1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file contains functions for finding LEBs for various purposes e.g. 25 * garbage collection. In general, lprops category heaps and lists are used 26 * for fast access, falling back on scanning the LPT as a last resort. 27 */ 28 29 #include <linux/sort.h> 30 #include "ubifs.h" 31 32 /** 33 * struct scan_data - data provided to scan callback functions 34 * @min_space: minimum number of bytes for which to scan 35 * @pick_free: whether it is OK to scan for empty LEBs 36 * @lnum: LEB number found is returned here 37 * @exclude_index: whether to exclude index LEBs 38 */ 39 struct scan_data { 40 int min_space; 41 int pick_free; 42 int lnum; 43 int exclude_index; 44 }; 45 46 /** 47 * valuable - determine whether LEB properties are valuable. 48 * @c: the UBIFS file-system description object 49 * @lprops: LEB properties 50 * 51 * This function return %1 if the LEB properties should be added to the LEB 52 * properties tree in memory. Otherwise %0 is returned. 53 */ 54 static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops) 55 { 56 int n, cat = lprops->flags & LPROPS_CAT_MASK; 57 struct ubifs_lpt_heap *heap; 58 59 switch (cat) { 60 case LPROPS_DIRTY: 61 case LPROPS_DIRTY_IDX: 62 case LPROPS_FREE: 63 heap = &c->lpt_heap[cat - 1]; 64 if (heap->cnt < heap->max_cnt) 65 return 1; 66 if (lprops->free + lprops->dirty >= c->dark_wm) 67 return 1; 68 return 0; 69 case LPROPS_EMPTY: 70 n = c->lst.empty_lebs + c->freeable_cnt - 71 c->lst.taken_empty_lebs; 72 if (n < c->lsave_cnt) 73 return 1; 74 return 0; 75 case LPROPS_FREEABLE: 76 return 1; 77 case LPROPS_FRDI_IDX: 78 return 1; 79 } 80 return 0; 81 } 82 83 /** 84 * scan_for_dirty_cb - dirty space scan callback. 85 * @c: the UBIFS file-system description object 86 * @lprops: LEB properties to scan 87 * @in_tree: whether the LEB properties are in main memory 88 * @data: information passed to and from the caller of the scan 89 * 90 * This function returns a code that indicates whether the scan should continue 91 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 92 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 93 * (%LPT_SCAN_STOP). 94 */ 95 static int scan_for_dirty_cb(struct ubifs_info *c, 96 const struct ubifs_lprops *lprops, int in_tree, 97 struct scan_data *data) 98 { 99 int ret = LPT_SCAN_CONTINUE; 100 101 /* Exclude LEBs that are currently in use */ 102 if (lprops->flags & LPROPS_TAKEN) 103 return LPT_SCAN_CONTINUE; 104 /* Determine whether to add these LEB properties to the tree */ 105 if (!in_tree && valuable(c, lprops)) 106 ret |= LPT_SCAN_ADD; 107 /* Exclude LEBs with too little space */ 108 if (lprops->free + lprops->dirty < data->min_space) 109 return ret; 110 /* If specified, exclude index LEBs */ 111 if (data->exclude_index && lprops->flags & LPROPS_INDEX) 112 return ret; 113 /* If specified, exclude empty or freeable LEBs */ 114 if (lprops->free + lprops->dirty == c->leb_size) { 115 if (!data->pick_free) 116 return ret; 117 /* Exclude LEBs with too little dirty space (unless it is empty) */ 118 } else if (lprops->dirty < c->dead_wm) 119 return ret; 120 /* Finally we found space */ 121 data->lnum = lprops->lnum; 122 return LPT_SCAN_ADD | LPT_SCAN_STOP; 123 } 124 125 /** 126 * scan_for_dirty - find a data LEB with free space. 127 * @c: the UBIFS file-system description object 128 * @min_space: minimum amount free plus dirty space the returned LEB has to 129 * have 130 * @pick_free: if it is OK to return a free or freeable LEB 131 * @exclude_index: whether to exclude index LEBs 132 * 133 * This function returns a pointer to the LEB properties found or a negative 134 * error code. 135 */ 136 static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c, 137 int min_space, int pick_free, 138 int exclude_index) 139 { 140 const struct ubifs_lprops *lprops; 141 struct ubifs_lpt_heap *heap; 142 struct scan_data data; 143 int err, i; 144 145 /* There