1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations for regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 28 * the page is dirty and is used for optimization purposes - dirty pages are 29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 30 * the budget for this page. The @PG_checked flag is set if full budgeting is 31 * required for the page e.g., when it corresponds to a file hole or it is 32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 33 * it is OK to fail in this function, and the budget is released in 34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 35 * information about how the page was budgeted, to make it possible to release 36 * the budget properly. 37 * 38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 39 * implement. However, this is not true for 'ubifs_writepage()', which may be 40 * called with @i_mutex unlocked. For example, when pdflush is doing background 41 * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal" 42 * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the 43 * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()' 44 * we are only guaranteed that the page is locked. 45 * 46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 49 * set as well. However, UBIFS disables readahead. 50 */ 51 52 #include "ubifs.h" 53 #include <linux/mount.h> 54 #include <linux/namei.h> 55 #include <linux/slab.h> 56 57 static int read_block(struct inode *inode, void *addr, unsigned int block, 58 struct ubifs_data_node *dn) 59 { 60 struct ubifs_info *c = inode->i_sb->s_fs_info; 61 int err, len, out_len; 62 union ubifs_key key; 63 unsigned int dlen; 64 65 data_key_init(c, &key, inode->i_ino, block); 66 err = ubifs_tnc_lookup(c, &key, dn); 67 if (err) { 68 if (err == -ENOENT) 69 /* Not found, so it must be a hole */ 70 memset(addr, 0, UBIFS_BLOCK_SIZE); 71 return err; 72 } 73 74 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 75 ubifs_inode(inode)->creat_sqnum); 76 len = le32_to_cpu(dn->size); 77 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 78 goto dump; 79 80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 81 out_len = UBIFS_BLOCK_SIZE; 82 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 83 le16_to_cpu(dn->compr_type)); 84 if (err || len != out_len) 85 goto dump; 86 87 /* 88 * Data length can be less than a full block, even for blocks that are 89 * not the last in the file (e.g., as a result of making a hole and 90 * appending data). Ensure that the remainder is zeroed out. 91 */ 92 if (len < UBIFS_BLOCK_SIZE) 93 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 94 95 return 0; 96 97 dump: 98 ubifs_err("bad data node (block %u, inode %lu)", 99 block, inode->i_ino); 100 dbg_dump_node(c, dn); 101 return -EINVAL; 102 } 103 104 static int do_readpage(struct page *page) 105 { 106 void *addr; 107 int err = 0, i; 108 unsigned int block, beyond; 109 struct ubifs_data_node *dn; 110 struct inode *inode = page->mapping->host; 111 loff_t i_size = i_size_read(inode); 112 113 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 114 inode->i_ino, page->index, i_size, page->flags); 115 ubifs_assert(!PageChecked(page)); 116 ubifs_assert(!PagePrivate(page)); 117 118 addr = kmap(page); 119 120 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 121 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 122 if (block >= beyond) { 123 /* Reading beyond inode */ 124 SetPageChecked(page); 125 memset(addr, 0, PAGE_CACHE_SIZE); 126 goto out; 127 } 128 129 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 130 if (!dn) { 131 err = -ENOMEM; 132 goto error; 133 } 134 135 i = 0; 136 while (1) { 137 int ret; 138 139 if (block >= beyond) { 140 /* Reading beyond inode */ 141 err = -ENOENT; 142 memset(addr, 0, UBIFS_BLOCK_SIZE); 143 } else { 144 ret = read_block(inode, addr, block, dn); 145 if (ret) { 146 err = ret; 147 if (err != -ENOENT) 148 break; 149 } else if (block + 1 == beyond) { 150 int dlen = le32_to_cpu(dn->size); 151 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 152 153 if (ilen && ilen < dlen) 154 memset(addr + ilen, 0, dlen - ilen); 155 } 156 } 157 if (++i >= UBIFS_BLOCKS_PER_PAGE) 158 break; 159 block += 1; 160 addr += UBIFS_BLOCK_SIZE; 161 } 162 if (err) { 163 if (err == -ENOENT) { 164 /* Not found, so it must be a hole */ 165 SetPageChecked(page); 166 dbg_gen("hole"); 167 goto out_free; 168 } 169 ubifs_err("cannot read page %lu of inode %lu, error %d", 170 page->index, inode->i_ino, err); 171 goto error; 172 } 173 174 out_free: 175 kfree(dn); 176 out: 177 SetPageUptodate(page); 178 ClearPageError(page); 179 flush_dcache_page(page); 180 kunmap(page); 181 return 0; 182 183 error: 184 kfree(dn); 185 ClearPageUptodate(page); 186 SetPageError(page); 187 flush_dcache_page(page); 188 kunmap(page); 189 return err; 190 } 191 192 /** 193 * release_new_page_budget - release budget of a new page. 194 * @c: UBIFS file-system description object 195 * 196 * This is a helper function which releases budget corresponding to the budget 197 * of one new page of data. 198 */ 199 static void release_new_page_budget(struct ubifs_info *c) 200 { 201 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 202 203 ubifs_release_budget(c, &req); 204 } 205 206 /** 207 * release_existing_page_budget - release budget of an existing page. 208 * @c: UBIFS file-system description object 209 * 210 * This is a helper function which releases budget corresponding to the budget 211 * of changing one one page of data which already exists on the flash media. 