1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations of regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the 28 * page is dirty and is used for budgeting purposes - dirty pages should not be 29 * budgeted. The PG_checked flag is set if full budgeting is required for the 30 * page e.g., when it corresponds to a file hole or it is just beyond the file 31 * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to 32 * fail in this function, and the budget is released in 'ubifs_write_end()'. So 33 * the PG_private and PG_checked flags carry the information about how the page 34 * was budgeted, to make it possible to release the budget properly. 35 * 36 * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations 37 * we implement. However, this is not true for '->writepage()', which might be 38 * called with 'i_mutex' unlocked. For example, when pdflush is performing 39 * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the 40 * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is 41 * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim 42 * path'. So, in '->writepage()' we are only guaranteed that the page is 43 * locked. 44 * 45 * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g., 46 * readahead path does not have it locked ("sys_read -> generic_file_aio_read 47 * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is 48 * not set as well. However, UBIFS disables readahead. 49 * 50 * This, for example means that there might be 2 concurrent '->writepage()' 51 * calls for the same inode, but different inode dirty pages. 52 */ 53 54 #include "ubifs.h" 55 #include <linux/mount.h> 56 #include <linux/namei.h> 57 58 static int read_block(struct inode *inode, void *addr, unsigned int block, 59 struct ubifs_data_node *dn) 60 { 61 struct ubifs_info *c = inode->i_sb->s_fs_info; 62 int err, len, out_len; 63 union ubifs_key key; 64 unsigned int dlen; 65 66 data_key_init(c, &key, inode->i_ino, block); 67 err = ubifs_tnc_lookup(c, &key, dn); 68 if (err) { 69 if (err == -ENOENT) 70 /* Not found, so it must be a hole */ 71 memset(addr, 0, UBIFS_BLOCK_SIZE); 72 return err; 73 } 74 75 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 76 ubifs_inode(inode)->creat_sqnum); 77 len = le32_to_cpu(dn->size); 78 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 79 goto dump; 80 81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 82 out_len = UBIFS_BLOCK_SIZE; 83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 84 le16_to_cpu(dn->compr_type)); 85 if (err || len != out_len) 86 goto dump; 87 88 /* 89 * Data length can be less than a full block, even for blocks that are 90 * not the last in the file (e.g., as a result of making a hole and 91 * appending data). Ensure that the remainder is zeroed out. 92 */ 93 if (len < UBIFS_BLOCK_SIZE) 94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 95 96 return 0; 97 98 dump: 99 ubifs_err("bad data node (block %u, inode %lu)", 100 block, inode->i_ino); 101 dbg_dump_node(c, dn); 102 return -EINVAL; 103 } 104 105 static int do_readpage(struct page *page) 106 { 107 void *addr; 108 int err = 0, i; 109 unsigned int block, beyond; 110 struct ubifs_data_node *dn; 111 struct inode *inode = page->mapping->host; 112 loff_t i_size = i_size_read(inode); 113 114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 115 inode->i_ino, page->index, i_size, page->flags); 116 ubifs_assert(!PageChecked(page)); 117 ubifs_assert(!PagePrivate(page)); 118 119 addr = kmap(page); 120 121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 123 if (block >= beyond) { 124 /* Reading beyond inode */ 125 SetPageChecked(page); 126 memset(addr, 0, PAGE_CACHE_SIZE); 127 goto out; 128 } 129 130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 131 if (!dn) { 132 err = -ENOMEM; 133 goto error; 134 } 135 136 i = 0; 137 while (1) { 138 int ret; 139 140 if (block >= beyond) { 141 /* Reading beyond inode */ 142 err = -ENOENT; 143 memset(addr, 0, UBIFS_BLOCK_SIZE); 144 } else { 145 ret = read_block(inode, addr, block, dn); 146 if (ret) { 147 err = ret; 148 if (err != -ENOENT) 149 break; 150 } else if (block + 1 == beyond) { 151 int dlen = le32_to_cpu(dn->size); 152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 153 154 if (ilen && ilen < dlen) 155 memset(addr + ilen, 0, dlen - ilen); 156 } 157 } 158 if (++i >= UBIFS_BLOCKS_PER_PAGE) 159 break; 160 block += 1; 161 addr += UBIFS_BLOCK_SIZE; 162 } 163 if (err) { 164 if (err == -ENOENT) { 165 /* Not found, so it must be a hole */ 166 SetPageChecked(page); 167 dbg_gen("hole"); 168 goto out_free; 169 } 170 ubifs_err("cannot read page %lu of inode %lu, error %d", 171 page->index, inode->i_ino, err); 172 goto error; 173 } 174 175 out_free: 176 kfree(dn); 177 out: 178 SetPageUptodate(page); 179 ClearPageError(page); 180 flush_dcache_page(page); 181 kunmap(page); 182 return 0; 183 184 error: 185 kfree(dn); 186 ClearPageUptodate(page); 187 SetPageError(page); 188 flush_dcache_page(page); 189 kunmap(page); 190 return err; 191 } 192 193 /** 194 * release_new_page_budget - release budget of a new page. 195 * @c: UBIFS file-system description object 196 * 197 * This is a helper function which releases budget corresponding to the budget 198 * of one new page of data. 199 */ 200 static void release_new_page_budget(struct ubifs_info *c) 201 { 202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 203 204 ubifs_release_budget(c, &req); 205 } 206 207 /** 208 * release_existing_page_budget - release budget of an existing page. 209 * @c: UBIFS file-system description object 210 * 211 * This is a helper function which releases budget corresponding to the budget 212 * of changing one one page of data which already exists on the flash media. 