xref: /openbmc/linux/fs/ubifs/find.c (revision 9726bfcd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file contains functions for finding LEBs for various purposes e.g.
13  * garbage collection. In general, lprops category heaps and lists are used
14  * for fast access, falling back on scanning the LPT as a last resort.
15  */
16 
17 #include <linux/sort.h>
18 #include "ubifs.h"
19 
20 /**
21  * struct scan_data - data provided to scan callback functions
22  * @min_space: minimum number of bytes for which to scan
23  * @pick_free: whether it is OK to scan for empty LEBs
24  * @lnum: LEB number found is returned here
25  * @exclude_index: whether to exclude index LEBs
26  */
27 struct scan_data {
28 	int min_space;
29 	int pick_free;
30 	int lnum;
31 	int exclude_index;
32 };
33 
34 /**
35  * valuable - determine whether LEB properties are valuable.
36  * @c: the UBIFS file-system description object
37  * @lprops: LEB properties
38  *
39  * This function return %1 if the LEB properties should be added to the LEB
40  * properties tree in memory. Otherwise %0 is returned.
41  */
42 static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
43 {
44 	int n, cat = lprops->flags & LPROPS_CAT_MASK;
45 	struct ubifs_lpt_heap *heap;
46 
47 	switch (cat) {
48 	case LPROPS_DIRTY:
49 	case LPROPS_DIRTY_IDX:
50 	case LPROPS_FREE:
51 		heap = &c->lpt_heap[cat - 1];
52 		if (heap->cnt < heap->max_cnt)
53 			return 1;
54 		if (lprops->free + lprops->dirty >= c->dark_wm)
55 			return 1;
56 		return 0;
57 	case LPROPS_EMPTY:
58 		n = c->lst.empty_lebs + c->freeable_cnt -
59 		    c->lst.taken_empty_lebs;
60 		if (n < c->lsave_cnt)
61 			return 1;
62 		return 0;
63 	case LPROPS_FREEABLE:
64 		return 1;
65 	case LPROPS_FRDI_IDX:
66 		return 1;
67 	}
68 	return 0;
69 }
70 
71 /**
72  * scan_for_dirty_cb - dirty space scan callback.
73  * @c: the UBIFS file-system description object
74  * @lprops: LEB properties to scan
75  * @in_tree: whether the LEB properties are in main memory
76  * @data: information passed to and from the caller of the scan
77  *
78  * This function returns a code that indicates whether the scan should continue
79  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
80  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
81  * (%LPT_SCAN_STOP).
82  */
83 static int scan_for_dirty_cb(struct ubifs_info *c,
84 			     const struct ubifs_lprops *lprops, int in_tree,
85 			     struct scan_data *data)
86 {
87 	int ret = LPT_SCAN_CONTINUE;
88 
89 	/* Exclude LEBs that are currently in use */
90 	if (lprops->flags & LPROPS_TAKEN)
91 		return LPT_SCAN_CONTINUE;
92 	/* Determine whether to add these LEB properties to the tree */
93 	if (!in_tree && valuable(c, lprops))
94 		ret |= LPT_SCAN_ADD;
95 	/* Exclude LEBs with too little space */
96 	if (lprops->free + lprops->dirty < data->min_space)
97 		return ret;
98 	/* If specified, exclude index LEBs */
99 	if (data->exclude_index && lprops->flags & LPROPS_INDEX)
100 		return ret;
101 	/* If specified, exclude empty or freeable LEBs */
102 	if (lprops->free + lprops->dirty == c->leb_size) {
103 		if (!data->pick_free)
104 			return ret;
105 	/* Exclude LEBs with too little dirty space (unless it is empty) */
106 	} else if (lprops->dirty < c->dead_wm)
107 		return ret;
108 	/* Finally we found space */
109 	data->lnum = lprops->lnum;
110 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
111 }
112 
113 /**
114  * scan_for_dirty - find a data LEB with free space.
115  * @c: the UBIFS file-system description object
116  * @min_space: minimum amount free plus dirty space the returned LEB has to
117  *             have
118  * @pick_free: if it is OK to return a free or freeable LEB
119  * @exclude_index: whether to exclude index LEBs
120  *
121  * This function returns a pointer to the LEB properties found or a negative
122  * error code.
