xref: /openbmc/linux/fs/ubifs/file.c (revision b627b4ed)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations of regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28  * page is dirty and is used for budgeting purposes - dirty pages should not be
29  * budgeted. The PG_checked flag is set if full budgeting is required for the
30  * page e.g., when it corresponds to a file hole or it is just beyond the file
31  * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32  * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33  * the PG_private and PG_checked flags carry the information about how the page
34  * was budgeted, to make it possible to release the budget properly.
35  *
36  * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37  * we implement. However, this is not true for '->writepage()', which might be
38  * called with 'i_mutex' unlocked. For example, when pdflush is performing
39  * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40  * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41  * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42  * path'. So, in '->writepage()' we are only guaranteed that the page is
43  * locked.
44  *
45  * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46  * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47  * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48  * not set as well. However, UBIFS disables readahead.
49  *
50  * This, for example means that there might be 2 concurrent '->writepage()'
51  * calls for the same inode, but different inode dirty pages.
52  */
53 
54 #include "ubifs.h"
55 #include <linux/mount.h>
56 #include <linux/namei.h>
57 
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 		      struct ubifs_data_node *dn)
60 {
61 	struct ubifs_info *c = inode->i_sb->s_fs_info;
62 	int err, len, out_len;
63 	union ubifs_key key;
64 	unsigned int dlen;
65 
66 	data_key_init(c, &key, inode->i_ino, block);
67 	err = ubifs_tnc_lookup(c, &key, dn);
68 	if (err) {
69 		if (err == -ENOENT)
70 			/* Not found, so it must be a hole */
71 			memset(addr, 0, UBIFS_BLOCK_SIZE);
72 		return err;
73 	}
74 
75 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 		     ubifs_inode(inode)->creat_sqnum);
77 	len = le32_to_cpu(dn->size);
78 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 		goto dump;
80 
81 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 	out_len = UBIFS_BLOCK_SIZE;
83 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 			       le16_to_cpu(dn->compr_type));
85 	if (err || len != out_len)
86 		goto dump;
87 
88 	/*
89 	 * Data length can be less than a full block, even for blocks that are
90 	 * not the last in the file (e.g., as a result of making a hole and
91 	 * appending data). Ensure that the remainder is zeroed out.
92 	 */
93 	if (len < UBIFS_BLOCK_SIZE)
94 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95 
96 	return 0;
97 
98 dump:
99 	ubifs_err("bad data node (block %u, inode %lu)",
100 		  block, inode->i_ino);
101 	dbg_dump_node(c, dn);
102 	return -EINVAL;
103 }
104 
105 static int do_readpage(struct page *page)
106 {
107 	void *addr;
108 	int err = 0, i;
109 	unsigned int block, beyond;
110 	struct ubifs_data_node *dn;
111 	struct inode *inode = page->mapping->host;
112 	loff_t i_size = i_size_read(inode);
113 
114 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 		inode->i_ino, page->index, i_size, page->flags);
116 	ubifs_assert(!PageChecked(page));
117 	ubifs_assert(!PagePrivate(page));
118 
119 	addr = kmap(page);
120 
121 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 	if (block >= beyond) {
124 		/* Reading beyond inode */
125 		SetPageChecked(page);
126 		memset(addr, 0, PAGE_CACHE_SIZE);
127 		goto out;
128 	}
129 
130 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 	if (!dn) {
132 		err = -ENOMEM;
133 		goto error;
134 	}
135 
136 	i = 0;
137 	while (1) {
138 		int ret;
139 
140 		if (block >= beyond) {
141 			/* Reading beyond inode */
142 			err = -ENOENT;
143 			memset(addr, 0, UBIFS_BLOCK_SIZE);
144 		} else {
145 			ret = read_block(inode, addr, block, dn);
146 			if (ret) {
147 				err = ret;
148 				if (err != -ENOENT)
149 					break;
150 			} else if (block + 1 == beyond) {
151 				int dlen = le32_to_cpu(dn->size);
152 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153 
154 				if (ilen && ilen < dlen)
155 					memset(addr + ilen, 0, dlen - ilen);
156 			}
157 		}
158 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 			break;
160 		block += 1;
161 		addr += UBIFS_BLOCK_SIZE;
162 	}
163 	if (err) {
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err("cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep,
223 			    unsigned flags)
224 {
225 	struct inode *inode = mapping->host;
226 	struct ubifs_info *c = inode->i_sb->s_fs_info;
227 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 	struct ubifs_budget_req req = { .new_page = 1 };
229 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230 	struct page *page;
231 
232 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 		inode->i_ino, pos, len, inode->i_size);
234 
235 	/*
236 	 * At the slow path we have to budget before locking the page, because
237 	 * budgeting may force write-back, which would wait on locked pages and
238 	 * deadlock if we had the page locked. At this point we do not know
239 	 * anything about the page, so assume that this is a new page which is
240 	 * written to a hole. This corresponds to largest budget. Later the
241 	 * budget will be amended if this is not true.
242 	 */
243 	if (appending)
244 		/* We are appending data, budget for inode change */
245 		req.dirtied_ino = 1;
246 
247 	err = ubifs_budget_space(c, &req);
248 	if (unlikely(err))
249 		return err;
250 
251 	page = grab_cache_page_write_begin(mapping, index, flags);
252 	if (unlikely(!page)) {
253 		ubifs_release_budget(c, &req);
254 		return -ENOMEM;
255 	}
256 
257 	if (!PageUptodate(page)) {
258 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 			SetPageChecked(page);
260 		else {
261 			err = do_readpage(page);
262 			if (err) {
263 				unlock_page(page);
264 				page_cache_release(page);
265 				return err;
266 			}
267 		}
268 
269 		SetPageUptodate(page);
270 		ClearPageError(page);
271 	}
272 
273 	if (PagePrivate(page))
274 		/*
275 		 * The page is dirty, which means it was budgeted twice:
276 		 *   o first time the budget was allocated by the task which
277 		 *     made the page dirty and set the PG_private flag;
278 		 *   o and then we budgeted for it for the second time at the
279 		 *     very beginning of this function.
280 		 *
281 		 * So what we have to do is to release the page budget we
282 		 * allocated.