may be an LEB with enough dirty space on the free heap */ 146 heap = &c->lpt_heap[LPROPS_FREE - 1]; 147 for (i = 0; i < heap->cnt; i++) { 148 lprops = heap->arr[i]; 149 if (lprops->free + lprops->dirty < min_space) 150 continue; 151 if (lprops->dirty < c->dead_wm) 152 continue; 153 return lprops; 154 } 155 /* 156 * A LEB may have fallen off of the bottom of the dirty heap, and ended 157 * up as uncategorized even though it has enough dirty space for us now, 158 * so check the uncategorized list. N.B. neither empty nor freeable LEBs 159 * can end up as uncategorized because they are kept on lists not 160 * finite-sized heaps. 161 */ 162 list_for_each_entry(lprops, &c->uncat_list, list) { 163 if (lprops->flags & LPROPS_TAKEN) 164 continue; 165 if (lprops->free + lprops->dirty < min_space) 166 continue; 167 if (exclude_index && (lprops->flags & LPROPS_INDEX)) 168 continue; 169 if (lprops->dirty < c->dead_wm) 170 continue; 171 return lprops; 172 } 173 /* We have looked everywhere in main memory, now scan the flash */ 174 if (c->pnodes_have >= c->pnode_cnt) 175 /* All pnodes are in memory, so skip scan */ 176 return ERR_PTR(-ENOSPC); 177 data.min_space = min_space; 178 data.pick_free = pick_free; 179 data.lnum = -1; 180 data.exclude_index = exclude_index; 181 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 182 (ubifs_lpt_scan_callback)scan_for_dirty_cb, 183 &data); 184 if (err) 185 return ERR_PTR(err); 186 ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); 187 c->lscan_lnum = data.lnum; 188 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 189 if (IS_ERR(lprops)) 190 return lprops; 191 ubifs_assert(lprops->lnum == data.lnum); 192 ubifs_assert(lprops->free + lprops->dirty >= min_space); 193 ubifs_assert(lprops->dirty >= c->dead_wm || 194 (pick_free && 195 lprops->free + lprops->dirty == c->leb_size)); 196 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 197 ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX)); 198 return lprops; 199 } 200 201 /** 202 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector. 203 * @c: the UBIFS file-system description object 204 * @ret_lp: LEB properties are returned here on exit 205 * @min_space: minimum amount free plus dirty space the returned LEB has to 206 * have 207 * @pick_free: controls whether it is OK to pick empty or index LEBs 208 * 209 * This function tries to find a dirty logical eraseblock which has at least 210 * @min_space free and dirty space. It prefers to take an LEB from the dirty or 211 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty 212 * or do not have an LEB which satisfies the @min_space criteria. 213 * 214 * Note: 215 * o LEBs which have less than dead watermark of dirty space are never picked 216 * by this function; 217 * 218 * Returns zero and the LEB properties of 219 * found dirty LEB in case of success, %-ENOSPC if no dirty LEB was found and a 220 * negative error code in case of other failures. The returned LEB is marked as 221 * "taken". 222 * 223 * The additional @pick_free argument controls if this function has to return a 224 * free or freeable LEB if one is present. For example, GC must to set it to %1, 225 * when called from the journal space reservation function, because the 226 * appearance of free space may coincide with the loss of enough dirty space 227 * for GC to succeed anyway. 228 * 229 * In contrast, if the Garbage Collector is called from budgeting, it should 230 * just make free space, not return LEBs which are already free or freeable. 231 * 232 * In addition @pick_free is set to %2 by the recovery process in order to 233 * recover gc_lnum in which case an index LEB must not be returned. 