212 */ 213 static void release_existing_page_budget(struct ubifs_info *c) 214 { 215 struct ubifs_budget_req req = { .dd_growth = c->page_budget}; 216 217 ubifs_release_budget(c, &req); 218 } 219 220 static int write_begin_slow(struct address_space *mapping, 221 loff_t pos, unsigned len, struct page **pagep, 222 unsigned flags) 223 { 224 struct inode *inode = mapping->host; 225 struct ubifs_info *c = inode->i_sb->s_fs_info; 226 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 227 struct ubifs_budget_req req = { .new_page = 1 }; 228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 229 struct page *page; 230 231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 232 inode->i_ino, pos, len, inode->i_size); 233 234 /* 235 * At the slow path we have to budget before locking the page, because 236 * budgeting may force write-back, which would wait on locked pages and 237 * deadlock if we had the page locked. At this point we do not know 238 * anything about the page, so assume that this is a new page which is 239 * written to a hole. This corresponds to largest budget. Later the 240 * budget will be amended if this is not true. 241 */ 242 if (appending) 243 /* We are appending data, budget for inode change */ 244 req.dirtied_ino = 1; 245 246 err = ubifs_budget_space(c, &req); 247 if (unlikely(err)) 248 return err; 249 250 page = grab_cache_page_write_begin(mapping, index, flags); 251 if (unlikely(!page)) { 252 ubifs_release_budget(c, &req); 253 return -ENOMEM; 254 } 255 256 if (!PageUptodate(page)) { 257 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 258 SetPageChecked(page); 259 else { 260 err = do_readpage(page); 261 if (err) { 262 unlock_page(page); 263 page_cache_release(page); 264 return err; 265 } 266 } 267 268 SetPageUptodate(page); 269 ClearPageError(page); 270 } 271 272 if (PagePrivate(page)) 273 /* 274 * The page is dirty, which means it was budgeted twice: 275 * o first time the budget was allocated by the task which 276 * made the page dirty and set the PG_private flag; 277 * o and then we budgeted for it for the second time at the 278 * very beginning of this function. 279 * 280 * So what we have to do is to release the page budget we 281 * allocated. 282 */ 283 release_new_page_budget(c); 284 else if (!PageChecked(page)) 285 /* 286 * We are changing a page which already exists on the media. 287 * This means that changing the page does not make the amount 288 * of indexing information larger, and this part of the budget 289 * which we have already acquired may be released. 290 */ 291 ubifs_convert_page_budget(c); 292 293 if (appending) { 294 struct ubifs_inode *ui = ubifs_inode(inode); 295 296 /* 297 * 'ubifs_write_end()' is optimized from the fast-path part of 298 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 299 * if data is appended. 300 */ 301 mutex_lock(&ui->ui_mutex); 302 if (ui->dirty) 303 /* 304 * The inode is dirty already, so we may free the 305 * budget we allocated. 306 */ 307 ubifs_release_dirty_inode_budget(c, ui); 308 } 309 310 *pagep = page; 311 return 0; 312 } 313 314 /** 315 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 316 * @c: UBIFS file-system description object 317 * @page: page to allocate budget for 318 * @ui: UBIFS inode object the page belongs to 319 * @appending: non-zero if the page is appended 320 * 321 * This is a helper function for 'ubifs_write_begin()' which allocates budget 322 * for the operation. The budget is allocated differently depending on whether 323 * this is appending, whether the page is dirty or not, and so on. This 324 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 325 * in case of success and %-ENOSPC in case of failure. 326 */ 327 static int allocate_budget(struct ubifs_info *c, struct page *page, 328 struct ubifs_inode *ui, int appending) 329 { 330 struct ubifs_budget_req req = { .fast = 1 }; 331 332 if (PagePrivate(page)) { 333 if (!appending) 334 /* 335 * The page is dirty and we are not appending, which 336 * means no budget is needed at all. 337 */ 338 return 0; 339 340 mutex_lock(&ui->ui_mutex); 341 if (ui->dirty) 342 /* 343 * The page is dirty and we are appending, so the inode 344 * has to be marked as dirty. However, it is already 345 * dirty, so we do not need any budget. We may return, 346 * but @ui->ui_mutex hast to be left locked because we 347 * should prevent write-back from flushing the inode 348 * and freeing the budget. The lock will be released in 349 * 'ubifs_write_end()'. 350 */ 351 return 0; 352 353 /* 354 * The page is dirty, we are appending, the inode is clean, so 355 * we need to budget the inode change. 356 */ 357 req.dirtied_ino = 1; 358 } else { 359 if (PageChecked(page)) 360 /* 361 * The page corresponds to a hole and does not 362 * exist on the media. So changing it makes 363 * make the amount of indexing information 364 * larger, and we have to budget for a new 365 * page. 366 */ 367 req.new_page = 1; 368 else 369 /* 370 * Not a hole, the change will not add any new 371 * indexing information, budget for page 372 * change. 373 */ 374 req.dirtied_page = 1; 375 376 if (appending) { 377 mutex_lock(&ui->ui_mutex); 378 if (!ui->dirty) 379 /* 380 * The inode is clean but we will have to mark 381 * it as dirty because we are appending. This 382 * needs a budget. 383 */ 384 req.dirtied_ino = 1; 385 } 386 } 387 388 return ubifs_budget_space(c, &req); 389 } 390 391 /* 392 * This function is called when a page of data is going to be written. Since 393 * the page of data will not necessarily go to the flash straight away, UBIFS 394 * has to reserve space on the media for it, which is done by means of 395 * budgeting. 396 * 397 * This is the hot-path of the file-system and we are trying to optimize it as 398 * much as possible. For this reasons it is split on 2 parts - slow and fast. 399 * 400 * There many budgeting cases: 401 * o a new page is appended - we have to budget for a new page and for 402 * changing the inode; however, if the inode is already dirty, there is 403 * no need to budget for it; 404 * o an existing clean page is changed - we have budget for it; if the page 405 * does not exist on the media (a hole), we have to budget for a new 406 * page; otherwise, we may budget for changing an existing page; the 407 * difference between these cases is that changing an existing page does 408 * not introduce anything new to the FS indexing information, so it does 409 * not grow, and smaller budget is acquired in this case; 410 * o an existing dirty page is changed - no need to budget at all, because 411 * the page budget has been acquired by earlier, when the page has been 412 * marked dirty. 