283 		 */
284 		release_new_page_budget(c);
285 	else if (!PageChecked(page))
286 		/*
287 		 * We are changing a page which already exists on the media.
288 		 * This means that changing the page does not make the amount
289 		 * of indexing information larger, and this part of the budget
290 		 * which we have already acquired may be released.
291 		 */
292 		ubifs_convert_page_budget(c);
293 
294 	if (appending) {
295 		struct ubifs_inode *ui = ubifs_inode(inode);
296 
297 		/*
298 		 * 'ubifs_write_end()' is optimized from the fast-path part of
299 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 		 * if data is appended.
301 		 */
302 		mutex_lock(&ui->ui_mutex);
303 		if (ui->dirty)
304 			/*
305 			 * The inode is dirty already, so we may free the
306 			 * budget we allocated.
307 			 */
308 			ubifs_release_dirty_inode_budget(c, ui);
309 	}
310 
311 	*pagep = page;
312 	return 0;
313 }
314 
315 /**
316  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317  * @c: UBIFS file-system description object
318  * @page: page to allocate budget for
319  * @ui: UBIFS inode object the page belongs to
320  * @appending: non-zero if the page is appended
321  *
322  * This is a helper function for 'ubifs_write_begin()' which allocates budget
323  * for the operation. The budget is allocated differently depending on whether
324  * this is appending, whether the page is dirty or not, and so on. This
325  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326  * in case of success and %-ENOSPC in case of failure.
327  */
328 static int allocate_budget(struct ubifs_info *c, struct page *page,
329 			   struct ubifs_inode *ui, int appending)
330 {
331 	struct ubifs_budget_req req = { .fast = 1 };
332 
333 	if (PagePrivate(page)) {
334 		if (!appending)
335 			/*
336 			 * The page is dirty and we are not appending, which
337 			 * means no budget is needed at all.
338 			 */
339 			return 0;
340 
341 		mutex_lock(&ui->ui_mutex);
342 		if (ui->dirty)
343 			/*
344 			 * The page is dirty and we are appending, so the inode
345 			 * has to be marked as dirty. However, it is already
346 			 * dirty, so we do not need any budget. We may return,
347 			 * but @ui->ui_mutex hast to be left locked because we
348 			 * should prevent write-back from flushing the inode
349 			 * and freeing the budget. The lock will be released in
350 			 * 'ubifs_write_end()'.
351 			 */
352 			return 0;
353 
354 		/*
355 		 * The page is dirty, we are appending, the inode is clean, so
356 		 * we need to budget the inode change.
357 		 */
358 		req.dirtied_ino = 1;
359 	} else {
360 		if (PageChecked(page))
361 			/*
362 			 * The page corresponds to a hole and does not
363 			 * exist on the media. So changing it makes
364 			 * make the amount of indexing information
365 			 * larger, and we have to budget for a new
366 			 * page.
367 			 */
368 			req.new_page = 1;
369 		else
370 			/*
371 			 * Not a hole, the change will not add any new
372 			 * indexing information, budget for page
373 			 * change.
374 			 */
375 			req.dirtied_page = 1;
376 
377 		if (appending) {
378 			mutex_lock(&ui->ui_mutex);
379 			if (!ui->dirty)
380 				/*
381 				 * The inode is clean but we will have to mark
382 				 * it as dirty because we are appending. This
383 				 * needs a budget.
384 				 */
385 				req.dirtied_ino = 1;
386 		}
387 	}
388 
389 	return ubifs_budget_space(c, &req);
390 }
391 
392 /*
393  * This function is called when a page of data is going to be written. Since
394  * the page of data will not necessarily go to the flash straight away, UBIFS
395  * has to reserve space on the media for it, which is done by means of
396  * budgeting.
397  *
398  * This is the hot-path of the file-system and we are trying to optimize it as
399  * much as possible. For this reasons it is split on 2 parts - slow and fast.
400  *
401  * There many budgeting cases:
402  *     o a new page is appended - we have to budget for a new page and for
403  *       changing the inode; however, if the inode is already dirty, there is
404  *       no need to budget for it;
405  *     o an existing clean page is changed - we have budget for it; if the page
406  *       does not exist on the media (a hole), we have to budget for a new
407  *       page; otherwise, we may budget for changing an existing page; the
408  *       difference between these cases is that changing an existing page does
409  *       not introduce anything new to the FS indexing information, so it does
410  *       not grow, and smaller budget is acquired in this case;
411  *     o an existing dirty page is changed - no need to budget at all, because
412  *       the page budget has been acquired by earlier, when the page has been
413  *       marked dirty.
414  *
415  * UBIFS budgeting sub-system may force write-back if it thinks there is no
416  * space to reserve. This imposes some locking restrictions and makes it
417  * impossible to take into account the above cases, and makes it impossible to
418  * optimize budgeting.
419  *
420  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421  * there is a plenty of flash space and the budget will be acquired quickly,
422  * without forcing write-back. The slow path does not make this assumption.
423  */
424 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
425 			     loff_t pos, unsigned len, unsigned flags,
426 			     struct page **pagep, void **fsdata)
427 {
428 	struct inode *inode = mapping->host;
429 	struct ubifs_info *c = inode->i_sb->s_fs_info;
430 	struct ubifs_inode *ui = ubifs_inode(inode);
431 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
432 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
433 	int skipped_read = 0;
434 	struct page *page;
435 
436 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
437 
438 	if (unlikely(c->ro_media))
439 		return -EROFS;
440 
441 	/* Try out the fast-path part first */
442 	page = grab_cache_page_write_begin(mapping, index, flags);
443 	if (unlikely(!page))
444 		return -ENOMEM;
445 
446 	if (!PageUptodate(page)) {
447 		/* The page is not loaded from the flash */
448 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
449 			/*
450 			 * We change whole page so no need to load it. But we
451 			 * have to set the @PG_checked flag to make the further
452 			 * code the page is new. This might be not true, but it
453 			 * is better to budget more that to read the page from
454 			 * the media.