234 */ 235 int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, 236 int min_space, int pick_free) 237 { 238 int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0; 239 const struct ubifs_lprops *lp = NULL, *idx_lp = NULL; 240 struct ubifs_lpt_heap *heap, *idx_heap; 241 242 ubifs_get_lprops(c); 243 244 if (pick_free) { 245 int lebs, rsvd_idx_lebs = 0; 246 247 spin_lock(&c->space_lock); 248 lebs = c->lst.empty_lebs; 249 lebs += c->freeable_cnt - c->lst.taken_empty_lebs; 250 251 /* 252 * Note, the index may consume more LEBs than have been reserved 253 * for it. It is OK because it might be consolidated by GC. 254 * But if the index takes fewer LEBs than it is reserved for it, 255 * this function must avoid picking those reserved LEBs. 256 */ 257 if (c->min_idx_lebs >= c->lst.idx_lebs) { 258 rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs; 259 exclude_index = 1; 260 } 261 spin_unlock(&c->space_lock); 262 263 /* Check if there are enough free LEBs for the index */ 264 if (rsvd_idx_lebs < lebs) { 265 /* OK, try to find an empty LEB */ 266 lp = ubifs_fast_find_empty(c); 267 if (lp) 268 goto found; 269 270 /* Or a freeable LEB */ 271 lp = ubifs_fast_find_freeable(c); 272 if (lp) 273 goto found; 274 } else 275 /* 276 * We cannot pick free/freeable LEBs in the below code. 277 */ 278 pick_free = 0; 279 } else { 280 spin_lock(&c->space_lock); 281 exclude_index = (c->min_idx_lebs >= c->lst.idx_lebs); 282 spin_unlock(&c->space_lock); 283 } 284 285 /* Look on the dirty and dirty index heaps */ 286 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 287 idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 288 289 if (idx_heap->cnt && !exclude_index) { 290 idx_lp = idx_heap->arr[0]; 291 sum = idx_lp->free + idx_lp->dirty; 292 /* 293 * Since we reserve twice as more space for the index than it 294 * actually takes, it does not make sense to pick indexing LEBs 295 * with less than half LEB of dirty space. 296 */ 297 if (sum < min_space || sum < c->half_leb_size) 298 idx_lp = NULL; 299 } 300 301 if (heap->cnt) { 302 lp = heap->arr[0]; 303 if (lp->dirty + lp->free < min_space) 304 lp = NULL; 305 } 306 307 /* Pick the LEB with most space */ 308 if (idx_lp && lp) { 309 if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty) 310 lp = idx_lp; 311 } else if (idx_lp && !lp) 312 lp = idx_lp; 313 314 if (lp) { 315 ubifs_assert(lp->dirty >= c->dead_wm); 316 goto found; 317 } 318 319 /* Did not find a dirty LEB on the dirty heaps, have to scan */ 320 dbg_find("scanning LPT for a dirty LEB"); 321 lp = scan_for_dirty(c, min_space, pick_free, exclude_index); 322 if (IS_ERR(lp)) { 323 err = PTR_ERR(lp); 324 goto out; 325 } 326 ubifs_assert(lp->dirty >= c->dead_wm || 327 (pick_free && lp->free + lp->dirty == c->leb_size)); 328 329 found: 330 dbg_find("found LEB %d, free %d, dirty %d, flags %#x", 331 lp->lnum, lp->free, lp->dirty, lp->flags); 332 333 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 334 lp->flags | LPROPS_TAKEN, 0); 335 if (IS_ERR(lp)) { 336 err = PTR_ERR(lp); 337 goto out; 338 } 339 340 memcpy(ret_lp, lp, sizeof(struct ubifs_lprops)); 341 342 out: 343 ubifs_release_lprops(c); 344 return err; 345 } 346 347 /** 348 * scan_for_free_cb - free space scan callback. 349 * @c: the UBIFS file-system description object 350 * @lprops: LEB properties to scan 351 * @in_tree: whether the LEB properties are in main memory 352 * @data: information passed to and from the caller of the scan 353 * 354 * This function returns a code that indicates whether the scan should continue 355 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 356 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 357 * (%LPT_SCAN_STOP). 