213 */ 214 static void release_existing_page_budget(struct ubifs_info *c) 215 { 216 struct ubifs_budget_req req = { .dd_growth = c->page_budget}; 217 218 ubifs_release_budget(c, &req); 219 } 220 221 static int write_begin_slow(struct address_space *mapping, 222 loff_t pos, unsigned len, struct page **pagep, 223 unsigned flags) 224 { 225 struct inode *inode = mapping->host; 226 struct ubifs_info *c = inode->i_sb->s_fs_info; 227 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 228 struct ubifs_budget_req req = { .new_page = 1 }; 229 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 230 struct page *page; 231 232 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 233 inode->i_ino, pos, len, inode->i_size); 234 235 /* 236 * At the slow path we have to budget before locking the page, because 237 * budgeting may force write-back, which would wait on locked pages and 238 * deadlock if we had the page locked. At this point we do not know 239 * anything about the page, so assume that this is a new page which is 240 * written to a hole. This corresponds to largest budget. Later the 241 * budget will be amended if this is not true. 242 */ 243 if (appending) 244 /* We are appending data, budget for inode change */ 245 req.dirtied_ino = 1; 246 247 err = ubifs_budget_space(c, &req); 248 if (unlikely(err)) 249 return err; 250 251 page = grab_cache_page_write_begin(mapping, index, flags); 252 if (unlikely(!page)) { 253 ubifs_release_budget(c, &req); 254 return -ENOMEM; 255 } 256 257 if (!PageUptodate(page)) { 258 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 259 SetPageChecked(page); 260 else { 261 err = do_readpage(page); 262 if (err) { 263 unlock_page(page); 264 page_cache_release(page); 265 return err; 266 } 267 } 268 269 SetPageUptodate(page); 270 ClearPageError(page); 271 } 272 273 if (PagePrivate(page)) 274 /* 275 * The page is dirty, which means it was budgeted twice: 276 * o first time the budget was allocated by the task which 277 * made the page dirty and set the PG_private flag; 278 * o and then we budgeted for it for the second time at the 279 * very beginning of this function. 280 * 281 * So what we have to do is to release the page budget we 282 * allocated. 283 */ 284 release_new_page_budget(c); 285 else if (!PageChecked(page)) 286 /* 287 * We are changing a page which already exists on the media. 288 * This means that changing the page does not make the amount 289 * of indexing information larger, and this part of the budget 290 * which we have already acquired may be released. 291 */ 292 ubifs_convert_page_budget(c); 293 294 if (appending) { 295 struct ubifs_inode *ui = ubifs_inode(inode); 296 297 /* 298 * 'ubifs_write_end()' is optimized from the fast-path part of 299 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 300 * if data is appended. 301 */ 302 mutex_lock(&ui->ui_mutex); 303 if (ui->dirty) 304 /* 305 * The inode is dirty already, so we may free the 306 * budget we allocated. 307 */ 308 ubifs_release_dirty_inode_budget(c, ui); 309 } 310 311 *pagep = page; 312 return 0; 313 } 314 315 /** 316 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 317 * @c: UBIFS file-system description object 318 * @page: page to allocate budget for 319 * @ui: UBIFS inode object the page belongs to 320 * @appending: non-zero if the page is appended 321 * 322 * This is a helper function for 'ubifs_write_begin()' which allocates budget 323 * for the operation. The budget is allocated differently depending on whether 324 * this is appending, whether the page is dirty or not, and so on. This 325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 326 * in case of success and %-ENOSPC in case of failure. 327 */ 328 static int allocate_budget(struct ubifs_info *c, struct page *page, 329 struct ubifs_inode *ui, int appending) 330 { 331 struct ubifs_budget_req req = { .fast = 1 }; 332 333 if (PagePrivate(page)) { 334 if (!appending) 335 /* 336 * The page is dirty and we are not appending, which 337 * means no budget is needed at all. 338 */ 339 return 0; 340 341 mutex_lock(&ui->ui_mutex); 342 if (ui->dirty) 343 /* 344 * The page is dirty and we are appending, so the inode 345 * has to be marked as dirty. However, it is already 346 * dirty, so we do not need any budget. We may return, 347 * but @ui->ui_mutex hast to be left locked because we 348 * should prevent write-back from flushing the inode 349 * and freeing the budget. The lock will be released in 350 * 'ubifs_write_end()'. 351 */ 352 return 0; 353 354 /* 355 * The page is dirty, we are appending, the inode is clean, so 356 * we need to budget the inode change. 357 */ 358 req.dirtied_ino = 1; 359 } else { 360 if (PageChecked(page)) 361 /* 362 * The page corresponds to a hole and does not 363 * exist on the media. So changing it makes 364 * make the amount of indexing information 365 * larger, and we have to budget for a new 366 * page. 367 */ 368 req.new_page = 1; 369 else 370 /* 371 * Not a hole, the change will not add any new 372 * indexing information, budget for page 373 * change. 374 */ 375 req.dirtied_page = 1; 376 377 if (appending) { 378 mutex_lock(&ui->ui_mutex); 379 if (!ui->dirty) 380 /* 381 * The inode is clean but we will have to mark 382 * it as dirty because we are appending. This 383 * needs a budget. 384 */ 385 req.dirtied_ino = 1; 386 } 387 } 388 389 return ubifs_budget_space(c, &req); 390 } 391 392 /* 393 * This function is called when a page of data is going to be written. Since 394 * the page of data will not necessarily go to the flash straight away, UBIFS 395 * has to reserve space on the media for it, which is done by means of 396 * budgeting. 397 * 398 * This is the hot-path of the file-system and we are trying to optimize it as 399 * much as possible. For this reasons it is split on 2 parts - slow and fast. 400 * 401 * There many budgeting cases: 402 * o a new page is appended - we have to budget for a new page and for 403 * changing the inode; however, if the inode is already dirty, there is 404 * no need to budget for it; 405 * o an existing clean page is changed - we have budget for it; if the page 406 * does not exist on the media (a hole), we have to budget for a new 407 * page; otherwise, we may budget for changing an existing page; the 408 * difference between these cases is that changing an existing page does 409 * not introduce anything new to the FS indexing information, so it does 410 * not grow, and smaller budget is acquired in this case; 411 * o an existing dirty page is changed - no need to budget at all, because 412 * the page budget has been acquired by earlier, when the page has been 413 * marked dirty. 