455 			 */
456 			SetPageChecked(page);
457 			skipped_read = 1;
458 		} else {
459 			err = do_readpage(page);
460 			if (err) {
461 				unlock_page(page);
462 				page_cache_release(page);
463 				return err;
464 			}
465 		}
466 
467 		SetPageUptodate(page);
468 		ClearPageError(page);
469 	}
470 
471 	err = allocate_budget(c, page, ui, appending);
472 	if (unlikely(err)) {
473 		ubifs_assert(err == -ENOSPC);
474 		/*
475 		 * If we skipped reading the page because we were going to
476 		 * write all of it, then it is not up to date.
477 		 */
478 		if (skipped_read) {
479 			ClearPageChecked(page);
480 			ClearPageUptodate(page);
481 		}
482 		/*
483 		 * Budgeting failed which means it would have to force
484 		 * write-back but didn't, because we set the @fast flag in the
485 		 * request. Write-back cannot be done now, while we have the
486 		 * page locked, because it would deadlock. Unlock and free
487 		 * everything and fall-back to slow-path.
488 		 */
489 		if (appending) {
490 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
491 			mutex_unlock(&ui->ui_mutex);
492 		}
493 		unlock_page(page);
494 		page_cache_release(page);
495 
496 		return write_begin_slow(mapping, pos, len, pagep, flags);
497 	}
498 
499 	/*
500 	 * Whee, we aquired budgeting quickly - without involving
501 	 * garbage-collection, committing or forceing write-back. We return
502 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 	 * otherwise. This is an optimization (slightly hacky though).
504 	 */
505 	*pagep = page;
506 	return 0;
507 
508 }
509 
510 /**
511  * cancel_budget - cancel budget.
512  * @c: UBIFS file-system description object
513  * @page: page to cancel budget for
514  * @ui: UBIFS inode object the page belongs to
515  * @appending: non-zero if the page is appended
516  *
517  * This is a helper function for a page write operation. It unlocks the
518  * @ui->ui_mutex in case of appending.
519  */
520 static void cancel_budget(struct ubifs_info *c, struct page *page,
521 			  struct ubifs_inode *ui, int appending)
522 {
523 	if (appending) {
524 		if (!ui->dirty)
525 			ubifs_release_dirty_inode_budget(c, ui);
526 		mutex_unlock(&ui->ui_mutex);
527 	}
528 	if (!PagePrivate(page)) {
529 		if (PageChecked(page))
530 			release_new_page_budget(c);
531 		else
532 			release_existing_page_budget(c);
533 	}
534 }
535 
536 static int ubifs_write_end(struct file *file, struct address_space *mapping,
537 			   loff_t pos, unsigned len, unsigned copied,
538 			   struct page *page, void *fsdata)
539 {
540 	struct inode *inode = mapping->host;
541 	struct ubifs_inode *ui = ubifs_inode(inode);
542 	struct ubifs_info *c = inode->i_sb->s_fs_info;
543 	loff_t end_pos = pos + len;
544 	int appending = !!(end_pos > inode->i_size);
545 
546 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
548 
549 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
550 		/*
551 		 * VFS copied less data to the page that it intended and
552 		 * declared in its '->write_begin()' call via the @len
553 		 * argument. If the page was not up-to-date, and @len was
554 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
555 		 * not load it from the media (for optimization reasons). This
556 		 * means that part of the page contains garbage. So read the
557 		 * page now.
558 		 */
559 		dbg_gen("copied %d instead of %d, read page and repeat",
560 			copied, len);
561 		cancel_budget(c, page, ui, appending);
562 
563 		/*
564 		 * Return 0 to force VFS to repeat the whole operation, or the
565 		 * error code if 'do_readpage()' failes.
566 		 */
567 		copied = do_readpage(page);
568 		goto out;
569 	}
570 
571 	if (!PagePrivate(page)) {
572 		SetPagePrivate(page);
573 		atomic_long_inc(&c->dirty_pg_cnt);
574 		__set_page_dirty_nobuffers(page);
575 	}
576 
577 	if (appending) {
578 		i_size_write(inode, end_pos);
579 		ui->ui_size = end_pos;
580 		/*
581 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
582 		 * inode has dirty pages), this has been done in
583 		 * '__set_page_dirty_nobuffers()'.
584 		 */
585 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
586 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
587 		mutex_unlock(&ui->ui_mutex);
588 	}
589 
590 out:
591 	unlock_page(page);
592 	page_cache_release(page);
593 	return copied;
594 }
595 
596 /**
597  * populate_page - copy data nodes into a page for bulk-read.
598  * @c: UBIFS file-system description object
599  * @page: page
600  * @bu: bulk-read information
601  * @n: next zbranch slot
602  *
603  * This function returns %0 on success and a negative error code on failure.
604  */
605 static int populate_page(struct ubifs_info *c, struct page *page,
606 			 struct bu_info *bu, int *n)
607 {
608 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
609 	struct inode *inode = page->mapping->host;
610 	loff_t i_size = i_size_read(inode);
611 	unsigned int page_block;
612 	void *addr, *zaddr;
613 	pgoff_t end_index;
614 
615 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
616 		inode->i_ino, page->index, i_size, page->flags);
617 
618 	addr = zaddr = kmap(page);
619 
620 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
621 	if (!i_size || page->index > end_index) {
622 		hole = 1;
623 		memset(addr, 0, PAGE_CACHE_SIZE);
624 		goto out_hole;
625 	}
626 
627 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
628 	while (1) {
629 		int err, len, out_len, dlen;
630 
631 		if (nn >= bu->cnt) {
632 			hole = 1;
633 			memset(addr, 0, UBIFS_BLOCK_SIZE);
634 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
635 			struct ubifs_data_node *dn;
636 
637 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
638 
639 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
640 				     ubifs_inode(inode)->creat_sqnum);
641 
642 			len = le32_to_cpu(dn->size);
643 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
644 				goto out_err;
645 
646 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
647 			out_len = UBIFS_BLOCK_SIZE;
648 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
649 					       le16_to_cpu(dn->compr_type));
650 			if (err || len != out_len)
651 				goto out_err;
652 
653 			if (len < UBIFS_BLOCK_SIZE)
654 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
655 
656 			nn += 1;
657 			read = (i << UBIFS_BLOCK_SHIFT) + len;
658 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
659 			nn += 1;
660 			continue;
661 		} else {
662 			hole = 1;
663 			memset(addr, 0, UBIFS_BLOCK_SIZE);
664 		}
665 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
666 			break;
667 		addr += UBIFS_BLOCK_SIZE;
668 		page_block += 1;
669 	}
670 
671 	if (end_index == page->index) {
672 		int len = i_size & (PAGE_CACHE_SIZE - 1);
673 
674 		if (len && len < read)
675 			memset(zaddr + len, 0, read - len);
676 	}
677 
678 out_hole:
679 	if (hole) {
680 		SetPageChecked(page);
681 		dbg_gen("hole");
682 	}
683 
684 	SetPageUptodate(page);
685 	ClearPageError(page);
686 	flush_dcache_page(page);
687 	kunmap(page);
688 	*n = nn;
689 	return 0;
690 
691 out_err:
692 	ClearPageUptodate(page);
693 	SetPageError(page);
694 	flush_dcache_page(page);
695 	kunmap(page);
696 	ubifs_err("bad data node (block %u, inode %lu)",
697 		  page_block, inode->i_ino);
698 	return -EINVAL;
699 }
700 
701 /**
702  * ubifs_do_bulk_read - do bulk-read.