358 */ 359 static int scan_for_free_cb(struct ubifs_info *c, 360 const struct ubifs_lprops *lprops, int in_tree, 361 struct scan_data *data) 362 { 363 int ret = LPT_SCAN_CONTINUE; 364 365 /* Exclude LEBs that are currently in use */ 366 if (lprops->flags & LPROPS_TAKEN) 367 return LPT_SCAN_CONTINUE; 368 /* Determine whether to add these LEB properties to the tree */ 369 if (!in_tree && valuable(c, lprops)) 370 ret |= LPT_SCAN_ADD; 371 /* Exclude index LEBs */ 372 if (lprops->flags & LPROPS_INDEX) 373 return ret; 374 /* Exclude LEBs with too little space */ 375 if (lprops->free < data->min_space) 376 return ret; 377 /* If specified, exclude empty LEBs */ 378 if (!data->pick_free && lprops->free == c->leb_size) 379 return ret; 380 /* 381 * LEBs that have only free and dirty space must not be allocated 382 * because they may have been unmapped already or they may have data 383 * that is obsolete only because of nodes that are still sitting in a 384 * wbuf. 385 */ 386 if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0) 387 return ret; 388 /* Finally we found space */ 389 data->lnum = lprops->lnum; 390 return LPT_SCAN_ADD | LPT_SCAN_STOP; 391 } 392 393 /** 394 * do_find_free_space - find a data LEB with free space. 395 * @c: the UBIFS file-system description object 396 * @min_space: minimum amount of free space required 397 * @pick_free: whether it is OK to scan for empty LEBs 398 * @squeeze: whether to try to find space in a non-empty LEB first 399 * 400 * This function returns a pointer to the LEB properties found or a negative 401 * error code. 402 */ 403 static 404 const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c, 405 int min_space, int pick_free, 406 int squeeze) 407 { 408 const struct ubifs_lprops *lprops; 409 struct ubifs_lpt_heap *heap; 410 struct scan_data data; 411 int err, i; 412 413 if (squeeze) { 414 lprops = ubifs_fast_find_free(c); 415 if (lprops && lprops->free >= min_space) 416 return lprops; 417 } 418 if (pick_free) { 419 lprops = ubifs_fast_find_empty(c); 420 if (lprops) 421 return lprops; 422 } 423 if (!squeeze) { 424 lprops = ubifs_fast_find_free(c); 425 if (lprops && lprops->free >= min_space) 426 return lprops; 427 } 428 /* There may be an LEB with enough free space on the dirty heap */ 429 heap = &c->lpt_heap[LPROPS_DIRTY - 1]; 430 for (i = 0; i < heap->cnt; i++) { 431 lprops = heap->arr[i]; 432 if (lprops->free >= min_space) 433 return lprops; 434 } 435 /* 436 * A LEB may have fallen off of the bottom of the free heap, and ended 437 * up as uncategorized even though it has enough free space for us now, 438 * so check the uncategorized list. N.B. neither empty nor freeable LEBs 439 * can end up as uncategorized because they are kept on lists not 440 * finite-sized heaps. 441 */ 442 list_for_each_entry(lprops, &c->uncat_list, list) { 443 if (lprops->flags & LPROPS_TAKEN) 444 continue; 445 if (lprops->flags & LPROPS_INDEX) 446 continue; 447 if (lprops->free >= min_space) 448 return lprops; 449 } 450 /* We have looked everywhere in main memory, now scan the flash */ 451 if (c->pnodes_have >= c->pnode_cnt) 452 /* All pnodes are in memory, so skip scan */ 453 return ERR_PTR(-ENOSPC); 454 data.min_space = min_space; 455 data.pick_free = pick_free; 456 data.lnum = -1; 457 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 458 (ubifs_lpt_scan_callback)scan_for_free_cb, 459 &data); 460 if (err) 461 return ERR_PTR(err); 462 ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); 463 c->lscan_lnum = data.lnum; 464 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 465 if (IS_ERR(lprops)) 466 return lprops; 467 ubifs_assert(lprops->lnum == data.lnum); 468 ubifs_assert(lprops->free >= min_space); 469 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 470 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 471 return lprops; 472 } 473 474 /** 475 * ubifs_find_free_space - find a data LEB with free space. 476 * @c: the UBIFS file-system description object 477 * @min_space: minimum amount of required free space 478 * @free: contains amount of free space in the LEB on exit 479 * @squeeze: whether to try to find space in a non-empty LEB first 480 * 481 * This function looks for an LEB with at least @min_space bytes of free space. 482 * It tries to find an empty LEB if possible. If no empty LEBs are available, 483 * this function searches for a non-empty data LEB. The returned LEB is marked 484 * as "taken". 