123  */
124 static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
125 						 int min_space, int pick_free,
126 						 int exclude_index)
127 {
128 	const struct ubifs_lprops *lprops;
129 	struct ubifs_lpt_heap *heap;
130 	struct scan_data data;
131 	int err, i;
132 
133 	/* There may be an LEB with enough dirty space on the free heap */
134 	heap = &c->lpt_heap[LPROPS_FREE - 1];
135 	for (i = 0; i < heap->cnt; i++) {
136 		lprops = heap->arr[i];
137 		if (lprops->free + lprops->dirty < min_space)
138 			continue;
139 		if (lprops->dirty < c->dead_wm)
140 			continue;
141 		return lprops;
142 	}
143 	/*
144 	 * A LEB may have fallen off of the bottom of the dirty heap, and ended
145 	 * up as uncategorized even though it has enough dirty space for us now,
146 	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
147 	 * can end up as uncategorized because they are kept on lists not
148 	 * finite-sized heaps.
149 	 */
150 	list_for_each_entry(lprops, &c->uncat_list, list) {
151 		if (lprops->flags & LPROPS_TAKEN)
152 			continue;
153 		if (lprops->free + lprops->dirty < min_space)
154 			continue;
155 		if (exclude_index && (lprops->flags & LPROPS_INDEX))
156 			continue;
157 		if (lprops->dirty < c->dead_wm)
158 			continue;
159 		return lprops;
160 	}
161 	/* We have looked everywhere in main memory, now scan the flash */
162 	if (c->pnodes_have >= c->pnode_cnt)
163 		/* All pnodes are in memory, so skip scan */
164 		return ERR_PTR(-ENOSPC);
165 	data.min_space = min_space;
166 	data.pick_free = pick_free;
167 	data.lnum = -1;
168 	data.exclude_index = exclude_index;
169 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
170 				    (ubifs_lpt_scan_callback)scan_for_dirty_cb,
171 				    &data);
172 	if (err)
173 		return ERR_PTR(err);
174 	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
175 	c->lscan_lnum = data.lnum;
176 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
177 	if (IS_ERR(lprops))
178 		return lprops;
179 	ubifs_assert(c, lprops->lnum == data.lnum);
180 	ubifs_assert(c, lprops->free + lprops->dirty >= min_space);
181 	ubifs_assert(c, lprops->dirty >= c->dead_wm ||
182 		     (pick_free &&
183 		      lprops->free + lprops->dirty == c->leb_size));
184 	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
185 	ubifs_assert(c, !exclude_index || !(lprops->flags & LPROPS_INDEX));
186 	return lprops;
187 }
188 
189 /**
190  * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
191  * @c: the UBIFS file-system description object
192  * @ret_lp: LEB properties are returned here on exit
193  * @min_space: minimum amount free plus dirty space the returned LEB has to
194  *             have
195  * @pick_free: controls whether it is OK to pick empty or index LEBs
196  *
197  * This function tries to find a dirty logical eraseblock which has at least
198  * @min_space free and dirty space. It prefers to take an LEB from the dirty or
199  * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
200  * or do not have an LEB which satisfies the @min_space criteria.
201  *
202  * Note, LEBs which have less than dead watermark of free + dirty space are
203  * never picked by this function.
204  *
205  * The additional @pick_free argument controls if this function has to return a
206  * free or freeable LEB if one is present. For example, GC must to set it to %1,
207  * when called from the journal space reservation function, because the
208  * appearance of free space may coincide with the loss of enough dirty space
209  * for GC to succeed anyway.
210  *
211  * In contrast, if the Garbage Collector is called from budgeting, it should
212  * just make free space, not return LEBs which are already free or freeable.
213  *
214  * In addition @pick_free is set to %2 by the recovery process in order to
215  * recover gc_lnum in which case an index LEB must not be returned.
216  *
217  * This function returns zero and the LEB properties of found dirty LEB in case
218  * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
219  * case of other failures. The returned LEB is marked as "taken".
