GC dirty LEBs. Hence we request
630 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
631 		 */
632 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
633 		if (ret) {
634 			if (ret == -ENOSPC)
635 				dbg_gc("no more dirty LEBs");
636 			break;
637 		}
638 
639 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
640 		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
641 		       lp.free + lp.dirty, min_space);
642 
643 		if (lp.free + lp.dirty == c->leb_size) {
644 			/* An empty LEB was returned */
645 			dbg_gc("LEB %d is free, return it", lp.lnum);
646 			/*
647 			 * ubifs_find_dirty_leb() doesn't return freeable index
648 			 * LEBs.
649 			 */
650 			ubifs_assert(!(lp.flags & LPROPS_INDEX));
651 			if (lp.free != c->leb_size) {
652 				/*
653 				 * Write buffers must be sync'd before
654 				 * unmapping freeable LEBs, because one of them
655 				 * may contain data which obsoletes something
656 				 * in 'lp.pnum'.
657 				 */
658 				ret = gc_sync_wbufs(c);
659 				if (ret)
660 					goto out;
661 				ret = ubifs_change_one_lp(c, lp.lnum,
662 							  c->leb_size, 0, 0, 0,
663 							  0);
664 				if (ret)
665 					goto out;
666 			}
667 			ret = ubifs_leb_unmap(c, lp.lnum);
668 			if (ret)
669 				goto out;
670 			ret = lp.lnum;
671 			break;
672 		}
673 
674 		space_before = c->leb_size - wbuf->offs - wbuf->used;
675 		if (wbuf->lnum == -1)
676 			space_before = 0;
677 
678 		ret = ubifs_garbage_collect_leb(c, &lp);
679 		if (ret < 0) {
680 			if (ret == -EAGAIN || ret == -ENOSPC) {
681 				/*
682 				 * These codes are not errors, so we have to
683 				 * return the LEB to lprops. But if the
684 				 * 'ubifs_return_leb()' function fails, its
685 				 * failure code is propagated to the caller
686 				 * instead of the original '-EAGAIN' or
687 				 * '-ENOSPC'.
688 				 */
689 				err = ubifs_return_leb(c, lp.lnum);
690 				if (err)
691 					ret = err;
692 				break;
693 			}
694 			goto out;
695 		}
696 
697 		if (ret == LEB_FREED) {
698 			/* An LEB has been freed and is ready for use */
699 			dbg_gc("LEB %d freed, return", lp.lnum);
700 			ret = lp.lnum;
701 			break;
702 		}
703 
704 		if (ret == LEB_FREED_IDX) {
705 			/*
706 			 * This was an indexing LEB and it cannot be
707 			 * immediately used. And instead of requesting the
708 			 * commit straight away, we try to garbage collect some
709 			 * more.
710 			 */
711 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
712 			continue;
713 		}
714 
715 		ubifs_assert(ret == LEB_RETAINED);
716 		space_after = c->leb_size - wbuf->offs - wbuf->used;
717 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
718 		       space_after - space_before);
719 
720 		if (space_after > space_before) {
721 			/* GC makes progress, keep working */
722 			min_space >>= 1;
723 			if (min_space < c->dead_wm)
724 				min_space = c->dead_wm;
725 			continue;
726 		}
727 
728 		dbg_gc("did not make progress");
729 
730 		/*
731 		 * GC moved an LEB bud have not done any progress. This means
732 		 * that the previous GC head LEB contained too few free space
733 		 * and the LEB which was GC'ed contained only large nodes which
734 		 * did not fit that space.
735 		 *
736 		 * We can do 2 things:
737 		 * 1. pick another LEB in a hope it'll contain a small node
738 		 *    which will fit the space we have at the end of current GC
739 		 *    head LEB, but there is no guarantee, so we try this out
740 		 *    unless we have already been working for too long;
741 		 * 2. request an LEB with more dirty space, which will force
742 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
743 		 *    table, instead of just picking one from the heap
744 		 *    (previously it already picked the dirtiest LEB).
745 		 */
746 		if (i < SOFT_LEBS_LIMIT) {
747 			dbg_gc("try again");
748 			continue;
749 		}
750 
751 		min_space <<= 1;
752 		if (min_space > c->dark_wm)
753 			min_space = c->dark_wm;
754 		dbg_gc("set min. space to %d", min_space);
755 	}
756 
757 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
758 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
759 		ubifs_commit_required(c);
760 		ret = -EAGAIN;
761 	}
762 
763 	err = ubifs_wbuf_sync_nolock(wbuf);
764 	if (!err)
765 		err = ubifs_leb_unmap(c, c->gc_lnum);
766 	if (err) {
767 		ret = err;
768 		goto out;
769 	}
770 out_unlock:
771 	mutex_unlock(&wbuf->io_mutex);
772 	return ret;
773 
774 out:
775 	ubifs_assert(ret < 0);
776 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
777 	ubifs_ro_mode(c, ret);
778 	ubifs_wbuf_sync_nolock(wbuf);
779 	mutex_unlock(&wbuf->io_mutex);
780 	ubifs_return_leb(c, lp.lnum);
781 	return ret;
782 }
783 
784 /**
785  * ubifs_gc_start_commit - garbage collection at start of commit.