413 * 414 * UBIFS budgeting sub-system may force write-back if it thinks there is no 415 * space to reserve. This imposes some locking restrictions and makes it 416 * impossible to take into account the above cases, and makes it impossible to 417 * optimize budgeting. 418 * 419 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 420 * there is a plenty of flash space and the budget will be acquired quickly, 421 * without forcing write-back. The slow path does not make this assumption. 422 */ 423 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 424 loff_t pos, unsigned len, unsigned flags, 425 struct page **pagep, void **fsdata) 426 { 427 struct inode *inode = mapping->host; 428 struct ubifs_info *c = inode->i_sb->s_fs_info; 429 struct ubifs_inode *ui = ubifs_inode(inode); 430 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 431 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 432 int skipped_read = 0; 433 struct page *page; 434 435 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 436 437 if (unlikely(c->ro_media)) 438 return -EROFS; 439 440 /* Try out the fast-path part first */ 441 page = grab_cache_page_write_begin(mapping, index, flags); 442 if (unlikely(!page)) 443 return -ENOMEM; 444 445 if (!PageUptodate(page)) { 446 /* The page is not loaded from the flash */ 447 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) { 448 /* 449 * We change whole page so no need to load it. But we 450 * have to set the @PG_checked flag to make the further 451 * code know that the page is new. This might be not 452 * true, but it is better to budget more than to read 453 * the page from the media. 454 */ 455 SetPageChecked(page); 456 skipped_read = 1; 457 } else { 458 err = do_readpage(page); 459 if (err) { 460 unlock_page(page); 461 page_cache_release(page); 462 return err; 463 } 464 } 465 466 SetPageUptodate(page); 467 ClearPageError(page); 468 } 469 470 err = allocate_budget(c, page, ui, appending); 471 if (unlikely(err)) { 472 ubifs_assert(err == -ENOSPC); 473 /* 474 * If we skipped reading the page because we were going to 475 * write all of it, then it is not up to date. 476 */ 477 if (skipped_read) { 478 ClearPageChecked(page); 479 ClearPageUptodate(page); 480 } 481 /* 482 * Budgeting failed which means it would have to force 483 * write-back but didn't, because we set the @fast flag in the 484 * request. Write-back cannot be done now, while we have the 485 * page locked, because it would deadlock. Unlock and free 486 * everything and fall-back to slow-path. 487 */ 488 if (appending) { 489 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 490 mutex_unlock(&ui->ui_mutex); 491 } 492 unlock_page(page); 493 page_cache_release(page); 494 495 return write_begin_slow(mapping, pos, len, pagep, flags); 496 } 497 498 /* 499 * Whee, we acquired budgeting quickly - without involving 500 * garbage-collection, committing or forcing write-back. We return 501 * with @ui->ui_mutex locked if we are appending pages, and unlocked 502 * otherwise. This is an optimization (slightly hacky though). 503 */ 504 *pagep = page; 505 return 0; 506 507 } 508 509 /** 510 * cancel_budget - cancel budget. 511 * @c: UBIFS file-system description object 512 * @page: page to cancel budget for 513 * @ui: UBIFS inode object the page belongs to 514 * @appending: non-zero if the page is appended 515 * 516 * This is a helper function for a page write operation. It unlocks the 517 * @ui->ui_mutex in case of appending. 518 */ 519 static void cancel_budget(struct ubifs_info *c, struct page *page, 520 struct ubifs_inode *ui, int appending) 521 { 522 if (appending) { 523 if (!ui->dirty) 524 ubifs_release_dirty_inode_budget(c, ui); 525 mutex_unlock(&ui->ui_mutex); 526 } 527 if (!PagePrivate(page)) { 528 if (PageChecked(page)) 529 release_new_page_budget(c); 530 else 531 release_existing_page_budget(c); 532 } 533 } 534 535 static int ubifs_write_end(struct file *file, struct address_space *mapping, 536 loff_t pos, unsigned len, unsigned copied, 537 struct page *page, void *fsdata) 538 { 539 struct inode *inode = mapping->host; 540 struct ubifs_inode *ui = ubifs_inode(inode); 541 struct ubifs_info *c = inode->i_sb->s_fs_info; 542 loff_t end_pos = pos + len; 543 int appending = !!(end_pos > inode->i_size); 544 545 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 546 inode->i_ino, pos, page->index, len, copied, inode->i_size); 547 548 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) { 549 /* 550 * VFS copied less data to the page that it intended and 551 * declared in its '->write_begin()' call via the @len 552 * argument. If the page was not up-to-date, and @len was 553 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did 554 * not load it from the media (for optimization reasons). This 555 * means that part of the page contains garbage. So read the 556 * page now. 557 */ 558 dbg_gen("copied %d instead of %d, read page and repeat", 559 copied, len); 560 cancel_budget(c, page, ui, appending); 561 562 /* 563 * Return 0 to force VFS to repeat the whole operation, or the 564 * error code if 'do_readpage()' fails. 565 */ 566 copied = do_readpage(page); 567 goto out; 568 } 569 570 if (!PagePrivate(page)) { 571 SetPagePrivate(page); 572 atomic_long_inc(&c->dirty_pg_cnt); 573 __set_page_dirty_nobuffers(page); 574 } 575 576 if (appending) { 577 i_size_write(inode, end_pos); 578 ui->ui_size = end_pos; 579 /* 580 * Note, we do not set @I_DIRTY_PAGES (which means that the 581 * inode has dirty pages), this has been done in 582 * '__set_page_dirty_nobuffers()'. 583 */ 584 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 585 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 586 mutex_unlock(&ui->ui_mutex); 587 } 588 589 out: 590 unlock_page(page); 591 page_cache_release(page); 592 return copied; 593 } 594 595 /** 596 * populate_page - copy data nodes into a page for bulk-read. 597 * @c: UBIFS file-system description object 598 * @page: page 599 * @bu: bulk-read information 600 * @n: next zbranch slot 601 * 602 * This function returns %0 on success and a negative error code on failure. 