220  */
221 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
222 			 int min_space, int pick_free)
223 {
224 	int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
225 	const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
226 	struct ubifs_lpt_heap *heap, *idx_heap;
227 
228 	ubifs_get_lprops(c);
229 
230 	if (pick_free) {
231 		int lebs, rsvd_idx_lebs = 0;
232 
233 		spin_lock(&c->space_lock);
234 		lebs = c->lst.empty_lebs + c->idx_gc_cnt;
235 		lebs += c->freeable_cnt - c->lst.taken_empty_lebs;
236 
237 		/*
238 		 * Note, the index may consume more LEBs than have been reserved
239 		 * for it. It is OK because it might be consolidated by GC.
240 		 * But if the index takes fewer LEBs than it is reserved for it,
241 		 * this function must avoid picking those reserved LEBs.
242 		 */
243 		if (c->bi.min_idx_lebs >= c->lst.idx_lebs) {
244 			rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
245 			exclude_index = 1;
246 		}
247 		spin_unlock(&c->space_lock);
248 
249 		/* Check if there are enough free LEBs for the index */
250 		if (rsvd_idx_lebs < lebs) {
251 			/* OK, try to find an empty LEB */
252 			lp = ubifs_fast_find_empty(c);
253 			if (lp)
254 				goto found;
255 
256 			/* Or a freeable LEB */
257 			lp = ubifs_fast_find_freeable(c);
258 			if (lp)
259 				goto found;
260 		} else
261 			/*
262 			 * We cannot pick free/freeable LEBs in the below code.
263 			 */
264 			pick_free = 0;
265 	} else {
266 		spin_lock(&c->space_lock);
267 		exclude_index = (c->bi.min_idx_lebs >= c->lst.idx_lebs);
268 		spin_unlock(&c->space_lock);
269 	}
270 
271 	/* Look on the dirty and dirty index heaps */
272 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
273 	idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
274 
275 	if (idx_heap->cnt && !exclude_index) {
276 		idx_lp = idx_heap->arr[0];
277 		sum = idx_lp->free + idx_lp->dirty;
278 		/*
279 		 * Since we reserve thrice as much space for the index than it
280 		 * actually takes, it does not make sense to pick indexing LEBs
281 		 * with less than, say, half LEB of dirty space. May be half is
282 		 * not the optimal boundary - this should be tested and
283 		 * checked. This boundary should determine how much we use
284 		 * in-the-gaps to consolidate the index comparing to how much
285 		 * we use garbage collector to consolidate it. The "half"
286 		 * criteria just feels to be fine.
287 		 */
288 		if (sum < min_space || sum < c->half_leb_size)
289 			idx_lp = NULL;
290 	}
291 
292 	if (heap->cnt) {
293 		lp = heap->arr[0];
294 		if (lp->dirty + lp->free < min_space)
295 			lp = NULL;
296 	}
297 
298 	/* Pick the LEB with most space */
299 	if (idx_lp && lp) {
300 		if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
301 			lp = idx_lp;
302 	} else if (idx_lp && !lp)
303 		lp = idx_lp;
304 
305 	if (lp) {
306 		ubifs_assert(c, lp->free + lp->dirty >= c->dead_wm);
307 		goto found;
308 	}
309 
310 	/* Did not find a dirty LEB on the dirty heaps, have to scan */
311 	dbg_find("scanning LPT for a dirty LEB");
312 	lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
313 	if (IS_ERR(lp)) {
314 		err = PTR_ERR(lp);
315 		goto out;
316 	}
317 	ubifs_assert(c, lp->dirty >= c->dead_wm ||
318 		     (pick_free && lp->free + lp->dirty == c->leb_size));
319 
320 found:
321 	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
322 		 lp->lnum, lp->free, lp->dirty, lp->flags);
323 
324 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
325 			     lp->flags | LPROPS_TAKEN, 0);
326 	if (IS_ERR(lp)) {
327 		err = PTR_ERR(lp);
328 		goto out;
329 	}
330 
331 	memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));
332 
333 out:
334 	ubifs_release_lprops(c);
335 	return err;
336 }
337 
338 /**
339  * scan_for_free_cb - free space scan callback.
340  * @c: the UBIFS file-system description object
341  * @lprops: LEB properties to scan
342  * @in_tree: whether the LEB properties are in main memory
343  * @data: information passed to and from the caller of the scan
344  *
345  * This function returns a code that indicates whether the scan should continue
346  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
347  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
348  * (%LPT_SCAN_STOP).