703  * @c: UBIFS file-system description object
704  * @bu: bulk-read information
705  * @page1: first page to read
706  *
707  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
708  */
709 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
710 			      struct page *page1)
711 {
712 	pgoff_t offset = page1->index, end_index;
713 	struct address_space *mapping = page1->mapping;
714 	struct inode *inode = mapping->host;
715 	struct ubifs_inode *ui = ubifs_inode(inode);
716 	int err, page_idx, page_cnt, ret = 0, n = 0;
717 	int allocate = bu->buf ? 0 : 1;
718 	loff_t isize;
719 
720 	err = ubifs_tnc_get_bu_keys(c, bu);
721 	if (err)
722 		goto out_warn;
723 
724 	if (bu->eof) {
725 		/* Turn off bulk-read at the end of the file */
726 		ui->read_in_a_row = 1;
727 		ui->bulk_read = 0;
728 	}
729 
730 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
731 	if (!page_cnt) {
732 		/*
733 		 * This happens when there are multiple blocks per page and the
734 		 * blocks for the first page we are looking for, are not
735 		 * together. If all the pages were like this, bulk-read would
736 		 * reduce performance, so we turn it off for a while.
737 		 */
738 		goto out_bu_off;
739 	}
740 
741 	if (bu->cnt) {
742 		if (allocate) {
743 			/*
744 			 * Allocate bulk-read buffer depending on how many data
745 			 * nodes we are going to read.
746 			 */
747 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
748 				      bu->zbranch[bu->cnt - 1].len -
749 				      bu->zbranch[0].offs;
750 			ubifs_assert(bu->buf_len > 0);
751 			ubifs_assert(bu->buf_len <= c->leb_size);
752 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
753 			if (!bu->buf)
754 				goto out_bu_off;
755 		}
756 
757 		err = ubifs_tnc_bulk_read(c, bu);
758 		if (err)
759 			goto out_warn;
760 	}
761 
762 	err = populate_page(c, page1, bu, &n);
763 	if (err)
764 		goto out_warn;
765 
766 	unlock_page(page1);
767 	ret = 1;
768 
769 	isize = i_size_read(inode);
770 	if (isize == 0)
771 		goto out_free;
772 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
773 
774 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
775 		pgoff_t page_offset = offset + page_idx;
776 		struct page *page;
777 
778 		if (page_offset > end_index)
779 			break;
780 		page = find_or_create_page(mapping, page_offset,
781 					   GFP_NOFS | __GFP_COLD);
782 		if (!page)
783 			break;
784 		if (!PageUptodate(page))
785 			err = populate_page(c, page, bu, &n);
786 		unlock_page(page);
787 		page_cache_release(page);
788 		if (err)
789 			break;
790 	}
791 
792 	ui->last_page_read = offset + page_idx - 1;
793 
794 out_free:
795 	if (allocate)
796 		kfree(bu->buf);
797 	return ret;
798 
799 out_warn:
800 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
801 	goto out_free;
802 
803 out_bu_off:
804 	ui->read_in_a_row = ui->bulk_read = 0;
805 	goto out_free;
806 }
807 
808 /**
809  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
810  * @page: page from which to start bulk-read.
811  *
812  * Some flash media are capable of reading sequentially at faster rates. UBIFS
813  * bulk-read facility is designed to take advantage of that, by reading in one
814  * go consecutive data nodes that are also located consecutively in the same
815  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
816  */
817 static int ubifs_bulk_read(struct page *page)
818 {
819 	struct inode *inode = page->mapping->host;
820 	struct ubifs_info *c = inode->i_sb->s_fs_info;
821 	struct ubifs_inode *ui = ubifs_inode(inode);
822 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
823 	struct bu_info *bu;
824 	int err = 0, allocated = 0;
825 
826 	ui->last_page_read = index;
827 	if (!c->bulk_read)
828 		return 0;
829 
830 	/*
831 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
832 	 * so don't bother if we cannot lock the mutex.
833 	 */
834 	if (!mutex_trylock(&ui->ui_mutex))
835 		return 0;
836 
837 	if (index != last_page_read + 1) {
838 		/* Turn off bulk-read if we stop reading sequentially */
839 		ui->read_in_a_row = 1;
840 		if (ui->bulk_read)
841 			ui->bulk_read = 0;
842 		goto out_unlock;
843 	}
844 
845 	if (!ui->bulk_read) {
846 		ui->read_in_a_row += 1;
847 		if (ui->read_in_a_row < 3)
848 			goto out_unlock;
849 		/* Three reads in a row, so switch on bulk-read */
850 		ui->bulk_read = 1;
851 	}
852 
853 	/*
854 	 * If possible, try to use pre-allocated bulk-read information, which
855 	 * is protected by @c->bu_mutex.