603 */ 604 static int populate_page(struct ubifs_info *c, struct page *page, 605 struct bu_info *bu, int *n) 606 { 607 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 608 struct inode *inode = page->mapping->host; 609 loff_t i_size = i_size_read(inode); 610 unsigned int page_block; 611 void *addr, *zaddr; 612 pgoff_t end_index; 613 614 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 615 inode->i_ino, page->index, i_size, page->flags); 616 617 addr = zaddr = kmap(page); 618 619 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 620 if (!i_size || page->index > end_index) { 621 hole = 1; 622 memset(addr, 0, PAGE_CACHE_SIZE); 623 goto out_hole; 624 } 625 626 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 627 while (1) { 628 int err, len, out_len, dlen; 629 630 if (nn >= bu->cnt) { 631 hole = 1; 632 memset(addr, 0, UBIFS_BLOCK_SIZE); 633 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 634 struct ubifs_data_node *dn; 635 636 dn = bu->buf + (bu->zbranch[nn].offs - offs); 637 638 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 639 ubifs_inode(inode)->creat_sqnum); 640 641 len = le32_to_cpu(dn->size); 642 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 643 goto out_err; 644 645 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 646 out_len = UBIFS_BLOCK_SIZE; 647 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 648 le16_to_cpu(dn->compr_type)); 649 if (err || len != out_len) 650 goto out_err; 651 652 if (len < UBIFS_BLOCK_SIZE) 653 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 654 655 nn += 1; 656 read = (i << UBIFS_BLOCK_SHIFT) + len; 657 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 658 nn += 1; 659 continue; 660 } else { 661 hole = 1; 662 memset(addr, 0, UBIFS_BLOCK_SIZE); 663 } 664 if (++i >= UBIFS_BLOCKS_PER_PAGE) 665 break; 666 addr += UBIFS_BLOCK_SIZE; 667 page_block += 1; 668 } 669 670 if (end_index == page->index) { 671 int len = i_size & (PAGE_CACHE_SIZE - 1); 672 673 if (len && len < read) 674 memset(zaddr + len, 0, read - len); 675 } 676 677 out_hole: 678 if (hole) { 679 SetPageChecked(page); 680 dbg_gen("hole"); 681 } 682 683 SetPageUptodate(page); 684 ClearPageError(page); 685 flush_dcache_page(page); 686 kunmap(page); 687 *n = nn; 688 return 0; 689 690 out_err: 691 ClearPageUptodate(page); 692 SetPageError(page); 693 flush_dcache_page(page); 694 kunmap(page); 695 ubifs_err("bad data node (block %u, inode %lu)", 696 page_block, inode->i_ino); 697 return -EINVAL; 698 } 699 700 /** 701 * ubifs_do_bulk_read - do bulk-read. 702 * @c: UBIFS file-system description object 703 * @bu: bulk-read information 704 * @page1: first page to read 705 * 706 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 707 */ 708 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 709 struct page *page1) 710 { 711 pgoff_t offset = page1->index, end_index; 712 struct address_space *mapping = page1->mapping; 713 struct inode *inode = mapping->host; 714 struct ubifs_inode *ui = ubifs_inode(inode); 715 int err, page_idx, page_cnt, ret = 0, n = 0; 716 int allocate = bu->buf ? 0 : 1; 717 loff_t isize; 718 719 err = ubifs_tnc_get_bu_keys(c, bu); 720 if (err) 721 goto out_warn; 722 723 if (bu->eof) { 724 /* Turn off bulk-read at the end of the file */ 725 ui->read_in_a_row = 1; 726 ui->bulk_read = 0; 727 } 728 729 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 730 if (!page_cnt) { 731 /* 732 * This happens when there are multiple blocks per page and the 733 * blocks for the first page we are looking for, are not 734 * together. If all the pages were like this, bulk-read would 735 * reduce performance, so we turn it off for a while. 736 */ 737 goto out_bu_off; 738 } 739 740 if (bu->cnt) { 741 if (allocate) { 742 /* 743 * Allocate bulk-read buffer depending on how many data 744 * nodes we are going to read. 745 */ 746 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 747 bu->zbranch[bu->cnt - 1].len - 748 bu->zbranch[0].offs; 749 ubifs_assert(bu->buf_len > 0); 750 ubifs_assert(bu->buf_len <= c->leb_size); 751 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 752 if (!bu->buf) 753 goto out_bu_off; 754 } 755 756 err = ubifs_tnc_bulk_read(c, bu); 757 if (err) 758 goto out_warn; 759 } 760 761 err = populate_page(c, page1, bu, &n); 762 if (err) 763 goto out_warn; 764 765 unlock_page(page1); 766 ret = 1; 767 768 isize = i_size_read(inode); 769 if (isize == 0) 770 goto out_free; 771 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 772 773 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 774 pgoff_t page_offset = offset + page_idx; 775 struct page *page; 776 777 if (page_offset > end_index) 778 break; 779 page = find_or_create_page(mapping, page_offset, 780 GFP_NOFS | __GFP_COLD); 781 if (!page) 782 break; 783 if (!PageUptodate(page)) 784 err = populate_page(c, page, bu, &n); 785 unlock_page(page); 786 page_cache_release(page); 787 if (err) 788 break; 789 } 790 791 ui->last_page_read = offset + page_idx - 1; 792 793 out_free: 794 if (allocate) 795 kfree(bu->buf); 796 return ret; 797 798 out_warn: 799 ubifs_warn("ignoring error %d and skipping bulk-read", err); 800 goto out_free; 801 802 out_bu_off: 803 ui->read_in_a_row = ui->bulk_read = 0; 804 goto out_free; 805 } 806 807 /** 808 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 809 * @page: page from which to start bulk-read. 810 * 811 * Some flash media are capable of reading sequentially at faster rates. UBIFS 812 * bulk-read facility is designed to take advantage of that, by reading in one 813 * go consecutive data nodes that are also located consecutively in the same 814 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 815 */ 816 static int ubifs_bulk_read(struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct ubifs_info *c = inode->i_sb->s_fs_info; 820 struct ubifs_inode *ui = ubifs_inode(inode); 821 pgoff_t index = page->index, last_page_read = ui->last_page_read; 822 struct bu_info *bu; 823 int err = 0, allocated = 0; 824 825 ui->last_page_read = index; 826 if (!c->bulk_read) 827 return 0; 828 829 /* 830 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 831 * so don't bother if we cannot lock the mutex. 