349  */
350 static int scan_for_free_cb(struct ubifs_info *c,
351 			    const struct ubifs_lprops *lprops, int in_tree,
352 			    struct scan_data *data)
353 {
354 	int ret = LPT_SCAN_CONTINUE;
355 
356 	/* Exclude LEBs that are currently in use */
357 	if (lprops->flags & LPROPS_TAKEN)
358 		return LPT_SCAN_CONTINUE;
359 	/* Determine whether to add these LEB properties to the tree */
360 	if (!in_tree && valuable(c, lprops))
361 		ret |= LPT_SCAN_ADD;
362 	/* Exclude index LEBs */
363 	if (lprops->flags & LPROPS_INDEX)
364 		return ret;
365 	/* Exclude LEBs with too little space */
366 	if (lprops->free < data->min_space)
367 		return ret;
368 	/* If specified, exclude empty LEBs */
369 	if (!data->pick_free && lprops->free == c->leb_size)
370 		return ret;
371 	/*
372 	 * LEBs that have only free and dirty space must not be allocated
373 	 * because they may have been unmapped already or they may have data
374 	 * that is obsolete only because of nodes that are still sitting in a
375 	 * wbuf.
376 	 */
377 	if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
378 		return ret;
379 	/* Finally we found space */
380 	data->lnum = lprops->lnum;
381 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
382 }
383 
384 /**
385  * do_find_free_space - find a data LEB with free space.
386  * @c: the UBIFS file-system description object
387  * @min_space: minimum amount of free space required
388  * @pick_free: whether it is OK to scan for empty LEBs
389  * @squeeze: whether to try to find space in a non-empty LEB first
390  *
391  * This function returns a pointer to the LEB properties found or a negative
392  * error code.
393  */
394 static
395 const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
396 					      int min_space, int pick_free,
397 					      int squeeze)
398 {
399 	const struct ubifs_lprops *lprops;
400 	struct ubifs_lpt_heap *heap;
401 	struct scan_data data;
402 	int err, i;
403 
404 	if (squeeze) {
405 		lprops = ubifs_fast_find_free(c);
406 		if (lprops && lprops->free >= min_space)
407 			return lprops;
408 	}
409 	if (pick_free) {
410 		lprops = ubifs_fast_find_empty(c);
411 		if (lprops)
412 			return lprops;
413 	}
414 	if (!squeeze) {
415 		lprops = ubifs_fast_find_free(c);
416 		if (lprops && lprops->free >= min_space)
417 			return lprops;
418 	}
419 	/* There may be an LEB with enough free space on the dirty heap */
420 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
421 	for (i = 0; i < heap->cnt; i++) {
422 		lprops = heap->arr[i];
423 		if (lprops->free >= min_space)
424 			return lprops;
425 	}
426 	/*
427 	 * A LEB may have fallen off of the bottom of the free heap, and ended
428 	 * up as uncategorized even though it has enough free space for us now,
429 	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
430 	 * can end up as uncategorized because they are kept on lists not
431 	 * finite-sized heaps.
432 	 */
433 	list_for_each_entry(lprops, &c->uncat_list, list) {
434 		if (lprops->flags & LPROPS_TAKEN)
435 			continue;
436 		if (lprops->flags & LPROPS_INDEX)
437 			continue;
438 		if (lprops->free >= min_space)
439 			return lprops;
440 	}
441 	/* We have looked everywhere in main memory, now scan the flash */
442 	if (c->pnodes_have >= c->pnode_cnt)
443 		/* All pnodes are in memory, so skip scan */
444 		return ERR_PTR(-ENOSPC);
445 	data.min_space = min_space;
446 	data.pick_free = pick_free;
447 	data.lnum = -1;
448 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
449 				    (ubifs_lpt_scan_callback)scan_for_free_cb,
450 				    &data);
451 	if (err)
452 		return ERR_PTR(err);
453 	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
454 	c->lscan_lnum = data.lnum;
455 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
456 	if (IS_ERR(lprops))
457 		return lprops;
458 	ubifs_assert(c, lprops->lnum == data.lnum);
459 	ubifs_assert(c, lprops->free >= min_space);
460 	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
461 	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
462 	return lprops;
463 }
464 
465 /**
466  * ubifs_find_free_space - find a data LEB with free space.