786  * @c: UBIFS file-system description object
787  *
788  * If a LEB has only dirty and free space, then we may safely unmap it and make
789  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
790  * correspond index nodes that are required for recovery.  In that case, the
791  * LEB cannot be unmapped until after the next commit.
792  *
793  * This function returns %0 upon success and a negative error code upon failure.
794  */
795 int ubifs_gc_start_commit(struct ubifs_info *c)
796 {
797 	struct ubifs_gced_idx_leb *idx_gc;
798 	const struct ubifs_lprops *lp;
799 	int err = 0, flags;
800 
801 	ubifs_get_lprops(c);
802 
803 	/*
804 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
805 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
806 	 */
807 	while (1) {
808 		lp = ubifs_fast_find_freeable(c);
809 		if (IS_ERR(lp)) {
810 			err = PTR_ERR(lp);
811 			goto out;
812 		}
813 		if (!lp)
814 			break;
815 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
816 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
817 		err = ubifs_leb_unmap(c, lp->lnum);
818 		if (err)
819 			goto out;
820 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
821 		if (IS_ERR(lp)) {
822 			err = PTR_ERR(lp);
823 			goto out;
824 		}
825 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
826 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
827 	}
828 
829 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
830 	list_for_each_entry(idx_gc, &c->idx_gc, list)
831 		idx_gc->unmap = 1;
832 
833 	/* Record index freeable LEBs for unmapping after commit */
834 	while (1) {
835 		lp = ubifs_fast_find_frdi_idx(c);
836 		if (IS_ERR(lp)) {
837 			err = PTR_ERR(lp);
838 			goto out;
839 		}
840 		if (!lp)
841 			break;
842 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
843 		if (!idx_gc) {
844 			err = -ENOMEM;
845 			goto out;
846 		}
847 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
848 		ubifs_assert(lp->flags & LPROPS_INDEX);
849 		/* Don't release the LEB until after the next commit */
850 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
851 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
852 		if (IS_ERR(lp)) {
853 			err = PTR_ERR(lp);
854 			kfree(idx_gc);
855 			goto out;
856 		}
857 		ubifs_assert(lp->flags & LPROPS_TAKEN);
858 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
859 		idx_gc->lnum = lp->lnum;
860 		idx_gc->unmap = 1;
861 		list_add(&idx_gc->list, &c->idx_gc);
862 	}
863 out:
864 	ubifs_release_lprops(c);
865 	return err;
866 }
867 
868 /**
869  * ubifs_gc_end_commit - garbage collection at end of commit.
870  * @c: UBIFS file-system description object
871  *
872  * This function completes out-of-place garbage collection of index LEBs.
873  */
874 int ubifs_gc_end_commit(struct ubifs_info *c)
875 {
876 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
877 	struct ubifs_wbuf *wbuf;
878 	int err = 0;
879 
880 	wbuf = &c->jheads[GCHD].wbuf;
881 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
882 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
883 		if (idx_gc->unmap) {
884 			dbg_gc("LEB %d", idx_gc->lnum);
885 			err = ubifs_leb_unmap(c, idx_gc->lnum);
886 			if (err)
887 				goto out;
888 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
889 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
890 			if (err)
891 				goto out;
892 			list_del(&idx_gc->list);
893 			kfree(idx_gc);
894 		}
895 out:
896 	mutex_unlock(&wbuf->io_mutex);
897 	return err;
898 }
899 
900 /**
901  * ubifs_destroy_idx_gc - destroy idx_gc list.
902  * @c: UBIFS file-system description object
903  *
904  * This function destroys the @c->idx_gc list. It is called when unmounting
905  * so locks are not needed. Returns zero in case of success and a negative
906  * error code in case of failure.
907  */
908 void ubifs_destroy_idx_gc(struct ubifs_info *c)
909 {
910 	while (!list_empty(&c->idx_gc)) {
911 		struct ubifs_gced_idx_leb *idx_gc;
912 
913 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
914 				    list);
915 		c->idx_gc_cnt -= 1;
916 		list_del(&idx_gc->list);
917 		kfree(idx_gc);
918 	}
919 }
920 
921 /**
922  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
923  * @c: UBIFS file-system description object
924  *
925  * Called during start commit so locks are not needed.
926  */
927 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
928 {
929 	struct ubifs_gced_idx_leb *idx_gc;
930 	int lnum;
931 
932 	if (list_empty(&c->idx_gc))
933 		return -ENOSPC;
934 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
935 	lnum = idx_gc->lnum;
936 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
937 	list_del(&idx_gc->list);
938 	kfree(idx_gc);
939 	return lnum;
940 }
941