832 */ 833 if (!mutex_trylock(&ui->ui_mutex)) 834 return 0; 835 836 if (index != last_page_read + 1) { 837 /* Turn off bulk-read if we stop reading sequentially */ 838 ui->read_in_a_row = 1; 839 if (ui->bulk_read) 840 ui->bulk_read = 0; 841 goto out_unlock; 842 } 843 844 if (!ui->bulk_read) { 845 ui->read_in_a_row += 1; 846 if (ui->read_in_a_row < 3) 847 goto out_unlock; 848 /* Three reads in a row, so switch on bulk-read */ 849 ui->bulk_read = 1; 850 } 851 852 /* 853 * If possible, try to use pre-allocated bulk-read information, which 854 * is protected by @c->bu_mutex. 855 */ 856 if (mutex_trylock(&c->bu_mutex)) 857 bu = &c->bu; 858 else { 859 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 860 if (!bu) 861 goto out_unlock; 862 863 bu->buf = NULL; 864 allocated = 1; 865 } 866 867 bu->buf_len = c->max_bu_buf_len; 868 data_key_init(c, &bu->key, inode->i_ino, 869 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 870 err = ubifs_do_bulk_read(c, bu, page); 871 872 if (!allocated) 873 mutex_unlock(&c->bu_mutex); 874 else 875 kfree(bu); 876 877 out_unlock: 878 mutex_unlock(&ui->ui_mutex); 879 return err; 880 } 881 882 static int ubifs_readpage(struct file *file, struct page *page) 883 { 884 if (ubifs_bulk_read(page)) 885 return 0; 886 do_readpage(page); 887 unlock_page(page); 888 return 0; 889 } 890 891 static int do_writepage(struct page *page, int len) 892 { 893 int err = 0, i, blen; 894 unsigned int block; 895 void *addr; 896 union ubifs_key key; 897 struct inode *inode = page->mapping->host; 898 struct ubifs_info *c = inode->i_sb->s_fs_info; 899 900 #ifdef UBIFS_DEBUG 901 spin_lock(&ui->ui_lock); 902 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE); 903 spin_unlock(&ui->ui_lock); 904 #endif 905 906 /* Update radix tree tags */ 907 set_page_writeback(page); 908 909 addr = kmap(page); 910 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 911 i = 0; 912 while (len) { 913 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 914 data_key_init(c, &key, inode->i_ino, block); 915 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 916 if (err) 917 break; 918 if (++i >= UBIFS_BLOCKS_PER_PAGE) 919 break; 920 block += 1; 921 addr += blen; 922 len -= blen; 923 } 924 if (err) { 925 SetPageError(page); 926 ubifs_err("cannot write page %lu of inode %lu, error %d", 927 page->index, inode->i_ino, err); 928 ubifs_ro_mode(c, err); 929 } 930 931 ubifs_assert(PagePrivate(page)); 932 if (PageChecked(page)) 933 release_new_page_budget(c); 934 else 935 release_existing_page_budget(c); 936 937 atomic_long_dec(&c->dirty_pg_cnt); 938 ClearPagePrivate(page); 939 ClearPageChecked(page); 940 941 kunmap(page); 942 unlock_page(page); 943 end_page_writeback(page); 944 return err; 945 } 946 947 /* 948 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 949 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 950 * situation when a we have an inode with size 0, then a megabyte of data is 951 * appended to the inode, then write-back starts and flushes some amount of the 952 * dirty pages, the journal becomes full, commit happens and finishes, and then 953 * an unclean reboot happens. When the file system is mounted next time, the 954 * inode size would still be 0, but there would be many pages which are beyond 955 * the inode size, they would be indexed and consume flash space. Because the 956 * journal has been committed, the replay would not be able to detect this 957 * situation and correct the inode size. This means UBIFS would have to scan 958 * whole index and correct all inode sizes, which is long an unacceptable. 959 * 960 * To prevent situations like this, UBIFS writes pages back only if they are 961 * within the last synchronized inode size, i.e. the size which has been 962 * written to the flash media last time. Otherwise, UBIFS forces inode 963 * write-back, thus making sure the on-flash inode contains current inode size, 964 * and then keeps writing pages back. 965 * 966 * Some locking issues explanation. 'ubifs_writepage()' first is called with 967 * the page locked, and it locks @ui_mutex. However, write-back does take inode 968 * @i_mutex, which means other VFS operations may be run on this inode at the 969 * same time. And the problematic one is truncation to smaller size, from where 970 * we have to call 'truncate_setsize()', which first changes @inode->i_size, then 971 * drops the truncated pages. And while dropping the pages, it takes the page 972 * lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' with 973 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This 974 * means that @inode->i_size is changed while @ui_mutex is unlocked. 975 * 976 * XXX(truncate): with the new truncate sequence this is not true anymore, 977 * and the calls to truncate_setsize can be move around freely. They should 978 * be moved to the very end of the truncate sequence. 979 * 980 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 981 * inode size. How do we do this if @inode->i_size may became smaller while we 982 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 983 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 984 * internally and updates it under @ui_mutex. 985 * 986 * Q: why we do not worry that if we race with truncation, we may end up with a 987 * situation when the inode is truncated while we are in the middle of 988 * 'do_writepage()', so we do write beyond inode size? 989 * A: If we are in the middle of 'do_writepage()', truncation would be locked 990 * on the page lock and it would not write the truncated inode node to the 991 * journal before we have finished. 