467  * @c: the UBIFS file-system description object
468  * @min_space: minimum amount of required free space
469  * @offs: contains offset of where free space starts on exit
470  * @squeeze: whether to try to find space in a non-empty LEB first
471  *
472  * This function looks for an LEB with at least @min_space bytes of free space.
473  * It tries to find an empty LEB if possible. If no empty LEBs are available,
474  * this function searches for a non-empty data LEB. The returned LEB is marked
475  * as "taken".
476  *
477  * This function returns found LEB number in case of success, %-ENOSPC if it
478  * failed to find a LEB with @min_space bytes of free space and other a negative
479  * error codes in case of failure.
480  */
481 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
482 			  int squeeze)
483 {
484 	const struct ubifs_lprops *lprops;
485 	int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;
486 
487 	dbg_find("min_space %d", min_space);
488 	ubifs_get_lprops(c);
489 
490 	/* Check if there are enough empty LEBs for commit */
491 	spin_lock(&c->space_lock);
492 	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
493 		rsvd_idx_lebs = c->bi.min_idx_lebs -  c->lst.idx_lebs;
494 	else
495 		rsvd_idx_lebs = 0;
496 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
497 	       c->lst.taken_empty_lebs;
498 	if (rsvd_idx_lebs < lebs)
499 		/*
500 		 * OK to allocate an empty LEB, but we still don't want to go
501 		 * looking for one if there aren't any.
502 		 */
503 		if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
504 			pick_free = 1;
505 			/*
506 			 * Because we release the space lock, we must account
507 			 * for this allocation here. After the LEB properties
508 			 * flags have been updated, we subtract one. Note, the
509 			 * result of this is that lprops also decreases
510 			 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
511 			 * off by one for a short period of time which may
512 			 * introduce a small disturbance to budgeting
513 			 * calculations, but this is harmless because at the
514 			 * worst case this would make the budgeting subsystem
515 			 * be more pessimistic than needed.
516 			 *
517 			 * Fundamentally, this is about serialization of the
518 			 * budgeting and lprops subsystems. We could make the
519 			 * @space_lock a mutex and avoid dropping it before
520 			 * calling 'ubifs_change_lp()', but mutex is more
521 			 * heavy-weight, and we want budgeting to be as fast as
522 			 * possible.
523 			 */
524 			c->lst.taken_empty_lebs += 1;
525 		}
526 	spin_unlock(&c->space_lock);
527 
528 	lprops = do_find_free_space(c, min_space, pick_free, squeeze);
529 	if (IS_ERR(lprops)) {
530 		err = PTR_ERR(lprops);
531 		goto out;
532 	}
533 
534 	lnum = lprops->lnum;
535 	flags = lprops->flags | LPROPS_TAKEN;
536 
537 	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
538 	if (IS_ERR(lprops)) {
539 		err = PTR_ERR(lprops);
540 		goto out;
541 	}
542 
543 	if (pick_free) {
544 		spin_lock(&c->space_lock);
545 		c->lst.taken_empty_lebs -= 1;
546 		spin_unlock(&c->space_lock);
547 	}
548 
549 	*offs = c->leb_size - lprops->free;
550 	ubifs_release_lprops(c);
551 
552 	if (*offs == 0) {
553 		/*
554 		 * Ensure that empty LEBs have been unmapped. They may not have
555 		 * been, for example, because of an unclean unmount.  Also
556 		 * LEBs that were freeable LEBs (free + dirty == leb_size) will
557 		 * not have been unmapped.
558 		 */
559 		err = ubifs_leb_unmap(c, lnum);
560 		if (err)
561 			return err;
562 	}
563 
564 	dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs);
565 	ubifs_assert(c, *offs <= c->leb_size - min_space);
566 	return lnum;
567 
568 out:
569 	if (pick_free) {
570 		spin_lock(&c->space_lock);
571 		c->lst.taken_empty_lebs -= 1;
572 		spin_unlock(&c->space_lock);
573 	}
574 	ubifs_release_lprops(c);
575 	return err;
576 }
577 
578 /**
579  * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
580  * @c: the UBIFS file-system description object
581  * @lprops: LEB properties to scan
582  * @in_tree: whether the LEB properties are in main memory
583  * @data: information passed to and from the caller of the scan
584  *
585  * This function returns a code that indicates whether the scan should continue
586  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
587  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
588  * (%LPT_SCAN_STOP).