485 * 486 * This function returns found LEB number in case of success, %-ENOSPC if it 487 * failed to find a LEB with @min_space bytes of free space and other a negative 488 * error codes in case of failure. 489 */ 490 int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *free, 491 int squeeze) 492 { 493 const struct ubifs_lprops *lprops; 494 int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags; 495 496 dbg_find("min_space %d", min_space); 497 ubifs_get_lprops(c); 498 499 /* Check if there are enough empty LEBs for commit */ 500 spin_lock(&c->space_lock); 501 if (c->min_idx_lebs > c->lst.idx_lebs) 502 rsvd_idx_lebs = c->min_idx_lebs - c->lst.idx_lebs; 503 else 504 rsvd_idx_lebs = 0; 505 lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt - 506 c->lst.taken_empty_lebs; 507 ubifs_assert(lebs + c->lst.idx_lebs >= c->min_idx_lebs); 508 if (rsvd_idx_lebs < lebs) 509 /* 510 * OK to allocate an empty LEB, but we still don't want to go 511 * looking for one if there aren't any. 512 */ 513 if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { 514 pick_free = 1; 515 /* 516 * Because we release the space lock, we must account 517 * for this allocation here. After the LEB properties 518 * flags have been updated, we subtract one. Note, the 519 * result of this is that lprops also decreases 520 * @taken_empty_lebs in 'ubifs_change_lp()', so it is 521 * off by one for a short period of time which may 522 * introduce a small disturbance to budgeting 523 * calculations, but this is harmless because at the 524 * worst case this would make the budgeting subsystem 525 * be more pessimistic than needed. 526 * 527 * Fundamentally, this is about serialization of the 528 * budgeting and lprops subsystems. We could make the 529 * @space_lock a mutex and avoid dropping it before 530 * calling 'ubifs_change_lp()', but mutex is more 531 * heavy-weight, and we want budgeting to be as fast as 532 * possible. 533 */ 534 c->lst.taken_empty_lebs += 1; 535 } 536 spin_unlock(&c->space_lock); 537 538 lprops = do_find_free_space(c, min_space, pick_free, squeeze); 539 if (IS_ERR(lprops)) { 540 err = PTR_ERR(lprops); 541 goto out; 542 } 543 544 lnum = lprops->lnum; 545 flags = lprops->flags | LPROPS_TAKEN; 546 547 lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0); 548 if (IS_ERR(lprops)) { 549 err = PTR_ERR(lprops); 550 goto out; 551 } 552 553 if (pick_free) { 554 spin_lock(&c->space_lock); 555 c->lst.taken_empty_lebs -= 1; 556 spin_unlock(&c->space_lock); 557 } 558 559 *free = lprops->free; 560 ubifs_release_lprops(c); 561 562 if (*free == c->leb_size) { 563 /* 564 * Ensure that empty LEBs have been unmapped. They may not have 565 * been, for example, because of an unclean unmount. Also 566 * LEBs that were freeable LEBs (free + dirty == leb_size) will 567 * not have been unmapped. 568 */ 569 err = ubifs_leb_unmap(c, lnum); 570 if (err) 571 return err; 572 } 573 574 dbg_find("found LEB %d, free %d", lnum, *free); 575 ubifs_assert(*free >= min_space); 576 return lnum; 577 578 out: 579 if (pick_free) { 580 spin_lock(&c->space_lock); 581 c->lst.taken_empty_lebs -= 1; 582 spin_unlock(&c->space_lock); 583 } 584 ubifs_release_lprops(c); 585 return err; 586 } 587 588 /** 589 * scan_for_idx_cb - callback used by the scan for a free LEB for the index. 590 * @c: the UBIFS file-system description object 591 * @lprops: LEB properties to scan 592 * @in_tree: whether the LEB properties are in main memory 593 * @data: information passed to and from the caller of the scan 594 * 595 * This function returns a code that indicates whether the scan should continue 596 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 597 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 598 * (%LPT_SCAN_STOP). 