992 */ 993 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 994 { 995 struct inode *inode = page->mapping->host; 996 struct ubifs_inode *ui = ubifs_inode(inode); 997 loff_t i_size = i_size_read(inode), synced_i_size; 998 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 999 int err, len = i_size & (PAGE_CACHE_SIZE - 1); 1000 void *kaddr; 1001 1002 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1003 inode->i_ino, page->index, page->flags); 1004 ubifs_assert(PagePrivate(page)); 1005 1006 /* Is the page fully outside @i_size? (truncate in progress) */ 1007 if (page->index > end_index || (page->index == end_index && !len)) { 1008 err = 0; 1009 goto out_unlock; 1010 } 1011 1012 spin_lock(&ui->ui_lock); 1013 synced_i_size = ui->synced_i_size; 1014 spin_unlock(&ui->ui_lock); 1015 1016 /* Is the page fully inside @i_size? */ 1017 if (page->index < end_index) { 1018 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) { 1019 err = inode->i_sb->s_op->write_inode(inode, NULL); 1020 if (err) 1021 goto out_unlock; 1022 /* 1023 * The inode has been written, but the write-buffer has 1024 * not been synchronized, so in case of an unclean 1025 * reboot we may end up with some pages beyond inode 1026 * size, but they would be in the journal (because 1027 * commit flushes write buffers) and recovery would deal 1028 * with this. 1029 */ 1030 } 1031 return do_writepage(page, PAGE_CACHE_SIZE); 1032 } 1033 1034 /* 1035 * The page straddles @i_size. It must be zeroed out on each and every 1036 * writepage invocation because it may be mmapped. "A file is mapped 1037 * in multiples of the page size. For a file that is not a multiple of 1038 * the page size, the remaining memory is zeroed when mapped, and 1039 * writes to that region are not written out to the file." 1040 */ 1041 kaddr = kmap_atomic(page, KM_USER0); 1042 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len); 1043 flush_dcache_page(page); 1044 kunmap_atomic(kaddr, KM_USER0); 1045 1046 if (i_size > synced_i_size) { 1047 err = inode->i_sb->s_op->write_inode(inode, NULL); 1048 if (err) 1049 goto out_unlock; 1050 } 1051 1052 return do_writepage(page, len); 1053 1054 out_unlock: 1055 unlock_page(page); 1056 return err; 1057 } 1058 1059 /** 1060 * do_attr_changes - change inode attributes. 1061 * @inode: inode to change attributes for 1062 * @attr: describes attributes to change 1063 */ 1064 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1065 { 1066 if (attr->ia_valid & ATTR_UID) 1067 inode->i_uid = attr->ia_uid; 1068 if (attr->ia_valid & ATTR_GID) 1069 inode->i_gid = attr->ia_gid; 1070 if (attr->ia_valid & ATTR_ATIME) 1071 inode->i_atime = timespec_trunc(attr->ia_atime, 1072 inode->i_sb->s_time_gran); 1073 if (attr->ia_valid & ATTR_MTIME) 1074 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1075 inode->i_sb->s_time_gran); 1076 if (attr->ia_valid & ATTR_CTIME) 1077 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1078 inode->i_sb->s_time_gran); 1079 if (attr->ia_valid & ATTR_MODE) { 1080 umode_t mode = attr->ia_mode; 1081 1082 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1083 mode &= ~S_ISGID; 1084 inode->i_mode = mode; 1085 } 1086 } 1087 1088 /** 1089 * do_truncation - truncate an inode. 1090 * @c: UBIFS file-system description object 1091 * @inode: inode to truncate 1092 * @attr: inode attribute changes description 1093 * 1094 * This function implements VFS '->setattr()' call when the inode is truncated 1095 * to a smaller size. Returns zero in case of success and a negative error code 1096 * in case of failure. 1097 */ 1098 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1099 const struct iattr *attr) 1100 { 1101 int err; 1102 struct ubifs_budget_req req; 1103 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1104 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1105 struct ubifs_inode *ui = ubifs_inode(inode); 1106 1107 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1108 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1109 1110 /* 1111 * If this is truncation to a smaller size, and we do not truncate on a 1112 * block boundary, budget for changing one data block, because the last 1113 * block will be re-written. 1114 */ 1115 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1116 req.dirtied_page = 1; 1117 1118 req.dirtied_ino = 1; 1119 /* A funny way to budget for truncation node */ 1120 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1121 err = ubifs_budget_space(c, &req); 1122 if (err) { 1123 /* 1124 * Treat truncations to zero as deletion and always allow them, 1125 * just like we do for '->unlink()'. 1126 */ 1127 if (new_size || err != -ENOSPC) 1128 return err; 1129 budgeted = 0; 1130 } 1131 1132 truncate_setsize(inode, new_size); 1133 1134 if (offset) { 1135 pgoff_t index = new_size >> PAGE_CACHE_SHIFT; 1136 struct page *page; 1137 1138 page = find_lock_page(inode->i_mapping, index); 1139 if (page) { 1140 if (PageDirty(page)) { 1141 /* 1142 * 'ubifs_jnl_truncate()' will try to truncate 1143 * the last data node, but it contains 1144 * out-of-date data because the page is dirty. 1145 * Write the page now, so that 1146 * 'ubifs_jnl_truncate()' will see an already 1147 * truncated (and up to date) data node. 1148 */ 1149 ubifs_assert(PagePrivate(page)); 1150 1151 clear_page_dirty_for_io(page); 1152 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1153 offset = new_size & 1154 (PAGE_CACHE_SIZE - 1); 1155 err = do_writepage(page, offset); 1156 page_cache_release(page); 1157 if (err) 1158 goto out_budg; 1159 /* 1160 * We could now tell 'ubifs_jnl_truncate()' not 1161 * to read the last block. 1162 */ 1163 } else { 1164 /* 1165 * We could 'kmap()' the page and pass the data 1166 * to 'ubifs_jnl_truncate()' to save it from 1167 * having to read it. 1168 */ 1169 unlock_page(page); 1170 page_cache_release(page); 1171 } 1172 } 1173 } 1174 1175 mutex_lock(&ui->ui_mutex); 1176 ui->ui_size = inode->i_size; 1177 /* Truncation changes inode [mc]time */ 1178 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1179 /* Other attributes may be changed at the same time as well */ 1180 do_attr_changes(inode, attr); 1181 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1182 mutex_unlock(&ui->ui_mutex); 1183 1184 out_budg: 1185 if (budgeted) 1186 ubifs_release_budget(c, &req); 1187 else { 1188 c->nospace = c->nospace_rp = 0; 1189 smp_wmb(); 1190 } 1191 return err; 1192 } 1193 1194 /** 1195 * do_setattr - change inode attributes. 