589  */
590 static int scan_for_idx_cb(struct ubifs_info *c,
591 			   const struct ubifs_lprops *lprops, int in_tree,
592 			   struct scan_data *data)
593 {
594 	int ret = LPT_SCAN_CONTINUE;
595 
596 	/* Exclude LEBs that are currently in use */
597 	if (lprops->flags & LPROPS_TAKEN)
598 		return LPT_SCAN_CONTINUE;
599 	/* Determine whether to add these LEB properties to the tree */
600 	if (!in_tree && valuable(c, lprops))
601 		ret |= LPT_SCAN_ADD;
602 	/* Exclude index LEBS */
603 	if (lprops->flags & LPROPS_INDEX)
604 		return ret;
605 	/* Exclude LEBs that cannot be made empty */
606 	if (lprops->free + lprops->dirty != c->leb_size)
607 		return ret;
608 	/*
609 	 * We are allocating for the index so it is safe to allocate LEBs with
610 	 * only free and dirty space, because write buffers are sync'd at commit
611 	 * start.
612 	 */
613 	data->lnum = lprops->lnum;
614 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
615 }
616 
617 /**
618  * scan_for_leb_for_idx - scan for a free LEB for the index.
619  * @c: the UBIFS file-system description object
620  */
621 static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
622 {
623 	const struct ubifs_lprops *lprops;
624 	struct scan_data data;
625 	int err;
626 
627 	data.lnum = -1;
628 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
629 				    (ubifs_lpt_scan_callback)scan_for_idx_cb,
630 				    &data);
631 	if (err)
632 		return ERR_PTR(err);
633 	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
634 	c->lscan_lnum = data.lnum;
635 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
636 	if (IS_ERR(lprops))
637 		return lprops;
638 	ubifs_assert(c, lprops->lnum == data.lnum);
639 	ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
640 	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
641 	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
642 	return lprops;
643 }
644 
645 /**
646  * ubifs_find_free_leb_for_idx - find a free LEB for the index.
647  * @c: the UBIFS file-system description object
648  *
649  * This function looks for a free LEB and returns that LEB number. The returned
650  * LEB is marked as "taken", "index".
651  *
652  * Only empty LEBs are allocated. This is for two reasons. First, the commit
653  * calculates the number of LEBs to allocate based on the assumption that they
654  * will be empty. Secondly, free space at the end of an index LEB is not
655  * guaranteed to be empty because it may have been used by the in-the-gaps
656  * method prior to an unclean unmount.
657  *
658  * If no LEB is found %-ENOSPC is returned. For other failures another negative
659  * error code is returned.
660  */
661 int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
662 {
663 	const struct ubifs_lprops *lprops;
664 	int lnum = -1, err, flags;
665 
666 	ubifs_get_lprops(c);
667 
668 	lprops = ubifs_fast_find_empty(c);
669 	if (!lprops) {
670 		lprops = ubifs_fast_find_freeable(c);
671 		if (!lprops) {
672 			/*
673 			 * The first condition means the following: go scan the
674 			 * LPT if there are uncategorized lprops, which means
675 			 * there may be freeable LEBs there (UBIFS does not
676 			 * store the information about freeable LEBs in the
677 			 * master node).