856 	 */
857 	if (mutex_trylock(&c->bu_mutex))
858 		bu = &c->bu;
859 	else {
860 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
861 		if (!bu)
862 			goto out_unlock;
863 
864 		bu->buf = NULL;
865 		allocated = 1;
866 	}
867 
868 	bu->buf_len = c->max_bu_buf_len;
869 	data_key_init(c, &bu->key, inode->i_ino,
870 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
871 	err = ubifs_do_bulk_read(c, bu, page);
872 
873 	if (!allocated)
874 		mutex_unlock(&c->bu_mutex);
875 	else
876 		kfree(bu);
877 
878 out_unlock:
879 	mutex_unlock(&ui->ui_mutex);
880 	return err;
881 }
882 
883 static int ubifs_readpage(struct file *file, struct page *page)
884 {
885 	if (ubifs_bulk_read(page))
886 		return 0;
887 	do_readpage(page);
888 	unlock_page(page);
889 	return 0;
890 }
891 
892 static int do_writepage(struct page *page, int len)
893 {
894 	int err = 0, i, blen;
895 	unsigned int block;
896 	void *addr;
897 	union ubifs_key key;
898 	struct inode *inode = page->mapping->host;
899 	struct ubifs_info *c = inode->i_sb->s_fs_info;
900 
901 #ifdef UBIFS_DEBUG
902 	spin_lock(&ui->ui_lock);
903 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
904 	spin_unlock(&ui->ui_lock);
905 #endif
906 
907 	/* Update radix tree tags */
908 	set_page_writeback(page);
909 
910 	addr = kmap(page);
911 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
912 	i = 0;
913 	while (len) {
914 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
915 		data_key_init(c, &key, inode->i_ino, block);
916 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
917 		if (err)
918 			break;
919 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
920 			break;
921 		block += 1;
922 		addr += blen;
923 		len -= blen;
924 	}
925 	if (err) {
926 		SetPageError(page);
927 		ubifs_err("cannot write page %lu of inode %lu, error %d",
928 			  page->index, inode->i_ino, err);
929 		ubifs_ro_mode(c, err);
930 	}
931 
932 	ubifs_assert(PagePrivate(page));
933 	if (PageChecked(page))
934 		release_new_page_budget(c);
935 	else
936 		release_existing_page_budget(c);
937 
938 	atomic_long_dec(&c->dirty_pg_cnt);
939 	ClearPagePrivate(page);
940 	ClearPageChecked(page);
941 
942 	kunmap(page);
943 	unlock_page(page);
944 	end_page_writeback(page);
945 	return err;
946 }
947 
948 /*
949  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
950  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
951  * situation when a we have an inode with size 0, then a megabyte of data is
952  * appended to the inode, then write-back starts and flushes some amount of the
953  * dirty pages, the journal becomes full, commit happens and finishes, and then
954  * an unclean reboot happens. When the file system is mounted next time, the
955  * inode size would still be 0, but there would be many pages which are beyond
956  * the inode size, they would be indexed and consume flash space. Because the
957  * journal has been committed, the replay would not be able to detect this
958  * situation and correct the inode size. This means UBIFS would have to scan
959  * whole index and correct all inode sizes, which is long an unacceptable.
960  *
961  * To prevent situations like this, UBIFS writes pages back only if they are
962  * within the last synchronized inode size, i.e. the size which has been
963  * written to the flash media last time. Otherwise, UBIFS forces inode
964  * write-back, thus making sure the on-flash inode contains current inode size,
965  * and then keeps writing pages back.
966  *
967  * Some locking issues explanation. 'ubifs_writepage()' first is called with
968  * the page locked, and it locks @ui_mutex. However, write-back does take inode
969  * @i_mutex, which means other VFS operations may be run on this inode at the
970  * same time. And the problematic one is truncation to smaller size, from where
971  * we have to call 'vmtruncate()', which first changes @inode->i_size, then
972  * drops the truncated pages. And while dropping the pages, it takes the page
973  * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
974  * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
975  * means that @inode->i_size is changed while @ui_mutex is unlocked.
976  *
977  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
978  * inode size. How do we do this if @inode->i_size may became smaller while we
979  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
980  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
981  * internally and updates it under @ui_mutex.
982  *
983  * Q: why we do not worry that if we race with truncation, we may end up with a
984  * situation when the inode is truncated while we are in the middle of
985  * 'do_writepage()', so we do write beyond inode size?
986  * A: If we are in the middle of 'do_writepage()', truncation would be locked
987  * on the page lock and it would not write the truncated inode node to the
988  * journal before we have finished.
989  */
990 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
991 {
992 	struct inode *inode = page->mapping->host;
993 	struct ubifs_inode *ui = ubifs_inode(inode);
994 	loff_t i_size =  i_size_read(inode), synced_i_size;
995 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
996 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
997 	void *kaddr;
998 
999 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1000 		inode->i_ino, page->index, page->flags);
1001 	ubifs_assert(PagePrivate(page));
1002 
1003 	/* Is the page fully outside @i_size? (truncate in progress) */
1004 	if (page->index > end_index || (page->index == end_index && !len)) {
1005 		err = 0;
1006 		goto out_unlock;
1007 	}
1008 
1009 	spin_lock(&ui->ui_lock);
1010 	synced_i_size = ui->synced_i_size;
1011 	spin_unlock(&ui->ui_lock);
1012 
1013 	/* Is the page fully inside @i_size? */
1014 	if (page->index < end_index) {
1015 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1016 			err = inode->i_sb->s_op->write_inode(inode, 1);
1017 			if (err)
1018 				goto out_unlock;
1019 			/*
1020 			 * The inode has been written, but the write-buffer has
1021 			 * not been synchronized, so in case of an unclean
1022 			 * reboot we may end up with some pages beyond inode
1023 			 * size, but they would be in the journal (because
1024 			 * commit flushes write buffers) and recovery would deal
1025 			 * with this.
1026 			 */
1027 		}
1028 		return do_writepage(page, PAGE_CACHE_SIZE);
1029 	}
1030 
1031 	/*
1032 	 * The page straddles @i_size. It must be zeroed out on each and every
1033 	 * writepage invocation because it may be mmapped. "A file is mapped
1034 	 * in multiples of the page size. For a file that is not a multiple of
1035 	 * the page size, the remaining memory is zeroed when mapped, and
1036 	 * writes to that region are not written out to the file."