414 * 415 * UBIFS budgeting sub-system may force write-back if it thinks there is no 416 * space to reserve. This imposes some locking restrictions and makes it 417 * impossible to take into account the above cases, and makes it impossible to 418 * optimize budgeting. 419 * 420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 421 * there is a plenty of flash space and the budget will be acquired quickly, 422 * without forcing write-back. The slow path does not make this assumption. 423 */ 424 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 425 loff_t pos, unsigned len, unsigned flags, 426 struct page **pagep, void **fsdata) 427 { 428 struct inode *inode = mapping->host; 429 struct ubifs_info *c = inode->i_sb->s_fs_info; 430 struct ubifs_inode *ui = ubifs_inode(inode); 431 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 432 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 433 int skipped_read = 0; 434 struct page *page; 435 436 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 437 438 if (unlikely(c->ro_media)) 439 return -EROFS; 440 441 /* Try out the fast-path part first */ 442 page = grab_cache_page_write_begin(mapping, index, flags); 443 if (unlikely(!page)) 444 return -ENOMEM; 445 446 if (!PageUptodate(page)) { 447 /* The page is not loaded from the flash */ 448 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) { 449 /* 450 * We change whole page so no need to load it. But we 451 * have to set the @PG_checked flag to make the further 452 * code the page is new. This might be not true, but it 453 * is better to budget more that to read the page from 454 * the media. 455 */ 456 SetPageChecked(page); 457 skipped_read = 1; 458 } else { 459 err = do_readpage(page); 460 if (err) { 461 unlock_page(page); 462 page_cache_release(page); 463 return err; 464 } 465 } 466 467 SetPageUptodate(page); 468 ClearPageError(page); 469 } 470 471 err = allocate_budget(c, page, ui, appending); 472 if (unlikely(err)) { 473 ubifs_assert(err == -ENOSPC); 474 /* 475 * If we skipped reading the page because we were going to 476 * write all of it, then it is not up to date. 477 */ 478 if (skipped_read) { 479 ClearPageChecked(page); 480 ClearPageUptodate(page); 481 } 482 /* 483 * Budgeting failed which means it would have to force 484 * write-back but didn't, because we set the @fast flag in the 485 * request. Write-back cannot be done now, while we have the 486 * page locked, because it would deadlock. Unlock and free 487 * everything and fall-back to slow-path. 488 */ 489 if (appending) { 490 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 491 mutex_unlock(&ui->ui_mutex); 492 } 493 unlock_page(page); 494 page_cache_release(page); 495 496 return write_begin_slow(mapping, pos, len, pagep, flags); 497 } 498 499 /* 500 * Whee, we aquired budgeting quickly - without involving 501 * garbage-collection, committing or forceing write-back. We return 502 * with @ui->ui_mutex locked if we are appending pages, and unlocked 503 * otherwise. This is an optimization (slightly hacky though). 504 */ 505 *pagep = page; 506 return 0; 507 508 } 509 510 /** 511 * cancel_budget - cancel budget. 512 * @c: UBIFS file-system description object 513 * @page: page to cancel budget for 514 * @ui: UBIFS inode object the page belongs to 515 * @appending: non-zero if the page is appended 516 * 517 * This is a helper function for a page write operation. It unlocks the 518 * @ui->ui_mutex in case of appending. 519 */ 520 static void cancel_budget(struct ubifs_info *c, struct page *page, 521 struct ubifs_inode *ui, int appending) 522 { 523 if (appending) { 524 if (!ui->dirty) 525 ubifs_release_dirty_inode_budget(c, ui); 526 mutex_unlock(&ui->ui_mutex); 527 } 528 if (!PagePrivate(page)) { 529 if (PageChecked(page)) 530 release_new_page_budget(c); 531 else 532 release_existing_page_budget(c); 533 } 534 } 535 536 static int ubifs_write_end(struct file *file, struct address_space *mapping, 537 loff_t pos, unsigned len, unsigned copied, 538 struct page *page, void *fsdata) 539 { 540 struct inode *inode = mapping->host; 541 struct ubifs_inode *ui = ubifs_inode(inode); 542 struct ubifs_info *c = inode->i_sb->s_fs_info; 543 loff_t end_pos = pos + len; 544 int appending = !!(end_pos > inode->i_size); 545 546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 547 inode->i_ino, pos, page->index, len, copied, inode->i_size); 548 549 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) { 550 /* 551 * VFS copied less data to the page that it intended and 552 * declared in its '->write_begin()' call via the @len 553 * argument. If the page was not up-to-date, and @len was 554 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did 555 * not load it from the media (for optimization reasons). This 556 * means that part of the page contains garbage. So read the 557 * page now. 558 */ 559 dbg_gen("copied %d instead of %d, read page and repeat", 560 copied, len); 561 cancel_budget(c, page, ui, appending); 562 563 /* 564 * Return 0 to force VFS to repeat the whole operation, or the 565 * error code if 'do_readpage()' failes. 566 */ 567 copied = do_readpage(page); 568 goto out; 569 } 570 571 if (!PagePrivate(page)) { 572 SetPagePrivate(page); 573 atomic_long_inc(&c->dirty_pg_cnt); 574 __set_page_dirty_nobuffers(page); 575 } 576 577 if (appending) { 578 i_size_write(inode, end_pos); 579 ui->ui_size = end_pos; 580 /* 581 * Note, we do not set @I_DIRTY_PAGES (which means that the 582 * inode has dirty pages), this has been done in 583 * '__set_page_dirty_nobuffers()'. 