1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file contains functions for finding LEBs for various purposes e.g. 13 * garbage collection. In general, lprops category heaps and lists are used 14 * for fast access, falling back on scanning the LPT as a last resort. 15 */ 16 17 #include <linux/sort.h> 18 #include "ubifs.h" 19 20 /** 21 * struct scan_data - data provided to scan callback functions 22 * @min_space: minimum number of bytes for which to scan 23 * @pick_free: whether it is OK to scan for empty LEBs 24 * @lnum: LEB number found is returned here 25 * @exclude_index: whether to exclude index LEBs 26 */ 27 struct scan_data { 28 int min_space; 29 int pick_free; 30 int lnum; 31 int exclude_index; 32 }; 33 34 /** 35 * valuable - determine whether LEB properties are valuable. 36 * @c: the UBIFS file-system description object 37 * @lprops: LEB properties 38 * 39 * This function return %1 if the LEB properties should be added to the LEB 40 * properties tree in memory. Otherwise %0 is returned. 41 */ 42 static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops) 43 { 44 int n, cat = lprops->flags & LPROPS_CAT_MASK; 45 struct ubifs_lpt_heap *heap; 46 47 switch (cat) { 48 case LPROPS_DIRTY: 49 case LPROPS_DIRTY_IDX: 50 case LPROPS_FREE: 51 heap = &c->lpt_heap[cat - 1]; 52 if (heap->cnt < heap->max_cnt) 53 return 1; 54 if (lprops->free + lprops->dirty >= c->dark_wm) 55 return 1; 56 return 0; 57 case LPROPS_EMPTY: 58 n = c->lst.empty_lebs + c->freeable_cnt - 59 c->lst.taken_empty_lebs; 60 if (n < c->lsave_cnt) 61 return 1; 62 return 0; 63 case LPROPS_FREEABLE: 64 return 1; 65 case LPROPS_FRDI_IDX: 66 return 1; 67 } 68 return 0; 69 } 70 71 /** 72 * scan_for_dirty_cb - dirty space scan callback. 73 * @c: the UBIFS file-system description object 74 * @lprops: LEB properties to scan 75 * @in_tree: whether the LEB properties are in main memory 76 * @data: information passed to and from the caller of the scan 77 * 78 * This function returns a code that indicates whether the scan should continue 79 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 80 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 81 * (%LPT_SCAN_STOP). 82 */ 83 static int scan_for_dirty_cb(struct ubifs_info *c, 84 const struct ubifs_lprops *lprops, int in_tree, 85 struct scan_data *data) 86 { 87 int ret = LPT_SCAN_CONTINUE; 88 89 /* Exclude LEBs that are currently in use */ 90 if (lprops->flags & LPROPS_TAKEN) 91 return LPT_SCAN_CONTINUE; 92 /* Determine whether to add these LEB properties to the tree */ 93 if (!in_tree && valuable(c, lprops)) 94 ret |= LPT_SCAN_ADD; 95 /* Exclude LEBs with too little space */ 96 if (lprops->free + lprops->dirty < data->min_space) 97 return ret; 98 /* If specified, exclude index LEBs */ 99 if (data->exclude_index && lprops->flags & LPROPS_INDEX) 100 return ret; 101 /* If specified, exclude empty or freeable LEBs */ 102 if (lprops->free + lprops->dirty == c->leb_size) { 103 if (!data->pick_free) 104 return ret; 105 /* Exclude LEBs with too little dirty space (unless it is empty) */ 106 } else if (lprops->dirty < c->dead_wm) 107 return ret; 108 /* Finally we found space */ 109 data->lnum = lprops->lnum; 110 return LPT_SCAN_ADD | LPT_SCAN_STOP; 111 } 112 113 /** 114 * scan_for_dirty - find a data LEB with free space. 115 * @c: the UBIFS file-system description object 116 * @min_space: minimum amount free plus dirty space the returned LEB has to 117 * have 118 * @pick_free: if it is OK to return a free or freeable LEB 119 * @exclude_index: whether to exclude index LEBs 120 * 121 * This function returns a pointer to the LEB properties found or a negative 122 * error code. 123 */ 124 static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c, 125 int min_space, int pick_free, 126 int exclude_index) 127 { 128 const struct ubifs_lprops *lprops; 129 struct ubifs_lpt_heap *heap; 130 struct scan_data data; 131 int err, i; 132 133 /* There may be an LEB with enough dirty space on the free heap */ 134 heap = &c->lpt_heap[LPROPS_FREE - 1]; 135 for (i = 0; i < heap->cnt; i++) { 136 lprops = heap->arr[i]; 137 if (lprops->free + lprops->dirty < min_space) 138 continue; 139 if (lprops->dirty < c->dead_wm) 140 continue; 141 return lprops; 142 } 143 /* 144 * A LEB may have fallen off of the bottom of the dirty heap, and ended 145 * up as uncategorized even though it has enough dirty space for us now, 146 * so check the uncategorized list. N.B. neither empty nor freeable LEBs 147 * can end up as uncategorized because they are kept on lists not 148 * finite-sized heaps. 