599 */ 600 static int scan_for_idx_cb(struct ubifs_info *c, 601 const struct ubifs_lprops *lprops, int in_tree, 602 struct scan_data *data) 603 { 604 int ret = LPT_SCAN_CONTINUE; 605 606 /* Exclude LEBs that are currently in use */ 607 if (lprops->flags & LPROPS_TAKEN) 608 return LPT_SCAN_CONTINUE; 609 /* Determine whether to add these LEB properties to the tree */ 610 if (!in_tree && valuable(c, lprops)) 611 ret |= LPT_SCAN_ADD; 612 /* Exclude index LEBS */ 613 if (lprops->flags & LPROPS_INDEX) 614 return ret; 615 /* Exclude LEBs that cannot be made empty */ 616 if (lprops->free + lprops->dirty != c->leb_size) 617 return ret; 618 /* 619 * We are allocating for the index so it is safe to allocate LEBs with 620 * only free and dirty space, because write buffers are sync'd at commit 621 * start. 622 */ 623 data->lnum = lprops->lnum; 624 return LPT_SCAN_ADD | LPT_SCAN_STOP; 625 } 626 627 /** 628 * scan_for_leb_for_idx - scan for a free LEB for the index. 629 * @c: the UBIFS file-system description object 630 */ 631 static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) 632 { 633 struct ubifs_lprops *lprops; 634 struct scan_data data; 635 int err; 636 637 data.lnum = -1; 638 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 639 (ubifs_lpt_scan_callback)scan_for_idx_cb, 640 &data); 641 if (err) 642 return ERR_PTR(err); 643 ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); 644 c->lscan_lnum = data.lnum; 645 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 646 if (IS_ERR(lprops)) 647 return lprops; 648 ubifs_assert(lprops->lnum == data.lnum); 649 ubifs_assert(lprops->free + lprops->dirty == c->leb_size); 650 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 651 ubifs_assert(!(lprops->flags & LPROPS_INDEX)); 652 return lprops; 653 } 654 655 /** 656 * ubifs_find_free_leb_for_idx - find a free LEB for the index. 657 * @c: the UBIFS file-system description object 658 * 659 * This function looks for a free LEB and returns that LEB number. The returned 660 * LEB is marked as "taken", "index". 661 * 662 * Only empty LEBs are allocated. This is for two reasons. First, the commit 663 * calculates the number of LEBs to allocate based on the assumption that they 664 * will be empty. Secondly, free space at the end of an index LEB is not 665 * guaranteed to be empty because it may have been used by the in-the-gaps 666 * method prior to an unclean unmount. 667 * 668 * If no LEB is found %-ENOSPC is returned. For other failures another negative 669 * error code is returned. 670 */ 671 int ubifs_find_free_leb_for_idx(struct ubifs_info *c) 672 { 673 const struct ubifs_lprops *lprops; 674 int lnum = -1, err, flags; 675 676 ubifs_get_lprops(c); 677 678 lprops = ubifs_fast_find_empty(c); 679 if (!lprops) { 680 lprops = ubifs_fast_find_freeable(c); 681 if (!lprops) { 682 ubifs_assert(c->freeable_cnt == 0); 683 if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) { 684 lprops = scan_for_leb_for_idx(c); 685 if (IS_ERR(lprops)) { 686 err = PTR_ERR(lprops); 687 goto out; 688 } 689 } 690 } 691 } 692 693 if (!lprops) { 694 err = -ENOSPC; 695 goto out; 696 } 697 698 lnum = lprops->lnum; 699 700 dbg_find("found LEB %d, free %d, dirty %d, flags %#x", 701 lnum, lprops->free, lprops->dirty, lprops->flags); 702 703 flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX; 704 lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0); 705 if (IS_ERR(lprops)) { 706 err = PTR_ERR(lprops); 707 goto out; 708 } 709 710 ubifs_release_lprops(c); 711 712 /* 713 * Ensure that empty LEBs have been unmapped. They may not have been, 714 * for example, because of an unclean unmount. Also LEBs that were 715 * freeable LEBs (free + dirty == leb_size) will not have been unmapped. 