584 */ 585 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 586 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 587 mutex_unlock(&ui->ui_mutex); 588 } 589 590 out: 591 unlock_page(page); 592 page_cache_release(page); 593 return copied; 594 } 595 596 /** 597 * populate_page - copy data nodes into a page for bulk-read. 598 * @c: UBIFS file-system description object 599 * @page: page 600 * @bu: bulk-read information 601 * @n: next zbranch slot 602 * 603 * This function returns %0 on success and a negative error code on failure. 604 */ 605 static int populate_page(struct ubifs_info *c, struct page *page, 606 struct bu_info *bu, int *n) 607 { 608 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 609 struct inode *inode = page->mapping->host; 610 loff_t i_size = i_size_read(inode); 611 unsigned int page_block; 612 void *addr, *zaddr; 613 pgoff_t end_index; 614 615 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 616 inode->i_ino, page->index, i_size, page->flags); 617 618 addr = zaddr = kmap(page); 619 620 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 621 if (!i_size || page->index > end_index) { 622 hole = 1; 623 memset(addr, 0, PAGE_CACHE_SIZE); 624 goto out_hole; 625 } 626 627 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 628 while (1) { 629 int err, len, out_len, dlen; 630 631 if (nn >= bu->cnt) { 632 hole = 1; 633 memset(addr, 0, UBIFS_BLOCK_SIZE); 634 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 635 struct ubifs_data_node *dn; 636 637 dn = bu->buf + (bu->zbranch[nn].offs - offs); 638 639 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 640 ubifs_inode(inode)->creat_sqnum); 641 642 len = le32_to_cpu(dn->size); 643 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 644 goto out_err; 645 646 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 647 out_len = UBIFS_BLOCK_SIZE; 648 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 649 le16_to_cpu(dn->compr_type)); 650 if (err || len != out_len) 651 goto out_err; 652 653 if (len < UBIFS_BLOCK_SIZE) 654 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 655 656 nn += 1; 657 read = (i << UBIFS_BLOCK_SHIFT) + len; 658 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 659 nn += 1; 660 continue; 661 } else { 662 hole = 1; 663 memset(addr, 0, UBIFS_BLOCK_SIZE); 664 } 665 if (++i >= UBIFS_BLOCKS_PER_PAGE) 666 break; 667 addr += UBIFS_BLOCK_SIZE; 668 page_block += 1; 669 } 670 671 if (end_index == page->index) { 672 int len = i_size & (PAGE_CACHE_SIZE - 1); 673 674 if (len && len < read) 675 memset(zaddr + len, 0, read - len); 676 } 677 678 out_hole: 679 if (hole) { 680 SetPageChecked(page); 681 dbg_gen("hole"); 682 } 683 684 SetPageUptodate(page); 685 ClearPageError(page); 686 flush_dcache_page(page); 687 kunmap(page); 688 *n = nn; 689 return 0; 690 691 out_err: 692 ClearPageUptodate(page); 693 SetPageError(page); 694 flush_dcache_page(page); 695 kunmap(page); 696 ubifs_err("bad data node (block %u, inode %lu)", 697 page_block, inode->i_ino); 698 return -EINVAL; 699 } 700 701 /** 702 * ubifs_do_bulk_read - do bulk-read. 703 * @c: UBIFS file-system description object 704 * @bu: bulk-read information 705 * @page1: first page to read 706 * 707 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 708 */ 709 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 710 struct page *page1) 711 { 712 pgoff_t offset = page1->index, end_index; 713 struct address_space *mapping = page1->mapping; 714 struct inode *inode = mapping->host; 715 struct ubifs_inode *ui = ubifs_inode(inode); 716 int err, page_idx, page_cnt, ret = 0, n = 0; 717 int allocate = bu->buf ? 0 : 1; 718 loff_t isize; 719 720 err = ubifs_tnc_get_bu_keys(c, bu); 721 if (err) 722 goto out_warn; 723 724 if (bu->eof) { 725 /* Turn off bulk-read at the end of the file */ 726 ui->read_in_a_row = 1; 727 ui->bulk_read = 0; 728 } 729 730 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 731 if (!page_cnt) { 732 /* 733 * This happens when there are multiple blocks per page and the 734 * blocks for the first page we are looking for, are not 735 * together. If all the pages were like this, bulk-read would 736 * reduce performance, so we turn it off for a while. 737 */ 738 goto out_bu_off; 739 } 740 741 if (bu->cnt) { 742 if (allocate) { 743 /* 744 * Allocate bulk-read buffer depending on how many data 745 * nodes we are going to read. 746 */ 747 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 748 bu->zbranch[bu->cnt - 1].len - 749 bu->zbranch[0].offs; 750 ubifs_assert(bu->buf_len > 0); 751 ubifs_assert(bu->buf_len <= c->leb_size); 752 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 753 if (!bu->buf) 754 goto out_bu_off; 755 } 756 757 err = ubifs_tnc_bulk_read(c, bu); 758 if (err) 759 goto out_warn; 760 } 761 762 err = populate_page(c, page1, bu, &n); 763 if (err) 764 goto out_warn; 765 766 unlock_page(page1); 767 ret = 1; 768 769 isize = i_size_read(inode); 770 if (isize == 0) 771 goto out_free; 772 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 773 774 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 775 pgoff_t page_offset = offset + page_idx; 776 struct page *page; 777 778 if (page_offset > end_index) 779 break; 780 page = find_or_create_page(mapping, page_offset, 781 GFP_NOFS | __GFP_COLD); 782 if (!page) 783 break; 784 if (!PageUptodate(page)) 785 err = populate_page(c, page, bu, &n); 786 unlock_page(page); 787 page_cache_release(page); 788 if (err) 789 break; 790 } 791 792 ui->last_page_read = offset + page_idx - 1; 793 794 out_free: 795 if (allocate) 796 kfree(bu->buf); 797 return ret; 798 799 out_warn: 800 ubifs_warn("ignoring error %d and skipping bulk-read", err); 801 goto out_free; 802 803 out_bu_off: 804 ui->read_in_a_row = ui->bulk_read = 0; 805 goto out_free; 806 } 807 808 /** 809 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 810 * @page: page from which to start bulk-read. 811 * 812 * Some flash media are capable of reading sequentially at faster rates. UBIFS 813 * bulk-read facility is designed to take advantage of that, by reading in one 814 * go consecutive data nodes that are also located consecutively in the same 815 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 816 */ 817 static int ubifs_bulk_read(struct page *page) 818 { 819 struct inode *inode = page->mapping->host; 820 struct ubifs_info *c = inode->i_sb->s_fs_info; 821 struct ubifs_inode *ui = ubifs_inode(inode); 822 pgoff_t index = page->index, last_page_read = ui->last_page_read; 823 struct bu_info *bu; 824 int err = 0, allocated = 0; 825 826 ui->last_page_read = index; 827 if (!c->bulk_read) 828 return 0; 829 830 /* 831 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 832 * so don't bother if we cannot lock the mutex. 