149 */ 150 list_for_each_entry(lprops, &c->uncat_list, list) { 151 if (lprops->flags & LPROPS_TAKEN) 152 continue; 153 if (lprops->free + lprops->dirty < min_space) 154 continue; 155 if (exclude_index && (lprops->flags & LPROPS_INDEX)) 156 continue; 157 if (lprops->dirty < c->dead_wm) 158 continue; 159 return lprops; 160 } 161 /* We have looked everywhere in main memory, now scan the flash */ 162 if (c->pnodes_have >= c->pnode_cnt) 163 /* All pnodes are in memory, so skip scan */ 164 return ERR_PTR(-ENOSPC); 165 data.min_space = min_space; 166 data.pick_free = pick_free; 167 data.lnum = -1; 168 data.exclude_index = exclude_index; 169 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 170 (ubifs_lpt_scan_callback)scan_for_dirty_cb, 171 &data); 172 if (err) 173 return ERR_PTR(err); 174 ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); 175 c->lscan_lnum = data.lnum; 176 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 177 if (IS_ERR(lprops)) 178 return lprops; 179 ubifs_assert(c, lprops->lnum == data.lnum); 180 ubifs_assert(c, lprops->free + lprops->dirty >= min_space); 181 ubifs_assert(c, lprops->dirty >= c->dead_wm || 182 (pick_free && 183 lprops->free + lprops->dirty == c->leb_size)); 184 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 185 ubifs_assert(c, !exclude_index || !(lprops->flags & LPROPS_INDEX)); 186 return lprops; 187 } 188 189 /** 190 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector. 191 * @c: the UBIFS file-system description object 192 * @ret_lp: LEB properties are returned here on exit 193 * @min_space: minimum amount free plus dirty space the returned LEB has to 194 * have 195 * @pick_free: controls whether it is OK to pick empty or index LEBs 196 * 197 * This function tries to find a dirty logical eraseblock which has at least 198 * @min_space free and dirty space. It prefers to take an LEB from the dirty or 199 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty 200 * or do not have an LEB which satisfies the @min_space criteria. 201 * 202 * Note, LEBs which have less than dead watermark of free + dirty space are 203 * never picked by this function. 204 * 205 * The additional @pick_free argument controls if this function has to return a 206 * free or freeable LEB if one is present. For example, GC must to set it to %1, 207 * when called from the journal space reservation function, because the 208 * appearance of free space may coincide with the loss of enough dirty space 209 * for GC to succeed anyway. 210 * 211 * In contrast, if the Garbage Collector is called from budgeting, it should 212 * just make free space, not return LEBs which are already free or freeable. 213 * 214 * In addition @pick_free is set to %2 by the recovery process in order to 215 * recover gc_lnum in which case an index LEB must not be returned. 216 * 217 * This function returns zero and the LEB properties of found dirty LEB in case 218 * of success, %-ENOSPC if no dirty LEB was found and a negative error code in 219 * case of other failures. The returned LEB is marked as "taken". 