678 			 */
679 			if (c->in_a_category_cnt != c->main_lebs ||
680 			    c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
681 				ubifs_assert(c, c->freeable_cnt == 0);
682 				lprops = scan_for_leb_for_idx(c);
683 				if (IS_ERR(lprops)) {
684 					err = PTR_ERR(lprops);
685 					goto out;
686 				}
687 			}
688 		}
689 	}
690 
691 	if (!lprops) {
692 		err = -ENOSPC;
693 		goto out;
694 	}
695 
696 	lnum = lprops->lnum;
697 
698 	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
699 		 lnum, lprops->free, lprops->dirty, lprops->flags);
700 
701 	flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
702 	lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
703 	if (IS_ERR(lprops)) {
704 		err = PTR_ERR(lprops);
705 		goto out;
706 	}
707 
708 	ubifs_release_lprops(c);
709 
710 	/*
711 	 * Ensure that empty LEBs have been unmapped. They may not have been,
712 	 * for example, because of an unclean unmount. Also LEBs that were
713 	 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
714 	 */
715 	err = ubifs_leb_unmap(c, lnum);
716 	if (err) {
717 		ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
718 				    LPROPS_TAKEN | LPROPS_INDEX, 0);
719 		return err;
720 	}
721 
722 	return lnum;
723 
724 out:
725 	ubifs_release_lprops(c);
726 	return err;
727 }
728 
729 static int cmp_dirty_idx(const struct ubifs_lprops **a,
730 			 const struct ubifs_lprops **b)
731 {
732 	const struct ubifs_lprops *lpa = *a;
733 	const struct ubifs_lprops *lpb = *b;
734 
735 	return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
736 }
737 
738 /**
739  * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
740  * @c: the UBIFS file-system description object
741  *
742  * This function is called each commit to create an array of LEB numbers of
743  * dirty index LEBs sorted in order of dirty and free space.  This is used by
744  * the in-the-gaps method of TNC commit.
745  */
746 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
747 {
748 	int i;
749 
750 	ubifs_get_lprops(c);
751 	/* Copy the LPROPS_DIRTY_IDX heap */
752 	c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
753 	memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
754 	       sizeof(void *) * c->dirty_idx.cnt);
755 	/* Sort it so that the dirtiest is now at the end */
756 	sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
757 	     (int (*)(const void *, const void *))cmp_dirty_idx, NULL);
758 	dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
759 	if (c->dirty_idx.cnt)
760 		dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
761 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
762 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
763 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
764 	/* Replace the lprops pointers with LEB numbers */
765 	for (i = 0; i < c->dirty_idx.cnt; i++)
766 		c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
767 	ubifs_release_lprops(c);
768 	return 0;
769 }
770 
771 /**
772  * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
773  * @c: the UBIFS file-system description object
774  * @lprops: LEB properties to scan
775  * @in_tree: whether the LEB properties are in main memory
776  * @data: information passed to and from the caller of the scan
777  *
778  * This function returns a code that indicates whether the scan should continue
779  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
780  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
781  * (%LPT_SCAN_STOP).
782  */
783 static int scan_dirty_idx_cb(struct ubifs_info *c,
784 			   const struct ubifs_lprops *lprops, int in_tree,
785 			   struct scan_data *data)
786 {
787 	int ret = LPT_SCAN_CONTINUE;
788 
789 	/* Exclude LEBs that are currently in use */
790 	if (lprops->flags & LPROPS_TAKEN)
791 		return LPT_SCAN_CONTINUE;
792 	/* Determine whether to add these LEB properties to the tree */
793 	if (!in_tree && valuable(c, lprops))
794 		ret |= LPT_SCAN_ADD;
795 	/* Exclude non-index LEBs */
796 	if (!(lprops->flags & LPROPS_INDEX))
797 		return ret;
798 	/* Exclude LEBs with too little space */
799 	if (lprops->free + lprops->dirty < c->min_idx_node_sz)
800 		return ret;
801 	/* Finally we found space */
802 	data->lnum = lprops->lnum;
803 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
804 }
805 
806 /**
807  * find_dirty_idx_leb - find a dirty index LEB.
808  * @c: the UBIFS file-system description object
809  *
810  * This function returns LEB number upon success and a negative error code upon
811  * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not
812  * found.
813  *
814  * Note that this function scans the entire LPT but it is called very rarely.