833 */ 834 if (!mutex_trylock(&ui->ui_mutex)) 835 return 0; 836 837 if (index != last_page_read + 1) { 838 /* Turn off bulk-read if we stop reading sequentially */ 839 ui->read_in_a_row = 1; 840 if (ui->bulk_read) 841 ui->bulk_read = 0; 842 goto out_unlock; 843 } 844 845 if (!ui->bulk_read) { 846 ui->read_in_a_row += 1; 847 if (ui->read_in_a_row < 3) 848 goto out_unlock; 849 /* Three reads in a row, so switch on bulk-read */ 850 ui->bulk_read = 1; 851 } 852 853 /* 854 * If possible, try to use pre-allocated bulk-read information, which 855 * is protected by @c->bu_mutex. 856 */ 857 if (mutex_trylock(&c->bu_mutex)) 858 bu = &c->bu; 859 else { 860 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 861 if (!bu) 862 goto out_unlock; 863 864 bu->buf = NULL; 865 allocated = 1; 866 } 867 868 bu->buf_len = c->max_bu_buf_len; 869 data_key_init(c, &bu->key, inode->i_ino, 870 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 871 err = ubifs_do_bulk_read(c, bu, page); 872 873 if (!allocated) 874 mutex_unlock(&c->bu_mutex); 875 else 876 kfree(bu); 877 878 out_unlock: 879 mutex_unlock(&ui->ui_mutex); 880 return err; 881 } 882 883 static int ubifs_readpage(struct file *file, struct page *page) 884 { 885 if (ubifs_bulk_read(page)) 886 return 0; 887 do_readpage(page); 888 unlock_page(page); 889 return 0; 890 } 891 892 static int do_writepage(struct page *page, int len) 893 { 894 int err = 0, i, blen; 895 unsigned int block; 896 void *addr; 897 union ubifs_key key; 898 struct inode *inode = page->mapping->host; 899 struct ubifs_info *c = inode->i_sb->s_fs_info; 900 901 #ifdef UBIFS_DEBUG 902 spin_lock(&ui->ui_lock); 903 ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE); 904 spin_unlock(&ui->ui_lock); 905 #endif 906 907 /* Update radix tree tags */ 908 set_page_writeback(page); 909 910 addr = kmap(page); 911 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 912 i = 0; 913 while (len) { 914 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 915 data_key_init(c, &key, inode->i_ino, block); 916 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 917 if (err) 918 break; 919 if (++i >= UBIFS_BLOCKS_PER_PAGE) 920 break; 921 block += 1; 922 addr += blen; 923 len -= blen; 924 } 925 if (err) { 926 SetPageError(page); 927 ubifs_err("cannot write page %lu of inode %lu, error %d", 928 page->index, inode->i_ino, err); 929 ubifs_ro_mode(c, err); 930 } 931 932 ubifs_assert(PagePrivate(page)); 933 if (PageChecked(page)) 934 release_new_page_budget(c); 935 else 936 release_existing_page_budget(c); 937 938 atomic_long_dec(&c->dirty_pg_cnt); 939 ClearPagePrivate(page); 940 ClearPageChecked(page); 941 942 kunmap(page); 943 unlock_page(page); 944 end_page_writeback(page); 945 return err; 946 } 947 948 /* 949 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 950 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 951 * situation when a we have an inode with size 0, then a megabyte of data is 952 * appended to the inode, then write-back starts and flushes some amount of the 953 * dirty pages, the journal becomes full, commit happens and finishes, and then 954 * an unclean reboot happens. When the file system is mounted next time, the 955 * inode size would still be 0, but there would be many pages which are beyond 956 * the inode size, they would be indexed and consume flash space. Because the 957 * journal has been committed, the replay would not be able to detect this 958 * situation and correct the inode size. This means UBIFS would have to scan 959 * whole index and correct all inode sizes, which is long an unacceptable. 960 * 961 * To prevent situations like this, UBIFS writes pages back only if they are 962 * within the last synchronized inode size, i.e. the size which has been 963 * written to the flash media last time. Otherwise, UBIFS forces inode 964 * write-back, thus making sure the on-flash inode contains current inode size, 965 * and then keeps writing pages back. 966 * 967 * Some locking issues explanation. 'ubifs_writepage()' first is called with 968 * the page locked, and it locks @ui_mutex. However, write-back does take inode 969 * @i_mutex, which means other VFS operations may be run on this inode at the 970 * same time. And the problematic one is truncation to smaller size, from where 971 * we have to call 'vmtruncate()', which first changes @inode->i_size, then 972 * drops the truncated pages. And while dropping the pages, it takes the page 973 * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with 974 * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This 975 * means that @inode->i_size is changed while @ui_mutex is unlocked. 976 * 977 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 978 * inode size. How do we do this if @inode->i_size may became smaller while we 979 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 980 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 981 * internally and updates it under @ui_mutex. 982 * 983 * Q: why we do not worry that if we race with truncation, we may end up with a 984 * situation when the inode is truncated while we are in the middle of 985 * 'do_writepage()', so we do write beyond inode size? 986 * A: If we are in the middle of 'do_writepage()', truncation would be locked 987 * on the page lock and it would not write the truncated inode node to the 988 * journal before we have finished. 