1196 * @c: UBIFS file-system description object 1197 * @inode: inode to change attributes for 1198 * @attr: inode attribute changes description 1199 * 1200 * This function implements VFS '->setattr()' call for all cases except 1201 * truncations to smaller size. Returns zero in case of success and a negative 1202 * error code in case of failure. 1203 */ 1204 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1205 const struct iattr *attr) 1206 { 1207 int err, release; 1208 loff_t new_size = attr->ia_size; 1209 struct ubifs_inode *ui = ubifs_inode(inode); 1210 struct ubifs_budget_req req = { .dirtied_ino = 1, 1211 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1212 1213 err = ubifs_budget_space(c, &req); 1214 if (err) 1215 return err; 1216 1217 if (attr->ia_valid & ATTR_SIZE) { 1218 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1219 truncate_setsize(inode, new_size); 1220 } 1221 1222 mutex_lock(&ui->ui_mutex); 1223 if (attr->ia_valid & ATTR_SIZE) { 1224 /* Truncation changes inode [mc]time */ 1225 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1226 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1227 ui->ui_size = inode->i_size; 1228 } 1229 1230 do_attr_changes(inode, attr); 1231 1232 release = ui->dirty; 1233 if (attr->ia_valid & ATTR_SIZE) 1234 /* 1235 * Inode length changed, so we have to make sure 1236 * @I_DIRTY_DATASYNC is set. 1237 */ 1238 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1239 else 1240 mark_inode_dirty_sync(inode); 1241 mutex_unlock(&ui->ui_mutex); 1242 1243 if (release) 1244 ubifs_release_budget(c, &req); 1245 if (IS_SYNC(inode)) 1246 err = inode->i_sb->s_op->write_inode(inode, NULL); 1247 return err; 1248 } 1249 1250 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1251 { 1252 int err; 1253 struct inode *inode = dentry->d_inode; 1254 struct ubifs_info *c = inode->i_sb->s_fs_info; 1255 1256 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1257 inode->i_ino, inode->i_mode, attr->ia_valid); 1258 err = inode_change_ok(inode, attr); 1259 if (err) 1260 return err; 1261 1262 err = dbg_check_synced_i_size(inode); 1263 if (err) 1264 return err; 1265 1266 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1267 /* Truncation to a smaller size */ 1268 err = do_truncation(c, inode, attr); 1269 else 1270 err = do_setattr(c, inode, attr); 1271 1272 return err; 1273 } 1274 1275 static void ubifs_invalidatepage(struct page *page, unsigned long offset) 1276 { 1277 struct inode *inode = page->mapping->host; 1278 struct ubifs_info *c = inode->i_sb->s_fs_info; 1279 1280 ubifs_assert(PagePrivate(page)); 1281 if (offset) 1282 /* Partial page remains dirty */ 1283 return; 1284 1285 if (PageChecked(page)) 1286 release_new_page_budget(c); 1287 else 1288 release_existing_page_budget(c); 1289 1290 atomic_long_dec(&c->dirty_pg_cnt); 1291 ClearPagePrivate(page); 1292 ClearPageChecked(page); 1293 } 1294 1295 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd) 1296 { 1297 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode); 1298 1299 nd_set_link(nd, ui->data); 1300 return NULL; 1301 } 1302 1303 int ubifs_fsync(struct file *file, int datasync) 1304 { 1305 struct inode *inode = file->f_mapping->host; 1306 struct ubifs_info *c = inode->i_sb->s_fs_info; 1307 int err; 1308 1309 dbg_gen("syncing inode %lu", inode->i_ino); 1310 1311 /* 1312 * VFS has already synchronized dirty pages for this inode. Synchronize 1313 * the inode unless this is a 'datasync()' call. 1314 */ 1315 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1316 err = inode->i_sb->s_op->write_inode(inode, NULL); 1317 if (err) 1318 return err; 1319 } 1320 1321 /* 1322 * Nodes related to this inode may still sit in a write-buffer. Flush 1323 * them. 1324 */ 1325 err = ubifs_sync_wbufs_by_inode(c, inode); 1326 if (err) 1327 return err; 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * mctime_update_needed - check if mtime or ctime update is needed. 1334 * @inode: the inode to do the check for 1335 * @now: current time 1336 * 1337 * This helper function checks if the inode mtime/ctime should be updated or 1338 * not. If current values of the time-stamps are within the UBIFS inode time 1339 * granularity, they are not updated. This is an optimization. 1340 */ 1341 static inline int mctime_update_needed(const struct inode *inode, 1342 const struct timespec *now) 1343 { 1344 if (!timespec_equal(&inode->i_mtime, now) || 1345 !timespec_equal(&inode->i_ctime, now)) 1346 return 1; 1347 return 0; 1348 } 1349 1350 /** 1351 * update_ctime - update mtime and ctime of an inode. 1352 * @c: UBIFS file-system description object 1353 * @inode: inode to update 1354 * 1355 * This function updates mtime and ctime of the inode if it is not equivalent to 1356 * current time. Returns zero in case of success and a negative error code in 1357 * case of failure. 1358 */ 1359 static int update_mctime(struct ubifs_info *c, struct inode *inode) 1360 { 1361 struct timespec now = ubifs_current_time(inode); 1362 struct ubifs_inode *ui = ubifs_inode(inode); 1363 1364 if (mctime_update_needed(inode, &now)) { 1365 int err, release; 1366 struct ubifs_budget_req req = { .dirtied_ino = 1, 1367 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1368 1369 err = ubifs_budget_space(c, &req); 1370 if (err) 1371 return err; 1372 1373 mutex_lock(&ui->ui_mutex); 1374 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1375 release = ui->dirty; 1376 mark_inode_dirty_sync(inode); 1377 mutex_unlock(&ui->ui_mutex); 1378 if (release) 1379 ubifs_release_budget(c, &req); 1380 } 1381 1382 return 0; 1383 } 1384 1385 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov, 1386 unsigned long nr_segs, loff_t pos) 1387 { 1388 int err; 1389 struct inode *inode = iocb->ki_filp->f_mapping->host; 1390 struct ubifs_info *c = inode->i_sb->s_fs_info; 1391 1392 err = update_mctime(c, inode); 1393 if (err) 1394 return err; 1395 1396 return generic_file_aio_write(iocb, iov, nr_segs, pos); 1397 } 1398 1399 static int ubifs_set_page_dirty(struct page *page) 1400 { 1401 int ret; 1402 1403 ret = __set_page_dirty_nobuffers(page); 1404 /* 1405 * An attempt to dirty a page without budgeting for it - should not 1406 * happen. 