220 */ 221 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, 222 int min_space, int pick_free) 223 { 224 int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0; 225 const struct ubifs_lprops *lp = NULL, *idx_lp = NULL; 226 struct ubifs_lpt_heap *heap, *idx_heap; 227 228 ubifs_get_lprops(c); 229 230 if (pick_free) { 231 int lebs, rsvd_idx_lebs = 0; 232 233 spin_lock(&c->space_lock); 234 lebs = c->lst.empty_lebs + c->idx_gc_cnt; 235 lebs += c->freeable_cnt - c->lst.taken_empty_lebs; 236 237 /* 238 * Note, the index may consume more LEBs than have been reserved 239 * for it. It is OK because it might be consolidated by GC. 240 * But if the index takes fewer LEBs than it is reserved for it, 241 * this function must avoid picking those reserved LEBs. 242 */ 243 if (c->bi.min_idx_lebs >= c->lst.idx_lebs) { 244 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 245 exclude_index = 1; 246 } 247 spin_unlock(&c->space_lock); 248 249 /* Check if there are enough free LEBs for the index */ 250 if (rsvd_idx_lebs < lebs) { 251 /* OK, try to find an empty LEB */ 252 lp = ubifs_fast_find_empty(c); 253 if (lp) 254 goto found; 255 256 /* Or a freeable LEB */ 257 lp = ubifs_fast_find_freeable(c); 258 if (lp) 259 goto found; 260 } else 261 /* 262 * We cannot pick free/freeable LEBs in the below code. 263 */ 264 pick_free = 0; 265 } else { 266 spin_lock(&c->space_lock); 267 exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs); 268 spin_unlock(&c->space_lock); 269 } 270 271 /* Look on the dirty and dirty index heaps */ 272 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 273 idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 274 275 if (idx_heap->cnt && !exclude_index) { 276 idx_lp = idx_heap->arr[0]; 277 sum = idx_lp->free + idx_lp->dirty; 278 /* 279 * Since we reserve thrice as much space for the index than it 280 * actually takes, it does not make sense to pick indexing LEBs 281 * with less than, say, half LEB of dirty space. May be half is 282 * not the optimal boundary - this should be tested and 283 * checked. This boundary should determine how much we use 284 * in-the-gaps to consolidate the index comparing to how much 285 * we use garbage collector to consolidate it. The "half" 286 * criteria just feels to be fine. 287 */ 288 if (sum < min_space || sum < c->half_leb_size) 289 idx_lp = NULL; 290 } 291 292 if (heap->cnt) { 293 lp = heap->arr[0]; 294 if (lp->dirty + lp->free < min_space) 295 lp = NULL; 296 } 297 298 /* Pick the LEB with most space */ 299 if (idx_lp && lp) { 300 if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty) 301 lp = idx_lp; 302 } else if (idx_lp && !lp) 303 lp = idx_lp; 304 305 if (lp) { 306 ubifs_assert(c, lp->free + lp->dirty >= c->dead_wm); 307 goto found; 308 } 309 310 /* Did not find a dirty LEB on the dirty heaps, have to scan */ 311 dbg_find("scanning LPT for a dirty LEB"); 312 lp = scan_for_dirty(c, min_space, pick_free, exclude_index); 313 if (IS_ERR(lp)) { 314 err = PTR_ERR(lp); 315 goto out; 316 } 317 ubifs_assert(c, lp->dirty >= c->dead_wm || 318 (pick_free && lp->free + lp->dirty == c->leb_size)); 319 320 found: 321 dbg_find("found LEB %d, free %d, dirty %d, flags %#x", 322 lp->lnum, lp->free, lp->dirty, lp->flags); 323 324 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 325 lp->flags | LPROPS_TAKEN, 0); 326 if (IS_ERR(lp)) { 327 err = PTR_ERR(lp); 328 goto out; 329 } 330 331 memcpy(ret_lp, lp, sizeof(struct ubifs_lprops)); 332 333 out: 334 ubifs_release_lprops(c); 335 return err; 336 } 337 338 /** 339 * scan_for_free_cb - free space scan callback. 340 * @c: the UBIFS file-system description object 341 * @lprops: LEB properties to scan 342 * @in_tree: whether the LEB properties are in main memory 343 * @data: information passed to and from the caller of the scan 344 * 345 * This function returns a code that indicates whether the scan should continue 346 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 347 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 348 * (%LPT_SCAN_STOP). 