989 */ 990 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 991 { 992 struct inode *inode = page->mapping->host; 993 struct ubifs_inode *ui = ubifs_inode(inode); 994 loff_t i_size = i_size_read(inode), synced_i_size; 995 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 996 int err, len = i_size & (PAGE_CACHE_SIZE - 1); 997 void *kaddr; 998 999 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1000 inode->i_ino, page->index, page->flags); 1001 ubifs_assert(PagePrivate(page)); 1002 1003 /* Is the page fully outside @i_size? (truncate in progress) */ 1004 if (page->index > end_index || (page->index == end_index && !len)) { 1005 err = 0; 1006 goto out_unlock; 1007 } 1008 1009 spin_lock(&ui->ui_lock); 1010 synced_i_size = ui->synced_i_size; 1011 spin_unlock(&ui->ui_lock); 1012 1013 /* Is the page fully inside @i_size? */ 1014 if (page->index < end_index) { 1015 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) { 1016 err = inode->i_sb->s_op->write_inode(inode, 1); 1017 if (err) 1018 goto out_unlock; 1019 /* 1020 * The inode has been written, but the write-buffer has 1021 * not been synchronized, so in case of an unclean 1022 * reboot we may end up with some pages beyond inode 1023 * size, but they would be in the journal (because 1024 * commit flushes write buffers) and recovery would deal 1025 * with this. 1026 */ 1027 } 1028 return do_writepage(page, PAGE_CACHE_SIZE); 1029 } 1030 1031 /* 1032 * The page straddles @i_size. It must be zeroed out on each and every 1033 * writepage invocation because it may be mmapped. "A file is mapped 1034 * in multiples of the page size. For a file that is not a multiple of 1035 * the page size, the remaining memory is zeroed when mapped, and 1036 * writes to that region are not written out to the file." 1037 */ 1038 kaddr = kmap_atomic(page, KM_USER0); 1039 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len); 1040 flush_dcache_page(page); 1041 kunmap_atomic(kaddr, KM_USER0); 1042 1043 if (i_size > synced_i_size) { 1044 err = inode->i_sb->s_op->write_inode(inode, 1); 1045 if (err) 1046 goto out_unlock; 1047 } 1048 1049 return do_writepage(page, len); 1050 1051 out_unlock: 1052 unlock_page(page); 1053 return err; 1054 } 1055 1056 /** 1057 * do_attr_changes - change inode attributes. 1058 * @inode: inode to change attributes for 1059 * @attr: describes attributes to change 1060 */ 1061 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1062 { 1063 if (attr->ia_valid & ATTR_UID) 1064 inode->i_uid = attr->ia_uid; 1065 if (attr->ia_valid & ATTR_GID) 1066 inode->i_gid = attr->ia_gid; 1067 if (attr->ia_valid & ATTR_ATIME) 1068 inode->i_atime = timespec_trunc(attr->ia_atime, 1069 inode->i_sb->s_time_gran); 1070 if (attr->ia_valid & ATTR_MTIME) 1071 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1072 inode->i_sb->s_time_gran); 1073 if (attr->ia_valid & ATTR_CTIME) 1074 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1075 inode->i_sb->s_time_gran); 1076 if (attr->ia_valid & ATTR_MODE) { 1077 umode_t mode = attr->ia_mode; 1078 1079 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1080 mode &= ~S_ISGID; 1081 inode->i_mode = mode; 1082 } 1083 } 1084 1085 /** 1086 * do_truncation - truncate an inode. 1087 * @c: UBIFS file-system description object 1088 * @inode: inode to truncate 1089 * @attr: inode attribute changes description 1090 * 1091 * This function implements VFS '->setattr()' call when the inode is truncated 1092 * to a smaller size. Returns zero in case of success and a negative error code 1093 * in case of failure. 1094 */ 1095 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1096 const struct iattr *attr) 1097 { 1098 int err; 1099 struct ubifs_budget_req req; 1100 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1101 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1102 struct ubifs_inode *ui = ubifs_inode(inode); 1103 1104 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1105 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1106 1107 /* 1108 * If this is truncation to a smaller size, and we do not truncate on a 1109 * block boundary, budget for changing one data block, because the last 1110 * block will be re-written. 1111 */ 1112 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1113 req.dirtied_page = 1; 1114 1115 req.dirtied_ino = 1; 1116 /* A funny way to budget for truncation node */ 1117 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1118 err = ubifs_budget_space(c, &req); 1119 if (err) { 1120 /* 1121 * Treat truncations to zero as deletion and always allow them, 1122 * just like we do for '->unlink()'. 1123 */ 1124 if (new_size || err != -ENOSPC) 1125 return err; 1126 budgeted = 0; 1127 } 1128 1129 err = vmtruncate(inode, new_size); 1130 if (err) 1131 goto out_budg; 1132 1133 if (offset) { 1134 pgoff_t index = new_size >> PAGE_CACHE_SHIFT; 1135 struct page *page; 1136 1137 page = find_lock_page(inode->i_mapping, index); 1138 if (page) { 1139 if (PageDirty(page)) { 1140 /* 1141 * 'ubifs_jnl_truncate()' will try to truncate 1142 * the last data node, but it contains 1143 * out-of-date data because the page is dirty. 1144 * Write the page now, so that 1145 * 'ubifs_jnl_truncate()' will see an already 1146 * truncated (and up to date) data node. 1147 */ 1148 ubifs_assert(PagePrivate(page)); 1149 1150 clear_page_dirty_for_io(page); 1151 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1152 offset = new_size & 1153 (PAGE_CACHE_SIZE - 1); 1154 err = do_writepage(page, offset); 1155 page_cache_release(page); 1156 if (err) 1157 goto out_budg; 1158 /* 1159 * We could now tell 'ubifs_jnl_truncate()' not 1160 * to read the last block. 1161 */ 1162 } else { 1163 /* 1164 * We could 'kmap()' the page and pass the data 1165 * to 'ubifs_jnl_truncate()' to save it from 1166 * having to read it. 1167 */ 1168 unlock_page(page); 1169 page_cache_release(page); 1170 } 1171 } 1172 } 1173 1174 mutex_lock(&ui->ui_mutex); 1175 ui->ui_size = inode->i_size; 1176 /* Truncation changes inode [mc]time */ 1177 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1178 /* The other attributes may be changed at the same time as well */ 1179 do_attr_changes(inode, attr); 1180 1181 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1182 mutex_unlock(&ui->ui_mutex); 1183 out_budg: 1184 if (budgeted) 1185 ubifs_release_budget(c, &req); 1186 else { 1187 c->nospace = c->nospace_rp = 0; 1188 smp_wmb(); 1189 } 1190 return err; 1191 } 1192 1193 /** 1194 * do_setattr - change inode attributes. 