1037 	 */
1038 	kaddr = kmap_atomic(page, KM_USER0);
1039 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1040 	flush_dcache_page(page);
1041 	kunmap_atomic(kaddr, KM_USER0);
1042 
1043 	if (i_size > synced_i_size) {
1044 		err = inode->i_sb->s_op->write_inode(inode, 1);
1045 		if (err)
1046 			goto out_unlock;
1047 	}
1048 
1049 	return do_writepage(page, len);
1050 
1051 out_unlock:
1052 	unlock_page(page);
1053 	return err;
1054 }
1055 
1056 /**
1057  * do_attr_changes - change inode attributes.
1058  * @inode: inode to change attributes for
1059  * @attr: describes attributes to change
1060  */
1061 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1062 {
1063 	if (attr->ia_valid & ATTR_UID)
1064 		inode->i_uid = attr->ia_uid;
1065 	if (attr->ia_valid & ATTR_GID)
1066 		inode->i_gid = attr->ia_gid;
1067 	if (attr->ia_valid & ATTR_ATIME)
1068 		inode->i_atime = timespec_trunc(attr->ia_atime,
1069 						inode->i_sb->s_time_gran);
1070 	if (attr->ia_valid & ATTR_MTIME)
1071 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1072 						inode->i_sb->s_time_gran);
1073 	if (attr->ia_valid & ATTR_CTIME)
1074 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1075 						inode->i_sb->s_time_gran);
1076 	if (attr->ia_valid & ATTR_MODE) {
1077 		umode_t mode = attr->ia_mode;
1078 
1079 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1080 			mode &= ~S_ISGID;
1081 		inode->i_mode = mode;
1082 	}
1083 }
1084 
1085 /**
1086  * do_truncation - truncate an inode.
1087  * @c: UBIFS file-system description object
1088  * @inode: inode to truncate
1089  * @attr: inode attribute changes description
1090  *
1091  * This function implements VFS '->setattr()' call when the inode is truncated
1092  * to a smaller size. Returns zero in case of success and a negative error code
1093  * in case of failure.
1094  */
1095 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1096 			 const struct iattr *attr)
1097 {
1098 	int err;
1099 	struct ubifs_budget_req req;
1100 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1101 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1102 	struct ubifs_inode *ui = ubifs_inode(inode);
1103 
1104 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1105 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1106 
1107 	/*
1108 	 * If this is truncation to a smaller size, and we do not truncate on a
1109 	 * block boundary, budget for changing one data block, because the last
1110 	 * block will be re-written.
1111 	 */
1112 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1113 		req.dirtied_page = 1;
1114 
1115 	req.dirtied_ino = 1;
1116 	/* A funny way to budget for truncation node */
1117 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1118 	err = ubifs_budget_space(c, &req);
1119 	if (err) {
1120 		/*
1121 		 * Treat truncations to zero as deletion and always allow them,
1122 		 * just like we do for '->unlink()'.
1123 		 */
1124 		if (new_size || err != -ENOSPC)
1125 			return err;
1126 		budgeted = 0;
1127 	}
1128 
1129 	err = vmtruncate(inode, new_size);
1130 	if (err)
1131 		goto out_budg;
1132 
1133 	if (offset) {
1134 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1135 		struct page *page;
1136 
1137 		page = find_lock_page(inode->i_mapping, index);
1138 		if (page) {
1139 			if (PageDirty(page)) {
1140 				/*
1141 				 * 'ubifs_jnl_truncate()' will try to truncate
1142 				 * the last data node, but it contains
1143 				 * out-of-date data because the page is dirty.
1144 				 * Write the page now, so that
1145 				 * 'ubifs_jnl_truncate()' will see an already
1146 				 * truncated (and up to date) data node.
1147 				 */
1148 				ubifs_assert(PagePrivate(page));
1149 
1150 				clear_page_dirty_for_io(page);
1151 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1152 					offset = new_size &
1153 						 (PAGE_CACHE_SIZE - 1);
1154 				err = do_writepage(page, offset);
1155 				page_cache_release(page);
1156 				if (err)
1157 					goto out_budg;
1158 				/*
1159 				 * We could now tell 'ubifs_jnl_truncate()' not
1160 				 * to read the last block.
1161 				 */
1162 			} else {
1163 				/*
1164 				 * We could 'kmap()' the page and pass the data
1165 				 * to 'ubifs_jnl_truncate()' to save it from
1166 				 * having to read it.
1167 				 */
1168 				unlock_page(page);
1169 				page_cache_release(page);
1170 			}
1171 		}
1172 	}
1173 
1174 	mutex_lock(&ui->ui_mutex);
1175 	ui->ui_size = inode->i_size;
1176 	/* Truncation changes inode [mc]time */
1177 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1178 	/* The other attributes may be changed at the same time as well */
1179 	do_attr_changes(inode, attr);
1180 
1181 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1182 	mutex_unlock(&ui->ui_mutex);
1183 out_budg:
1184 	if (budgeted)
1185 		ubifs_release_budget(c, &req);
1186 	else {
1187 		c->nospace = c->nospace_rp = 0;
1188 		smp_wmb();
1189 	}
1190 	return err;
1191 }
1192 
1193 /**
1194  * do_setattr - change inode attributes.
1195  * @c: UBIFS file-system description object
1196  * @inode: inode to change attributes for
1197  * @attr: inode attribute changes description
1198  *
1199  * This function implements VFS '->setattr()' call for all cases except
1200  * truncations to smaller size. Returns zero in case of success and a negative
1201  * error code in case of failure.