349 */ 350 static int scan_for_free_cb(struct ubifs_info *c, 351 const struct ubifs_lprops *lprops, int in_tree, 352 struct scan_data *data) 353 { 354 int ret = LPT_SCAN_CONTINUE; 355 356 /* Exclude LEBs that are currently in use */ 357 if (lprops->flags & LPROPS_TAKEN) 358 return LPT_SCAN_CONTINUE; 359 /* Determine whether to add these LEB properties to the tree */ 360 if (!in_tree && valuable(c, lprops)) 361 ret |= LPT_SCAN_ADD; 362 /* Exclude index LEBs */ 363 if (lprops->flags & LPROPS_INDEX) 364 return ret; 365 /* Exclude LEBs with too little space */ 366 if (lprops->free < data->min_space) 367 return ret; 368 /* If specified, exclude empty LEBs */ 369 if (!data->pick_free && lprops->free == c->leb_size) 370 return ret; 371 /* 372 * LEBs that have only free and dirty space must not be allocated 373 * because they may have been unmapped already or they may have data 374 * that is obsolete only because of nodes that are still sitting in a 375 * wbuf. 376 */ 377 if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0) 378 return ret; 379 /* Finally we found space */ 380 data->lnum = lprops->lnum; 381 return LPT_SCAN_ADD | LPT_SCAN_STOP; 382 } 383 384 /** 385 * do_find_free_space - find a data LEB with free space. 386 * @c: the UBIFS file-system description object 387 * @min_space: minimum amount of free space required 388 * @pick_free: whether it is OK to scan for empty LEBs 389 * @squeeze: whether to try to find space in a non-empty LEB first 390 * 391 * This function returns a pointer to the LEB properties found or a negative 392 * error code. 393 */ 394 static 395 const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c, 396 int min_space, int pick_free, 397 int squeeze) 398 { 399 const struct ubifs_lprops *lprops; 400 struct ubifs_lpt_heap *heap; 401 struct scan_data data; 402 int err, i; 403 404 if (squeeze) { 405 lprops = ubifs_fast_find_free(c); 406 if (lprops && lprops->free >= min_space) 407 return lprops; 408 } 409 if (pick_free) { 410 lprops = ubifs_fast_find_empty(c); 411 if (lprops) 412 return lprops; 413 } 414 if (!squeeze) { 415 lprops = ubifs_fast_find_free(c); 416 if (lprops && lprops->free >= min_space) 417 return lprops; 418 } 419 /* There may be an LEB with enough free space on the dirty heap */ 420 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 421 for (i = 0; i < heap->cnt; i++) { 422 lprops = heap->arr[i]; 423 if (lprops->free >= min_space) 424 return lprops; 425 } 426 /* 427 * A LEB may have fallen off of the bottom of the free heap, and ended 428 * up as uncategorized even though it has enough free space for us now, 429 * so check the uncategorized list. N.B. neither empty nor freeable LEBs 430 * can end up as uncategorized because they are kept on lists not 431 * finite-sized heaps. 432 */ 433 list_for_each_entry(lprops, &c->uncat_list, list) { 434 if (lprops->flags & LPROPS_TAKEN) 435 continue; 436 if (lprops->flags & LPROPS_INDEX) 437 continue; 438 if (lprops->free >= min_space) 439 return lprops; 440 } 441 /* We have looked everywhere in main memory, now scan the flash */ 442 if (c->pnodes_have >= c->pnode_cnt) 443 /* All pnodes are in memory, so skip scan */ 444 return ERR_PTR(-ENOSPC); 445 data.min_space = min_space; 446 data.pick_free = pick_free; 447 data.lnum = -1; 448 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 449 (ubifs_lpt_scan_callback)scan_for_free_cb, 450 &data); 451 if (err) 452 return ERR_PTR(err); 453 ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); 454 c->lscan_lnum = data.lnum; 455 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 456 if (IS_ERR(lprops)) 457 return lprops; 458 ubifs_assert(c, lprops->lnum == data.lnum); 459 ubifs_assert(c, lprops->free >= min_space); 460 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 461 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 462 return lprops; 463 } 464 465 /** 466 * ubifs_find_free_space - find a data LEB with free space. 467 * @c: the UBIFS file-system description object 468 * @min_space: minimum amount of required free space 469 * @offs: contains offset of where free space starts on exit 470 * @squeeze: whether to try to find space in a non-empty LEB first 471 * 472 * This function looks for an LEB with at least @min_space bytes of free space. 