1195 * @c: UBIFS file-system description object 1196 * @inode: inode to change attributes for 1197 * @attr: inode attribute changes description 1198 * 1199 * This function implements VFS '->setattr()' call for all cases except 1200 * truncations to smaller size. Returns zero in case of success and a negative 1201 * error code in case of failure. 1202 */ 1203 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1204 const struct iattr *attr) 1205 { 1206 int err, release; 1207 loff_t new_size = attr->ia_size; 1208 struct ubifs_inode *ui = ubifs_inode(inode); 1209 struct ubifs_budget_req req = { .dirtied_ino = 1, 1210 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1211 1212 err = ubifs_budget_space(c, &req); 1213 if (err) 1214 return err; 1215 1216 if (attr->ia_valid & ATTR_SIZE) { 1217 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1218 err = vmtruncate(inode, new_size); 1219 if (err) 1220 goto out; 1221 } 1222 1223 mutex_lock(&ui->ui_mutex); 1224 if (attr->ia_valid & ATTR_SIZE) { 1225 /* Truncation changes inode [mc]time */ 1226 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1227 /* 'vmtruncate()' changed @i_size, update @ui_size */ 1228 ui->ui_size = inode->i_size; 1229 } 1230 1231 do_attr_changes(inode, attr); 1232 1233 release = ui->dirty; 1234 if (attr->ia_valid & ATTR_SIZE) 1235 /* 1236 * Inode length changed, so we have to make sure 1237 * @I_DIRTY_DATASYNC is set. 1238 */ 1239 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1240 else 1241 mark_inode_dirty_sync(inode); 1242 mutex_unlock(&ui->ui_mutex); 1243 1244 if (release) 1245 ubifs_release_budget(c, &req); 1246 if (IS_SYNC(inode)) 1247 err = inode->i_sb->s_op->write_inode(inode, 1); 1248 return err; 1249 1250 out: 1251 ubifs_release_budget(c, &req); 1252 return err; 1253 } 1254 1255 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1256 { 1257 int err; 1258 struct inode *inode = dentry->d_inode; 1259 struct ubifs_info *c = inode->i_sb->s_fs_info; 1260 1261 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1262 inode->i_ino, inode->i_mode, attr->ia_valid); 1263 err = inode_change_ok(inode, attr); 1264 if (err) 1265 return err; 1266 1267 err = dbg_check_synced_i_size(inode); 1268 if (err) 1269 return err; 1270 1271 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1272 /* Truncation to a smaller size */ 1273 err = do_truncation(c, inode, attr); 1274 else 1275 err = do_setattr(c, inode, attr); 1276 1277 return err; 1278 } 1279 1280 static void ubifs_invalidatepage(struct page *page, unsigned long offset) 1281 { 1282 struct inode *inode = page->mapping->host; 1283 struct ubifs_info *c = inode->i_sb->s_fs_info; 1284 1285 ubifs_assert(PagePrivate(page)); 1286 if (offset) 1287 /* Partial page remains dirty */ 1288 return; 1289 1290 if (PageChecked(page)) 1291 release_new_page_budget(c); 1292 else 1293 release_existing_page_budget(c); 1294 1295 atomic_long_dec(&c->dirty_pg_cnt); 1296 ClearPagePrivate(page); 1297 ClearPageChecked(page); 1298 } 1299 1300 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd) 1301 { 1302 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode); 1303 1304 nd_set_link(nd, ui->data); 1305 return NULL; 1306 } 1307 1308 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync) 1309 { 1310 struct inode *inode = dentry->d_inode; 1311 struct ubifs_info *c = inode->i_sb->s_fs_info; 1312 int err; 1313 1314 dbg_gen("syncing inode %lu", inode->i_ino); 1315 1316 /* 1317 * VFS has already synchronized dirty pages for this inode. Synchronize 1318 * the inode unless this is a 'datasync()' call. 1319 */ 1320 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1321 err = inode->i_sb->s_op->write_inode(inode, 1); 1322 if (err) 1323 return err; 1324 } 1325 1326 /* 1327 * Nodes related to this inode may still sit in a write-buffer. Flush 1328 * them. 1329 */ 1330 err = ubifs_sync_wbufs_by_inode(c, inode); 1331 if (err) 1332 return err; 1333 1334 return 0; 1335 } 1336 1337 /** 1338 * mctime_update_needed - check if mtime or ctime update is needed. 1339 * @inode: the inode to do the check for 1340 * @now: current time 1341 * 1342 * This helper function checks if the inode mtime/ctime should be updated or 1343 * not. If current values of the time-stamps are within the UBIFS inode time 1344 * granularity, they are not updated. This is an optimization. 1345 */ 1346 static inline int mctime_update_needed(const struct inode *inode, 1347 const struct timespec *now) 1348 { 1349 if (!timespec_equal(&inode->i_mtime, now) || 1350 !timespec_equal(&inode->i_ctime, now)) 1351 return 1; 1352 return 0; 1353 } 1354 1355 /** 1356 * update_ctime - update mtime and ctime of an inode. 1357 * @c: UBIFS file-system description object 1358 * @inode: inode to update 1359 * 1360 * This function updates mtime and ctime of the inode if it is not equivalent to 1361 * current time. Returns zero in case of success and a negative error code in 1362 * case of failure. 1363 */ 1364 static int update_mctime(struct ubifs_info *c, struct inode *inode) 1365 { 1366 struct timespec now = ubifs_current_time(inode); 1367 struct ubifs_inode *ui = ubifs_inode(inode); 1368 1369 if (mctime_update_needed(inode, &now)) { 1370 int err, release; 1371 struct ubifs_budget_req req = { .dirtied_ino = 1, 1372 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1373 1374 err = ubifs_budget_space(c, &req); 1375 if (err) 1376 return err; 1377 1378 mutex_lock(&ui->ui_mutex); 1379 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1380 release = ui->dirty; 1381 mark_inode_dirty_sync(inode); 1382 mutex_unlock(&ui->ui_mutex); 1383 if (release) 1384 ubifs_release_budget(c, &req); 1385 } 1386 1387 return 0; 1388 } 1389 1390 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov, 1391 unsigned long nr_segs, loff_t pos) 1392 { 1393 int err; 1394 ssize_t ret; 1395 struct inode *inode = iocb->ki_filp->f_mapping->host; 1396 struct ubifs_info *c = inode->i_sb->s_fs_info; 1397 1398 err = update_mctime(c, inode); 1399 if (err) 1400 return err; 1401 1402 ret = generic_file_aio_write(iocb, iov, nr_segs, pos); 1403 if (ret < 0) 1404 return ret; 1405 1406 if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) { 1407 err = ubifs_sync_wbufs_by_inode(c, inode); 1408 if (err) 1409 return err; 1410 } 1411 1412 return ret; 1413 } 1414 1415 static int ubifs_set_page_dirty(struct page *page) 1416 { 1417 int ret; 1418 1419 ret = __set_page_dirty_nobuffers(page); 1420 /* 1421 * An attempt to dirty a page without budgeting for it - should not 1422 * happen. 