1202  */
1203 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1204 		      const struct iattr *attr)
1205 {
1206 	int err, release;
1207 	loff_t new_size = attr->ia_size;
1208 	struct ubifs_inode *ui = ubifs_inode(inode);
1209 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1210 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1211 
1212 	err = ubifs_budget_space(c, &req);
1213 	if (err)
1214 		return err;
1215 
1216 	if (attr->ia_valid & ATTR_SIZE) {
1217 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1218 		err = vmtruncate(inode, new_size);
1219 		if (err)
1220 			goto out;
1221 	}
1222 
1223 	mutex_lock(&ui->ui_mutex);
1224 	if (attr->ia_valid & ATTR_SIZE) {
1225 		/* Truncation changes inode [mc]time */
1226 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1227 		/* 'vmtruncate()' changed @i_size, update @ui_size */
1228 		ui->ui_size = inode->i_size;
1229 	}
1230 
1231 	do_attr_changes(inode, attr);
1232 
1233 	release = ui->dirty;
1234 	if (attr->ia_valid & ATTR_SIZE)
1235 		/*
1236 		 * Inode length changed, so we have to make sure
1237 		 * @I_DIRTY_DATASYNC is set.
1238 		 */
1239 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1240 	else
1241 		mark_inode_dirty_sync(inode);
1242 	mutex_unlock(&ui->ui_mutex);
1243 
1244 	if (release)
1245 		ubifs_release_budget(c, &req);
1246 	if (IS_SYNC(inode))
1247 		err = inode->i_sb->s_op->write_inode(inode, 1);
1248 	return err;
1249 
1250 out:
1251 	ubifs_release_budget(c, &req);
1252 	return err;
1253 }
1254 
1255 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1256 {
1257 	int err;
1258 	struct inode *inode = dentry->d_inode;
1259 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1260 
1261 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1262 		inode->i_ino, inode->i_mode, attr->ia_valid);
1263 	err = inode_change_ok(inode, attr);
1264 	if (err)
1265 		return err;
1266 
1267 	err = dbg_check_synced_i_size(inode);
1268 	if (err)
1269 		return err;
1270 
1271 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1272 		/* Truncation to a smaller size */
1273 		err = do_truncation(c, inode, attr);
1274 	else
1275 		err = do_setattr(c, inode, attr);
1276 
1277 	return err;
1278 }
1279 
1280 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1281 {
1282 	struct inode *inode = page->mapping->host;
1283 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1284 
1285 	ubifs_assert(PagePrivate(page));
1286 	if (offset)
1287 		/* Partial page remains dirty */
1288 		return;
1289 
1290 	if (PageChecked(page))
1291 		release_new_page_budget(c);
1292 	else
1293 		release_existing_page_budget(c);
1294 
1295 	atomic_long_dec(&c->dirty_pg_cnt);
1296 	ClearPagePrivate(page);
1297 	ClearPageChecked(page);
1298 }
1299 
1300 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1301 {
1302 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1303 
1304 	nd_set_link(nd, ui->data);
1305 	return NULL;
1306 }
1307 
1308 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1309 {
1310 	struct inode *inode = dentry->d_inode;
1311 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1312 	int err;
1313 
1314 	dbg_gen("syncing inode %lu", inode->i_ino);
1315 
1316 	/*
1317 	 * VFS has already synchronized dirty pages for this inode. Synchronize
1318 	 * the inode unless this is a 'datasync()' call.
1319 	 */
1320 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1321 		err = inode->i_sb->s_op->write_inode(inode, 1);
1322 		if (err)
1323 			return err;
1324 	}
1325 
1326 	/*
1327 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1328 	 * them.
1329 	 */
1330 	err = ubifs_sync_wbufs_by_inode(c, inode);
1331 	if (err)
1332 		return err;
1333 
1334 	return 0;
1335 }
1336 
1337 /**
1338  * mctime_update_needed - check if mtime or ctime update is needed.
1339  * @inode: the inode to do the check for
1340  * @now: current time
1341  *
1342  * This helper function checks if the inode mtime/ctime should be updated or
1343  * not. If current values of the time-stamps are within the UBIFS inode time
1344  * granularity, they are not updated. This is an optimization.
1345  */
1346 static inline int mctime_update_needed(const struct inode *inode,
1347 				       const struct timespec *now)
1348 {
1349 	if (!timespec_equal(&inode->i_mtime, now) ||
1350 	    !timespec_equal(&inode->i_ctime, now))
1351 		return 1;
1352 	return 0;
1353 }
1354 
1355 /**
1356  * update_ctime - update mtime and ctime of an inode.
1357  * @c: UBIFS file-system description object
1358  * @inode: inode to update
1359  *
1360  * This function updates mtime and ctime of the inode if it is not equivalent to
1361  * current time. Returns zero in case of success and a negative error code in
1362  * case of failure.
1363  */
1364 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1365 {
1366 	struct timespec now = ubifs_current_time(inode);
1367 	struct ubifs_inode *ui = ubifs_inode(inode);
1368 
1369 	if (mctime_update_needed(inode, &now)) {
1370 		int err, release;
1371 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1372 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1373 
1374 		err = ubifs_budget_space(c, &req);
1375 		if (err)
1376 			return err;
1377 
1378 		mutex_lock(&ui->ui_mutex);
1379 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1380 		release = ui->dirty;
1381 		mark_inode_dirty_sync(inode);
1382 		mutex_unlock(&ui->ui_mutex);
1383 		if (release)
1384 			ubifs_release_budget(c, &req);
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1391 			       unsigned long nr_segs, loff_t pos)
1392 {
1393 	int err;
1394 	ssize_t ret;
1395 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1396 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1397 
1398 	err = update_mctime(c, inode);
1399 	if (err)
1400 		return err;
1401 
1402 	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1403 	if (ret < 0)
1404 		return ret;
1405 
1406 	if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1407 		err = ubifs_sync_wbufs_by_inode(c, inode);
1408 		if (err)
1409 			return err;
1410 	}
1411 
1412 	return ret;
1413 }
1414 
1415 static int ubifs_set_page_dirty(struct page *page)
1416 {
1417 	int ret;
1418 
1419 	ret = __set_page_dirty_nobuffers(page);
1420 	/*
1421 	 * An attempt to dirty a page without budgeting for it - should not
1422 	 * happen.
1423 	 */
1424 	ubifs_assert(ret == 0);
1425 	return ret;
1426 }
1427 
1428 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1429 {
1430 	/*
1431 	 * An attempt to release a dirty page without budgeting for it - should
1432 	 * not happen.