815  */
816 static int find_dirty_idx_leb(struct ubifs_info *c)
817 {
818 	const struct ubifs_lprops *lprops;
819 	struct ubifs_lpt_heap *heap;
820 	struct scan_data data;
821 	int err, i, ret;
822 
823 	/* Check all structures in memory first */
824 	data.lnum = -1;
825 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
826 	for (i = 0; i < heap->cnt; i++) {
827 		lprops = heap->arr[i];
828 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
829 		if (ret & LPT_SCAN_STOP)
830 			goto found;
831 	}
832 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
833 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
834 		if (ret & LPT_SCAN_STOP)
835 			goto found;
836 	}
837 	list_for_each_entry(lprops, &c->uncat_list, list) {
838 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
839 		if (ret & LPT_SCAN_STOP)
840 			goto found;
841 	}
842 	if (c->pnodes_have >= c->pnode_cnt)
843 		/* All pnodes are in memory, so skip scan */
844 		return -ENOSPC;
845 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
846 				    (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
847 				    &data);
848 	if (err)
849 		return err;
850 found:
851 	ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt);
852 	c->lscan_lnum = data.lnum;
853 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
854 	if (IS_ERR(lprops))
855 		return PTR_ERR(lprops);
856 	ubifs_assert(c, lprops->lnum == data.lnum);
857 	ubifs_assert(c, lprops->free + lprops->dirty >= c->min_idx_node_sz);
858 	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
859 	ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
860 
861 	dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
862 		 lprops->lnum, lprops->free, lprops->dirty, lprops->flags);
863 
864 	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
865 				 lprops->flags | LPROPS_TAKEN, 0);
866 	if (IS_ERR(lprops))
867 		return PTR_ERR(lprops);
868 
869 	return lprops->lnum;
870 }
871 
872 /**
873  * get_idx_gc_leb - try to get a LEB number from trivial GC.
874  * @c: the UBIFS file-system description object
875  */
876 static int get_idx_gc_leb(struct ubifs_info *c)
877 {
878 	const struct ubifs_lprops *lp;
879 	int err, lnum;
880 
881 	err = ubifs_get_idx_gc_leb(c);
882 	if (err < 0)
883 		return err;
884 	lnum = err;
885 	/*
886 	 * The LEB was due to be unmapped after the commit but
887 	 * it is needed now for this commit.
888 	 */
889 	lp = ubifs_lpt_lookup_dirty(c, lnum);
890 	if (IS_ERR(lp))
891 		return PTR_ERR(lp);
892 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
893 			     lp->flags | LPROPS_INDEX, -1);
894 	if (IS_ERR(lp))
895 		return PTR_ERR(lp);
896 	dbg_find("LEB %d, dirty %d and free %d flags %#x",
897 		 lp->lnum, lp->dirty, lp->free, lp->flags);
898 	return lnum;
899 }
900 
901 /**
902  * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
903  * @c: the UBIFS file-system description object
904  */
905 static int find_dirtiest_idx_leb(struct ubifs_info *c)
906 {
907 	const struct ubifs_lprops *lp;
908 	int lnum;
909 
910 	while (1) {
911 		if (!c->dirty_idx.cnt)
912 			return -ENOSPC;
913 		/* The lprops pointers were replaced by LEB numbers */
914 		lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
915 		lp = ubifs_lpt_lookup(c, lnum);
916 		if (IS_ERR(lp))
917 			return PTR_ERR(lp);
918 		if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
919 			continue;
920 		lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
921 				     lp->flags | LPROPS_TAKEN, 0);
922 		if (IS_ERR(lp))
923 			return PTR_ERR(lp);
924 		break;
925 	}
926 	dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
927 		 lp->free, lp->flags);
928 	ubifs_assert(c, lp->flags & LPROPS_TAKEN);
929 	ubifs_assert(c, lp->flags & LPROPS_INDEX);
930 	return lnum;
931 }
932 
933 /**
934  * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
935  * @c: the UBIFS file-system description object
936  *
937  * This function attempts to find an untaken index LEB with the most free and
938  * dirty space that can be used without overwriting index nodes that were in the
939  * last index committed.
940  */
941 int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
942 {
943 	int err;
944 
945 	ubifs_get_lprops(c);
946 
947 	/*
948 	 * We made an array of the dirtiest index LEB numbers as at the start of
949 	 * last commit.  Try that array first.
950 	 */
951 	err = find_dirtiest_idx_leb(c);
952 
953 	/* Next try scanning the entire LPT */
954 	if (err == -ENOSPC)
955 		err = find_dirty_idx_leb(c);
956 
957 	/* Finally take any index LEBs awaiting trivial GC */
958 	if (err == -ENOSPC)
959 		err = get_idx_gc_leb(c);
960 
961 	ubifs_release_lprops(c);
962 	return err;
963 }
964