1423 */ 1424 ubifs_assert(ret == 0); 1425 return ret; 1426 } 1427 1428 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1429 { 1430 /* 1431 * An attempt to release a dirty page without budgeting for it - should 1432 * not happen. 1433 */ 1434 if (PageWriteback(page)) 1435 return 0; 1436 ubifs_assert(PagePrivate(page)); 1437 ubifs_assert(0); 1438 ClearPagePrivate(page); 1439 ClearPageChecked(page); 1440 return 1; 1441 } 1442 1443 /* 1444 * mmap()d file has taken write protection fault and is being made 1445 * writable. UBIFS must ensure page is budgeted for. 1446 */ 1447 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1448 { 1449 struct page *page = vmf->page; 1450 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1451 struct ubifs_info *c = inode->i_sb->s_fs_info; 1452 struct timespec now = ubifs_current_time(inode); 1453 struct ubifs_budget_req req = { .new_page = 1 }; 1454 int err, update_time; 1455 1456 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1457 i_size_read(inode)); 1458 ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY)); 1459 1460 if (unlikely(c->ro_media)) 1461 return VM_FAULT_SIGBUS; /* -EROFS */ 1462 1463 /* 1464 * We have not locked @page so far so we may budget for changing the 1465 * page. Note, we cannot do this after we locked the page, because 1466 * budgeting may cause write-back which would cause deadlock. 1467 * 1468 * At the moment we do not know whether the page is dirty or not, so we 1469 * assume that it is not and budget for a new page. We could look at 1470 * the @PG_private flag and figure this out, but we may race with write 1471 * back and the page state may change by the time we lock it, so this 1472 * would need additional care. We do not bother with this at the 1473 * moment, although it might be good idea to do. Instead, we allocate 1474 * budget for a new page and amend it later on if the page was in fact 1475 * dirty. 1476 * 1477 * The budgeting-related logic of this function is similar to what we 1478 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1479 * for more comments. 1480 */ 1481 update_time = mctime_update_needed(inode, &now); 1482 if (update_time) 1483 /* 1484 * We have to change inode time stamp which requires extra 1485 * budgeting. 1486 */ 1487 req.dirtied_ino = 1; 1488 1489 err = ubifs_budget_space(c, &req); 1490 if (unlikely(err)) { 1491 if (err == -ENOSPC) 1492 ubifs_warn("out of space for mmapped file " 1493 "(inode number %lu)", inode->i_ino); 1494 return VM_FAULT_SIGBUS; 1495 } 1496 1497 lock_page(page); 1498 if (unlikely(page->mapping != inode->i_mapping || 1499 page_offset(page) > i_size_read(inode))) { 1500 /* Page got truncated out from underneath us */ 1501 err = -EINVAL; 1502 goto out_unlock; 1503 } 1504 1505 if (PagePrivate(page)) 1506 release_new_page_budget(c); 1507 else { 1508 if (!PageChecked(page)) 1509 ubifs_convert_page_budget(c); 1510 SetPagePrivate(page); 1511 atomic_long_inc(&c->dirty_pg_cnt); 1512 __set_page_dirty_nobuffers(page); 1513 } 1514 1515 if (update_time) { 1516 int release; 1517 struct ubifs_inode *ui = ubifs_inode(inode); 1518 1519 mutex_lock(&ui->ui_mutex); 1520 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1521 release = ui->dirty; 1522 mark_inode_dirty_sync(inode); 1523 mutex_unlock(&ui->ui_mutex); 1524 if (release) 1525 ubifs_release_dirty_inode_budget(c, ui); 1526 } 1527 1528 unlock_page(page); 1529 return 0; 1530 1531 out_unlock: 1532 unlock_page(page); 1533 ubifs_release_budget(c, &req); 1534 if (err) 1535 err = VM_FAULT_SIGBUS; 1536 return err; 1537 } 1538 1539 static struct vm_operations_struct ubifs_file_vm_ops = { 1540 .fault = filemap_fault, 1541 .page_mkwrite = ubifs_vm_page_mkwrite, 1542 }; 1543 1544 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1545 { 1546 int err; 1547 1548 /* 'generic_file_mmap()' takes care of NOMMU case */ 1549 err = generic_file_mmap(file, vma); 1550 if (err) 1551 return err; 1552 vma->vm_ops = &ubifs_file_vm_ops; 1553 return 0; 1554 } 1555 1556 const struct address_space_operations ubifs_file_address_operations = { 1557 .readpage = ubifs_readpage, 1558 .writepage = ubifs_writepage, 1559 .write_begin = ubifs_write_begin, 1560 .write_end = ubifs_write_end, 1561 .invalidatepage = ubifs_invalidatepage, 1562 .set_page_dirty = ubifs_set_page_dirty, 1563 .releasepage = ubifs_releasepage, 1564 }; 1565 1566 const struct inode_operations ubifs_file_inode_operations = { 1567 .setattr = ubifs_setattr, 1568 .getattr = ubifs_getattr, 1569 #ifdef CONFIG_UBIFS_FS_XATTR 1570 .setxattr = ubifs_setxattr, 1571 .getxattr = ubifs_getxattr, 1572 .listxattr = ubifs_listxattr, 1573 .removexattr = ubifs_removexattr, 1574 #endif 1575 }; 1576 1577 const struct inode_operations ubifs_symlink_inode_operations = { 1578 .readlink = generic_readlink, 1579 .follow_link = ubifs_follow_link, 1580 .setattr = ubifs_setattr, 1581 .getattr = ubifs_getattr, 1582 }; 1583 1584 const struct file_operations ubifs_file_operations = { 1585 .llseek = generic_file_llseek, 1586 .read = do_sync_read, 1587 .write = do_sync_write, 1588 .aio_read = generic_file_aio_read, 1589 .aio_write = ubifs_aio_write, 1590 .mmap = ubifs_file_mmap, 1591 .fsync = ubifs_fsync, 1592 .unlocked_ioctl = ubifs_ioctl, 1593 .splice_read = generic_file_splice_read, 1594 .splice_write = generic_file_splice_write, 1595 #ifdef CONFIG_COMPAT 1596 .compat_ioctl = ubifs_compat_ioctl, 1597 #endif 1598 }; 1599