1433 	 */
1434 	if (PageWriteback(page))
1435 		return 0;
1436 	ubifs_assert(PagePrivate(page));
1437 	ubifs_assert(0);
1438 	ClearPagePrivate(page);
1439 	ClearPageChecked(page);
1440 	return 1;
1441 }
1442 
1443 /*
1444  * mmap()d file has taken write protection fault and is being made
1445  * writable. UBIFS must ensure page is budgeted for.
1446  */
1447 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1448 {
1449 	struct page *page = vmf->page;
1450 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1451 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1452 	struct timespec now = ubifs_current_time(inode);
1453 	struct ubifs_budget_req req = { .new_page = 1 };
1454 	int err, update_time;
1455 
1456 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1457 		i_size_read(inode));
1458 	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1459 
1460 	if (unlikely(c->ro_media))
1461 		return VM_FAULT_SIGBUS; /* -EROFS */
1462 
1463 	/*
1464 	 * We have not locked @page so far so we may budget for changing the
1465 	 * page. Note, we cannot do this after we locked the page, because
1466 	 * budgeting may cause write-back which would cause deadlock.
1467 	 *
1468 	 * At the moment we do not know whether the page is dirty or not, so we
1469 	 * assume that it is not and budget for a new page. We could look at
1470 	 * the @PG_private flag and figure this out, but we may race with write
1471 	 * back and the page state may change by the time we lock it, so this
1472 	 * would need additional care. We do not bother with this at the
1473 	 * moment, although it might be good idea to do. Instead, we allocate
1474 	 * budget for a new page and amend it later on if the page was in fact
1475 	 * dirty.
1476 	 *
1477 	 * The budgeting-related logic of this function is similar to what we
1478 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1479 	 * for more comments.
1480 	 */
1481 	update_time = mctime_update_needed(inode, &now);
1482 	if (update_time)
1483 		/*
1484 		 * We have to change inode time stamp which requires extra
1485 		 * budgeting.
1486 		 */
1487 		req.dirtied_ino = 1;
1488 
1489 	err = ubifs_budget_space(c, &req);
1490 	if (unlikely(err)) {
1491 		if (err == -ENOSPC)
1492 			ubifs_warn("out of space for mmapped file "
1493 				   "(inode number %lu)", inode->i_ino);
1494 		return VM_FAULT_SIGBUS;
1495 	}
1496 
1497 	lock_page(page);
1498 	if (unlikely(page->mapping != inode->i_mapping ||
1499 		     page_offset(page) > i_size_read(inode))) {
1500 		/* Page got truncated out from underneath us */
1501 		err = -EINVAL;
1502 		goto out_unlock;
1503 	}
1504 
1505 	if (PagePrivate(page))
1506 		release_new_page_budget(c);
1507 	else {
1508 		if (!PageChecked(page))
1509 			ubifs_convert_page_budget(c);
1510 		SetPagePrivate(page);
1511 		atomic_long_inc(&c->dirty_pg_cnt);
1512 		__set_page_dirty_nobuffers(page);
1513 	}
1514 
1515 	if (update_time) {
1516 		int release;
1517 		struct ubifs_inode *ui = ubifs_inode(inode);
1518 
1519 		mutex_lock(&ui->ui_mutex);
1520 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1521 		release = ui->dirty;
1522 		mark_inode_dirty_sync(inode);
1523 		mutex_unlock(&ui->ui_mutex);
1524 		if (release)
1525 			ubifs_release_dirty_inode_budget(c, ui);
1526 	}
1527 
1528 	unlock_page(page);
1529 	return 0;
1530 
1531 out_unlock:
1532 	unlock_page(page);
1533 	ubifs_release_budget(c, &req);
1534 	if (err)
1535 		err = VM_FAULT_SIGBUS;
1536 	return err;
1537 }
1538 
1539 static struct vm_operations_struct ubifs_file_vm_ops = {
1540 	.fault        = filemap_fault,
1541 	.page_mkwrite = ubifs_vm_page_mkwrite,
1542 };
1543 
1544 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1545 {
1546 	int err;
1547 
1548 	/* 'generic_file_mmap()' takes care of NOMMU case */
1549 	err = generic_file_mmap(file, vma);
1550 	if (err)
1551 		return err;
1552 	vma->vm_ops = &ubifs_file_vm_ops;
1553 	return 0;
1554 }
1555 
1556 const struct address_space_operations ubifs_file_address_operations = {
1557 	.readpage       = ubifs_readpage,
1558 	.writepage      = ubifs_writepage,
1559 	.write_begin    = ubifs_write_begin,
1560 	.write_end      = ubifs_write_end,
1561 	.invalidatepage = ubifs_invalidatepage,
1562 	.set_page_dirty = ubifs_set_page_dirty,
1563 	.releasepage    = ubifs_releasepage,
1564 };
1565 
1566 const struct inode_operations ubifs_file_inode_operations = {
1567 	.setattr     = ubifs_setattr,
1568 	.getattr     = ubifs_getattr,
1569 #ifdef CONFIG_UBIFS_FS_XATTR
1570 	.setxattr    = ubifs_setxattr,
1571 	.getxattr    = ubifs_getxattr,
1572 	.listxattr   = ubifs_listxattr,
1573 	.removexattr = ubifs_removexattr,
1574 #endif
1575 };
1576 
1577 const struct inode_operations ubifs_symlink_inode_operations = {
1578 	.readlink    = generic_readlink,
1579 	.follow_link = ubifs_follow_link,
1580 	.setattr     = ubifs_setattr,
1581 	.getattr     = ubifs_getattr,
1582 };
1583 
1584 const struct file_operations ubifs_file_operations = {
1585 	.llseek         = generic_file_llseek,
1586 	.read           = do_sync_read,
1587 	.write          = do_sync_write,
1588 	.aio_read       = generic_file_aio_read,
1589 	.aio_write      = ubifs_aio_write,
1590 	.mmap           = ubifs_file_mmap,
1591 	.fsync          = ubifs_fsync,
1592 	.unlocked_ioctl = ubifs_ioctl,
1593 	.splice_read	= generic_file_splice_read,
1594 	.splice_write	= generic_file_splice_write,
1595 #ifdef CONFIG_COMPAT
1596 	.compat_ioctl   = ubifs_compat_ioctl,
1597 #endif
1598 };
1599