473 * It tries to find an empty LEB if possible. If no empty LEBs are available, 474 * this function searches for a non-empty data LEB. The returned LEB is marked 475 * as "taken". 476 * 477 * This function returns found LEB number in case of success, %-ENOSPC if it 478 * failed to find a LEB with @min_space bytes of free space and other a negative 479 * error codes in case of failure. 480 */ 481 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, 482 int squeeze) 483 { 484 const struct ubifs_lprops *lprops; 485 int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags; 486 487 dbg_find("min_space %d", min_space); 488 ubifs_get_lprops(c); 489 490 /* Check if there are enough empty LEBs for commit */ 491 spin_lock(&c->space_lock); 492 if (c->bi.min_idx_lebs > c->lst.idx_lebs) 493 rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs; 494 else 495 rsvd_idx_lebs = 0; 496 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 497 c->lst.taken_empty_lebs; 498 if (rsvd_idx_lebs < lebs) 499 /* 500 * OK to allocate an empty LEB, but we still don't want to go 501 * looking for one if there aren't any. 502 */ 503 if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { 504 pick_free = 1; 505 /* 506 * Because we release the space lock, we must account 507 * for this allocation here. After the LEB properties 508 * flags have been updated, we subtract one. Note, the 509 * result of this is that lprops also decreases 510 * @taken_empty_lebs in 'ubifs_change_lp()', so it is 511 * off by one for a short period of time which may 512 * introduce a small disturbance to budgeting 513 * calculations, but this is harmless because at the 514 * worst case this would make the budgeting subsystem 515 * be more pessimistic than needed. 516 * 517 * Fundamentally, this is about serialization of the 518 * budgeting and lprops subsystems. We could make the 519 * @space_lock a mutex and avoid dropping it before 520 * calling 'ubifs_change_lp()', but mutex is more 521 * heavy-weight, and we want budgeting to be as fast as 522 * possible. 523 */ 524 c->lst.taken_empty_lebs += 1; 525 } 526 spin_unlock(&c->space_lock); 527 528 lprops = do_find_free_space(c, min_space, pick_free, squeeze); 529 if (IS_ERR(lprops)) { 530 err = PTR_ERR(lprops); 531 goto out; 532 } 533 534 lnum = lprops->lnum; 535 flags = lprops->flags | LPROPS_TAKEN; 536 537 lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0); 538 if (IS_ERR(lprops)) { 539 err = PTR_ERR(lprops); 540 goto out; 541 } 542 543 if (pick_free) { 544 spin_lock(&c->space_lock); 545 c->lst.taken_empty_lebs -= 1; 546 spin_unlock(&c->space_lock); 547 } 548 549 *offs = c->leb_size - lprops->free; 550 ubifs_release_lprops(c); 551 552 if (*offs == 0) { 553 /* 554 * Ensure that empty LEBs have been unmapped. They may not have 555 * been, for example, because of an unclean unmount. Also 556 * LEBs that were freeable LEBs (free + dirty == leb_size) will 557 * not have been unmapped. 558 */ 559 err = ubifs_leb_unmap(c, lnum); 560 if (err) 561 return err; 562 } 563 564 dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs); 565 ubifs_assert(c, *offs <= c->leb_size - min_space); 566 return lnum; 567 568 out: 569 if (pick_free) { 570 spin_lock(&c->space_lock); 571 c->lst.taken_empty_lebs -= 1; 572 spin_unlock(&c->space_lock); 573 } 574 ubifs_release_lprops(c); 575 return err; 576 } 577 578 /** 579 * scan_for_idx_cb - callback used by the scan for a free LEB for the index. 580 * @c: the UBIFS file-system description object 581 * @lprops: LEB properties to scan 582 * @in_tree: whether the LEB properties are in main memory 583 * @data: information passed to and from the caller of the scan 584 * 585 * This function returns a code that indicates whether the scan should continue 586 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 587 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 588 * (%LPT_SCAN_STOP). 