716 */ 717 err = ubifs_leb_unmap(c, lnum); 718 if (err) { 719 ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 720 LPROPS_TAKEN | LPROPS_INDEX, 0); 721 return err; 722 } 723 724 return lnum; 725 726 out: 727 ubifs_release_lprops(c); 728 return err; 729 } 730 731 static int cmp_dirty_idx(const struct ubifs_lprops **a, 732 const struct ubifs_lprops **b) 733 { 734 const struct ubifs_lprops *lpa = *a; 735 const struct ubifs_lprops *lpb = *b; 736 737 return lpa->dirty + lpa->free - lpb->dirty - lpb->free; 738 } 739 740 static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b, 741 int size) 742 { 743 struct ubifs_lprops *t = *a; 744 745 *a = *b; 746 *b = t; 747 } 748 749 /** 750 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos. 751 * @c: the UBIFS file-system description object 752 * 753 * This function is called each commit to create an array of LEB numbers of 754 * dirty index LEBs sorted in order of dirty and free space. This is used by 755 * the in-the-gaps method of TNC commit. 756 */ 757 int ubifs_save_dirty_idx_lnums(struct ubifs_info *c) 758 { 759 int i; 760 761 ubifs_get_lprops(c); 762 /* Copy the LPROPS_DIRTY_IDX heap */ 763 c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt; 764 memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr, 765 sizeof(void *) * c->dirty_idx.cnt); 766 /* Sort it so that the dirtiest is now at the end */ 767 sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *), 768 (int (*)(const void *, const void *))cmp_dirty_idx, 769 (void (*)(void *, void *, int))swap_dirty_idx); 770 dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt); 771 if (c->dirty_idx.cnt) 772 dbg_find("dirtiest index LEB is %d with dirty %d and free %d", 773 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum, 774 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty, 775 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free); 776 /* Replace the lprops pointers with LEB numbers */ 777 for (i = 0; i < c->dirty_idx.cnt; i++) 778 c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum; 779 ubifs_release_lprops(c); 780 return 0; 781 } 782 783 /** 784 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB. 785 * @c: the UBIFS file-system description object 786 * @lprops: LEB properties to scan 787 * @in_tree: whether the LEB properties are in main memory 788 * @data: information passed to and from the caller of the scan 789 * 790 * This function returns a code that indicates whether the scan should continue 791 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree 792 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop 793 * (%LPT_SCAN_STOP). 794 */ 795 static int scan_dirty_idx_cb(struct ubifs_info *c, 796 const struct ubifs_lprops *lprops, int in_tree, 797 struct scan_data *data) 798 { 799 int ret = LPT_SCAN_CONTINUE; 800 801 /* Exclude LEBs that are currently in use */ 802 if (lprops->flags & LPROPS_TAKEN) 803 return LPT_SCAN_CONTINUE; 804 /* Determine whether to add these LEB properties to the tree */ 805 if (!in_tree && valuable(c, lprops)) 806 ret |= LPT_SCAN_ADD; 807 /* Exclude non-index LEBs */ 808 if (!(lprops->flags & LPROPS_INDEX)) 809 return ret; 810 /* Exclude LEBs with too little space */ 811 if (lprops->free + lprops->dirty < c->min_idx_node_sz) 812 return ret; 813 /* Finally we found space */ 814 data->lnum = lprops->lnum; 815 return LPT_SCAN_ADD | LPT_SCAN_STOP; 816 } 817 818 /** 819 * find_dirty_idx_leb - find a dirty index LEB. 820 * @c: the UBIFS file-system description object 821 * 822 * This function returns LEB number upon success and a negative error code upon 823 * failure. In particular, -ENOSPC is returned if a dirty index LEB is not 824 * found. 825 * 826 * Note that this function scans the entire LPT but it is called very rarely. 