1407 */ 1408 ubifs_assert(ret == 0); 1409 return ret; 1410 } 1411 1412 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1413 { 1414 /* 1415 * An attempt to release a dirty page without budgeting for it - should 1416 * not happen. 1417 */ 1418 if (PageWriteback(page)) 1419 return 0; 1420 ubifs_assert(PagePrivate(page)); 1421 ubifs_assert(0); 1422 ClearPagePrivate(page); 1423 ClearPageChecked(page); 1424 return 1; 1425 } 1426 1427 /* 1428 * mmap()d file has taken write protection fault and is being made 1429 * writable. UBIFS must ensure page is budgeted for. 1430 */ 1431 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1432 { 1433 struct page *page = vmf->page; 1434 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1435 struct ubifs_info *c = inode->i_sb->s_fs_info; 1436 struct timespec now = ubifs_current_time(inode); 1437 struct ubifs_budget_req req = { .new_page = 1 }; 1438 int err, update_time; 1439 1440 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1441 i_size_read(inode)); 1442 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY)); 1443 1444 if (unlikely(c->ro_media)) 1445 return VM_FAULT_SIGBUS; /* -EROFS */ 1446 1447 /* 1448 * We have not locked @page so far so we may budget for changing the 1449 * page. Note, we cannot do this after we locked the page, because 1450 * budgeting may cause write-back which would cause deadlock. 1451 * 1452 * At the moment we do not know whether the page is dirty or not, so we 1453 * assume that it is not and budget for a new page. We could look at 1454 * the @PG_private flag and figure this out, but we may race with write 1455 * back and the page state may change by the time we lock it, so this 1456 * would need additional care. We do not bother with this at the 1457 * moment, although it might be good idea to do. Instead, we allocate 1458 * budget for a new page and amend it later on if the page was in fact 1459 * dirty. 1460 * 1461 * The budgeting-related logic of this function is similar to what we 1462 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1463 * for more comments. 1464 */ 1465 update_time = mctime_update_needed(inode, &now); 1466 if (update_time) 1467 /* 1468 * We have to change inode time stamp which requires extra 1469 * budgeting. 1470 */ 1471 req.dirtied_ino = 1; 1472 1473 err = ubifs_budget_space(c, &req); 1474 if (unlikely(err)) { 1475 if (err == -ENOSPC) 1476 ubifs_warn("out of space for mmapped file " 1477 "(inode number %lu)", inode->i_ino); 1478 return VM_FAULT_SIGBUS; 1479 } 1480 1481 lock_page(page); 1482 if (unlikely(page->mapping != inode->i_mapping || 1483 page_offset(page) > i_size_read(inode))) { 1484 /* Page got truncated out from underneath us */ 1485 err = -EINVAL; 1486 goto out_unlock; 1487 } 1488 1489 if (PagePrivate(page)) 1490 release_new_page_budget(c); 1491 else { 1492 if (!PageChecked(page)) 1493 ubifs_convert_page_budget(c); 1494 SetPagePrivate(page); 1495 atomic_long_inc(&c->dirty_pg_cnt); 1496 __set_page_dirty_nobuffers(page); 1497 } 1498 1499 if (update_time) { 1500 int release; 1501 struct ubifs_inode *ui = ubifs_inode(inode); 1502 1503 mutex_lock(&ui->ui_mutex); 1504 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1505 release = ui->dirty; 1506 mark_inode_dirty_sync(inode); 1507 mutex_unlock(&ui->ui_mutex); 1508 if (release) 1509 ubifs_release_dirty_inode_budget(c, ui); 1510 } 1511 1512 unlock_page(page); 1513 return 0; 1514 1515 out_unlock: 1516 unlock_page(page); 1517 ubifs_release_budget(c, &req); 1518 if (err) 1519 err = VM_FAULT_SIGBUS; 1520 return err; 1521 } 1522 1523 static const struct vm_operations_struct ubifs_file_vm_ops = { 1524 .fault = filemap_fault, 1525 .page_mkwrite = ubifs_vm_page_mkwrite, 1526 }; 1527 1528 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1529 { 1530 int err; 1531 1532 /* 'generic_file_mmap()' takes care of NOMMU case */ 1533 err = generic_file_mmap(file, vma); 1534 if (err) 1535 return err; 1536 vma->vm_ops = &ubifs_file_vm_ops; 1537 return 0; 1538 } 1539 1540 const struct address_space_operations ubifs_file_address_operations = { 1541 .readpage = ubifs_readpage, 1542 .writepage = ubifs_writepage, 1543 .write_begin = ubifs_write_begin, 1544 .write_end = ubifs_write_end, 1545 .invalidatepage = ubifs_invalidatepage, 1546 .set_page_dirty = ubifs_set_page_dirty, 1547 .releasepage = ubifs_releasepage, 1548 }; 1549 1550 const struct inode_operations ubifs_file_inode_operations = { 1551 .setattr = ubifs_setattr, 1552 .getattr = ubifs_getattr, 1553 #ifdef CONFIG_UBIFS_FS_XATTR 1554 .setxattr = ubifs_setxattr, 1555 .getxattr = ubifs_getxattr, 1556 .listxattr = ubifs_listxattr, 1557 .removexattr = ubifs_removexattr, 1558 #endif 1559 }; 1560 1561 const struct inode_operations ubifs_symlink_inode_operations = { 1562 .readlink = generic_readlink, 1563 .follow_link = ubifs_follow_link, 1564 .setattr = ubifs_setattr, 1565 .getattr = ubifs_getattr, 1566 }; 1567 1568 const struct file_operations ubifs_file_operations = { 1569 .llseek = generic_file_llseek, 1570 .read = do_sync_read, 1571 .write = do_sync_write, 1572 .aio_read = generic_file_aio_read, 1573 .aio_write = ubifs_aio_write, 1574 .mmap = ubifs_file_mmap, 1575 .fsync = ubifs_fsync, 1576 .unlocked_ioctl = ubifs_ioctl, 1577 .splice_read = generic_file_splice_read, 1578 .splice_write = generic_file_splice_write, 1579 #ifdef CONFIG_COMPAT 1580 .compat_ioctl = ubifs_compat_ioctl, 1581 #endif 1582 }; 1583