589 */ 590 static int scan_for_idx_cb(struct ubifs_info *c, 591 const struct ubifs_lprops *lprops, int in_tree, 592 struct scan_data *data) 593 { 594 int ret = LPT_SCAN_CONTINUE; 595 596 /* Exclude LEBs that are currently in use */ 597 if (lprops->flags & LPROPS_TAKEN) 598 return LPT_SCAN_CONTINUE; 599 /* Determine whether to add these LEB properties to the tree */ 600 if (!in_tree && valuable(c, lprops)) 601 ret |= LPT_SCAN_ADD; 602 /* Exclude index LEBS */ 603 if (lprops->flags & LPROPS_INDEX) 604 return ret; 605 /* Exclude LEBs that cannot be made empty */ 606 if (lprops->free + lprops->dirty != c->leb_size) 607 return ret; 608 /* 609 * We are allocating for the index so it is safe to allocate LEBs with 610 * only free and dirty space, because write buffers are sync'd at commit 611 * start. 612 */ 613 data->lnum = lprops->lnum; 614 return LPT_SCAN_ADD | LPT_SCAN_STOP; 615 } 616 617 /** 618 * scan_for_leb_for_idx - scan for a free LEB for the index. 619 * @c: the UBIFS file-system description object 620 */ 621 static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) 622 { 623 const struct ubifs_lprops *lprops; 624 struct scan_data data; 625 int err; 626 627 data.lnum = -1; 628 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 629 (ubifs_lpt_scan_callback)scan_for_idx_cb, 630 &data); 631 if (err) 632 return ERR_PTR(err); 633 ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); 634 c->lscan_lnum = data.lnum; 635 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 636 if (IS_ERR(lprops)) 637 return lprops; 638 ubifs_assert(c, lprops->lnum == data.lnum); 639 ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size); 640 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 641 ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); 642 return lprops; 643 } 644 645 /** 646 * ubifs_find_free_leb_for_idx - find a free LEB for the index. 647 * @c: the UBIFS file-system description object 648 * 649 * This function looks for a free LEB and returns that LEB number. The returned 650 * LEB is marked as "taken", "index". 651 * 652 * Only empty LEBs are allocated. This is for two reasons. First, the commit 653 * calculates the number of LEBs to allocate based on the assumption that they 654 * will be empty. Secondly, free space at the end of an index LEB is not 655 * guaranteed to be empty because it may have been used by the in-the-gaps 656 * method prior to an unclean unmount. 657 * 658 * If no LEB is found %-ENOSPC is returned. For other failures another negative 659 * error code is returned. 660 */ 661 int ubifs_find_free_leb_for_idx(struct ubifs_info *c) 662 { 663 const struct ubifs_lprops *lprops; 664 int lnum = -1, err, flags; 665 666 ubifs_get_lprops(c); 667 668 lprops = ubifs_fast_find_empty(c); 669 if (!lprops) { 670 lprops = ubifs_fast_find_freeable(c); 671 if (!lprops) { 672 /* 673 * The first condition means the following: go scan the 674 * LPT if there are uncategorized lprops, which means 675 * there may be freeable LEBs there (UBIFS does not 676 * store the information about freeable LEBs in the 677 * master node). 678 */ 679 if (c->in_a_category_cnt != c->main_lebs || 680 c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { 681 ubifs_assert(c, c->freeable_cnt == 0); 682 lprops = scan_for_leb_for_idx(c); 683 if (IS_ERR(lprops)) { 684 err = PTR_ERR(lprops); 685 goto out; 686 } 687 } 688 } 689 } 690 691 if (!lprops) { 692 err = -ENOSPC; 693 goto out; 694 } 695 696 lnum = lprops->lnum; 697 698 dbg_find("found LEB %d, free %d, dirty %d, flags %#x", 699 lnum, lprops->free, lprops->dirty, lprops->flags); 700 701 flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX; 702 lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0); 703 if (IS_ERR(lprops)) { 704 err = PTR_ERR(lprops); 705 goto out; 706 } 707 708 ubifs_release_lprops(c); 709 710 /* 711 * Ensure that empty LEBs have been unmapped. They may not have been, 712 * for example, because of an unclean unmount. Also LEBs that were 713 * freeable LEBs (free + dirty == leb_size) will not have been unmapped. 