827 */ 828 static int find_dirty_idx_leb(struct ubifs_info *c) 829 { 830 const struct ubifs_lprops *lprops; 831 struct ubifs_lpt_heap *heap; 832 struct scan_data data; 833 int err, i, ret; 834 835 /* Check all structures in memory first */ 836 data.lnum = -1; 837 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; 838 for (i = 0; i < heap->cnt; i++) { 839 lprops = heap->arr[i]; 840 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 841 if (ret & LPT_SCAN_STOP) 842 goto found; 843 } 844 list_for_each_entry(lprops, &c->frdi_idx_list, list) { 845 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 846 if (ret & LPT_SCAN_STOP) 847 goto found; 848 } 849 list_for_each_entry(lprops, &c->uncat_list, list) { 850 ret = scan_dirty_idx_cb(c, lprops, 1, &data); 851 if (ret & LPT_SCAN_STOP) 852 goto found; 853 } 854 if (c->pnodes_have >= c->pnode_cnt) 855 /* All pnodes are in memory, so skip scan */ 856 return -ENOSPC; 857 err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, 858 (ubifs_lpt_scan_callback)scan_dirty_idx_cb, 859 &data); 860 if (err) 861 return err; 862 found: 863 ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); 864 c->lscan_lnum = data.lnum; 865 lprops = ubifs_lpt_lookup_dirty(c, data.lnum); 866 if (IS_ERR(lprops)) 867 return PTR_ERR(lprops); 868 ubifs_assert(lprops->lnum == data.lnum); 869 ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz); 870 ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); 871 ubifs_assert((lprops->flags & LPROPS_INDEX)); 872 873 dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x", 874 lprops->lnum, lprops->free, lprops->dirty, lprops->flags); 875 876 lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, 877 lprops->flags | LPROPS_TAKEN, 0); 878 if (IS_ERR(lprops)) 879 return PTR_ERR(lprops); 880 881 return lprops->lnum; 882 } 883 884 /** 885 * get_idx_gc_leb - try to get a LEB number from trivial GC. 886 * @c: the UBIFS file-system description object 887 */ 888 static int get_idx_gc_leb(struct ubifs_info *c) 889 { 890 const struct ubifs_lprops *lp; 891 int err, lnum; 892 893 err = ubifs_get_idx_gc_leb(c); 894 if (err < 0) 895 return err; 896 lnum = err; 897 /* 898 * The LEB was due to be unmapped after the commit but 899 * it is needed now for this commit. 900 */ 901 lp = ubifs_lpt_lookup_dirty(c, lnum); 902 if (unlikely(IS_ERR(lp))) 903 return PTR_ERR(lp); 904 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 905 lp->flags | LPROPS_INDEX, -1); 906 if (unlikely(IS_ERR(lp))) 907 return PTR_ERR(lp); 908 dbg_find("LEB %d, dirty %d and free %d flags %#x", 909 lp->lnum, lp->dirty, lp->free, lp->flags); 910 return lnum; 911 } 912 913 /** 914 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array. 915 * @c: the UBIFS file-system description object 916 */ 917 static int find_dirtiest_idx_leb(struct ubifs_info *c) 918 { 919 const struct ubifs_lprops *lp; 920 int lnum; 921 922 while (1) { 923 if (!c->dirty_idx.cnt) 924 return -ENOSPC; 925 /* The lprops pointers were replaced by LEB numbers */ 926 lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt]; 927 lp = ubifs_lpt_lookup(c, lnum); 928 if (IS_ERR(lp)) 929 return PTR_ERR(lp); 930 if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX)) 931 continue; 932 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 933 lp->flags | LPROPS_TAKEN, 0); 934 if (IS_ERR(lp)) 935 return PTR_ERR(lp); 936 break; 937 } 938 dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty, 939 lp->free, lp->flags); 940 ubifs_assert(lp->flags | LPROPS_TAKEN); 941 ubifs_assert(lp->flags | LPROPS_INDEX); 942 return lnum; 943 } 944 945 /** 946 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit. 947 * @c: the UBIFS file-system description object 948 * 949 * This function attempts to find an untaken index LEB with the most free and 950 * dirty space that can be used without overwriting index nodes that were in the 951 * last index committed. 952 */ 953 int ubifs_find_dirty_idx_leb(struct ubifs_info *c) 954 { 955 int err; 956 957 ubifs_get_lprops(c); 958 959 /* 960 * We made an array of the dirtiest index LEB numbers as at the start of 961 * last commit. Try that array first. 962 */ 963 err = find_dirtiest_idx_leb(c); 964 965 /* Next try scanning the entire LPT */ 966 if (err == -ENOSPC) 967 err = find_dirty_idx_leb(c); 968 969 /* Finally take any index LEBs awaiting trivial GC */ 970 if (err == -ENOSPC) 971 err = get_idx_gc_leb(c); 972 973 ubifs_release_lprops(c); 974 return err; 975 } 976