714 */ 715 err = ubifs_leb_unmap(c, lnum); 716 if (err) { 717 ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 718 LPROPS_TAKEN | LPROPS_INDEX, 0); 719 return err; 720 } 721 722 return lnum; 723 724 out: 725 ubifs_release_lprops(c); 726 return err; 727 } 728 729 static int cmp_dirty_idx(const struct ubifs_lprops **a, 730 const struct ubifs_lprops **b) 731 { 732 const struct ubifs_lprops *lpa = *a; 733 const struct ubifs_lprops *lpb = *b; 734 735 return lpa->dirty + lpa->free - lpb->dirty - lpb->free; 736 } 737 738 /** 739 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos. 740 * @c: the UBIFS file-system description object 741 * 742 * This function is called each commit to create an array of LEB numbers of 743 * dirty index LEBs sorted in order of dirty and free space. This is used by 744 * the in-the-gaps method of TNC commit. 745 */ 746 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c) 747 { 748 int i; 749 750 ubifs_get_lprops(c); 751 /* Copy the LPROPS_DIRTY_IDX heap */ 752 c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt; 753 memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr, 754 sizeof(void *) * c->dirty_idx.cnt); 755 /* Sort it so that the dirtiest is now at the end */ 756 sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *), 757 (int (*)(const void *, const void *))cmp_dirty_idx, NULL); 758 dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt); 759 if (c->dirty_idx.cnt) 760 dbg_find("dirtiest index LEB is %d with dirty %d and free %d", 761 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum, 762 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty, 763 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free); 764 /* Replace the lprops pointers with LEB numbers */ 765 for (i = 0; i < c->dirty_idx.cnt; i++) 766 c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum; 767 ubifs_release_lprops(c); 768 return 0; 769 } 770 771 /** 772 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB. 773 * @c: the UBIFS file-system description object 774 * @lprops: LEB properties to scan 775 * @in_tree: whether the LEB properties are in main memory 776 * @data: information passed to and from the caller of the scan 777 * 778 * This function returns a code that indicates whether the scan should continue 779 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 780 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 781 * (%LPT_SCAN_STOP). 782 */ 783 static int scan_dirty_idx_cb(struct ubifs_info *c, 784 const struct ubifs_lprops *lprops, int in_tree, 785 struct scan_data *data) 786 { 787 int ret = LPT_SCAN_CONTINUE; 788 789 /* Exclude LEBs that are currently in use */ 790 if (lprops->flags & LPROPS_TAKEN) 791 return LPT_SCAN_CONTINUE; 792 /* Determine whether to add these LEB properties to the tree */ 793 if (!in_tree && valuable(c, lprops)) 794 ret |= LPT_SCAN_ADD; 795 /* Exclude non-index LEBs */ 796 if (!(lprops->flags & LPROPS_INDEX)) 797 return ret; 798 /* Exclude LEBs with too little space */ 799 if (lprops->free + lprops->dirty < c->min_idx_node_sz) 800 return ret; 801 /* Finally we found space */ 802 data->lnum = lprops->lnum; 803 return LPT_SCAN_ADD | LPT_SCAN_STOP; 804 } 805 806 /** 807 * find_dirty_idx_leb - find a dirty index LEB. 808 * @c: the UBIFS file-system description object 809 * 810 * This function returns LEB number upon success and a negative error code upon 811 * failure. In particular, -ENOSPC is returned if a dirty index LEB is not 812 * found. 813 * 814 * Note that this function scans the entire LPT but it is called very rarely. 815 */ 816 static int find_dirty_idx_leb(struct ubifs_info *c) 817 { 818 const struct ubifs_lprops *lprops; 819 struct ubifs_lpt_heap *heap; 820 struct scan_data data; 821 int err, i, ret; 822 823 /* Check all structures in memory first */ 824 data.lnum = -1; 825 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 826 for (i = 0; i < heap->cnt; i++) { 827 lprops = heap->arr[i]; 828 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 829 if (ret & LPT_SCAN_STOP) 830 goto found; 831 } 832 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 833 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 834 if (ret & LPT_SCAN_STOP) 835 goto found; 836 } 837 list_for_each_entry(lprops, &c->uncat_list, list) { 838 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 839 if (ret & LPT_SCAN_STOP) 840 goto found; 841 } 842 if (c->pnodes_have >= c->pnode_cnt) 843 /* All pnodes are in memory, so skip scan */ 844 return -ENOSPC; 845 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 846 (ubifs_lpt_scan_callback)scan_dirty_idx_cb, 847 &data); 848 if (err) 849 return err; 850 found: 851 ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); 852 c->lscan_lnum = data.lnum; 853 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 854 if (IS_ERR(lprops)) 855 return PTR_ERR(lprops); 856 ubifs_assert(c, lprops->lnum == data.lnum); 857 ubifs_assert(c, lprops->free + lprops->dirty >= c->min_idx_node_sz); 858 ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); 859 ubifs_assert(c, (lprops->flags & LPROPS_INDEX)); 860 861 dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x", 862 lprops->lnum, lprops->free, lprops->dirty, lprops->flags); 863 864 lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, 865 lprops->flags | LPROPS_TAKEN, 0); 866 if (IS_ERR(lprops)) 867 return PTR_ERR(lprops); 868 869 return lprops->lnum; 870 } 871 872 /** 873 * get_idx_gc_leb - try to get a LEB number from trivial GC. 874 * @c: the UBIFS file-system description object 875 */ 876 static int get_idx_gc_leb(struct ubifs_info *c) 877 { 878 const struct ubifs_lprops *lp; 879 int err, lnum; 880 881 err = ubifs_get_idx_gc_leb(c); 882 if (err < 0) 883 return err; 884 lnum = err; 885 /* 886 * The LEB was due to be unmapped after the commit but 887 * it is needed now for this commit. 888 */ 889 lp = ubifs_lpt_lookup_dirty(c, lnum); 890 if (IS_ERR(lp)) 891 return PTR_ERR(lp); 892 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 893 lp->flags | LPROPS_INDEX, -1); 894 if (IS_ERR(lp)) 895 return PTR_ERR(lp); 896 dbg_find("LEB %d, dirty %d and free %d flags %#x", 897 lp->lnum, lp->dirty, lp->free, lp->flags); 898 return lnum; 899 } 900 901 /** 902 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array. 903 * @c: the UBIFS file-system description object 904 */ 905 static int find_dirtiest_idx_leb(struct ubifs_info *c) 906 { 907 const struct ubifs_lprops *lp; 908 int lnum; 909 910 while (1) { 911 if (!c->dirty_idx.cnt) 912 return -ENOSPC; 913 /* The lprops pointers were replaced by LEB numbers */ 914 lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt]; 915 lp = ubifs_lpt_lookup(c, lnum); 916 if (IS_ERR(lp)) 917 return PTR_ERR(lp); 918 if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX)) 919 continue; 920 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 921 lp->flags | LPROPS_TAKEN, 0); 922 if (IS_ERR(lp)) 923 return PTR_ERR(lp); 924 break; 925 } 926 dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty, 927 lp->free, lp->flags); 928 ubifs_assert(c, lp->flags & LPROPS_TAKEN); 929 ubifs_assert(c, lp->flags & LPROPS_INDEX); 930 return lnum; 931 } 932 933 /** 934 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit. 935 * @c: the UBIFS file-system description object 936 * 937 * This function attempts to find an untaken index LEB with the most free and 938 * dirty space that can be used without overwriting index nodes that were in the 939 * last index committed. 940 */ 941 int ubifs_find_dirty_idx_leb(struct ubifs_info *c) 942 { 943 int err; 944 945 ubifs_get_lprops(c); 946 947 /* 948 * We made an array of the dirtiest index LEB numbers as at the start of 949 * last commit. Try that array first. 950 */ 951 err = find_dirtiest_idx_leb(c); 952 953 /* Next try scanning the entire LPT */ 954 if (err == -ENOSPC) 955 err = find_dirty_idx_leb(c); 956 957 /* Finally take any index LEBs awaiting trivial GC */ 958 if (err == -ENOSPC) 959 err = get_idx_gc_leb(c); 960 961 ubifs_release_lprops(c); 962 return err; 963 } 964